xref: /netbsd-src/sys/kern/sys_pipe.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: sys_pipe.c,v 1.88 2007/12/05 17:19:58 pooka Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg, and by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Copyright (c) 1996 John S. Dyson
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice immediately at the beginning of the file, without modification,
48  *    this list of conditions, and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. Absolutely no warranty of function or purpose is made by the author
53  *    John S. Dyson.
54  * 4. Modifications may be freely made to this file if the above conditions
55  *    are met.
56  *
57  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.95 2002/03/09 22:06:31 alfred Exp $
58  */
59 
60 /*
61  * This file contains a high-performance replacement for the socket-based
62  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
63  * all features of sockets, but does do everything that pipes normally
64  * do.
65  *
66  * Adaption for NetBSD UVM, including uvm_loan() based direct write, was
67  * written by Jaromir Dolecek.
68  */
69 
70 /*
71  * This code has two modes of operation, a small write mode and a large
72  * write mode.  The small write mode acts like conventional pipes with
73  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
74  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
75  * and PIPE_SIZE in size it is mapped read-only into the kernel address space
76  * using the UVM page loan facility from where the receiving process can copy
77  * the data directly from the pages in the sending process.
78  *
79  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
80  * happen for small transfers so that the system will not spend all of
81  * its time context switching.  PIPE_SIZE is constrained by the
82  * amount of kernel virtual memory.
83  */
84 
85 #include <sys/cdefs.h>
86 __KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.88 2007/12/05 17:19:58 pooka Exp $");
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/proc.h>
91 #include <sys/fcntl.h>
92 #include <sys/file.h>
93 #include <sys/filedesc.h>
94 #include <sys/filio.h>
95 #include <sys/kernel.h>
96 #include <sys/ttycom.h>
97 #include <sys/stat.h>
98 #include <sys/malloc.h>
99 #include <sys/poll.h>
100 #include <sys/signalvar.h>
101 #include <sys/vnode.h>
102 #include <sys/uio.h>
103 #include <sys/lock.h>
104 #include <sys/select.h>
105 #include <sys/mount.h>
106 #include <sys/syscallargs.h>
107 #include <uvm/uvm.h>
108 #include <sys/sysctl.h>
109 #include <sys/kauth.h>
110 
111 #include <sys/pipe.h>
112 
113 /*
114  * Use this define if you want to disable *fancy* VM things.  Expect an
115  * approx 30% decrease in transfer rate.
116  */
117 /* #define PIPE_NODIRECT */
118 
119 /*
120  * interfaces to the outside world
121  */
122 static int pipe_read(struct file *fp, off_t *offset, struct uio *uio,
123 		kauth_cred_t cred, int flags);
124 static int pipe_write(struct file *fp, off_t *offset, struct uio *uio,
125 		kauth_cred_t cred, int flags);
126 static int pipe_close(struct file *fp, struct lwp *l);
127 static int pipe_poll(struct file *fp, int events, struct lwp *l);
128 static int pipe_kqfilter(struct file *fp, struct knote *kn);
129 static int pipe_stat(struct file *fp, struct stat *sb, struct lwp *l);
130 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
131 		struct lwp *l);
132 
133 static const struct fileops pipeops = {
134 	pipe_read, pipe_write, pipe_ioctl, fnullop_fcntl, pipe_poll,
135 	pipe_stat, pipe_close, pipe_kqfilter
136 };
137 
138 /*
139  * Default pipe buffer size(s), this can be kind-of large now because pipe
140  * space is pageable.  The pipe code will try to maintain locality of
141  * reference for performance reasons, so small amounts of outstanding I/O
142  * will not wipe the cache.
143  */
144 #define MINPIPESIZE (PIPE_SIZE/3)
145 #define MAXPIPESIZE (2*PIPE_SIZE/3)
146 
147 /*
148  * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
149  * is there so that on large systems, we don't exhaust it.
150  */
151 #define MAXPIPEKVA (8*1024*1024)
152 static int maxpipekva = MAXPIPEKVA;
153 
154 /*
155  * Limit for direct transfers, we cannot, of course limit
156  * the amount of kva for pipes in general though.
157  */
158 #define LIMITPIPEKVA (16*1024*1024)
159 static int limitpipekva = LIMITPIPEKVA;
160 
161 /*
162  * Limit the number of "big" pipes
163  */
164 #define LIMITBIGPIPES  32
165 static int maxbigpipes = LIMITBIGPIPES;
166 static int nbigpipe = 0;
167 
168 /*
169  * Amount of KVA consumed by pipe buffers.
170  */
171 static int amountpipekva = 0;
172 
173 MALLOC_DEFINE(M_PIPE, "pipe", "Pipe structures");
174 
175 static void pipeclose(struct file *fp, struct pipe *pipe);
176 static void pipe_free_kmem(struct pipe *pipe);
177 static int pipe_create(struct pipe **pipep, int allockva);
178 static int pipelock(struct pipe *pipe, int catch);
179 static inline void pipeunlock(struct pipe *pipe);
180 static void pipeselwakeup(struct pipe *pipe, struct pipe *sigp, int code);
181 #ifndef PIPE_NODIRECT
182 static int pipe_direct_write(struct file *fp, struct pipe *wpipe,
183     struct uio *uio);
184 #endif
185 static int pipespace(struct pipe *pipe, int size);
186 
187 #ifndef PIPE_NODIRECT
188 static int pipe_loan_alloc(struct pipe *, int);
189 static void pipe_loan_free(struct pipe *);
190 #endif /* PIPE_NODIRECT */
191 
192 static krwlock_t pipe_peer_lock;
193 static pool_cache_t pipe_cache;
194 
195 void
196 pipe_init(void)
197 {
198 
199 	pipe_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipepl",
200 	    NULL, IPL_NONE, NULL, NULL, NULL);
201 	KASSERT(pipe_cache != NULL);
202 	rw_init(&pipe_peer_lock);
203 }
204 
205 /*
206  * The pipe system call for the DTYPE_PIPE type of pipes
207  */
208 
209 /* ARGSUSED */
210 int
211 sys_pipe(struct lwp *l, void *v, register_t *retval)
212 {
213 	struct file *rf, *wf;
214 	struct pipe *rpipe, *wpipe;
215 	int fd, error;
216 
217 	rpipe = wpipe = NULL;
218 	if (pipe_create(&rpipe, 1) || pipe_create(&wpipe, 0)) {
219 		pipeclose(NULL, rpipe);
220 		pipeclose(NULL, wpipe);
221 		return (ENFILE);
222 	}
223 
224 	/*
225 	 * Note: the file structure returned from falloc() is marked
226 	 * as 'larval' initially. Unless we mark it as 'mature' by
227 	 * FILE_SET_MATURE(), any attempt to do anything with it would
228 	 * return EBADF, including e.g. dup(2) or close(2). This avoids
229 	 * file descriptor races if we block in the second falloc().
230 	 */
231 
232 	error = falloc(l, &rf, &fd);
233 	if (error)
234 		goto free2;
235 	retval[0] = fd;
236 	rf->f_flag = FREAD;
237 	rf->f_type = DTYPE_PIPE;
238 	rf->f_data = (void *)rpipe;
239 	rf->f_ops = &pipeops;
240 
241 	error = falloc(l, &wf, &fd);
242 	if (error)
243 		goto free3;
244 	retval[1] = fd;
245 	wf->f_flag = FWRITE;
246 	wf->f_type = DTYPE_PIPE;
247 	wf->f_data = (void *)wpipe;
248 	wf->f_ops = &pipeops;
249 
250 	rpipe->pipe_peer = wpipe;
251 	wpipe->pipe_peer = rpipe;
252 
253 	FILE_SET_MATURE(rf);
254 	FILE_SET_MATURE(wf);
255 	FILE_UNUSE(rf, l);
256 	FILE_UNUSE(wf, l);
257 	return (0);
258 free3:
259 	FILE_UNUSE(rf, l);
260 	ffree(rf);
261 	fdremove(l->l_proc->p_fd, retval[0]);
262 free2:
263 	pipeclose(NULL, wpipe);
264 	pipeclose(NULL, rpipe);
265 
266 	return (error);
267 }
268 
269 /*
270  * Allocate kva for pipe circular buffer, the space is pageable
271  * This routine will 'realloc' the size of a pipe safely, if it fails
272  * it will retain the old buffer.
273  * If it fails it will return ENOMEM.
274  */
275 static int
276 pipespace(struct pipe *pipe, int size)
277 {
278 	void *buffer;
279 	/*
280 	 * Allocate pageable virtual address space. Physical memory is
281 	 * allocated on demand.
282 	 */
283 	buffer = (void *) uvm_km_alloc(kernel_map, round_page(size), 0,
284 	    UVM_KMF_PAGEABLE);
285 	if (buffer == NULL)
286 		return (ENOMEM);
287 
288 	/* free old resources if we're resizing */
289 	pipe_free_kmem(pipe);
290 	pipe->pipe_buffer.buffer = buffer;
291 	pipe->pipe_buffer.size = size;
292 	pipe->pipe_buffer.in = 0;
293 	pipe->pipe_buffer.out = 0;
294 	pipe->pipe_buffer.cnt = 0;
295 	amountpipekva += pipe->pipe_buffer.size;
296 	return (0);
297 }
298 
299 /*
300  * Initialize and allocate VM and memory for pipe.
301  */
302 static int
303 pipe_create(struct pipe **pipep, int allockva)
304 {
305 	struct pipe *pipe;
306 	int error;
307 
308 	pipe = *pipep = pool_cache_get(pipe_cache, PR_WAITOK);
309 
310 	/* Initialize */
311 	memset(pipe, 0, sizeof(struct pipe));
312 	pipe->pipe_state = PIPE_SIGNALR;
313 
314 	getmicrotime(&pipe->pipe_ctime);
315 	pipe->pipe_atime = pipe->pipe_ctime;
316 	pipe->pipe_mtime = pipe->pipe_ctime;
317 	mutex_init(&pipe->pipe_lock, MUTEX_DEFAULT, IPL_NONE);
318 	cv_init(&pipe->pipe_cv, "pipe");
319 	cv_init(&pipe->pipe_lkcv, "pipelk");
320 	selinit(&pipe->pipe_sel);
321 
322 	if (allockva && (error = pipespace(pipe, PIPE_SIZE)))
323 		return (error);
324 
325 	return (0);
326 }
327 
328 
329 /*
330  * Lock a pipe for I/O, blocking other access
331  * Called with pipe spin lock held.
332  * Return with pipe spin lock released on success.
333  */
334 static int
335 pipelock(struct pipe *pipe, int catch)
336 {
337 	int error;
338 
339 	KASSERT(mutex_owned(&pipe->pipe_lock));
340 
341 	while (pipe->pipe_state & PIPE_LOCKFL) {
342 		pipe->pipe_state |= PIPE_LWANT;
343 		if (catch) {
344 			error = cv_wait_sig(&pipe->pipe_lkcv,
345 			    &pipe->pipe_lock);
346 			if (error != 0)
347 				return error;
348 		} else
349 			cv_wait(&pipe->pipe_lkcv, &pipe->pipe_lock);
350 	}
351 
352 	pipe->pipe_state |= PIPE_LOCKFL;
353 	mutex_exit(&pipe->pipe_lock);
354 
355 	return 0;
356 }
357 
358 /*
359  * unlock a pipe I/O lock
360  */
361 static inline void
362 pipeunlock(struct pipe *pipe)
363 {
364 
365 	KASSERT(pipe->pipe_state & PIPE_LOCKFL);
366 
367 	pipe->pipe_state &= ~PIPE_LOCKFL;
368 	if (pipe->pipe_state & PIPE_LWANT) {
369 		pipe->pipe_state &= ~PIPE_LWANT;
370 		cv_broadcast(&pipe->pipe_lkcv);
371 	}
372 }
373 
374 /*
375  * Select/poll wakup. This also sends SIGIO to peer connected to
376  * 'sigpipe' side of pipe.
377  */
378 static void
379 pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
380 {
381 	int band;
382 
383 	selnotify(&selp->pipe_sel, NOTE_SUBMIT);
384 
385 	if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
386 		return;
387 
388 	switch (code) {
389 	case POLL_IN:
390 		band = POLLIN|POLLRDNORM;
391 		break;
392 	case POLL_OUT:
393 		band = POLLOUT|POLLWRNORM;
394 		break;
395 	case POLL_HUP:
396 		band = POLLHUP;
397 		break;
398 #if POLL_HUP != POLL_ERR
399 	case POLL_ERR:
400 		band = POLLERR;
401 		break;
402 #endif
403 	default:
404 		band = 0;
405 #ifdef DIAGNOSTIC
406 		printf("bad siginfo code %d in pipe notification.\n", code);
407 #endif
408 		break;
409 	}
410 
411 	fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
412 }
413 
414 /* ARGSUSED */
415 static int
416 pipe_read(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
417     int flags)
418 {
419 	struct pipe *rpipe = (struct pipe *) fp->f_data;
420 	struct pipebuf *bp = &rpipe->pipe_buffer;
421 	int error;
422 	size_t nread = 0;
423 	size_t size;
424 	size_t ocnt;
425 
426 	mutex_enter(&rpipe->pipe_lock);
427 	++rpipe->pipe_busy;
428 	ocnt = bp->cnt;
429 
430 again:
431 	error = pipelock(rpipe, 1);
432 	if (error)
433 		goto unlocked_error;
434 
435 	while (uio->uio_resid) {
436 		/*
437 		 * normal pipe buffer receive
438 		 */
439 		if (bp->cnt > 0) {
440 			size = bp->size - bp->out;
441 			if (size > bp->cnt)
442 				size = bp->cnt;
443 			if (size > uio->uio_resid)
444 				size = uio->uio_resid;
445 
446 			error = uiomove((char *)bp->buffer + bp->out, size, uio);
447 			if (error)
448 				break;
449 
450 			bp->out += size;
451 			if (bp->out >= bp->size)
452 				bp->out = 0;
453 
454 			bp->cnt -= size;
455 
456 			/*
457 			 * If there is no more to read in the pipe, reset
458 			 * its pointers to the beginning.  This improves
459 			 * cache hit stats.
460 			 */
461 			if (bp->cnt == 0) {
462 				bp->in = 0;
463 				bp->out = 0;
464 			}
465 			nread += size;
466 			continue;
467 		}
468 
469 		/* Lock to see up-to-date value of pipe_status. */
470 		mutex_enter(&rpipe->pipe_lock);
471 
472 #ifndef PIPE_NODIRECT
473 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0) {
474 			/*
475 			 * Direct copy, bypassing a kernel buffer.
476 			 */
477 			void *	va;
478 
479 			KASSERT(rpipe->pipe_state & PIPE_DIRECTW);
480 			mutex_exit(&rpipe->pipe_lock);
481 
482 			size = rpipe->pipe_map.cnt;
483 			if (size > uio->uio_resid)
484 				size = uio->uio_resid;
485 
486 			va = (char *)rpipe->pipe_map.kva + rpipe->pipe_map.pos;
487 			error = uiomove(va, size, uio);
488 			if (error)
489 				break;
490 			nread += size;
491 			rpipe->pipe_map.pos += size;
492 			rpipe->pipe_map.cnt -= size;
493 			if (rpipe->pipe_map.cnt == 0) {
494 				mutex_enter(&rpipe->pipe_lock);
495 				rpipe->pipe_state &= ~PIPE_DIRECTR;
496 				cv_broadcast(&rpipe->pipe_cv);
497 				mutex_exit(&rpipe->pipe_lock);
498 			}
499 			continue;
500 		}
501 #endif
502 		/*
503 		 * Break if some data was read.
504 		 */
505 		if (nread > 0) {
506 			mutex_exit(&rpipe->pipe_lock);
507 			break;
508 		}
509 
510 		/*
511 		 * detect EOF condition
512 		 * read returns 0 on EOF, no need to set error
513 		 */
514 		if (rpipe->pipe_state & PIPE_EOF) {
515 			mutex_exit(&rpipe->pipe_lock);
516 			break;
517 		}
518 
519 		/*
520 		 * don't block on non-blocking I/O
521 		 */
522 		if (fp->f_flag & FNONBLOCK) {
523 			mutex_exit(&rpipe->pipe_lock);
524 			error = EAGAIN;
525 			break;
526 		}
527 
528 		/*
529 		 * Unlock the pipe buffer for our remaining processing.
530 		 * We will either break out with an error or we will
531 		 * sleep and relock to loop.
532 		 */
533 		pipeunlock(rpipe);
534 
535 		/*
536 		 * Re-check to see if more direct writes are pending.
537 		 */
538 		if ((rpipe->pipe_state & PIPE_DIRECTR) != 0)
539 			goto again;
540 
541 		/*
542 		 * We want to read more, wake up select/poll.
543 		 */
544 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_IN);
545 
546 		/*
547 		 * If the "write-side" is blocked, wake it up now.
548 		 */
549 		if (rpipe->pipe_state & PIPE_WANTW) {
550 			rpipe->pipe_state &= ~PIPE_WANTW;
551 			cv_broadcast(&rpipe->pipe_cv);
552 		}
553 
554 		/* Now wait until the pipe is filled */
555 		rpipe->pipe_state |= PIPE_WANTR;
556 		error = cv_wait_sig(&rpipe->pipe_cv, &rpipe->pipe_lock);
557 		if (error != 0)
558 			goto unlocked_error;
559 		goto again;
560 	}
561 
562 	if (error == 0)
563 		getmicrotime(&rpipe->pipe_atime);
564 
565 	mutex_enter(&rpipe->pipe_lock);
566 	pipeunlock(rpipe);
567 
568 unlocked_error:
569 	--rpipe->pipe_busy;
570 
571 	/*
572 	 * PIPE_WANTCLOSE processing only makes sense if pipe_busy is 0.
573 	 */
574 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANTCLOSE)) {
575 		rpipe->pipe_state &= ~(PIPE_WANTCLOSE|PIPE_WANTW);
576 		cv_broadcast(&rpipe->pipe_cv);
577 	} else if (bp->cnt < MINPIPESIZE) {
578 		/*
579 		 * Handle write blocking hysteresis.
580 		 */
581 		if (rpipe->pipe_state & PIPE_WANTW) {
582 			rpipe->pipe_state &= ~PIPE_WANTW;
583 			cv_broadcast(&rpipe->pipe_cv);
584 		}
585 	}
586 
587 	/*
588 	 * If anything was read off the buffer, signal to the writer it's
589 	 * possible to write more data. Also send signal if we are here for the
590 	 * first time after last write.
591 	 */
592 	if ((bp->size - bp->cnt) >= PIPE_BUF
593 	    && (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
594 		pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
595 		rpipe->pipe_state &= ~PIPE_SIGNALR;
596 	}
597 
598 	mutex_exit(&rpipe->pipe_lock);
599 	return (error);
600 }
601 
602 #ifndef PIPE_NODIRECT
603 /*
604  * Allocate structure for loan transfer.
605  */
606 static int
607 pipe_loan_alloc(struct pipe *wpipe, int npages)
608 {
609 	vsize_t len;
610 
611 	len = (vsize_t)npages << PAGE_SHIFT;
612 	wpipe->pipe_map.kva = uvm_km_alloc(kernel_map, len, 0,
613 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA);
614 	if (wpipe->pipe_map.kva == 0)
615 		return (ENOMEM);
616 
617 	amountpipekva += len;
618 	wpipe->pipe_map.npages = npages;
619 	wpipe->pipe_map.pgs = malloc(npages * sizeof(struct vm_page *), M_PIPE,
620 	    M_WAITOK);
621 	return (0);
622 }
623 
624 /*
625  * Free resources allocated for loan transfer.
626  */
627 static void
628 pipe_loan_free(struct pipe *wpipe)
629 {
630 	vsize_t len;
631 
632 	len = (vsize_t)wpipe->pipe_map.npages << PAGE_SHIFT;
633 	uvm_km_free(kernel_map, wpipe->pipe_map.kva, len, UVM_KMF_VAONLY);
634 	wpipe->pipe_map.kva = 0;
635 	amountpipekva -= len;
636 	free(wpipe->pipe_map.pgs, M_PIPE);
637 	wpipe->pipe_map.pgs = NULL;
638 }
639 
640 /*
641  * NetBSD direct write, using uvm_loan() mechanism.
642  * This implements the pipe buffer write mechanism.  Note that only
643  * a direct write OR a normal pipe write can be pending at any given time.
644  * If there are any characters in the pipe buffer, the direct write will
645  * be deferred until the receiving process grabs all of the bytes from
646  * the pipe buffer.  Then the direct mapping write is set-up.
647  *
648  * Called with the long-term pipe lock held.
649  */
650 static int
651 pipe_direct_write(struct file *fp, struct pipe *wpipe, struct uio *uio)
652 {
653 	int error, npages, j;
654 	struct vm_page **pgs;
655 	vaddr_t bbase, kva, base, bend;
656 	vsize_t blen, bcnt;
657 	voff_t bpos;
658 
659 	KASSERT(wpipe->pipe_map.cnt == 0);
660 
661 	/*
662 	 * Handle first PIPE_CHUNK_SIZE bytes of buffer. Deal with buffers
663 	 * not aligned to PAGE_SIZE.
664 	 */
665 	bbase = (vaddr_t)uio->uio_iov->iov_base;
666 	base = trunc_page(bbase);
667 	bend = round_page(bbase + uio->uio_iov->iov_len);
668 	blen = bend - base;
669 	bpos = bbase - base;
670 
671 	if (blen > PIPE_DIRECT_CHUNK) {
672 		blen = PIPE_DIRECT_CHUNK;
673 		bend = base + blen;
674 		bcnt = PIPE_DIRECT_CHUNK - bpos;
675 	} else {
676 		bcnt = uio->uio_iov->iov_len;
677 	}
678 	npages = blen >> PAGE_SHIFT;
679 
680 	/*
681 	 * Free the old kva if we need more pages than we have
682 	 * allocated.
683 	 */
684 	if (wpipe->pipe_map.kva != 0 && npages > wpipe->pipe_map.npages)
685 		pipe_loan_free(wpipe);
686 
687 	/* Allocate new kva. */
688 	if (wpipe->pipe_map.kva == 0) {
689 		error = pipe_loan_alloc(wpipe, npages);
690 		if (error)
691 			return (error);
692 	}
693 
694 	/* Loan the write buffer memory from writer process */
695 	pgs = wpipe->pipe_map.pgs;
696 	error = uvm_loan(&uio->uio_vmspace->vm_map, base, blen,
697 			 pgs, UVM_LOAN_TOPAGE);
698 	if (error) {
699 		pipe_loan_free(wpipe);
700 		return (ENOMEM); /* so that caller fallback to ordinary write */
701 	}
702 
703 	/* Enter the loaned pages to kva */
704 	kva = wpipe->pipe_map.kva;
705 	for (j = 0; j < npages; j++, kva += PAGE_SIZE) {
706 		pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pgs[j]), VM_PROT_READ);
707 	}
708 	pmap_update(pmap_kernel());
709 
710 	/* Now we can put the pipe in direct write mode */
711 	wpipe->pipe_map.pos = bpos;
712 	wpipe->pipe_map.cnt = bcnt;
713 
714 	/*
715 	 * But before we can let someone do a direct read, we
716 	 * have to wait until the pipe is drained.  Release the
717 	 * pipe lock while we wait.
718 	 */
719 	mutex_enter(&wpipe->pipe_lock);
720 	wpipe->pipe_state |= PIPE_DIRECTW;
721 	pipeunlock(wpipe);
722 
723 	while (error == 0 && wpipe->pipe_buffer.cnt > 0) {
724 		if (wpipe->pipe_state & PIPE_WANTR) {
725 			wpipe->pipe_state &= ~PIPE_WANTR;
726 			cv_broadcast(&wpipe->pipe_cv);
727 		}
728 
729 		wpipe->pipe_state |= PIPE_WANTW;
730 		error = cv_wait_sig(&wpipe->pipe_cv, &wpipe->pipe_lock);
731 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
732 			error = EPIPE;
733 	}
734 
735 	/* Pipe is drained; next read will off the direct buffer */
736 	wpipe->pipe_state |= PIPE_DIRECTR;
737 
738 	/* Wait until the reader is done */
739 	while (error == 0 && (wpipe->pipe_state & PIPE_DIRECTR)) {
740 		if (wpipe->pipe_state & PIPE_WANTR) {
741 			wpipe->pipe_state &= ~PIPE_WANTR;
742 			cv_broadcast(&wpipe->pipe_cv);
743 		}
744 		pipeselwakeup(wpipe, wpipe, POLL_IN);
745 		error = cv_wait_sig(&wpipe->pipe_cv, &wpipe->pipe_lock);
746 		if (error == 0 && wpipe->pipe_state & PIPE_EOF)
747 			error = EPIPE;
748 	}
749 
750 	/* Take pipe out of direct write mode */
751 	wpipe->pipe_state &= ~(PIPE_DIRECTW | PIPE_DIRECTR);
752 
753 	/* Acquire the pipe lock and cleanup */
754 	(void)pipelock(wpipe, 0);
755 
756 	if (pgs != NULL) {
757 		pmap_kremove(wpipe->pipe_map.kva, blen);
758 		uvm_unloan(pgs, npages, UVM_LOAN_TOPAGE);
759 	}
760 	if (error || amountpipekva > maxpipekva)
761 		pipe_loan_free(wpipe);
762 
763 	if (error) {
764 		pipeselwakeup(wpipe, wpipe, POLL_ERR);
765 
766 		/*
767 		 * If nothing was read from what we offered, return error
768 		 * straight on. Otherwise update uio resid first. Caller
769 		 * will deal with the error condition, returning short
770 		 * write, error, or restarting the write(2) as appropriate.
771 		 */
772 		if (wpipe->pipe_map.cnt == bcnt) {
773 			wpipe->pipe_map.cnt = 0;
774 			cv_broadcast(&wpipe->pipe_cv);
775 			return (error);
776 		}
777 
778 		bcnt -= wpipe->pipe_map.cnt;
779 	}
780 
781 	uio->uio_resid -= bcnt;
782 	/* uio_offset not updated, not set/used for write(2) */
783 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + bcnt;
784 	uio->uio_iov->iov_len -= bcnt;
785 	if (uio->uio_iov->iov_len == 0) {
786 		uio->uio_iov++;
787 		uio->uio_iovcnt--;
788 	}
789 
790 	wpipe->pipe_map.cnt = 0;
791 	return (error);
792 }
793 #endif /* !PIPE_NODIRECT */
794 
795 static int
796 pipe_write(struct file *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
797     int flags)
798 {
799 	struct pipe *wpipe, *rpipe;
800 	struct pipebuf *bp;
801 	int error;
802 
803 	/* We want to write to our peer */
804 	rpipe = (struct pipe *) fp->f_data;
805 
806 retry:
807 	error = 0;
808 	mutex_enter(&rpipe->pipe_lock);
809 	wpipe = rpipe->pipe_peer;
810 
811 	/*
812 	 * Detect loss of pipe read side, issue SIGPIPE if lost.
813 	 */
814 	if (wpipe == NULL)
815 		error = EPIPE;
816 	else if (mutex_tryenter(&wpipe->pipe_lock) == 0) {
817 		/* Deal with race for peer */
818 		mutex_exit(&rpipe->pipe_lock);
819 		/* XXX Might be about to deadlock w/kernel_lock. */
820 		yield();
821 		goto retry;
822 	} else if ((wpipe->pipe_state & PIPE_EOF) != 0) {
823 		mutex_exit(&wpipe->pipe_lock);
824 		error = EPIPE;
825 	}
826 
827 	mutex_exit(&rpipe->pipe_lock);
828 	if (error != 0)
829 		return (error);
830 
831 	++wpipe->pipe_busy;
832 
833 	/* Aquire the long-term pipe lock */
834 	if ((error = pipelock(wpipe,1)) != 0) {
835 		--wpipe->pipe_busy;
836 		if (wpipe->pipe_busy == 0
837 		    && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
838 			wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
839 			cv_broadcast(&wpipe->pipe_cv);
840 		}
841 		mutex_exit(&wpipe->pipe_lock);
842 		return (error);
843 	}
844 
845 	bp = &wpipe->pipe_buffer;
846 
847 	/*
848 	 * If it is advantageous to resize the pipe buffer, do so.
849 	 */
850 	if ((uio->uio_resid > PIPE_SIZE) &&
851 	    (nbigpipe < maxbigpipes) &&
852 #ifndef PIPE_NODIRECT
853 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
854 #endif
855 	    (bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
856 
857 		if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
858 			nbigpipe++;
859 	}
860 
861 	while (uio->uio_resid) {
862 		size_t space;
863 
864 #ifndef PIPE_NODIRECT
865 		/*
866 		 * Pipe buffered writes cannot be coincidental with
867 		 * direct writes.  Also, only one direct write can be
868 		 * in progress at any one time.  We wait until the currently
869 		 * executing direct write is completed before continuing.
870 		 *
871 		 * We break out if a signal occurs or the reader goes away.
872 		 */
873 		while (error == 0 && wpipe->pipe_state & PIPE_DIRECTW) {
874 			mutex_enter(&wpipe->pipe_lock);
875 			if (wpipe->pipe_state & PIPE_WANTR) {
876 				wpipe->pipe_state &= ~PIPE_WANTR;
877 				cv_broadcast(&wpipe->pipe_cv);
878 			}
879 			pipeunlock(wpipe);
880 			error = cv_wait_sig(&wpipe->pipe_cv,
881 			    &wpipe->pipe_lock);
882 
883 			(void)pipelock(wpipe, 0);
884 			if (wpipe->pipe_state & PIPE_EOF)
885 				error = EPIPE;
886 		}
887 		if (error)
888 			break;
889 
890 		/*
891 		 * If the transfer is large, we can gain performance if
892 		 * we do process-to-process copies directly.
893 		 * If the write is non-blocking, we don't use the
894 		 * direct write mechanism.
895 		 *
896 		 * The direct write mechanism will detect the reader going
897 		 * away on us.
898 		 */
899 		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
900 		    (fp->f_flag & FNONBLOCK) == 0 &&
901 		    (wpipe->pipe_map.kva || (amountpipekva < limitpipekva))) {
902 			error = pipe_direct_write(fp, wpipe, uio);
903 
904 			/*
905 			 * Break out if error occurred, unless it's ENOMEM.
906 			 * ENOMEM means we failed to allocate some resources
907 			 * for direct write, so we just fallback to ordinary
908 			 * write. If the direct write was successful,
909 			 * process rest of data via ordinary write.
910 			 */
911 			if (error == 0)
912 				continue;
913 
914 			if (error != ENOMEM)
915 				break;
916 		}
917 #endif /* PIPE_NODIRECT */
918 
919 		space = bp->size - bp->cnt;
920 
921 		/* Writes of size <= PIPE_BUF must be atomic. */
922 		if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
923 			space = 0;
924 
925 		if (space > 0) {
926 			int size;	/* Transfer size */
927 			int segsize;	/* first segment to transfer */
928 
929 			/*
930 			 * Transfer size is minimum of uio transfer
931 			 * and free space in pipe buffer.
932 			 */
933 			if (space > uio->uio_resid)
934 				size = uio->uio_resid;
935 			else
936 				size = space;
937 			/*
938 			 * First segment to transfer is minimum of
939 			 * transfer size and contiguous space in
940 			 * pipe buffer.  If first segment to transfer
941 			 * is less than the transfer size, we've got
942 			 * a wraparound in the buffer.
943 			 */
944 			segsize = bp->size - bp->in;
945 			if (segsize > size)
946 				segsize = size;
947 
948 			/* Transfer first segment */
949 			error = uiomove((char *)bp->buffer + bp->in, segsize,
950 			    uio);
951 
952 			if (error == 0 && segsize < size) {
953 				/*
954 				 * Transfer remaining part now, to
955 				 * support atomic writes.  Wraparound
956 				 * happened.
957 				 */
958 #ifdef DEBUG
959 				if (bp->in + segsize != bp->size)
960 					panic("Expected pipe buffer wraparound disappeared");
961 #endif
962 
963 				error = uiomove(bp->buffer,
964 				    size - segsize, uio);
965 			}
966 			if (error)
967 				break;
968 
969 			bp->in += size;
970 			if (bp->in >= bp->size) {
971 #ifdef DEBUG
972 				if (bp->in != size - segsize + bp->size)
973 					panic("Expected wraparound bad");
974 #endif
975 				bp->in = size - segsize;
976 			}
977 
978 			bp->cnt += size;
979 #ifdef DEBUG
980 			if (bp->cnt > bp->size)
981 				panic("Pipe buffer overflow");
982 #endif
983 		} else {
984 			/*
985 			 * If the "read-side" has been blocked, wake it up now.
986 			 */
987 			mutex_enter(&wpipe->pipe_lock);
988 			if (wpipe->pipe_state & PIPE_WANTR) {
989 				wpipe->pipe_state &= ~PIPE_WANTR;
990 				cv_broadcast(&wpipe->pipe_cv);
991 			}
992 			mutex_exit(&wpipe->pipe_lock);
993 
994 			/*
995 			 * don't block on non-blocking I/O
996 			 */
997 			if (fp->f_flag & FNONBLOCK) {
998 				error = EAGAIN;
999 				break;
1000 			}
1001 
1002 			/*
1003 			 * We have no more space and have something to offer,
1004 			 * wake up select/poll.
1005 			 */
1006 			if (bp->cnt)
1007 				pipeselwakeup(wpipe, wpipe, POLL_OUT);
1008 
1009 			mutex_enter(&wpipe->pipe_lock);
1010 			pipeunlock(wpipe);
1011 			wpipe->pipe_state |= PIPE_WANTW;
1012 			error = cv_wait_sig(&wpipe->pipe_cv,
1013 			    &wpipe->pipe_lock);
1014 			(void)pipelock(wpipe, 0);
1015 			if (error != 0)
1016 				break;
1017 			/*
1018 			 * If read side wants to go away, we just issue a signal
1019 			 * to ourselves.
1020 			 */
1021 			if (wpipe->pipe_state & PIPE_EOF) {
1022 				error = EPIPE;
1023 				break;
1024 			}
1025 		}
1026 	}
1027 
1028 	mutex_enter(&wpipe->pipe_lock);
1029 	--wpipe->pipe_busy;
1030 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANTCLOSE)) {
1031 		wpipe->pipe_state &= ~(PIPE_WANTCLOSE | PIPE_WANTR);
1032 		cv_broadcast(&wpipe->pipe_cv);
1033 	} else if (bp->cnt > 0) {
1034 		/*
1035 		 * If we have put any characters in the buffer, we wake up
1036 		 * the reader.
1037 		 */
1038 		if (wpipe->pipe_state & PIPE_WANTR) {
1039 			wpipe->pipe_state &= ~PIPE_WANTR;
1040 			cv_broadcast(&wpipe->pipe_cv);
1041 		}
1042 	}
1043 
1044 	/*
1045 	 * Don't return EPIPE if I/O was successful
1046 	 */
1047 	if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
1048 		error = 0;
1049 
1050 	if (error == 0)
1051 		getmicrotime(&wpipe->pipe_mtime);
1052 
1053 	/*
1054 	 * We have something to offer, wake up select/poll.
1055 	 * wpipe->pipe_map.cnt is always 0 in this point (direct write
1056 	 * is only done synchronously), so check only wpipe->pipe_buffer.cnt
1057 	 */
1058 	if (bp->cnt)
1059 		pipeselwakeup(wpipe, wpipe, POLL_OUT);
1060 
1061 	/*
1062 	 * Arrange for next read(2) to do a signal.
1063 	 */
1064 	wpipe->pipe_state |= PIPE_SIGNALR;
1065 
1066 	pipeunlock(wpipe);
1067 	mutex_exit(&wpipe->pipe_lock);
1068 	return (error);
1069 }
1070 
1071 /*
1072  * we implement a very minimal set of ioctls for compatibility with sockets.
1073  */
1074 int
1075 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
1076 {
1077 	struct pipe *pipe = (struct pipe *)fp->f_data;
1078 	struct proc *p = l->l_proc;
1079 
1080 	switch (cmd) {
1081 
1082 	case FIONBIO:
1083 		return (0);
1084 
1085 	case FIOASYNC:
1086 		mutex_enter(&pipe->pipe_lock);
1087 		if (*(int *)data) {
1088 			pipe->pipe_state |= PIPE_ASYNC;
1089 		} else {
1090 			pipe->pipe_state &= ~PIPE_ASYNC;
1091 		}
1092 		mutex_exit(&pipe->pipe_lock);
1093 		return (0);
1094 
1095 	case FIONREAD:
1096 		mutex_enter(&pipe->pipe_lock);
1097 #ifndef PIPE_NODIRECT
1098 		if (pipe->pipe_state & PIPE_DIRECTW)
1099 			*(int *)data = pipe->pipe_map.cnt;
1100 		else
1101 #endif
1102 			*(int *)data = pipe->pipe_buffer.cnt;
1103 		mutex_exit(&pipe->pipe_lock);
1104 		return (0);
1105 
1106 	case FIONWRITE:
1107 		/* Look at other side */
1108 		rw_enter(&pipe_peer_lock, RW_READER);
1109 		pipe = pipe->pipe_peer;
1110 		mutex_enter(&pipe->pipe_lock);
1111 #ifndef PIPE_NODIRECT
1112 		if (pipe->pipe_state & PIPE_DIRECTW)
1113 			*(int *)data = pipe->pipe_map.cnt;
1114 		else
1115 #endif
1116 			*(int *)data = pipe->pipe_buffer.cnt;
1117 		mutex_exit(&pipe->pipe_lock);
1118 		rw_exit(&pipe_peer_lock);
1119 		return (0);
1120 
1121 	case FIONSPACE:
1122 		/* Look at other side */
1123 		rw_enter(&pipe_peer_lock, RW_READER);
1124 		pipe = pipe->pipe_peer;
1125 		mutex_enter(&pipe->pipe_lock);
1126 #ifndef PIPE_NODIRECT
1127 		/*
1128 		 * If we're in direct-mode, we don't really have a
1129 		 * send queue, and any other write will block. Thus
1130 		 * zero seems like the best answer.
1131 		 */
1132 		if (pipe->pipe_state & PIPE_DIRECTW)
1133 			*(int *)data = 0;
1134 		else
1135 #endif
1136 			*(int *)data = pipe->pipe_buffer.size -
1137 			    pipe->pipe_buffer.cnt;
1138 		mutex_exit(&pipe->pipe_lock);
1139 		rw_exit(&pipe_peer_lock);
1140 		return (0);
1141 
1142 	case TIOCSPGRP:
1143 	case FIOSETOWN:
1144 		return fsetown(p, &pipe->pipe_pgid, cmd, data);
1145 
1146 	case TIOCGPGRP:
1147 	case FIOGETOWN:
1148 		return fgetown(p, pipe->pipe_pgid, cmd, data);
1149 
1150 	}
1151 	return (EPASSTHROUGH);
1152 }
1153 
1154 int
1155 pipe_poll(struct file *fp, int events, struct lwp *l)
1156 {
1157 	struct pipe *rpipe = (struct pipe *)fp->f_data;
1158 	struct pipe *wpipe;
1159 	int eof = 0;
1160 	int revents = 0;
1161 
1162 retry:
1163 	mutex_enter(&rpipe->pipe_lock);
1164 	wpipe = rpipe->pipe_peer;
1165 	if (wpipe != NULL && mutex_tryenter(&wpipe->pipe_lock) == 0) {
1166 		/* Deal with race for peer */
1167 		mutex_exit(&rpipe->pipe_lock);
1168 		/* XXX Might be about to deadlock w/kernel_lock. */
1169 		yield();
1170 		goto retry;
1171 	}
1172 
1173 	if (events & (POLLIN | POLLRDNORM))
1174 		if ((rpipe->pipe_buffer.cnt > 0) ||
1175 #ifndef PIPE_NODIRECT
1176 		    (rpipe->pipe_state & PIPE_DIRECTR) ||
1177 #endif
1178 		    (rpipe->pipe_state & PIPE_EOF))
1179 			revents |= events & (POLLIN | POLLRDNORM);
1180 
1181 	eof |= (rpipe->pipe_state & PIPE_EOF);
1182 	mutex_exit(&rpipe->pipe_lock);
1183 
1184 	if (wpipe == NULL)
1185 		revents |= events & (POLLOUT | POLLWRNORM);
1186 	else {
1187 		if (events & (POLLOUT | POLLWRNORM))
1188 			if ((wpipe->pipe_state & PIPE_EOF) || (
1189 #ifndef PIPE_NODIRECT
1190 			     (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1191 #endif
1192 			     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1193 				revents |= events & (POLLOUT | POLLWRNORM);
1194 
1195 		eof |= (wpipe->pipe_state & PIPE_EOF);
1196 		mutex_exit(&wpipe->pipe_lock);
1197 	}
1198 
1199 	if (wpipe == NULL || eof)
1200 		revents |= POLLHUP;
1201 
1202 	if (revents == 0) {
1203 		if (events & (POLLIN | POLLRDNORM))
1204 			selrecord(l, &rpipe->pipe_sel);
1205 
1206 		if (events & (POLLOUT | POLLWRNORM))
1207 			selrecord(l, &wpipe->pipe_sel);
1208 	}
1209 
1210 	return (revents);
1211 }
1212 
1213 static int
1214 pipe_stat(struct file *fp, struct stat *ub, struct lwp *l)
1215 {
1216 	struct pipe *pipe = (struct pipe *)fp->f_data;
1217 
1218 	rw_enter(&pipe_peer_lock, RW_READER);
1219 
1220 	memset((void *)ub, 0, sizeof(*ub));
1221 	ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1222 	ub->st_blksize = pipe->pipe_buffer.size;
1223 	if (ub->st_blksize == 0 && pipe->pipe_peer)
1224 		ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
1225 	ub->st_size = pipe->pipe_buffer.cnt;
1226 	ub->st_blocks = (ub->st_size) ? 1 : 0;
1227 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_atime, &ub->st_atimespec);
1228 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_mtime, &ub->st_mtimespec);
1229 	TIMEVAL_TO_TIMESPEC(&pipe->pipe_ctime, &ub->st_ctimespec);
1230 	ub->st_uid = kauth_cred_geteuid(fp->f_cred);
1231 	ub->st_gid = kauth_cred_getegid(fp->f_cred);
1232 
1233 	rw_exit(&pipe_peer_lock);
1234 
1235 	/*
1236 	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1237 	 * XXX (st_dev, st_ino) should be unique.
1238 	 */
1239 	return (0);
1240 }
1241 
1242 /* ARGSUSED */
1243 static int
1244 pipe_close(struct file *fp, struct lwp *l)
1245 {
1246 	struct pipe *pipe = (struct pipe *)fp->f_data;
1247 
1248 	fp->f_data = NULL;
1249 	pipeclose(fp, pipe);
1250 	return (0);
1251 }
1252 
1253 static void
1254 pipe_free_kmem(struct pipe *pipe)
1255 {
1256 
1257 	if (pipe->pipe_buffer.buffer != NULL) {
1258 		if (pipe->pipe_buffer.size > PIPE_SIZE)
1259 			--nbigpipe;
1260 		amountpipekva -= pipe->pipe_buffer.size;
1261 		uvm_km_free(kernel_map,
1262 			(vaddr_t)pipe->pipe_buffer.buffer,
1263 			pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
1264 		pipe->pipe_buffer.buffer = NULL;
1265 	}
1266 #ifndef PIPE_NODIRECT
1267 	if (pipe->pipe_map.kva != 0) {
1268 		pipe_loan_free(pipe);
1269 		pipe->pipe_map.cnt = 0;
1270 		pipe->pipe_map.kva = 0;
1271 		pipe->pipe_map.pos = 0;
1272 		pipe->pipe_map.npages = 0;
1273 	}
1274 #endif /* !PIPE_NODIRECT */
1275 }
1276 
1277 /*
1278  * shutdown the pipe
1279  */
1280 static void
1281 pipeclose(struct file *fp, struct pipe *pipe)
1282 {
1283 	struct pipe *ppipe;
1284 
1285 	if (pipe == NULL)
1286 		return;
1287 
1288  retry:
1289 	rw_enter(&pipe_peer_lock, RW_WRITER);
1290 	mutex_enter(&pipe->pipe_lock);
1291 
1292 	pipeselwakeup(pipe, pipe, POLL_HUP);
1293 
1294 	/*
1295 	 * If the other side is blocked, wake it up saying that
1296 	 * we want to close it down.
1297 	 */
1298 	pipe->pipe_state |= PIPE_EOF;
1299 	if (pipe->pipe_busy) {
1300 		rw_exit(&pipe_peer_lock);
1301 		while (pipe->pipe_busy) {
1302 			cv_broadcast(&pipe->pipe_cv);
1303 			pipe->pipe_state |= PIPE_WANTCLOSE;
1304 			cv_wait_sig(&pipe->pipe_cv, &pipe->pipe_lock);
1305 		}
1306 		if (!rw_tryenter(&pipe_peer_lock, RW_READER)) {
1307 			mutex_exit(&pipe->pipe_lock);
1308 			/* XXX Might be about to deadlock w/kernel_lock. */
1309 			yield();
1310 			goto retry;
1311 		}
1312 	}
1313 
1314 	/*
1315 	 * Disconnect from peer
1316 	 */
1317 	if ((ppipe = pipe->pipe_peer) != NULL) {
1318 		/* Deal with race for peer */
1319 		if (mutex_tryenter(&ppipe->pipe_lock) == 0) {
1320 			mutex_exit(&pipe->pipe_lock);
1321 			rw_exit(&pipe_peer_lock);
1322 			/* XXX Might be about to deadlock w/kernel_lock. */
1323 			yield();
1324 			goto retry;
1325 		}
1326 		pipeselwakeup(ppipe, ppipe, POLL_HUP);
1327 
1328 		ppipe->pipe_state |= PIPE_EOF;
1329 		cv_broadcast(&ppipe->pipe_cv);
1330 		ppipe->pipe_peer = NULL;
1331 		mutex_exit(&ppipe->pipe_lock);
1332 	}
1333 
1334 	KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
1335 
1336 	mutex_exit(&pipe->pipe_lock);
1337 	rw_exit(&pipe_peer_lock);
1338 
1339 	/*
1340 	 * free resources
1341 	 */
1342 	pipe_free_kmem(pipe);
1343 	mutex_destroy(&pipe->pipe_lock);
1344 	cv_destroy(&pipe->pipe_cv);
1345 	cv_destroy(&pipe->pipe_lkcv);
1346 	seldestroy(&pipe->pipe_sel);
1347 	pool_cache_put(pipe_cache, pipe);
1348 }
1349 
1350 static void
1351 filt_pipedetach(struct knote *kn)
1352 {
1353 	struct pipe *pipe = (struct pipe *)kn->kn_fp->f_data;
1354 
1355 	rw_enter(&pipe_peer_lock, RW_READER);
1356 
1357 	switch(kn->kn_filter) {
1358 	case EVFILT_WRITE:
1359 		/* need the peer structure, not our own */
1360 		pipe = pipe->pipe_peer;
1361 
1362 		/* if reader end already closed, just return */
1363 		if (pipe == NULL) {
1364 			rw_exit(&pipe_peer_lock);
1365 			return;
1366 		}
1367 
1368 		break;
1369 	default:
1370 		/* nothing to do */
1371 		break;
1372 	}
1373 
1374 #ifdef DIAGNOSTIC
1375 	if (kn->kn_hook != pipe)
1376 		panic("filt_pipedetach: inconsistent knote");
1377 #endif
1378 
1379 	mutex_enter(&pipe->pipe_lock);
1380 	SLIST_REMOVE(&pipe->pipe_sel.sel_klist, kn, knote, kn_selnext);
1381 	mutex_exit(&pipe->pipe_lock);
1382 	rw_exit(&pipe_peer_lock);
1383 }
1384 
1385 /*ARGSUSED*/
1386 static int
1387 filt_piperead(struct knote *kn, long hint)
1388 {
1389 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1390 	struct pipe *wpipe;
1391 
1392 	if ((hint & NOTE_SUBMIT) == 0) {
1393 		rw_enter(&pipe_peer_lock, RW_READER);
1394 		mutex_enter(&rpipe->pipe_lock);
1395 	}
1396 	wpipe = rpipe->pipe_peer;
1397 	kn->kn_data = rpipe->pipe_buffer.cnt;
1398 
1399 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1400 		kn->kn_data = rpipe->pipe_map.cnt;
1401 
1402 	if ((rpipe->pipe_state & PIPE_EOF) ||
1403 	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1404 		kn->kn_flags |= EV_EOF;
1405 		if ((hint & NOTE_SUBMIT) == 0) {
1406 			mutex_exit(&rpipe->pipe_lock);
1407 			rw_exit(&pipe_peer_lock);
1408 		}
1409 		return (1);
1410 	}
1411 
1412 	if ((hint & NOTE_SUBMIT) == 0) {
1413 		mutex_exit(&rpipe->pipe_lock);
1414 		rw_exit(&pipe_peer_lock);
1415 	}
1416 	return (kn->kn_data > 0);
1417 }
1418 
1419 /*ARGSUSED*/
1420 static int
1421 filt_pipewrite(struct knote *kn, long hint)
1422 {
1423 	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1424 	struct pipe *wpipe;
1425 
1426 	if ((hint & NOTE_SUBMIT) == 0) {
1427 		rw_enter(&pipe_peer_lock, RW_READER);
1428 		mutex_enter(&rpipe->pipe_lock);
1429 	}
1430 	wpipe = rpipe->pipe_peer;
1431 
1432 	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1433 		kn->kn_data = 0;
1434 		kn->kn_flags |= EV_EOF;
1435 		if ((hint & NOTE_SUBMIT) == 0) {
1436 			mutex_exit(&rpipe->pipe_lock);
1437 			rw_exit(&pipe_peer_lock);
1438 		}
1439 		return (1);
1440 	}
1441 	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1442 	if (wpipe->pipe_state & PIPE_DIRECTW)
1443 		kn->kn_data = 0;
1444 
1445 	if ((hint & NOTE_SUBMIT) == 0) {
1446 		mutex_exit(&rpipe->pipe_lock);
1447 		rw_exit(&pipe_peer_lock);
1448 	}
1449 	return (kn->kn_data >= PIPE_BUF);
1450 }
1451 
1452 static const struct filterops pipe_rfiltops =
1453 	{ 1, NULL, filt_pipedetach, filt_piperead };
1454 static const struct filterops pipe_wfiltops =
1455 	{ 1, NULL, filt_pipedetach, filt_pipewrite };
1456 
1457 /*ARGSUSED*/
1458 static int
1459 pipe_kqfilter(struct file *fp, struct knote *kn)
1460 {
1461 	struct pipe *pipe;
1462 
1463 	rw_enter(&pipe_peer_lock, RW_READER);
1464 	pipe = (struct pipe *)kn->kn_fp->f_data;
1465 
1466 	switch (kn->kn_filter) {
1467 	case EVFILT_READ:
1468 		kn->kn_fop = &pipe_rfiltops;
1469 		break;
1470 	case EVFILT_WRITE:
1471 		kn->kn_fop = &pipe_wfiltops;
1472 		pipe = pipe->pipe_peer;
1473 		if (pipe == NULL) {
1474 			/* other end of pipe has been closed */
1475 			rw_exit(&pipe_peer_lock);
1476 			return (EBADF);
1477 		}
1478 		break;
1479 	default:
1480 		rw_exit(&pipe_peer_lock);
1481 		return (EINVAL);
1482 	}
1483 
1484 	kn->kn_hook = pipe;
1485 	mutex_enter(&pipe->pipe_lock);
1486 	SLIST_INSERT_HEAD(&pipe->pipe_sel.sel_klist, kn, kn_selnext);
1487 	mutex_exit(&pipe->pipe_lock);
1488 	rw_exit(&pipe_peer_lock);
1489 
1490 	return (0);
1491 }
1492 
1493 /*
1494  * Handle pipe sysctls.
1495  */
1496 SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
1497 {
1498 
1499 	sysctl_createv(clog, 0, NULL, NULL,
1500 		       CTLFLAG_PERMANENT,
1501 		       CTLTYPE_NODE, "kern", NULL,
1502 		       NULL, 0, NULL, 0,
1503 		       CTL_KERN, CTL_EOL);
1504 	sysctl_createv(clog, 0, NULL, NULL,
1505 		       CTLFLAG_PERMANENT,
1506 		       CTLTYPE_NODE, "pipe",
1507 		       SYSCTL_DESCR("Pipe settings"),
1508 		       NULL, 0, NULL, 0,
1509 		       CTL_KERN, KERN_PIPE, CTL_EOL);
1510 
1511 	sysctl_createv(clog, 0, NULL, NULL,
1512 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1513 		       CTLTYPE_INT, "maxkvasz",
1514 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
1515 				    "used for pipes"),
1516 		       NULL, 0, &maxpipekva, 0,
1517 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXKVASZ, CTL_EOL);
1518 	sysctl_createv(clog, 0, NULL, NULL,
1519 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1520 		       CTLTYPE_INT, "maxloankvasz",
1521 		       SYSCTL_DESCR("Limit for direct transfers via page loan"),
1522 		       NULL, 0, &limitpipekva, 0,
1523 		       CTL_KERN, KERN_PIPE, KERN_PIPE_LIMITKVA, CTL_EOL);
1524 	sysctl_createv(clog, 0, NULL, NULL,
1525 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1526 		       CTLTYPE_INT, "maxbigpipes",
1527 		       SYSCTL_DESCR("Maximum number of \"big\" pipes"),
1528 		       NULL, 0, &maxbigpipes, 0,
1529 		       CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
1530 	sysctl_createv(clog, 0, NULL, NULL,
1531 		       CTLFLAG_PERMANENT,
1532 		       CTLTYPE_INT, "nbigpipes",
1533 		       SYSCTL_DESCR("Number of \"big\" pipes"),
1534 		       NULL, 0, &nbigpipe, 0,
1535 		       CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
1536 	sysctl_createv(clog, 0, NULL, NULL,
1537 		       CTLFLAG_PERMANENT,
1538 		       CTLTYPE_INT, "kvasize",
1539 		       SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
1540 				    "buffers"),
1541 		       NULL, 0, &amountpipekva, 0,
1542 		       CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
1543 }
1544