xref: /netbsd-src/sys/kern/sys_futex.c (revision 77c1bb7123e6b44258c60c6810514cabb19ff4fb)
1 /*	$NetBSD: sys_futex.c,v 1.4 2020/04/27 23:54:43 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2018, 2019, 2020 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Taylor R. Campbell and Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: sys_futex.c,v 1.4 2020/04/27 23:54:43 riastradh Exp $");
34 
35 /*
36  * Futexes
37  *
38  *	The futex system call coordinates notifying threads waiting for
39  *	changes on a 32-bit word of memory.  The word can be managed by
40  *	CPU atomic operations in userland, without system calls, as long
41  *	as there is no contention.
42  *
43  *	The simplest use case demonstrating the utility is:
44  *
45  *		// 32-bit word of memory shared among threads or
46  *		// processes in userland.  lock & 1 means owned;
47  *		// lock & 2 means there are waiters waiting.
48  *		volatile int lock = 0;
49  *
50  *		int v;
51  *
52  *		// Acquire a lock.
53  *		do {
54  *			v = lock;
55  *			if (v & 1) {
56  *				// Lock is held.  Set a bit to say that
57  *				// there are waiters, and wait for lock
58  *				// to change to anything other than v;
59  *				// then retry.
60  *				if (atomic_cas_uint(&lock, v, v | 2) != v)
61  *					continue;
62  *				futex(FUTEX_WAIT, &lock, v | 2, NULL, NULL, 0);
63  *				continue;
64  *			}
65  *		} while (atomic_cas_uint(&lock, v, v & ~1) != v);
66  *		membar_enter();
67  *
68  *		...
69  *
70  *		// Release the lock.  Optimistically assume there are
71  *		// no waiters first until demonstrated otherwise.
72  *		membar_exit();
73  *		if (atomic_cas_uint(&lock, 1, 0) != 1) {
74  *			// There may be waiters.
75  *			v = atomic_swap_uint(&lock, 0);
76  *			// If there are still waiters, wake one.
77  *			if (v & 2)
78  *				futex(FUTEX_WAKE, &lock, 1, NULL, NULL, 0);
79  *		}
80  *
81  *	The goal is to avoid the futex system call unless there is
82  *	contention; then if there is contention, to guarantee no missed
83  *	wakeups.
84  *
85  *	For a simple implementation, futex(FUTEX_WAIT) could queue
86  *	itself to be woken, double-check the lock word, and then sleep;
87  *	spurious wakeups are generally a fact of life, so any
88  *	FUTEX_WAKE could just wake every FUTEX_WAIT in the system.
89  *
90  *	If this were all there is to it, we could then increase
91  *	parallelism by refining the approximation: partition the
92  *	waiters into buckets by hashing the lock addresses to reduce
93  *	the incidence of spurious wakeups.  But this is not all.
94  *
95  *	The futex(FUTEX_CMP_REQUEUE, &lock, n, &lock2, m, val)
96  *	operation not only wakes n waiters on lock if lock == val, but
97  *	also _transfers_ m additional waiters to lock2.  Unless wakeups
98  *	on lock2 also trigger wakeups on lock, we cannot move waiters
99  *	to lock2 if they merely share the same hash as waiters on lock.
100  *	Thus, we can't approximately distribute waiters into queues by
101  *	a hash function; we must distinguish futex queues exactly by
102  *	lock address.
103  *
104  *	For now, we use a global red/black tree to index futexes.  This
105  *	should be replaced by a lockless radix tree with a thread to
106  *	free entries no longer in use once all lookups on all CPUs have
107  *	completed.
108  *
109  *	Specifically, we maintain two maps:
110  *
111  *	futex_tab.va[vmspace, va] for private futexes
112  *	futex_tab.oa[uvm_voaddr] for shared futexes
113  *
114  *	This implementation does not support priority inheritance.
115  */
116 
117 #include <sys/types.h>
118 #include <sys/atomic.h>
119 #include <sys/condvar.h>
120 #include <sys/futex.h>
121 #include <sys/mutex.h>
122 #include <sys/rbtree.h>
123 #include <sys/queue.h>
124 
125 #include <sys/syscall.h>
126 #include <sys/syscallargs.h>
127 #include <sys/syscallvar.h>
128 
129 #include <uvm/uvm_extern.h>
130 
131 /*
132  * Lock order:
133  *
134  *	futex_tab.lock
135  *	futex::fx_qlock			ordered by kva of struct futex
136  *	 -> futex_wait::fw_lock		only one at a time
137  *	futex_wait::fw_lock		only one at a time
138  *	 -> futex::fx_abortlock		only one at a time
139  */
140 
141 /*
142  * union futex_key
143  *
144  *	A futex is addressed either by a vmspace+va (private) or by
145  *	a uvm_voaddr (shared).
146  */
147 union futex_key {
148 	struct {
149 		struct vmspace			*vmspace;
150 		vaddr_t				va;
151 	}			fk_private;
152 	struct uvm_voaddr	fk_shared;
153 };
154 
155 /*
156  * struct futex
157  *
158  *	Kernel state for a futex located at a particular address in a
159  *	particular virtual address space.
160  *
161  *	N.B. fx_refcnt is an unsigned long because we need to be able
162  *	to operate on it atomically on all systems while at the same
163  *	time rendering practically impossible the chance of it reaching
164  *	its max value.  In practice, we're limited by the number of LWPs
165  *	that can be present on the system at any given time, and the
166  *	assumption is that limit will be good enough on a 32-bit platform.
167  *	See futex_wake() for why overflow needs to be avoided.
168  */
169 struct futex {
170 	union futex_key		fx_key;
171 	unsigned long		fx_refcnt;
172 	bool			fx_shared;
173 	bool			fx_on_tree;
174 	struct rb_node		fx_node;
175 
176 	kmutex_t			fx_qlock;
177 	TAILQ_HEAD(, futex_wait)	fx_queue;
178 
179 	kmutex_t			fx_abortlock;
180 	LIST_HEAD(, futex_wait)		fx_abortlist;
181 	kcondvar_t			fx_abortcv;
182 };
183 
184 /*
185  * struct futex_wait
186  *
187  *	State for a thread to wait on a futex.  Threads wait on fw_cv
188  *	for fw_bitset to be set to zero.  The thread may transition to
189  *	a different futex queue at any time under the futex's lock.
190  */
191 struct futex_wait {
192 	kmutex_t		fw_lock;
193 	kcondvar_t		fw_cv;
194 	struct futex		*fw_futex;
195 	TAILQ_ENTRY(futex_wait)	fw_entry;	/* queue lock */
196 	LIST_ENTRY(futex_wait)	fw_abort;	/* queue abortlock */
197 	int			fw_bitset;
198 	bool			fw_aborting;	/* fw_lock */
199 };
200 
201 /*
202  * futex_tab
203  *
204  *	Global trees of futexes by vmspace/va and VM object address.
205  *
206  *	XXX This obviously doesn't scale in parallel.  We could use a
207  *	pserialize-safe data structure, but there may be a high cost to
208  *	frequent deletion since we don't cache futexes after we're done
209  *	with them.  We could use hashed locks.  But for now, just make
210  *	sure userland can't DoS the serial performance, by using a
211  *	balanced binary tree for lookup.
212  *
213  *	XXX We could use a per-process tree for the table indexed by
214  *	virtual address to reduce contention between processes.
215  */
216 static struct {
217 	kmutex_t	lock;
218 	struct rb_tree	va;
219 	struct rb_tree	oa;
220 } futex_tab __cacheline_aligned;
221 
222 static int
223 compare_futex_key(void *cookie, const void *n, const void *k)
224 {
225 	const struct futex *fa = n;
226 	const union futex_key *fka = &fa->fx_key;
227 	const union futex_key *fkb = k;
228 
229 	if ((uintptr_t)fka->fk_private.vmspace <
230 	    (uintptr_t)fkb->fk_private.vmspace)
231 		return -1;
232 	if ((uintptr_t)fka->fk_private.vmspace >
233 	    (uintptr_t)fkb->fk_private.vmspace)
234 		return +1;
235 	if (fka->fk_private.va < fkb->fk_private.va)
236 		return -1;
237 	if (fka->fk_private.va > fkb->fk_private.va)
238 		return -1;
239 	return 0;
240 }
241 
242 static int
243 compare_futex(void *cookie, const void *na, const void *nb)
244 {
245 	const struct futex *fa = na;
246 	const struct futex *fb = nb;
247 
248 	return compare_futex_key(cookie, fa, &fb->fx_key);
249 }
250 
251 static const rb_tree_ops_t futex_rb_ops = {
252 	.rbto_compare_nodes = compare_futex,
253 	.rbto_compare_key = compare_futex_key,
254 	.rbto_node_offset = offsetof(struct futex, fx_node),
255 };
256 
257 static int
258 compare_futex_shared_key(void *cookie, const void *n, const void *k)
259 {
260 	const struct futex *fa = n;
261 	const union futex_key *fka = &fa->fx_key;
262 	const union futex_key *fkb = k;
263 
264 	return uvm_voaddr_compare(&fka->fk_shared, &fkb->fk_shared);
265 }
266 
267 static int
268 compare_futex_shared(void *cookie, const void *na, const void *nb)
269 {
270 	const struct futex *fa = na;
271 	const struct futex *fb = nb;
272 
273 	return compare_futex_shared_key(cookie, fa, &fb->fx_key);
274 }
275 
276 static const rb_tree_ops_t futex_shared_rb_ops = {
277 	.rbto_compare_nodes = compare_futex_shared,
278 	.rbto_compare_key = compare_futex_shared_key,
279 	.rbto_node_offset = offsetof(struct futex, fx_node),
280 };
281 
282 static void	futex_wait_dequeue(struct futex_wait *, struct futex *);
283 
284 /*
285  * futex_load(uaddr, kaddr)
286  *
287  *	Perform a single atomic load to read *uaddr, and return the
288  *	result in *kaddr.  Return 0 on success, EFAULT if uaddr is not
289  *	mapped.
290  */
291 static inline int
292 futex_load(int *uaddr, int *kaddr)
293 {
294 	return ufetch_int((u_int *)uaddr, (u_int *)kaddr);
295 }
296 
297 /*
298  * futex_test(uaddr, expected)
299  *
300  *	True if *uaddr == expected.  False if *uaddr != expected, or if
301  *	uaddr is not mapped.
302  */
303 static bool
304 futex_test(int *uaddr, int expected)
305 {
306 	int val;
307 	int error;
308 
309 	error = futex_load(uaddr, &val);
310 	if (error)
311 		return false;
312 	return val == expected;
313 }
314 
315 /*
316  * futex_sys_init()
317  *
318  *	Initialize the futex subsystem.
319  */
320 void
321 futex_sys_init(void)
322 {
323 
324 	mutex_init(&futex_tab.lock, MUTEX_DEFAULT, IPL_NONE);
325 	rb_tree_init(&futex_tab.va, &futex_rb_ops);
326 	rb_tree_init(&futex_tab.oa, &futex_shared_rb_ops);
327 }
328 
329 /*
330  * futex_sys_fini()
331  *
332  *	Finalize the futex subsystem.
333  */
334 void
335 futex_sys_fini(void)
336 {
337 
338 	KASSERT(RB_TREE_MIN(&futex_tab.oa) == NULL);
339 	KASSERT(RB_TREE_MIN(&futex_tab.va) == NULL);
340 	mutex_destroy(&futex_tab.lock);
341 }
342 
343 /*
344  * futex_queue_init(f)
345  *
346  *	Initialize the futex queue.  Caller must call futex_queue_fini
347  *	when done.
348  *
349  *	Never sleeps.
350  */
351 static void
352 futex_queue_init(struct futex *f)
353 {
354 
355 	mutex_init(&f->fx_qlock, MUTEX_DEFAULT, IPL_NONE);
356 	mutex_init(&f->fx_abortlock, MUTEX_DEFAULT, IPL_NONE);
357 	cv_init(&f->fx_abortcv, "fqabort");
358 	LIST_INIT(&f->fx_abortlist);
359 	TAILQ_INIT(&f->fx_queue);
360 }
361 
362 /*
363  * futex_queue_drain(f)
364  *
365  *	Wait for any aborting waiters in f; then empty the queue of
366  *	any stragglers and wake them.  Caller must guarantee no new
367  *	references to f.
368  *
369  *	May sleep.
370  */
371 static void
372 futex_queue_drain(struct futex *f)
373 {
374 	struct futex_wait *fw, *fw_next;
375 
376 	mutex_enter(&f->fx_abortlock);
377 	while (!LIST_EMPTY(&f->fx_abortlist))
378 		cv_wait(&f->fx_abortcv, &f->fx_abortlock);
379 	mutex_exit(&f->fx_abortlock);
380 
381 	mutex_enter(&f->fx_qlock);
382 	TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
383 		mutex_enter(&fw->fw_lock);
384 		futex_wait_dequeue(fw, f);
385 		cv_broadcast(&fw->fw_cv);
386 		mutex_exit(&fw->fw_lock);
387 	}
388 	mutex_exit(&f->fx_qlock);
389 }
390 
391 /*
392  * futex_queue_fini(fq)
393  *
394  *	Finalize the futex queue initialized by futex_queue_init.  Queue
395  *	must be empty.  Caller must not use f again until a subsequent
396  *	futex_queue_init.
397  */
398 static void
399 futex_queue_fini(struct futex *f)
400 {
401 
402 	KASSERT(TAILQ_EMPTY(&f->fx_queue));
403 	KASSERT(LIST_EMPTY(&f->fx_abortlist));
404 	mutex_destroy(&f->fx_qlock);
405 	mutex_destroy(&f->fx_abortlock);
406 	cv_destroy(&f->fx_abortcv);
407 }
408 
409 /*
410  * futex_key_init(key, vm, va, shared)
411  *
412  *	Initialize a futex key for lookup, etc.
413  */
414 static int
415 futex_key_init(union futex_key *fk, struct vmspace *vm, vaddr_t va, bool shared)
416 {
417 	int error = 0;
418 
419 	if (__predict_false(shared)) {
420 		if (!uvm_voaddr_acquire(&vm->vm_map, va, &fk->fk_shared))
421 			error = EFAULT;
422 	} else {
423 		fk->fk_private.vmspace = vm;
424 		fk->fk_private.va = va;
425 	}
426 
427 	return error;
428 }
429 
430 /*
431  * futex_key_fini(key, shared)
432  *
433  *	Release a futex key.
434  */
435 static void
436 futex_key_fini(union futex_key *fk, bool shared)
437 {
438 	if (__predict_false(shared))
439 		uvm_voaddr_release(&fk->fk_shared);
440 	memset(fk, 0, sizeof(*fk));
441 }
442 
443 /*
444  * futex_create(fk, shared)
445  *
446  *	Create a futex.  Initial reference count is 1, representing the
447  *	caller.  Returns NULL on failure.  Always takes ownership of the
448  *	key, either transferring it to the newly-created futex, or releasing
449  *	the key if creation fails.
450  *
451  *	Never sleeps for memory, but may sleep to acquire a lock.
452  */
453 static struct futex *
454 futex_create(union futex_key *fk, bool shared)
455 {
456 	struct futex *f;
457 
458 	f = kmem_alloc(sizeof(*f), KM_NOSLEEP);
459 	if (f == NULL) {
460 		futex_key_fini(fk, shared);
461 		return NULL;
462 	}
463 	f->fx_key = *fk;
464 	f->fx_refcnt = 1;
465 	f->fx_shared = shared;
466 	f->fx_on_tree = false;
467 	futex_queue_init(f);
468 
469 	return f;
470 }
471 
472 /*
473  * futex_destroy(f)
474  *
475  *	Destroy a futex created with futex_create.  Reference count
476  *	must be zero.
477  *
478  *	May sleep.
479  */
480 static void
481 futex_destroy(struct futex *f)
482 {
483 
484 	ASSERT_SLEEPABLE();
485 
486 	KASSERT(atomic_load_relaxed(&f->fx_refcnt) == 0);
487 	KASSERT(!f->fx_on_tree);
488 
489 	/* Drain and destroy the private queue.  */
490 	futex_queue_drain(f);
491 	futex_queue_fini(f);
492 
493 	futex_key_fini(&f->fx_key, f->fx_shared);
494 
495 	kmem_free(f, sizeof(*f));
496 }
497 
498 /*
499  * futex_hold(f)
500  *
501  *	Attempt to acquire a reference to f.  Return 0 on success,
502  *	ENFILE on too many references.
503  *
504  *	Never sleeps.
505  */
506 static int
507 futex_hold(struct futex *f)
508 {
509 	unsigned long refcnt;
510 
511 	do {
512 		refcnt = atomic_load_relaxed(&f->fx_refcnt);
513 		if (refcnt == ULONG_MAX)
514 			return ENFILE;
515 	} while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt + 1) != refcnt);
516 
517 	return 0;
518 }
519 
520 /*
521  * futex_rele(f)
522  *
523  *	Release a reference to f acquired with futex_create or
524  *	futex_hold.
525  *
526  *	May sleep to free f.
527  */
528 static void
529 futex_rele(struct futex *f)
530 {
531 	unsigned long refcnt;
532 
533 	ASSERT_SLEEPABLE();
534 
535 	do {
536 		refcnt = atomic_load_relaxed(&f->fx_refcnt);
537 		if (refcnt == 1)
538 			goto trylast;
539 	} while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
540 	return;
541 
542 trylast:
543 	mutex_enter(&futex_tab.lock);
544 	if (atomic_dec_ulong_nv(&f->fx_refcnt) == 0) {
545 		if (f->fx_on_tree) {
546 			if (__predict_false(f->fx_shared))
547 				rb_tree_remove_node(&futex_tab.oa, f);
548 			else
549 				rb_tree_remove_node(&futex_tab.va, f);
550 			f->fx_on_tree = false;
551 		}
552 	} else {
553 		/* References remain -- don't destroy it.  */
554 		f = NULL;
555 	}
556 	mutex_exit(&futex_tab.lock);
557 	if (f != NULL)
558 		futex_destroy(f);
559 }
560 
561 /*
562  * futex_rele_not_last(f)
563  *
564  *	Release a reference to f acquired with futex_create or
565  *	futex_hold.
566  *
567  *	This version asserts that we are not dropping the last
568  *	reference to f.
569  */
570 static void
571 futex_rele_not_last(struct futex *f)
572 {
573 	unsigned long refcnt;
574 
575 	do {
576 		refcnt = atomic_load_relaxed(&f->fx_refcnt);
577 		KASSERT(refcnt > 1);
578 	} while (atomic_cas_ulong(&f->fx_refcnt, refcnt, refcnt - 1) != refcnt);
579 }
580 
581 /*
582  * futex_lookup_by_key(key, shared, &f)
583  *
584  *	Try to find an existing futex va reference in the specified key
585  *	On success, return 0, set f to found futex or to NULL if not found,
586  *	and increment f's reference count if found.
587  *
588  *	Return ENFILE if reference count too high.
589  *
590  *	Internal lookup routine shared by futex_lookup() and
591  *	futex_get().
592  */
593 static int
594 futex_lookup_by_key(union futex_key *fk, bool shared, struct futex **fp)
595 {
596 	struct futex *f;
597 	int error = 0;
598 
599 	mutex_enter(&futex_tab.lock);
600 	if (__predict_false(shared)) {
601 		f = rb_tree_find_node(&futex_tab.oa, fk);
602 	} else {
603 		f = rb_tree_find_node(&futex_tab.va, fk);
604 	}
605 	if (f) {
606 		error = futex_hold(f);
607 		if (error)
608 			f = NULL;
609 	}
610  	*fp = f;
611 	mutex_exit(&futex_tab.lock);
612 
613 	return error;
614 }
615 
616 /*
617  * futex_insert(f, fp)
618  *
619  *	Try to insert the futex f into the tree by va.  If there
620  *	already is a futex for its va, acquire a reference to it, and
621  *	store it in *fp; otherwise store f in *fp.
622  *
623  *	Return 0 on success, ENFILE if there already is a futex but its
624  *	reference count is too high.
625  */
626 static int
627 futex_insert(struct futex *f, struct futex **fp)
628 {
629 	struct futex *f0;
630 	int error;
631 
632 	KASSERT(atomic_load_relaxed(&f->fx_refcnt) != 0);
633 	KASSERT(!f->fx_on_tree);
634 
635 	mutex_enter(&futex_tab.lock);
636 	if (__predict_false(f->fx_shared))
637 		f0 = rb_tree_insert_node(&futex_tab.oa, f);
638 	else
639 		f0 = rb_tree_insert_node(&futex_tab.va, f);
640 	if (f0 == f) {
641 		f->fx_on_tree = true;
642 		error = 0;
643 	} else {
644 		KASSERT(atomic_load_relaxed(&f0->fx_refcnt) != 0);
645 		KASSERT(f0->fx_on_tree);
646 		error = futex_hold(f0);
647 		if (error)
648 			goto out;
649 	}
650 	*fp = f0;
651 out:	mutex_exit(&futex_tab.lock);
652 
653 	return error;
654 }
655 
656 /*
657  * futex_lookup(uaddr, shared, &f)
658  *
659  *	Find a futex at the userland pointer uaddr in the current
660  *	process's VM space.  On success, return the futex in f and
661  *	increment its reference count.
662  *
663  *	Caller must call futex_put when done.
664  */
665 static int
666 futex_lookup(int *uaddr, bool shared, struct futex **fp)
667 {
668 	union futex_key fk;
669 	struct vmspace *vm = curproc->p_vmspace;
670 	vaddr_t va = (vaddr_t)uaddr;
671 	int error;
672 
673 	/*
674 	 * Reject unaligned user pointers so we don't cross page
675 	 * boundaries and so atomics will work.
676 	 */
677 	if ((va & 3) != 0)
678 		return EINVAL;
679 
680 	/* Look it up. */
681 	error = futex_key_init(&fk, vm, va, shared);
682 	if (error)
683 		return error;
684 
685 	error = futex_lookup_by_key(&fk, shared, fp);
686 	futex_key_fini(&fk, shared);
687 	if (error)
688 		return error;
689 
690 	KASSERT(*fp == NULL || (*fp)->fx_shared == shared);
691 	KASSERT(*fp == NULL || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
692 
693 	/*
694 	 * Success!  (Caller must still check whether we found
695 	 * anything, but nothing went _wrong_ like trying to use
696 	 * unmapped memory.)
697 	 */
698 	KASSERT(error == 0);
699 
700 	return error;
701 }
702 
703 /*
704  * futex_get(uaddr, shared, &f)
705  *
706  *	Find or create a futex at the userland pointer uaddr in the
707  *	current process's VM space.  On success, return the futex in f
708  *	and increment its reference count.
709  *
710  *	Caller must call futex_put when done.
711  */
712 static int
713 futex_get(int *uaddr, bool shared, struct futex **fp)
714 {
715 	union futex_key fk;
716 	struct vmspace *vm = curproc->p_vmspace;
717 	struct futex *f = NULL;
718 	vaddr_t va = (vaddr_t)uaddr;
719 	int error;
720 
721 	/*
722 	 * Reject unaligned user pointers so we don't cross page
723 	 * boundaries and so atomics will work.
724 	 */
725 	if ((va & 3) != 0)
726 		return EINVAL;
727 
728 	error = futex_key_init(&fk, vm, va, shared);
729 	if (error)
730 		return error;
731 
732 	/*
733 	 * Optimistically assume there already is one, and try to find
734 	 * it.
735 	 */
736 	error = futex_lookup_by_key(&fk, shared, fp);
737 	if (error || *fp != NULL) {
738 		/*
739 		 * We either found one, or there was an error.
740 		 * In either case, we are done with the key.
741 		 */
742 		futex_key_fini(&fk, shared);
743 		goto out;
744 	}
745 
746 	/*
747 	 * Create a futex recoard.  This tranfers ownership of the key
748 	 * in all cases.
749 	 */
750 	f = futex_create(&fk, shared);
751 	if (f == NULL) {
752 		error = ENOMEM;
753 		goto out;
754 	}
755 
756 	/*
757 	 * Insert our new futex, or use existing if someone else beat
758 	 * us to it.
759 	 */
760 	error = futex_insert(f, fp);
761 	if (error)
762 		goto out;
763 	if (*fp == f)
764 		f = NULL;	/* don't release on exit */
765 
766 	/* Success!  */
767 	KASSERT(error == 0);
768 
769 out:	if (f != NULL)
770 		futex_rele(f);
771 	KASSERT(error || *fp != NULL);
772 	KASSERT(error || atomic_load_relaxed(&(*fp)->fx_refcnt) != 0);
773 	return error;
774 }
775 
776 /*
777  * futex_put(f)
778  *
779  *	Release a futex acquired with futex_get or futex_lookup.
780  */
781 static void
782 futex_put(struct futex *f)
783 {
784 
785 	futex_rele(f);
786 }
787 
788 /*
789  * futex_wait_init(fw, bitset)
790  *
791  *	Initialize a record for a thread to wait on a futex matching
792  *	the specified bit set.  Should be passed to futex_wait_enqueue
793  *	before futex_wait, and should be passed to futex_wait_fini when
794  *	done.
795  */
796 static void
797 futex_wait_init(struct futex_wait *fw, int bitset)
798 {
799 
800 	mutex_init(&fw->fw_lock, MUTEX_DEFAULT, IPL_NONE);
801 	cv_init(&fw->fw_cv, "futex");
802 	fw->fw_futex = NULL;
803 	fw->fw_bitset = bitset;
804 	fw->fw_aborting = false;
805 }
806 
807 /*
808  * futex_wait_fini(fw)
809  *
810  *	Finalize a record for a futex waiter.  Must not be on any
811  *	futex's queue.
812  */
813 static void
814 futex_wait_fini(struct futex_wait *fw)
815 {
816 
817 	cv_destroy(&fw->fw_cv);
818 	mutex_destroy(&fw->fw_lock);
819 }
820 
821 /*
822  * futex_wait_enqueue(fw, f)
823  *
824  *	Put fw on the futex queue.  Must be done before futex_wait.
825  *	Caller must hold fw's lock and f's lock, and fw must not be on
826  *	any existing futex's waiter list.
827  */
828 static void
829 futex_wait_enqueue(struct futex_wait *fw, struct futex *f)
830 {
831 
832 	KASSERT(mutex_owned(&f->fx_qlock));
833 	KASSERT(mutex_owned(&fw->fw_lock));
834 	KASSERT(fw->fw_futex == NULL);
835 	KASSERT(!fw->fw_aborting);
836 
837 	fw->fw_futex = f;
838 	TAILQ_INSERT_TAIL(&f->fx_queue, fw, fw_entry);
839 }
840 
841 /*
842  * futex_wait_dequeue(fw, f)
843  *
844  *	Remove fw from the futex queue.  Precludes subsequent
845  *	futex_wait until a futex_wait_enqueue.  Caller must hold fw's
846  *	lock and f's lock, and fw must be on f.
847  */
848 static void
849 futex_wait_dequeue(struct futex_wait *fw, struct futex *f)
850 {
851 
852 	KASSERT(mutex_owned(&f->fx_qlock));
853 	KASSERT(mutex_owned(&fw->fw_lock));
854 	KASSERT(fw->fw_futex == f);
855 
856 	TAILQ_REMOVE(&f->fx_queue, fw, fw_entry);
857 	fw->fw_futex = NULL;
858 }
859 
860 /*
861  * futex_wait_abort(fw)
862  *
863  *	Caller is no longer waiting for fw.  Remove it from any queue
864  *	if it was on one.  Caller must hold fw->fw_lock.
865  */
866 static void
867 futex_wait_abort(struct futex_wait *fw)
868 {
869 	struct futex *f;
870 
871 	KASSERT(mutex_owned(&fw->fw_lock));
872 
873 	/*
874 	 * Grab the futex queue.  It can't go away as long as we hold
875 	 * fw_lock.  However, we can't take the queue lock because
876 	 * that's a lock order reversal.
877 	 */
878 	f = fw->fw_futex;
879 
880 	/* Put us on the abort list so that fq won't go away.  */
881 	mutex_enter(&f->fx_abortlock);
882 	LIST_INSERT_HEAD(&f->fx_abortlist, fw, fw_abort);
883 	mutex_exit(&f->fx_abortlock);
884 
885 	/*
886 	 * Mark fw as aborting so it won't lose wakeups and won't be
887 	 * transferred to any other queue.
888 	 */
889 	fw->fw_aborting = true;
890 
891 	/* f is now stable, so we can release fw_lock.  */
892 	mutex_exit(&fw->fw_lock);
893 
894 	/* Now we can remove fw under the queue lock.  */
895 	mutex_enter(&f->fx_qlock);
896 	mutex_enter(&fw->fw_lock);
897 	futex_wait_dequeue(fw, f);
898 	mutex_exit(&fw->fw_lock);
899 	mutex_exit(&f->fx_qlock);
900 
901 	/*
902 	 * Finally, remove us from the abort list and notify anyone
903 	 * waiting for the abort to complete if we were the last to go.
904 	 */
905 	mutex_enter(&f->fx_abortlock);
906 	LIST_REMOVE(fw, fw_abort);
907 	if (LIST_EMPTY(&f->fx_abortlist))
908 		cv_broadcast(&f->fx_abortcv);
909 	mutex_exit(&f->fx_abortlock);
910 
911 	/*
912 	 * Release our reference to the futex now that we are not
913 	 * waiting for it.
914 	 */
915 	futex_rele(f);
916 
917 	/*
918 	 * Reacquire the fw lock as caller expects.  Verify that we're
919 	 * aborting and no longer associated with a futex.
920 	 */
921 	mutex_enter(&fw->fw_lock);
922 	KASSERT(fw->fw_aborting);
923 	KASSERT(fw->fw_futex == NULL);
924 }
925 
926 /*
927  * futex_wait(fw, deadline, clkid)
928  *
929  *	fw must be a waiter on a futex's queue.  Wait until deadline on
930  *	the clock clkid, or forever if deadline is NULL, for a futex
931  *	wakeup.  Return 0 on explicit wakeup or destruction of futex,
932  *	ETIMEDOUT on timeout, EINTR/ERESTART on signal.  Either way, fw
933  *	will no longer be on a futex queue on return.
934  */
935 static int
936 futex_wait(struct futex_wait *fw, const struct timespec *deadline,
937     clockid_t clkid)
938 {
939 	int error = 0;
940 
941 	/* Test and wait under the wait lock.  */
942 	mutex_enter(&fw->fw_lock);
943 
944 	for (;;) {
945 		/* If we're done yet, stop and report success.  */
946 		if (fw->fw_bitset == 0 || fw->fw_futex == NULL) {
947 			error = 0;
948 			break;
949 		}
950 
951 		/* If anything went wrong in the last iteration, stop.  */
952 		if (error)
953 			break;
954 
955 		/* Not done yet.  Wait.  */
956 		if (deadline) {
957 			struct timespec ts;
958 
959 			/* Check our watch.  */
960 			error = clock_gettime1(clkid, &ts);
961 			if (error)
962 				break;
963 
964 			/* If we're past the deadline, ETIMEDOUT.  */
965 			if (timespeccmp(deadline, &ts, <=)) {
966 				error = ETIMEDOUT;
967 				break;
968 			}
969 
970 			/* Count how much time is left.  */
971 			timespecsub(deadline, &ts, &ts);
972 
973 			/* Wait for that much time, allowing signals.  */
974 			error = cv_timedwait_sig(&fw->fw_cv, &fw->fw_lock,
975 			    tstohz(&ts));
976 		} else {
977 			/* Wait indefinitely, allowing signals. */
978 			error = cv_wait_sig(&fw->fw_cv, &fw->fw_lock);
979 		}
980 	}
981 
982 	/*
983 	 * If we were woken up, the waker will have removed fw from the
984 	 * queue.  But if anything went wrong, we must remove fw from
985 	 * the queue ourselves.  While here, convert EWOULDBLOCK to
986 	 * ETIMEDOUT.
987 	 */
988 	if (error) {
989 		futex_wait_abort(fw);
990 		if (error == EWOULDBLOCK)
991 			error = ETIMEDOUT;
992 	}
993 
994 	mutex_exit(&fw->fw_lock);
995 
996 	return error;
997 }
998 
999 /*
1000  * futex_wake(f, nwake, f2, nrequeue, bitset)
1001  *
1002  *	Wake up to nwake waiters on f matching bitset; then, if f2 is
1003  *	provided, move up to nrequeue remaining waiters on f matching
1004  *	bitset to f2.  Return the number of waiters actually woken.
1005  *	Caller must hold the locks of f and f2, if provided.
1006  */
1007 static unsigned
1008 futex_wake(struct futex *f, unsigned nwake, struct futex *f2,
1009     unsigned nrequeue, int bitset)
1010 {
1011 	struct futex_wait *fw, *fw_next;
1012 	unsigned nwoken = 0;
1013 	int hold_error __diagused;
1014 
1015 	KASSERT(mutex_owned(&f->fx_qlock));
1016 	KASSERT(f2 == NULL || mutex_owned(&f2->fx_qlock));
1017 
1018 	/* Wake up to nwake waiters, and count the number woken.  */
1019 	TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
1020 		if ((fw->fw_bitset & bitset) == 0)
1021 			continue;
1022 		if (nwake > 0) {
1023 			mutex_enter(&fw->fw_lock);
1024 			if (__predict_false(fw->fw_aborting)) {
1025 				mutex_exit(&fw->fw_lock);
1026 				continue;
1027 			}
1028 			futex_wait_dequeue(fw, f);
1029 			fw->fw_bitset = 0;
1030 			cv_broadcast(&fw->fw_cv);
1031 			mutex_exit(&fw->fw_lock);
1032 			nwake--;
1033 			nwoken++;
1034 			/*
1035 			 * Drop the futex reference on behalf of the
1036 			 * waiter.  We assert this is not the last
1037 			 * reference on the futex (our caller should
1038 			 * also have one).
1039 			 */
1040 			futex_rele_not_last(f);
1041 		} else {
1042 			break;
1043 		}
1044 	}
1045 
1046 	if (f2) {
1047 		/* Move up to nrequeue waiters from f's queue to f2's queue. */
1048 		TAILQ_FOREACH_SAFE(fw, &f->fx_queue, fw_entry, fw_next) {
1049 			if ((fw->fw_bitset & bitset) == 0)
1050 				continue;
1051 			if (nrequeue > 0) {
1052 				mutex_enter(&fw->fw_lock);
1053 				if (__predict_false(fw->fw_aborting)) {
1054 					mutex_exit(&fw->fw_lock);
1055 					continue;
1056 				}
1057 				futex_wait_dequeue(fw, f);
1058 				futex_wait_enqueue(fw, f2);
1059 				mutex_exit(&fw->fw_lock);
1060 				nrequeue--;
1061 				/*
1062 				 * Transfer the reference from f to f2.
1063 				 * As above, we assert that we are not
1064 				 * dropping the last reference to f here.
1065 				 *
1066 				 * XXX futex_hold() could theoretically
1067 				 * XXX fail here.
1068 				 */
1069 				futex_rele_not_last(f);
1070 				hold_error = futex_hold(f2);
1071 				KASSERT(hold_error == 0);
1072 			} else {
1073 				break;
1074 			}
1075 		}
1076 	} else {
1077 		KASSERT(nrequeue == 0);
1078 	}
1079 
1080 	/* Return the number of waiters woken.  */
1081 	return nwoken;
1082 }
1083 
1084 /*
1085  * futex_queue_lock(f)
1086  *
1087  *	Acquire the queue lock of f.  Pair with futex_queue_unlock.  Do
1088  *	not use if caller needs to acquire two locks; use
1089  *	futex_queue_lock2 instead.
1090  */
1091 static void
1092 futex_queue_lock(struct futex *f)
1093 {
1094 	mutex_enter(&f->fx_qlock);
1095 }
1096 
1097 /*
1098  * futex_queue_unlock(f)
1099  *
1100  *	Release the queue lock of f.
1101  */
1102 static void
1103 futex_queue_unlock(struct futex *f)
1104 {
1105 	mutex_exit(&f->fx_qlock);
1106 }
1107 
1108 /*
1109  * futex_queue_lock2(f, f2)
1110  *
1111  *	Acquire the queue locks of both f and f2, which may be null, or
1112  *	which may have the same underlying queue.  If they are
1113  *	distinct, an arbitrary total order is chosen on the locks.
1114  *
1115  *	Callers should only ever acquire multiple queue locks
1116  *	simultaneously using futex_queue_lock2.
1117  */
1118 static void
1119 futex_queue_lock2(struct futex *f, struct futex *f2)
1120 {
1121 
1122 	/*
1123 	 * If both are null, do nothing; if one is null and the other
1124 	 * is not, lock the other and be done with it.
1125 	 */
1126 	if (f == NULL && f2 == NULL) {
1127 		return;
1128 	} else if (f == NULL) {
1129 		mutex_enter(&f2->fx_qlock);
1130 		return;
1131 	} else if (f2 == NULL) {
1132 		mutex_enter(&f->fx_qlock);
1133 		return;
1134 	}
1135 
1136 	/* If both futexes are the same, acquire only one. */
1137 	if (f == f2) {
1138 		mutex_enter(&f->fx_qlock);
1139 		return;
1140 	}
1141 
1142 	/* Otherwise, use the ordering on the kva of the futex pointer.  */
1143 	if ((uintptr_t)f < (uintptr_t)f2) {
1144 		mutex_enter(&f->fx_qlock);
1145 		mutex_enter(&f2->fx_qlock);
1146 	} else {
1147 		mutex_enter(&f2->fx_qlock);
1148 		mutex_enter(&f->fx_qlock);
1149 	}
1150 }
1151 
1152 /*
1153  * futex_queue_unlock2(f, f2)
1154  *
1155  *	Release the queue locks of both f and f2, which may be null, or
1156  *	which may have the same underlying queue.
1157  */
1158 static void
1159 futex_queue_unlock2(struct futex *f, struct futex *f2)
1160 {
1161 
1162 	/*
1163 	 * If both are null, do nothing; if one is null and the other
1164 	 * is not, unlock the other and be done with it.
1165 	 */
1166 	if (f == NULL && f2 == NULL) {
1167 		return;
1168 	} else if (f == NULL) {
1169 		mutex_exit(&f2->fx_qlock);
1170 		return;
1171 	} else if (f2 == NULL) {
1172 		mutex_exit(&f->fx_qlock);
1173 		return;
1174 	}
1175 
1176 	/* If both futexes are the same, release only one. */
1177 	if (f == f2) {
1178 		mutex_exit(&f->fx_qlock);
1179 		return;
1180 	}
1181 
1182 	/* Otherwise, use the ordering on the kva of the futex pointer.  */
1183 	if ((uintptr_t)f < (uintptr_t)f2) {
1184 		mutex_exit(&f2->fx_qlock);
1185 		mutex_exit(&f->fx_qlock);
1186 	} else {
1187 		mutex_exit(&f->fx_qlock);
1188 		mutex_exit(&f2->fx_qlock);
1189 	}
1190 }
1191 
1192 /*
1193  * futex_func_wait(uaddr, val, val3, timeout, clkid, clkflags, retval)
1194  *
1195  *	Implement futex(FUTEX_WAIT).
1196  */
1197 static int
1198 futex_func_wait(bool shared, int *uaddr, int val, int val3,
1199     const struct timespec *timeout, clockid_t clkid, int clkflags,
1200     register_t *retval)
1201 {
1202 	struct futex *f;
1203 	struct futex_wait wait, *fw = &wait;
1204 	struct timespec ts;
1205 	const struct timespec *deadline;
1206 	int error;
1207 
1208 	/* Optimistically test before anything else.  */
1209 	if (!futex_test(uaddr, val))
1210 		return EAGAIN;
1211 
1212 	/* Determine a deadline on the specified clock.  */
1213 	if (timeout == NULL || (clkflags & TIMER_ABSTIME) == TIMER_ABSTIME) {
1214 		deadline = timeout;
1215 	} else {
1216 		error = clock_gettime1(clkid, &ts);
1217 		if (error)
1218 			return error;
1219 		timespecadd(&ts, timeout, &ts);
1220 		deadline = &ts;
1221 	}
1222 
1223 	/* Get the futex, creating it if necessary.  */
1224 	error = futex_get(uaddr, shared, &f);
1225 	if (error)
1226 		return error;
1227 	KASSERT(f);
1228 
1229 	/* Get ready to wait.  */
1230 	futex_wait_init(fw, val3);
1231 
1232 	/*
1233 	 * Under the queue lock, check the value again: if it has
1234 	 * already changed, EAGAIN; otherwise enqueue the waiter.
1235 	 * Since FUTEX_WAKE will use the same lock and be done after
1236 	 * modifying the value, the order in which we check and enqueue
1237 	 * is immaterial.
1238 	 */
1239 	futex_queue_lock(f);
1240 	if (!futex_test(uaddr, val)) {
1241 		futex_queue_unlock(f);
1242 		error = EAGAIN;
1243 		goto out;
1244 	}
1245 	mutex_enter(&fw->fw_lock);
1246 	futex_wait_enqueue(fw, f);
1247 	mutex_exit(&fw->fw_lock);
1248 	futex_queue_unlock(f);
1249 
1250 	/*
1251 	 * We cannot drop our reference to the futex here, because
1252 	 * we might be enqueued on a different one when we are awakened.
1253 	 * The references will be managed on our behalf in the requeue
1254 	 * and wake cases.
1255 	 */
1256 	f = NULL;
1257 
1258 	/* Wait. */
1259 	error = futex_wait(fw, deadline, clkid);
1260 	if (error)
1261 		goto out;
1262 
1263 	/* Return 0 on success, error on failure. */
1264 	*retval = 0;
1265 
1266 out:	if (f != NULL)
1267 		futex_put(f);
1268 	futex_wait_fini(fw);
1269 	return error;
1270 }
1271 
1272 /*
1273  * futex_func_wake(uaddr, val, val3, retval)
1274  *
1275  *	Implement futex(FUTEX_WAKE) and futex(FUTEX_WAKE_BITSET).
1276  */
1277 static int
1278 futex_func_wake(bool shared, int *uaddr, int val, int val3, register_t *retval)
1279 {
1280 	struct futex *f;
1281 	unsigned int nwoken = 0;
1282 	int error = 0;
1283 
1284 	/* Reject negative number of wakeups.  */
1285 	if (val < 0) {
1286 		error = EINVAL;
1287 		goto out;
1288 	}
1289 
1290 	/* Look up the futex, if any.  */
1291 	error = futex_lookup(uaddr, shared, &f);
1292 	if (error)
1293 		goto out;
1294 
1295 	/* If there's no futex, there are no waiters to wake.  */
1296 	if (f == NULL)
1297 		goto out;
1298 
1299 	/*
1300 	 * Under f's queue lock, wake the waiters and remember the
1301 	 * number woken.
1302 	 */
1303 	futex_queue_lock(f);
1304 	nwoken = futex_wake(f, val, NULL, 0, val3);
1305 	futex_queue_unlock(f);
1306 
1307 	/* Release the futex.  */
1308 	futex_put(f);
1309 
1310 out:
1311 	/* Return the number of waiters woken.  */
1312 	*retval = nwoken;
1313 
1314 	/* Success!  */
1315 	return error;
1316 }
1317 
1318 /*
1319  * futex_func_requeue(op, uaddr, val, uaddr2, val2, val3, retval)
1320  *
1321  *	Implement futex(FUTEX_REQUEUE) and futex(FUTEX_CMP_REQUEUE).
1322  */
1323 static int
1324 futex_func_requeue(bool shared, int op, int *uaddr, int val, int *uaddr2,
1325     int val2, int val3, register_t *retval)
1326 {
1327 	struct futex *f = NULL, *f2 = NULL;
1328 	unsigned nwoken = 0;	/* default to zero woken on early return */
1329 	int error;
1330 
1331 	/* Reject negative number of wakeups or requeues. */
1332 	if (val < 0 || val2 < 0) {
1333 		error = EINVAL;
1334 		goto out;
1335 	}
1336 
1337 	/* Look up the source futex, if any. */
1338 	error = futex_lookup(uaddr, shared, &f);
1339 	if (error)
1340 		goto out;
1341 
1342 	/* If there is none, nothing to do. */
1343 	if (f == NULL)
1344 		goto out;
1345 
1346 	/*
1347 	 * We may need to create the destination futex because it's
1348 	 * entirely possible it does not currently have any waiters.
1349 	 */
1350 	error = futex_get(uaddr2, shared, &f2);
1351 	if (error)
1352 		goto out;
1353 
1354 	/*
1355 	 * Under the futexes' queue locks, check the value; if
1356 	 * unchanged from val3, wake the waiters.
1357 	 */
1358 	futex_queue_lock2(f, f2);
1359 	if (op == FUTEX_CMP_REQUEUE && !futex_test(uaddr, val3)) {
1360 		error = EAGAIN;
1361 	} else {
1362 		error = 0;
1363 		nwoken = futex_wake(f, val, f2, val2, FUTEX_BITSET_MATCH_ANY);
1364 	}
1365 	futex_queue_unlock2(f, f2);
1366 
1367 out:
1368 	/* Return the number of waiters woken.  */
1369 	*retval = nwoken;
1370 
1371 	/* Release the futexes if we got them.  */
1372 	if (f2)
1373 		futex_put(f2);
1374 	if (f)
1375 		futex_put(f);
1376 	return error;
1377 }
1378 
1379 /*
1380  * futex_validate_op_cmp(val3)
1381  *
1382  *	Validate an op/cmp argument for FUTEX_WAKE_OP.
1383  */
1384 static int
1385 futex_validate_op_cmp(int val3)
1386 {
1387 	int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
1388 	int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
1389 
1390 	if (op & FUTEX_OP_OPARG_SHIFT) {
1391 		int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
1392 		if (oparg < 0)
1393 			return EINVAL;
1394 		if (oparg >= 32)
1395 			return EINVAL;
1396 		op &= ~FUTEX_OP_OPARG_SHIFT;
1397 	}
1398 
1399 	switch (op) {
1400 	case FUTEX_OP_SET:
1401 	case FUTEX_OP_ADD:
1402 	case FUTEX_OP_OR:
1403 	case FUTEX_OP_ANDN:
1404 	case FUTEX_OP_XOR:
1405 		break;
1406 	default:
1407 		return EINVAL;
1408 	}
1409 
1410 	switch (cmp) {
1411 	case FUTEX_OP_CMP_EQ:
1412 	case FUTEX_OP_CMP_NE:
1413 	case FUTEX_OP_CMP_LT:
1414 	case FUTEX_OP_CMP_LE:
1415 	case FUTEX_OP_CMP_GT:
1416 	case FUTEX_OP_CMP_GE:
1417 		break;
1418 	default:
1419 		return EINVAL;
1420 	}
1421 
1422 	return 0;
1423 }
1424 
1425 /*
1426  * futex_compute_op(oldval, val3)
1427  *
1428  *	Apply a FUTEX_WAIT_OP operation to oldval.
1429  */
1430 static int
1431 futex_compute_op(int oldval, int val3)
1432 {
1433 	int op = __SHIFTOUT(val3, FUTEX_OP_OP_MASK);
1434 	int oparg = __SHIFTOUT(val3, FUTEX_OP_OPARG_MASK);
1435 
1436 	if (op & FUTEX_OP_OPARG_SHIFT) {
1437 		KASSERT(oparg >= 0);
1438 		KASSERT(oparg < 32);
1439 		oparg = 1u << oparg;
1440 		op &= ~FUTEX_OP_OPARG_SHIFT;
1441 	}
1442 
1443 	switch (op) {
1444 	case FUTEX_OP_SET:
1445 		return oparg;
1446 
1447 	case FUTEX_OP_ADD:
1448 		/*
1449 		 * Avoid signed arithmetic overflow by doing
1450 		 * arithmetic unsigned and converting back to signed
1451 		 * at the end.
1452 		 */
1453 		return (int)((unsigned)oldval + (unsigned)oparg);
1454 
1455 	case FUTEX_OP_OR:
1456 		return oldval | oparg;
1457 
1458 	case FUTEX_OP_ANDN:
1459 		return oldval & ~oparg;
1460 
1461 	case FUTEX_OP_XOR:
1462 		return oldval ^ oparg;
1463 
1464 	default:
1465 		panic("invalid futex op");
1466 	}
1467 }
1468 
1469 /*
1470  * futex_compute_cmp(oldval, val3)
1471  *
1472  *	Apply a FUTEX_WAIT_OP comparison to oldval.
1473  */
1474 static bool
1475 futex_compute_cmp(int oldval, int val3)
1476 {
1477 	int cmp = __SHIFTOUT(val3, FUTEX_OP_CMP_MASK);
1478 	int cmparg = __SHIFTOUT(val3, FUTEX_OP_CMPARG_MASK);
1479 
1480 	switch (cmp) {
1481 	case FUTEX_OP_CMP_EQ:
1482 		return (oldval == cmparg);
1483 
1484 	case FUTEX_OP_CMP_NE:
1485 		return (oldval != cmparg);
1486 
1487 	case FUTEX_OP_CMP_LT:
1488 		return (oldval < cmparg);
1489 
1490 	case FUTEX_OP_CMP_LE:
1491 		return (oldval <= cmparg);
1492 
1493 	case FUTEX_OP_CMP_GT:
1494 		return (oldval > cmparg);
1495 
1496 	case FUTEX_OP_CMP_GE:
1497 		return (oldval >= cmparg);
1498 
1499 	default:
1500 		panic("invalid futex cmp operation");
1501 	}
1502 }
1503 
1504 /*
1505  * futex_func_wake_op(uaddr, val, uaddr2, val2, val3, retval)
1506  *
1507  *	Implement futex(FUTEX_WAKE_OP).
1508  */
1509 static int
1510 futex_func_wake_op(bool shared, int *uaddr, int val, int *uaddr2, int val2,
1511     int val3, register_t *retval)
1512 {
1513 	struct futex *f = NULL, *f2 = NULL;
1514 	int oldval, newval, actual;
1515 	unsigned nwoken = 0;
1516 	int error;
1517 
1518 	/* Reject negative number of wakeups.  */
1519 	if (val < 0 || val2 < 0) {
1520 		error = EINVAL;
1521 		goto out;
1522 	}
1523 
1524 	/* Reject invalid operations before we start doing things.  */
1525 	if ((error = futex_validate_op_cmp(val3)) != 0)
1526 		goto out;
1527 
1528 	/* Look up the first futex, if any.  */
1529 	error = futex_lookup(uaddr, shared, &f);
1530 	if (error)
1531 		goto out;
1532 
1533 	/* Look up the second futex, if any.  */
1534 	error = futex_lookup(uaddr2, shared, &f2);
1535 	if (error)
1536 		goto out;
1537 
1538 	/*
1539 	 * Under the queue locks:
1540 	 *
1541 	 * 1. Read/modify/write: *uaddr2 op= oparg.
1542 	 * 2. Unconditionally wake uaddr.
1543 	 * 3. Conditionally wake uaddr2, if it previously matched val2.
1544 	 */
1545 	futex_queue_lock2(f, f2);
1546 	do {
1547 		error = futex_load(uaddr2, &oldval);
1548 		if (error)
1549 			goto out_unlock;
1550 		newval = futex_compute_op(oldval, val3);
1551 		error = ucas_int(uaddr2, oldval, newval, &actual);
1552 		if (error)
1553 			goto out_unlock;
1554 	} while (actual != oldval);
1555 	nwoken = (f ? futex_wake(f, val, NULL, 0, FUTEX_BITSET_MATCH_ANY) : 0);
1556 	if (f2 && futex_compute_cmp(oldval, val3))
1557 		nwoken += futex_wake(f2, val2, NULL, 0,
1558 		    FUTEX_BITSET_MATCH_ANY);
1559 
1560 	/* Success! */
1561 	error = 0;
1562 out_unlock:
1563 	futex_queue_unlock2(f, f2);
1564 
1565 out:
1566 	/* Return the number of waiters woken. */
1567 	*retval = nwoken;
1568 
1569 	/* Release the futexes, if we got them. */
1570 	if (f2)
1571 		futex_put(f2);
1572 	if (f)
1573 		futex_put(f);
1574 	return error;
1575 }
1576 
1577 /*
1578  * do_futex(uaddr, op, val, timeout, uaddr2, val2, val3)
1579  *
1580  *	Implement the futex system call with all the parameters
1581  *	parsed out.
1582  */
1583 int
1584 do_futex(int *uaddr, int op, int val, const struct timespec *timeout,
1585     int *uaddr2, int val2, int val3, register_t *retval)
1586 {
1587 	const bool shared = (op & FUTEX_PRIVATE_FLAG) ? false : true;
1588 	const clockid_t clkid = (op & FUTEX_CLOCK_REALTIME) ? CLOCK_REALTIME
1589 							    : CLOCK_MONOTONIC;
1590 
1591 	op &= FUTEX_CMD_MASK;
1592 
1593 	switch (op) {
1594 	case FUTEX_WAIT:
1595 		return futex_func_wait(shared, uaddr, val,
1596 		    FUTEX_BITSET_MATCH_ANY, timeout, clkid, TIMER_RELTIME,
1597 		    retval);
1598 
1599 	case FUTEX_WAKE:
1600 		val3 = FUTEX_BITSET_MATCH_ANY;
1601 		/* FALLTHROUGH */
1602 	case FUTEX_WAKE_BITSET:
1603 		return futex_func_wake(shared, uaddr, val, val3, retval);
1604 
1605 	case FUTEX_REQUEUE:
1606 	case FUTEX_CMP_REQUEUE:
1607 		return futex_func_requeue(shared, op, uaddr, val, uaddr2,
1608 		    val2, val3, retval);
1609 
1610 	case FUTEX_WAIT_BITSET:
1611 		return futex_func_wait(shared, uaddr, val, val3, timeout,
1612 		    clkid, TIMER_ABSTIME, retval);
1613 
1614 	case FUTEX_WAKE_OP:
1615 		return futex_func_wake_op(shared, uaddr, val, uaddr2, val2,
1616 		    val3, retval);
1617 
1618 	case FUTEX_FD:
1619 	default:
1620 		return ENOSYS;
1621 	}
1622 }
1623 
1624 /*
1625  * sys___futex(l, uap, retval)
1626  *
1627  *	__futex(2) system call: generic futex operations.
1628  */
1629 int
1630 sys___futex(struct lwp *l, const struct sys___futex_args *uap,
1631     register_t *retval)
1632 {
1633 	/* {
1634 		syscallarg(int *) uaddr;
1635 		syscallarg(int) op;
1636 		syscallarg(int) val;
1637 		syscallarg(const struct timespec *) timeout;
1638 		syscallarg(int *) uaddr2;
1639 		syscallarg(int) val2;
1640 		syscallarg(int) val3;
1641 	} */
1642 	struct timespec ts, *tsp;
1643 	int error;
1644 
1645 	/*
1646 	 * Copy in the timeout argument, if specified.
1647 	 */
1648 	if (SCARG(uap, timeout)) {
1649 		error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
1650 		if (error)
1651 			return error;
1652 		tsp = &ts;
1653 	} else {
1654 		tsp = NULL;
1655 	}
1656 
1657 	return do_futex(SCARG(uap, uaddr), SCARG(uap, op), SCARG(uap, val),
1658 	    tsp, SCARG(uap, uaddr2), SCARG(uap, val2), SCARG(uap, val3),
1659 	    retval);
1660 }
1661 
1662 /*
1663  * sys___futex_set_robust_list(l, uap, retval)
1664  *
1665  *	__futex_set_robust_list(2) system call for robust futexes.
1666  */
1667 int
1668 sys___futex_set_robust_list(struct lwp *l,
1669     const struct sys___futex_set_robust_list_args *uap, register_t *retval)
1670 {
1671 	/* {
1672 		syscallarg(void *) head;
1673 		syscallarg(size_t) len;
1674 	} */
1675 	void *head = SCARG(uap, head);
1676 
1677 	if (SCARG(uap, len) != _FUTEX_ROBUST_HEAD_SIZE)
1678 		return EINVAL;
1679 	if ((uintptr_t)head % sizeof(u_long))
1680 		return EINVAL;
1681 
1682 	l->l_robust_head = (uintptr_t)head;
1683 
1684 	return 0;
1685 }
1686 
1687 /*
1688  * sys___futex_get_robust_list(l, uap, retval)
1689  *
1690  *	__futex_get_robust_list(2) system call for robust futexes.
1691  */
1692 int
1693 sys___futex_get_robust_list(struct lwp *l,
1694     const struct sys___futex_get_robust_list_args *uap, register_t *retval)
1695 {
1696 	/* {
1697 		syscallarg(lwpid_t) lwpid;
1698 		syscallarg(void **) headp;
1699 		syscallarg(size_t *) lenp;
1700 	} */
1701 	void *head;
1702 	const size_t len = _FUTEX_ROBUST_HEAD_SIZE;
1703 	int error;
1704 
1705 	error = futex_robust_head_lookup(l, SCARG(uap, lwpid), &head);
1706 	if (error)
1707 		return error;
1708 
1709 	/* Copy out the head pointer and the head structure length. */
1710 	error = copyout(&head, SCARG(uap, headp), sizeof(head));
1711 	if (__predict_true(error == 0)) {
1712 		error = copyout(&len, SCARG(uap, lenp), sizeof(len));
1713 	}
1714 
1715 	return error;
1716 }
1717 
1718 /*
1719  * release_futex(uva, tid)
1720  *
1721  *	Try to release the robust futex at uva in the current process
1722  *	on lwp exit.  If anything goes wrong, silently fail.  It is the
1723  *	userland program's obligation to arrange correct behaviour.
1724  */
1725 static void
1726 release_futex(uintptr_t const uptr, lwpid_t const tid, bool const is_pi,
1727     bool const is_pending)
1728 {
1729 	int *uaddr;
1730 	struct futex *f;
1731 	int oldval, newval, actual;
1732 	int error;
1733 
1734 	/* If it's misaligned, tough.  */
1735 	if (__predict_false(uptr & 3))
1736 		return;
1737 	uaddr = (int *)uptr;
1738 
1739 	error = futex_load(uaddr, &oldval);
1740 	if (__predict_false(error))
1741 		return;
1742 
1743 	/*
1744 	 * There are two race conditions we need to handle here:
1745 	 *
1746 	 * 1. User space cleared the futex word but died before
1747 	 *    being able to issue the wakeup.  No wakeups will
1748 	 *    ever be issued, oops!
1749 	 *
1750 	 * 2. Awakened waiter died before being able to acquire
1751 	 *    the futex in user space.  Any other waiters are
1752 	 *    now stuck, oops!
1753 	 *
1754 	 * In both of these cases, the futex word will be 0 (because
1755 	 * it's updated before the wake is issued).  The best we can
1756 	 * do is detect this situation if it's the pending futex and
1757 	 * issue a wake without modifying the futex word.
1758 	 *
1759 	 * XXX eventual PI handling?
1760 	 */
1761 	if (__predict_false(is_pending && (oldval & ~FUTEX_WAITERS) == 0)) {
1762 		register_t retval;
1763 		(void) futex_func_wake(/*shared*/true, uaddr, 1,
1764 		    FUTEX_BITSET_MATCH_ANY, &retval);
1765 		return;
1766 	}
1767 
1768 	/* Optimistically test whether we need to do anything at all.  */
1769 	if ((oldval & FUTEX_TID_MASK) != tid)
1770 		return;
1771 
1772 	/*
1773 	 * We need to handle the case where this thread owned the futex,
1774 	 * but it was uncontended.  In this case, there won't be any
1775 	 * kernel state to look up.  All we can do is mark the futex
1776 	 * as a zombie to be mopped up the next time another thread
1777 	 * attempts to acquire it.
1778 	 *
1779 	 * N.B. It's important to ensure to set FUTEX_OWNER_DIED in
1780 	 * this loop, even if waiters appear while we're are doing
1781 	 * so.  This is beause FUTEX_WAITERS is set by user space
1782 	 * before calling __futex() to wait, and the futex needs
1783 	 * to be marked as a zombie when the new waiter gets into
1784 	 * the kernel.
1785 	 */
1786 	if ((oldval & FUTEX_WAITERS) == 0) {
1787 		do {
1788 			error = futex_load(uaddr, &oldval);
1789 			if (error)
1790 				return;
1791 			if ((oldval & FUTEX_TID_MASK) != tid)
1792 				return;
1793 			newval = oldval | FUTEX_OWNER_DIED;
1794 			error = ucas_int(uaddr, oldval, newval, &actual);
1795 			if (error)
1796 				return;
1797 		} while (actual != oldval);
1798 
1799 		/*
1800 		 * If where is still no indication of waiters, then there is
1801 		 * no more work for us to do.
1802 		 */
1803 		if ((oldval & FUTEX_WAITERS) == 0)
1804 			return;
1805 	}
1806 
1807 	/*
1808 	 * Look for a shared futex since we have no positive indication
1809 	 * it is private.  If we can't, tough.
1810 	 */
1811 	error = futex_lookup(uaddr, /*shared*/true, &f);
1812 	if (error)
1813 		return;
1814 
1815 	/*
1816 	 * If there's no kernel state for this futex, there's nothing to
1817 	 * release.
1818 	 */
1819 	if (f == NULL)
1820 		return;
1821 
1822 	/* Work under the futex queue lock.  */
1823 	futex_queue_lock(f);
1824 
1825 	/*
1826 	 * Fetch the word: if the tid doesn't match ours, skip;
1827 	 * otherwise, set the owner-died bit, atomically.
1828 	 */
1829 	do {
1830 		error = futex_load(uaddr, &oldval);
1831 		if (error)
1832 			goto out;
1833 		if ((oldval & FUTEX_TID_MASK) != tid)
1834 			goto out;
1835 		newval = oldval | FUTEX_OWNER_DIED;
1836 		error = ucas_int(uaddr, oldval, newval, &actual);
1837 		if (error)
1838 			goto out;
1839 	} while (actual != oldval);
1840 
1841 	/*
1842 	 * If there may be waiters, try to wake one.  If anything goes
1843 	 * wrong, tough.
1844 	 *
1845 	 * XXX eventual PI handling?
1846 	 */
1847 	if (oldval & FUTEX_WAITERS)
1848 		(void)futex_wake(f, 1, NULL, 0, FUTEX_BITSET_MATCH_ANY);
1849 
1850 	/* Unlock the queue and release the futex.  */
1851 out:	futex_queue_unlock(f);
1852 	futex_put(f);
1853 }
1854 
1855 /*
1856  * futex_robust_head_lookup(l, lwpid)
1857  *
1858  *	Helper function to look up a robust head by LWP ID.
1859  */
1860 int
1861 futex_robust_head_lookup(struct lwp *l, lwpid_t lwpid, void **headp)
1862 {
1863 	struct proc *p = l->l_proc;
1864 
1865 	/* Find the other lwp, if requested; otherwise use our robust head.  */
1866 	if (lwpid) {
1867 		mutex_enter(p->p_lock);
1868 		l = lwp_find(p, lwpid);
1869 		if (l == NULL) {
1870 			mutex_exit(p->p_lock);
1871 			return ESRCH;
1872 		}
1873 		*headp = (void *)l->l_robust_head;
1874 		mutex_exit(p->p_lock);
1875 	} else {
1876 		*headp = (void *)l->l_robust_head;
1877 	}
1878 	return 0;
1879 }
1880 
1881 /*
1882  * futex_fetch_robust_head(uaddr)
1883  *
1884  *	Helper routine to fetch the futex robust list head that
1885  *	handles 32-bit binaries running on 64-bit kernels.
1886  */
1887 static int
1888 futex_fetch_robust_head(uintptr_t uaddr, u_long *rhead)
1889 {
1890 #ifdef _LP64
1891 	if (curproc->p_flag & PK_32) {
1892 		uint32_t rhead32[_FUTEX_ROBUST_HEAD_NWORDS];
1893 		int error;
1894 
1895 		error = copyin((void *)uaddr, rhead32, sizeof(rhead32));
1896 		if (__predict_true(error == 0)) {
1897 			for (int i = 0; i < _FUTEX_ROBUST_HEAD_NWORDS; i++) {
1898 				if (i == _FUTEX_ROBUST_HEAD_OFFSET) {
1899 					/*
1900 					 * Make sure the offset is sign-
1901 					 * extended.
1902 					 */
1903 					rhead[i] = (int32_t)rhead32[i];
1904 				} else {
1905 					rhead[i] = rhead32[i];
1906 				}
1907 			}
1908 		}
1909 		return error;
1910 	}
1911 #endif /* _L64 */
1912 
1913 	return copyin((void *)uaddr, rhead,
1914 	    sizeof(*rhead) * _FUTEX_ROBUST_HEAD_NWORDS);
1915 }
1916 
1917 /*
1918  * futex_decode_robust_word(word)
1919  *
1920  *	Decode a robust futex list word into the entry and entry
1921  *	properties.
1922  */
1923 static inline void
1924 futex_decode_robust_word(uintptr_t const word, uintptr_t * const entry,
1925     bool * const is_pi)
1926 {
1927 	*is_pi = (word & _FUTEX_ROBUST_ENTRY_PI) ? true : false;
1928 	*entry = word & ~_FUTEX_ROBUST_ENTRY_PI;
1929 }
1930 
1931 /*
1932  * futex_fetch_robust_entry(uaddr)
1933  *
1934  *	Helper routine to fetch and decode a robust futex entry
1935  *	that handles 32-bit binaries running on 64-bit kernels.
1936  */
1937 static int
1938 futex_fetch_robust_entry(uintptr_t const uaddr, uintptr_t * const valp,
1939     bool * const is_pi)
1940 {
1941 	uintptr_t val = 0;
1942 	int error = 0;
1943 
1944 #ifdef _LP64
1945 	if (curproc->p_flag & PK_32) {
1946 		uint32_t val32;
1947 
1948 		error = ufetch_32((uint32_t *)uaddr, &val32);
1949 		if (__predict_true(error == 0))
1950 			val = val32;
1951 	} else
1952 #endif /* _LP64 */
1953 		error = ufetch_long((u_long *)uaddr, (u_long *)&val);
1954 	if (__predict_false(error))
1955 		return error;
1956 
1957 	futex_decode_robust_word(val, valp, is_pi);
1958 	return 0;
1959 }
1960 
1961 /*
1962  * futex_release_all_lwp(l, tid)
1963  *
1964  *	Release all l's robust futexes.  If anything looks funny in
1965  *	the process, give up -- it's userland's responsibility to dot
1966  *	the i's and cross the t's.
1967  */
1968 void
1969 futex_release_all_lwp(struct lwp * const l, lwpid_t const tid)
1970 {
1971 	u_long rhead[_FUTEX_ROBUST_HEAD_NWORDS];
1972 	int limit = 1000000;
1973 	int error;
1974 
1975 	/* If there's no robust list there's nothing to do. */
1976 	if (l->l_robust_head == 0)
1977 		return;
1978 
1979 	/* Read the final snapshot of the robust list head. */
1980 	error = futex_fetch_robust_head(l->l_robust_head, rhead);
1981 	if (error) {
1982 		printf("WARNING: pid %jd (%s) lwp %jd tid %jd:"
1983 		    " unmapped robust futex list head\n",
1984 		    (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
1985 		    (uintmax_t)l->l_lid, (uintmax_t)tid);
1986 		return;
1987 	}
1988 
1989 	const long offset = (long)rhead[_FUTEX_ROBUST_HEAD_OFFSET];
1990 
1991 	uintptr_t next, pending;
1992 	bool is_pi, pending_is_pi;
1993 
1994 	futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_LIST],
1995 	    &next, &is_pi);
1996 	futex_decode_robust_word(rhead[_FUTEX_ROBUST_HEAD_PENDING],
1997 	    &pending, &pending_is_pi);
1998 
1999 	/*
2000 	 * Walk down the list of locked futexes and release them, up
2001 	 * to one million of them before we give up.
2002 	 */
2003 
2004 	while (next != l->l_robust_head && limit-- > 0) {
2005 		/* pending handled below. */
2006 		if (next != pending)
2007 			release_futex(next + offset, tid, is_pi, false);
2008 		error = futex_fetch_robust_entry(next, &next, &is_pi);
2009 		if (error)
2010 			break;
2011 		preempt_point();
2012 	}
2013 	if (limit <= 0) {
2014 		printf("WARNING: pid %jd (%s) lwp %jd tid %jd:"
2015 		    " exhausted robust futex limit\n",
2016 		    (uintmax_t)l->l_proc->p_pid, l->l_proc->p_comm,
2017 		    (uintmax_t)l->l_lid, (uintmax_t)tid);
2018 	}
2019 
2020 	/* If there's a pending futex, it may need to be released too. */
2021 	if (pending != 0) {
2022 		release_futex(pending + offset, tid, pending_is_pi, true);
2023 	}
2024 }
2025