1 /* $NetBSD: sys_aio.c,v 1.40 2014/09/05 09:20:59 matt Exp $ */ 2 3 /* 4 * Copyright (c) 2007 Mindaugas Rasiukevicius <rmind at NetBSD org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* 30 * Implementation of POSIX asynchronous I/O. 31 * Defined in the Base Definitions volume of IEEE Std 1003.1-2001. 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: sys_aio.c,v 1.40 2014/09/05 09:20:59 matt Exp $"); 36 37 #ifdef _KERNEL_OPT 38 #include "opt_ddb.h" 39 #endif 40 41 #include <sys/param.h> 42 #include <sys/condvar.h> 43 #include <sys/file.h> 44 #include <sys/filedesc.h> 45 #include <sys/kernel.h> 46 #include <sys/kmem.h> 47 #include <sys/lwp.h> 48 #include <sys/mutex.h> 49 #include <sys/pool.h> 50 #include <sys/proc.h> 51 #include <sys/queue.h> 52 #include <sys/signal.h> 53 #include <sys/signalvar.h> 54 #include <sys/syscall.h> 55 #include <sys/syscallargs.h> 56 #include <sys/syscallvar.h> 57 #include <sys/sysctl.h> 58 #include <sys/systm.h> 59 #include <sys/types.h> 60 #include <sys/vnode.h> 61 #include <sys/atomic.h> 62 #include <sys/module.h> 63 #include <sys/buf.h> 64 65 #include <uvm/uvm_extern.h> 66 67 MODULE(MODULE_CLASS_MISC, aio, NULL); 68 69 /* 70 * System-wide limits and counter of AIO operations. 71 */ 72 u_int aio_listio_max = AIO_LISTIO_MAX; 73 static u_int aio_max = AIO_MAX; 74 static u_int aio_jobs_count; 75 76 static struct sysctllog *aio_sysctl; 77 static struct pool aio_job_pool; 78 static struct pool aio_lio_pool; 79 static void * aio_ehook; 80 81 static void aio_worker(void *); 82 static void aio_process(struct aio_job *); 83 static void aio_sendsig(struct proc *, struct sigevent *); 84 static int aio_enqueue_job(int, void *, struct lio_req *); 85 static void aio_exit(proc_t *, void *); 86 87 static int sysctl_aio_listio_max(SYSCTLFN_PROTO); 88 static int sysctl_aio_max(SYSCTLFN_PROTO); 89 static int sysctl_aio_init(void); 90 91 static const struct syscall_package aio_syscalls[] = { 92 { SYS_aio_cancel, 0, (sy_call_t *)sys_aio_cancel }, 93 { SYS_aio_error, 0, (sy_call_t *)sys_aio_error }, 94 { SYS_aio_fsync, 0, (sy_call_t *)sys_aio_fsync }, 95 { SYS_aio_read, 0, (sy_call_t *)sys_aio_read }, 96 { SYS_aio_return, 0, (sy_call_t *)sys_aio_return }, 97 { SYS___aio_suspend50, 0, (sy_call_t *)sys___aio_suspend50 }, 98 { SYS_aio_write, 0, (sy_call_t *)sys_aio_write }, 99 { SYS_lio_listio, 0, (sy_call_t *)sys_lio_listio }, 100 { 0, 0, NULL }, 101 }; 102 103 /* 104 * Tear down all AIO state. 105 */ 106 static int 107 aio_fini(bool interface) 108 { 109 int error; 110 proc_t *p; 111 112 if (interface) { 113 /* Stop syscall activity. */ 114 error = syscall_disestablish(NULL, aio_syscalls); 115 if (error != 0) 116 return error; 117 /* Abort if any processes are using AIO. */ 118 mutex_enter(proc_lock); 119 PROCLIST_FOREACH(p, &allproc) { 120 if (p->p_aio != NULL) 121 break; 122 } 123 mutex_exit(proc_lock); 124 if (p != NULL) { 125 error = syscall_establish(NULL, aio_syscalls); 126 KASSERT(error == 0); 127 return EBUSY; 128 } 129 } 130 if (aio_sysctl != NULL) 131 sysctl_teardown(&aio_sysctl); 132 133 KASSERT(aio_jobs_count == 0); 134 exithook_disestablish(aio_ehook); 135 pool_destroy(&aio_job_pool); 136 pool_destroy(&aio_lio_pool); 137 return 0; 138 } 139 140 /* 141 * Initialize global AIO state. 142 */ 143 static int 144 aio_init(void) 145 { 146 int error; 147 148 pool_init(&aio_job_pool, sizeof(struct aio_job), 0, 0, 0, 149 "aio_jobs_pool", &pool_allocator_nointr, IPL_NONE); 150 pool_init(&aio_lio_pool, sizeof(struct lio_req), 0, 0, 0, 151 "aio_lio_pool", &pool_allocator_nointr, IPL_NONE); 152 aio_ehook = exithook_establish(aio_exit, NULL); 153 154 error = sysctl_aio_init(); 155 if (error != 0) { 156 (void)aio_fini(false); 157 return error; 158 } 159 error = syscall_establish(NULL, aio_syscalls); 160 if (error != 0) 161 (void)aio_fini(false); 162 return error; 163 } 164 165 /* 166 * Module interface. 167 */ 168 static int 169 aio_modcmd(modcmd_t cmd, void *arg) 170 { 171 172 switch (cmd) { 173 case MODULE_CMD_INIT: 174 return aio_init(); 175 case MODULE_CMD_FINI: 176 return aio_fini(true); 177 default: 178 return ENOTTY; 179 } 180 } 181 182 /* 183 * Initialize Asynchronous I/O data structures for the process. 184 */ 185 static int 186 aio_procinit(struct proc *p) 187 { 188 struct aioproc *aio; 189 struct lwp *l; 190 int error; 191 vaddr_t uaddr; 192 193 /* Allocate and initialize AIO structure */ 194 aio = kmem_zalloc(sizeof(struct aioproc), KM_SLEEP); 195 if (aio == NULL) 196 return EAGAIN; 197 198 /* Initialize queue and their synchronization structures */ 199 mutex_init(&aio->aio_mtx, MUTEX_DEFAULT, IPL_NONE); 200 cv_init(&aio->aio_worker_cv, "aiowork"); 201 cv_init(&aio->done_cv, "aiodone"); 202 TAILQ_INIT(&aio->jobs_queue); 203 204 /* 205 * Create an AIO worker thread. 206 * XXX: Currently, AIO thread is not protected against user's actions. 207 */ 208 uaddr = uvm_uarea_alloc(); 209 if (uaddr == 0) { 210 aio_exit(p, aio); 211 return EAGAIN; 212 } 213 error = lwp_create(curlwp, p, uaddr, 0, NULL, 0, aio_worker, 214 NULL, &l, curlwp->l_class); 215 if (error != 0) { 216 uvm_uarea_free(uaddr); 217 aio_exit(p, aio); 218 return error; 219 } 220 221 /* Recheck if we are really first */ 222 mutex_enter(p->p_lock); 223 if (p->p_aio) { 224 mutex_exit(p->p_lock); 225 aio_exit(p, aio); 226 lwp_exit(l); 227 return 0; 228 } 229 p->p_aio = aio; 230 231 /* Complete the initialization of thread, and run it */ 232 aio->aio_worker = l; 233 lwp_lock(l); 234 l->l_stat = LSRUN; 235 l->l_priority = MAXPRI_USER; 236 sched_enqueue(l, false); 237 lwp_unlock(l); 238 mutex_exit(p->p_lock); 239 240 return 0; 241 } 242 243 /* 244 * Exit of Asynchronous I/O subsystem of process. 245 */ 246 static void 247 aio_exit(struct proc *p, void *cookie) 248 { 249 struct aio_job *a_job; 250 struct aioproc *aio; 251 252 if (cookie != NULL) 253 aio = cookie; 254 else if ((aio = p->p_aio) == NULL) 255 return; 256 257 /* Free AIO queue */ 258 while (!TAILQ_EMPTY(&aio->jobs_queue)) { 259 a_job = TAILQ_FIRST(&aio->jobs_queue); 260 TAILQ_REMOVE(&aio->jobs_queue, a_job, list); 261 pool_put(&aio_job_pool, a_job); 262 atomic_dec_uint(&aio_jobs_count); 263 } 264 265 /* Destroy and free the entire AIO data structure */ 266 cv_destroy(&aio->aio_worker_cv); 267 cv_destroy(&aio->done_cv); 268 mutex_destroy(&aio->aio_mtx); 269 kmem_free(aio, sizeof(struct aioproc)); 270 } 271 272 /* 273 * AIO worker thread and processor. 274 */ 275 static void 276 aio_worker(void *arg) 277 { 278 struct proc *p = curlwp->l_proc; 279 struct aioproc *aio = p->p_aio; 280 struct aio_job *a_job; 281 struct lio_req *lio; 282 sigset_t oss, nss; 283 int error __diagused, refcnt; 284 285 /* 286 * Make an empty signal mask, so it 287 * handles only SIGKILL and SIGSTOP. 288 */ 289 sigfillset(&nss); 290 mutex_enter(p->p_lock); 291 error = sigprocmask1(curlwp, SIG_SETMASK, &nss, &oss); 292 mutex_exit(p->p_lock); 293 KASSERT(error == 0); 294 295 for (;;) { 296 /* 297 * Loop for each job in the queue. If there 298 * are no jobs then sleep. 299 */ 300 mutex_enter(&aio->aio_mtx); 301 while ((a_job = TAILQ_FIRST(&aio->jobs_queue)) == NULL) { 302 if (cv_wait_sig(&aio->aio_worker_cv, &aio->aio_mtx)) { 303 /* 304 * Thread was interrupted - check for 305 * pending exit or suspend. 306 */ 307 mutex_exit(&aio->aio_mtx); 308 lwp_userret(curlwp); 309 mutex_enter(&aio->aio_mtx); 310 } 311 } 312 313 /* Take the job from the queue */ 314 aio->curjob = a_job; 315 TAILQ_REMOVE(&aio->jobs_queue, a_job, list); 316 317 atomic_dec_uint(&aio_jobs_count); 318 aio->jobs_count--; 319 320 mutex_exit(&aio->aio_mtx); 321 322 /* Process an AIO operation */ 323 aio_process(a_job); 324 325 /* Copy data structure back to the user-space */ 326 (void)copyout(&a_job->aiocbp, a_job->aiocb_uptr, 327 sizeof(struct aiocb)); 328 329 mutex_enter(&aio->aio_mtx); 330 KASSERT(aio->curjob == a_job); 331 aio->curjob = NULL; 332 333 /* Decrease a reference counter, if there is a LIO structure */ 334 lio = a_job->lio; 335 refcnt = (lio != NULL ? --lio->refcnt : -1); 336 337 /* Notify all suspenders */ 338 cv_broadcast(&aio->done_cv); 339 mutex_exit(&aio->aio_mtx); 340 341 /* Send a signal, if any */ 342 aio_sendsig(p, &a_job->aiocbp.aio_sigevent); 343 344 /* Destroy the LIO structure */ 345 if (refcnt == 0) { 346 aio_sendsig(p, &lio->sig); 347 pool_put(&aio_lio_pool, lio); 348 } 349 350 /* Destroy the job */ 351 pool_put(&aio_job_pool, a_job); 352 } 353 354 /* NOTREACHED */ 355 } 356 357 static void 358 aio_process(struct aio_job *a_job) 359 { 360 struct proc *p = curlwp->l_proc; 361 struct aiocb *aiocbp = &a_job->aiocbp; 362 struct file *fp; 363 int fd = aiocbp->aio_fildes; 364 int error = 0; 365 366 KASSERT(a_job->aio_op != 0); 367 368 if ((a_job->aio_op & (AIO_READ | AIO_WRITE)) != 0) { 369 struct iovec aiov; 370 struct uio auio; 371 372 if (aiocbp->aio_nbytes > SSIZE_MAX) { 373 error = EINVAL; 374 goto done; 375 } 376 377 fp = fd_getfile(fd); 378 if (fp == NULL) { 379 error = EBADF; 380 goto done; 381 } 382 383 aiov.iov_base = (void *)(uintptr_t)aiocbp->aio_buf; 384 aiov.iov_len = aiocbp->aio_nbytes; 385 auio.uio_iov = &aiov; 386 auio.uio_iovcnt = 1; 387 auio.uio_resid = aiocbp->aio_nbytes; 388 auio.uio_vmspace = p->p_vmspace; 389 390 if (a_job->aio_op & AIO_READ) { 391 /* 392 * Perform a Read operation 393 */ 394 KASSERT((a_job->aio_op & AIO_WRITE) == 0); 395 396 if ((fp->f_flag & FREAD) == 0) { 397 fd_putfile(fd); 398 error = EBADF; 399 goto done; 400 } 401 auio.uio_rw = UIO_READ; 402 error = (*fp->f_ops->fo_read)(fp, &aiocbp->aio_offset, 403 &auio, fp->f_cred, FOF_UPDATE_OFFSET); 404 } else { 405 /* 406 * Perform a Write operation 407 */ 408 KASSERT(a_job->aio_op & AIO_WRITE); 409 410 if ((fp->f_flag & FWRITE) == 0) { 411 fd_putfile(fd); 412 error = EBADF; 413 goto done; 414 } 415 auio.uio_rw = UIO_WRITE; 416 error = (*fp->f_ops->fo_write)(fp, &aiocbp->aio_offset, 417 &auio, fp->f_cred, FOF_UPDATE_OFFSET); 418 } 419 fd_putfile(fd); 420 421 /* Store the result value */ 422 a_job->aiocbp.aio_nbytes -= auio.uio_resid; 423 a_job->aiocbp._retval = (error == 0) ? 424 a_job->aiocbp.aio_nbytes : -1; 425 426 } else if ((a_job->aio_op & (AIO_SYNC | AIO_DSYNC)) != 0) { 427 /* 428 * Perform a file Sync operation 429 */ 430 struct vnode *vp; 431 432 if ((error = fd_getvnode(fd, &fp)) != 0) 433 goto done; 434 435 if ((fp->f_flag & FWRITE) == 0) { 436 fd_putfile(fd); 437 error = EBADF; 438 goto done; 439 } 440 441 vp = fp->f_vnode; 442 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 443 if (a_job->aio_op & AIO_DSYNC) { 444 error = VOP_FSYNC(vp, fp->f_cred, 445 FSYNC_WAIT | FSYNC_DATAONLY, 0, 0); 446 } else if (a_job->aio_op & AIO_SYNC) { 447 error = VOP_FSYNC(vp, fp->f_cred, 448 FSYNC_WAIT, 0, 0); 449 } 450 VOP_UNLOCK(vp); 451 fd_putfile(fd); 452 453 /* Store the result value */ 454 a_job->aiocbp._retval = (error == 0) ? 0 : -1; 455 456 } else 457 panic("aio_process: invalid operation code\n"); 458 459 done: 460 /* Job is done, set the error, if any */ 461 a_job->aiocbp._errno = error; 462 a_job->aiocbp._state = JOB_DONE; 463 } 464 465 /* 466 * Send AIO signal. 467 */ 468 static void 469 aio_sendsig(struct proc *p, struct sigevent *sig) 470 { 471 ksiginfo_t ksi; 472 473 if (sig->sigev_signo == 0 || sig->sigev_notify == SIGEV_NONE) 474 return; 475 476 KSI_INIT(&ksi); 477 ksi.ksi_signo = sig->sigev_signo; 478 ksi.ksi_code = SI_ASYNCIO; 479 ksi.ksi_value = sig->sigev_value; 480 mutex_enter(proc_lock); 481 kpsignal(p, &ksi, NULL); 482 mutex_exit(proc_lock); 483 } 484 485 /* 486 * Enqueue the job. 487 */ 488 static int 489 aio_enqueue_job(int op, void *aiocb_uptr, struct lio_req *lio) 490 { 491 struct proc *p = curlwp->l_proc; 492 struct aioproc *aio; 493 struct aio_job *a_job; 494 struct aiocb aiocbp; 495 struct sigevent *sig; 496 int error; 497 498 /* Non-accurate check for the limit */ 499 if (aio_jobs_count + 1 > aio_max) 500 return EAGAIN; 501 502 /* Get the data structure from user-space */ 503 error = copyin(aiocb_uptr, &aiocbp, sizeof(struct aiocb)); 504 if (error) 505 return error; 506 507 /* Check if signal is set, and validate it */ 508 sig = &aiocbp.aio_sigevent; 509 if (sig->sigev_signo < 0 || sig->sigev_signo >= NSIG || 510 sig->sigev_notify < SIGEV_NONE || sig->sigev_notify > SIGEV_SA) 511 return EINVAL; 512 513 /* Buffer and byte count */ 514 if (((AIO_SYNC | AIO_DSYNC) & op) == 0) 515 if (aiocbp.aio_buf == NULL || aiocbp.aio_nbytes > SSIZE_MAX) 516 return EINVAL; 517 518 /* Check the opcode, if LIO_NOP - simply ignore */ 519 if (op == AIO_LIO) { 520 KASSERT(lio != NULL); 521 if (aiocbp.aio_lio_opcode == LIO_WRITE) 522 op = AIO_WRITE; 523 else if (aiocbp.aio_lio_opcode == LIO_READ) 524 op = AIO_READ; 525 else 526 return (aiocbp.aio_lio_opcode == LIO_NOP) ? 0 : EINVAL; 527 } else { 528 KASSERT(lio == NULL); 529 } 530 531 /* 532 * Look for already existing job. If found - the job is in-progress. 533 * According to POSIX this is invalid, so return the error. 534 */ 535 aio = p->p_aio; 536 if (aio) { 537 mutex_enter(&aio->aio_mtx); 538 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) { 539 if (a_job->aiocb_uptr != aiocb_uptr) 540 continue; 541 mutex_exit(&aio->aio_mtx); 542 return EINVAL; 543 } 544 mutex_exit(&aio->aio_mtx); 545 } 546 547 /* 548 * Check if AIO structure is initialized, if not - initialize it. 549 * In LIO case, we did that already. We will recheck this with 550 * the lock in aio_procinit(). 551 */ 552 if (lio == NULL && p->p_aio == NULL) 553 if (aio_procinit(p)) 554 return EAGAIN; 555 aio = p->p_aio; 556 557 /* 558 * Set the state with errno, and copy data 559 * structure back to the user-space. 560 */ 561 aiocbp._state = JOB_WIP; 562 aiocbp._errno = EINPROGRESS; 563 aiocbp._retval = -1; 564 error = copyout(&aiocbp, aiocb_uptr, sizeof(struct aiocb)); 565 if (error) 566 return error; 567 568 /* Allocate and initialize a new AIO job */ 569 a_job = pool_get(&aio_job_pool, PR_WAITOK); 570 memset(a_job, 0, sizeof(struct aio_job)); 571 572 /* 573 * Set the data. 574 * Store the user-space pointer for searching. Since we 575 * are storing only per proc pointers - it is safe. 576 */ 577 memcpy(&a_job->aiocbp, &aiocbp, sizeof(struct aiocb)); 578 a_job->aiocb_uptr = aiocb_uptr; 579 a_job->aio_op |= op; 580 a_job->lio = lio; 581 582 /* 583 * Add the job to the queue, update the counters, and 584 * notify the AIO worker thread to handle the job. 585 */ 586 mutex_enter(&aio->aio_mtx); 587 588 /* Fail, if the limit was reached */ 589 if (atomic_inc_uint_nv(&aio_jobs_count) > aio_max || 590 aio->jobs_count >= aio_listio_max) { 591 atomic_dec_uint(&aio_jobs_count); 592 mutex_exit(&aio->aio_mtx); 593 pool_put(&aio_job_pool, a_job); 594 return EAGAIN; 595 } 596 597 TAILQ_INSERT_TAIL(&aio->jobs_queue, a_job, list); 598 aio->jobs_count++; 599 if (lio) 600 lio->refcnt++; 601 cv_signal(&aio->aio_worker_cv); 602 603 mutex_exit(&aio->aio_mtx); 604 605 /* 606 * One would handle the errors only with aio_error() function. 607 * This way is appropriate according to POSIX. 608 */ 609 return 0; 610 } 611 612 /* 613 * Syscall functions. 614 */ 615 616 int 617 sys_aio_cancel(struct lwp *l, const struct sys_aio_cancel_args *uap, 618 register_t *retval) 619 { 620 /* { 621 syscallarg(int) fildes; 622 syscallarg(struct aiocb *) aiocbp; 623 } */ 624 struct proc *p = l->l_proc; 625 struct aioproc *aio; 626 struct aio_job *a_job; 627 struct aiocb *aiocbp_ptr; 628 struct lio_req *lio; 629 struct filedesc *fdp = p->p_fd; 630 unsigned int cn, errcnt, fildes; 631 fdtab_t *dt; 632 633 TAILQ_HEAD(, aio_job) tmp_jobs_list; 634 635 /* Check for invalid file descriptor */ 636 fildes = (unsigned int)SCARG(uap, fildes); 637 dt = fdp->fd_dt; 638 if (fildes >= dt->dt_nfiles) 639 return EBADF; 640 if (dt->dt_ff[fildes] == NULL || dt->dt_ff[fildes]->ff_file == NULL) 641 return EBADF; 642 643 /* Check if AIO structure is initialized */ 644 if (p->p_aio == NULL) { 645 *retval = AIO_NOTCANCELED; 646 return 0; 647 } 648 649 aio = p->p_aio; 650 aiocbp_ptr = (struct aiocb *)SCARG(uap, aiocbp); 651 652 mutex_enter(&aio->aio_mtx); 653 654 /* Cancel the jobs, and remove them from the queue */ 655 cn = 0; 656 TAILQ_INIT(&tmp_jobs_list); 657 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) { 658 if (aiocbp_ptr) { 659 if (aiocbp_ptr != a_job->aiocb_uptr) 660 continue; 661 if (fildes != a_job->aiocbp.aio_fildes) { 662 mutex_exit(&aio->aio_mtx); 663 return EBADF; 664 } 665 } else if (a_job->aiocbp.aio_fildes != fildes) 666 continue; 667 668 TAILQ_REMOVE(&aio->jobs_queue, a_job, list); 669 TAILQ_INSERT_TAIL(&tmp_jobs_list, a_job, list); 670 671 /* Decrease the counters */ 672 atomic_dec_uint(&aio_jobs_count); 673 aio->jobs_count--; 674 lio = a_job->lio; 675 if (lio != NULL && --lio->refcnt != 0) 676 a_job->lio = NULL; 677 678 cn++; 679 if (aiocbp_ptr) 680 break; 681 } 682 683 /* There are canceled jobs */ 684 if (cn) 685 *retval = AIO_CANCELED; 686 687 /* We cannot cancel current job */ 688 a_job = aio->curjob; 689 if (a_job && ((a_job->aiocbp.aio_fildes == fildes) || 690 (a_job->aiocb_uptr == aiocbp_ptr))) 691 *retval = AIO_NOTCANCELED; 692 693 mutex_exit(&aio->aio_mtx); 694 695 /* Free the jobs after the lock */ 696 errcnt = 0; 697 while (!TAILQ_EMPTY(&tmp_jobs_list)) { 698 a_job = TAILQ_FIRST(&tmp_jobs_list); 699 TAILQ_REMOVE(&tmp_jobs_list, a_job, list); 700 /* Set the errno and copy structures back to the user-space */ 701 a_job->aiocbp._errno = ECANCELED; 702 a_job->aiocbp._state = JOB_DONE; 703 if (copyout(&a_job->aiocbp, a_job->aiocb_uptr, 704 sizeof(struct aiocb))) 705 errcnt++; 706 /* Send a signal if any */ 707 aio_sendsig(p, &a_job->aiocbp.aio_sigevent); 708 if (a_job->lio) { 709 lio = a_job->lio; 710 aio_sendsig(p, &lio->sig); 711 pool_put(&aio_lio_pool, lio); 712 } 713 pool_put(&aio_job_pool, a_job); 714 } 715 716 if (errcnt) 717 return EFAULT; 718 719 /* Set a correct return value */ 720 if (*retval == 0) 721 *retval = AIO_ALLDONE; 722 723 return 0; 724 } 725 726 int 727 sys_aio_error(struct lwp *l, const struct sys_aio_error_args *uap, 728 register_t *retval) 729 { 730 /* { 731 syscallarg(const struct aiocb *) aiocbp; 732 } */ 733 struct proc *p = l->l_proc; 734 struct aioproc *aio = p->p_aio; 735 struct aiocb aiocbp; 736 int error; 737 738 if (aio == NULL) 739 return EINVAL; 740 741 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb)); 742 if (error) 743 return error; 744 745 if (aiocbp._state == JOB_NONE) 746 return EINVAL; 747 748 *retval = aiocbp._errno; 749 750 return 0; 751 } 752 753 int 754 sys_aio_fsync(struct lwp *l, const struct sys_aio_fsync_args *uap, 755 register_t *retval) 756 { 757 /* { 758 syscallarg(int) op; 759 syscallarg(struct aiocb *) aiocbp; 760 } */ 761 int op = SCARG(uap, op); 762 763 if ((op != O_DSYNC) && (op != O_SYNC)) 764 return EINVAL; 765 766 op = O_DSYNC ? AIO_DSYNC : AIO_SYNC; 767 768 return aio_enqueue_job(op, SCARG(uap, aiocbp), NULL); 769 } 770 771 int 772 sys_aio_read(struct lwp *l, const struct sys_aio_read_args *uap, 773 register_t *retval) 774 { 775 /* { 776 syscallarg(struct aiocb *) aiocbp; 777 } */ 778 779 return aio_enqueue_job(AIO_READ, SCARG(uap, aiocbp), NULL); 780 } 781 782 int 783 sys_aio_return(struct lwp *l, const struct sys_aio_return_args *uap, 784 register_t *retval) 785 { 786 /* { 787 syscallarg(struct aiocb *) aiocbp; 788 } */ 789 struct proc *p = l->l_proc; 790 struct aioproc *aio = p->p_aio; 791 struct aiocb aiocbp; 792 int error; 793 794 if (aio == NULL) 795 return EINVAL; 796 797 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb)); 798 if (error) 799 return error; 800 801 if (aiocbp._errno == EINPROGRESS || aiocbp._state != JOB_DONE) 802 return EINVAL; 803 804 *retval = aiocbp._retval; 805 806 /* Reset the internal variables */ 807 aiocbp._errno = 0; 808 aiocbp._retval = -1; 809 aiocbp._state = JOB_NONE; 810 error = copyout(&aiocbp, SCARG(uap, aiocbp), sizeof(struct aiocb)); 811 812 return error; 813 } 814 815 int 816 sys___aio_suspend50(struct lwp *l, const struct sys___aio_suspend50_args *uap, 817 register_t *retval) 818 { 819 /* { 820 syscallarg(const struct aiocb *const[]) list; 821 syscallarg(int) nent; 822 syscallarg(const struct timespec *) timeout; 823 } */ 824 struct aiocb **list; 825 struct timespec ts; 826 int error, nent; 827 828 nent = SCARG(uap, nent); 829 if (nent <= 0 || nent > aio_listio_max) 830 return EAGAIN; 831 832 if (SCARG(uap, timeout)) { 833 /* Convert timespec to ticks */ 834 error = copyin(SCARG(uap, timeout), &ts, 835 sizeof(struct timespec)); 836 if (error) 837 return error; 838 } 839 840 list = kmem_alloc(nent * sizeof(*list), KM_SLEEP); 841 error = copyin(SCARG(uap, list), list, nent * sizeof(*list)); 842 if (error) 843 goto out; 844 error = aio_suspend1(l, list, nent, SCARG(uap, timeout) ? &ts : NULL); 845 out: 846 kmem_free(list, nent * sizeof(*list)); 847 return error; 848 } 849 850 int 851 aio_suspend1(struct lwp *l, struct aiocb **aiocbp_list, int nent, 852 struct timespec *ts) 853 { 854 struct proc *p = l->l_proc; 855 struct aioproc *aio; 856 struct aio_job *a_job; 857 int i, error, timo; 858 859 if (p->p_aio == NULL) 860 return EAGAIN; 861 aio = p->p_aio; 862 863 if (ts) { 864 timo = mstohz((ts->tv_sec * 1000) + (ts->tv_nsec / 1000000)); 865 if (timo == 0 && ts->tv_sec == 0 && ts->tv_nsec > 0) 866 timo = 1; 867 if (timo <= 0) 868 return EAGAIN; 869 } else 870 timo = 0; 871 872 mutex_enter(&aio->aio_mtx); 873 for (;;) { 874 for (i = 0; i < nent; i++) { 875 876 /* Skip NULL entries */ 877 if (aiocbp_list[i] == NULL) 878 continue; 879 880 /* Skip current job */ 881 if (aio->curjob) { 882 a_job = aio->curjob; 883 if (a_job->aiocb_uptr == aiocbp_list[i]) 884 continue; 885 } 886 887 /* Look for a job in the queue */ 888 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) 889 if (a_job->aiocb_uptr == aiocbp_list[i]) 890 break; 891 892 if (a_job == NULL) { 893 struct aiocb aiocbp; 894 895 mutex_exit(&aio->aio_mtx); 896 897 /* Check if the job is done. */ 898 error = copyin(aiocbp_list[i], &aiocbp, 899 sizeof(struct aiocb)); 900 if (error == 0 && aiocbp._state != JOB_DONE) { 901 mutex_enter(&aio->aio_mtx); 902 continue; 903 } 904 return error; 905 } 906 } 907 908 /* Wait for a signal or when timeout occurs */ 909 error = cv_timedwait_sig(&aio->done_cv, &aio->aio_mtx, timo); 910 if (error) { 911 if (error == EWOULDBLOCK) 912 error = EAGAIN; 913 break; 914 } 915 } 916 mutex_exit(&aio->aio_mtx); 917 return error; 918 } 919 920 int 921 sys_aio_write(struct lwp *l, const struct sys_aio_write_args *uap, 922 register_t *retval) 923 { 924 /* { 925 syscallarg(struct aiocb *) aiocbp; 926 } */ 927 928 return aio_enqueue_job(AIO_WRITE, SCARG(uap, aiocbp), NULL); 929 } 930 931 int 932 sys_lio_listio(struct lwp *l, const struct sys_lio_listio_args *uap, 933 register_t *retval) 934 { 935 /* { 936 syscallarg(int) mode; 937 syscallarg(struct aiocb *const[]) list; 938 syscallarg(int) nent; 939 syscallarg(struct sigevent *) sig; 940 } */ 941 struct proc *p = l->l_proc; 942 struct aioproc *aio; 943 struct aiocb **aiocbp_list; 944 struct lio_req *lio; 945 int i, error, errcnt, mode, nent; 946 947 mode = SCARG(uap, mode); 948 nent = SCARG(uap, nent); 949 950 /* Non-accurate checks for the limit and invalid values */ 951 if (nent < 1 || nent > aio_listio_max) 952 return EINVAL; 953 if (aio_jobs_count + nent > aio_max) 954 return EAGAIN; 955 956 /* Check if AIO structure is initialized, if not - initialize it */ 957 if (p->p_aio == NULL) 958 if (aio_procinit(p)) 959 return EAGAIN; 960 aio = p->p_aio; 961 962 /* Create a LIO structure */ 963 lio = pool_get(&aio_lio_pool, PR_WAITOK); 964 lio->refcnt = 1; 965 error = 0; 966 967 switch (mode) { 968 case LIO_WAIT: 969 memset(&lio->sig, 0, sizeof(struct sigevent)); 970 break; 971 case LIO_NOWAIT: 972 /* Check for signal, validate it */ 973 if (SCARG(uap, sig)) { 974 struct sigevent *sig = &lio->sig; 975 976 error = copyin(SCARG(uap, sig), &lio->sig, 977 sizeof(struct sigevent)); 978 if (error == 0 && 979 (sig->sigev_signo < 0 || 980 sig->sigev_signo >= NSIG || 981 sig->sigev_notify < SIGEV_NONE || 982 sig->sigev_notify > SIGEV_SA)) 983 error = EINVAL; 984 } else 985 memset(&lio->sig, 0, sizeof(struct sigevent)); 986 break; 987 default: 988 error = EINVAL; 989 break; 990 } 991 992 if (error != 0) { 993 pool_put(&aio_lio_pool, lio); 994 return error; 995 } 996 997 /* Get the list from user-space */ 998 aiocbp_list = kmem_alloc(nent * sizeof(*aiocbp_list), KM_SLEEP); 999 error = copyin(SCARG(uap, list), aiocbp_list, 1000 nent * sizeof(*aiocbp_list)); 1001 if (error) { 1002 mutex_enter(&aio->aio_mtx); 1003 goto err; 1004 } 1005 1006 /* Enqueue all jobs */ 1007 errcnt = 0; 1008 for (i = 0; i < nent; i++) { 1009 error = aio_enqueue_job(AIO_LIO, aiocbp_list[i], lio); 1010 /* 1011 * According to POSIX, in such error case it may 1012 * fail with other I/O operations initiated. 1013 */ 1014 if (error) 1015 errcnt++; 1016 } 1017 1018 mutex_enter(&aio->aio_mtx); 1019 1020 /* Return an error, if any */ 1021 if (errcnt) { 1022 error = EIO; 1023 goto err; 1024 } 1025 1026 if (mode == LIO_WAIT) { 1027 /* 1028 * Wait for AIO completion. In such case, 1029 * the LIO structure will be freed here. 1030 */ 1031 while (lio->refcnt > 1 && error == 0) 1032 error = cv_wait_sig(&aio->done_cv, &aio->aio_mtx); 1033 if (error) 1034 error = EINTR; 1035 } 1036 1037 err: 1038 if (--lio->refcnt != 0) 1039 lio = NULL; 1040 mutex_exit(&aio->aio_mtx); 1041 if (lio != NULL) { 1042 aio_sendsig(p, &lio->sig); 1043 pool_put(&aio_lio_pool, lio); 1044 } 1045 kmem_free(aiocbp_list, nent * sizeof(*aiocbp_list)); 1046 return error; 1047 } 1048 1049 /* 1050 * SysCtl 1051 */ 1052 1053 static int 1054 sysctl_aio_listio_max(SYSCTLFN_ARGS) 1055 { 1056 struct sysctlnode node; 1057 int error, newsize; 1058 1059 node = *rnode; 1060 node.sysctl_data = &newsize; 1061 1062 newsize = aio_listio_max; 1063 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1064 if (error || newp == NULL) 1065 return error; 1066 1067 if (newsize < 1 || newsize > aio_max) 1068 return EINVAL; 1069 aio_listio_max = newsize; 1070 1071 return 0; 1072 } 1073 1074 static int 1075 sysctl_aio_max(SYSCTLFN_ARGS) 1076 { 1077 struct sysctlnode node; 1078 int error, newsize; 1079 1080 node = *rnode; 1081 node.sysctl_data = &newsize; 1082 1083 newsize = aio_max; 1084 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1085 if (error || newp == NULL) 1086 return error; 1087 1088 if (newsize < 1 || newsize < aio_listio_max) 1089 return EINVAL; 1090 aio_max = newsize; 1091 1092 return 0; 1093 } 1094 1095 static int 1096 sysctl_aio_init(void) 1097 { 1098 int rv; 1099 1100 aio_sysctl = NULL; 1101 1102 rv = sysctl_createv(&aio_sysctl, 0, NULL, NULL, 1103 CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE, 1104 CTLTYPE_INT, "posix_aio", 1105 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its " 1106 "Asynchronous I/O option to which the " 1107 "system attempts to conform"), 1108 NULL, _POSIX_ASYNCHRONOUS_IO, NULL, 0, 1109 CTL_KERN, CTL_CREATE, CTL_EOL); 1110 1111 if (rv != 0) 1112 return rv; 1113 1114 rv = sysctl_createv(&aio_sysctl, 0, NULL, NULL, 1115 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 1116 CTLTYPE_INT, "aio_listio_max", 1117 SYSCTL_DESCR("Maximum number of asynchronous I/O " 1118 "operations in a single list I/O call"), 1119 sysctl_aio_listio_max, 0, &aio_listio_max, 0, 1120 CTL_KERN, CTL_CREATE, CTL_EOL); 1121 1122 if (rv != 0) 1123 return rv; 1124 1125 rv = sysctl_createv(&aio_sysctl, 0, NULL, NULL, 1126 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 1127 CTLTYPE_INT, "aio_max", 1128 SYSCTL_DESCR("Maximum number of asynchronous I/O " 1129 "operations"), 1130 sysctl_aio_max, 0, &aio_max, 0, 1131 CTL_KERN, CTL_CREATE, CTL_EOL); 1132 1133 return rv; 1134 } 1135 1136 /* 1137 * Debugging 1138 */ 1139 #if defined(DDB) 1140 void 1141 aio_print_jobs(void (*pr)(const char *, ...)) 1142 { 1143 struct proc *p = curlwp->l_proc; 1144 struct aioproc *aio; 1145 struct aio_job *a_job; 1146 struct aiocb *aiocbp; 1147 1148 if (p == NULL) { 1149 (*pr)("AIO: We are not in the processes right now.\n"); 1150 return; 1151 } 1152 1153 aio = p->p_aio; 1154 if (aio == NULL) { 1155 (*pr)("AIO data is not initialized (PID = %d).\n", p->p_pid); 1156 return; 1157 } 1158 1159 (*pr)("AIO: PID = %d\n", p->p_pid); 1160 (*pr)("AIO: Global count of the jobs = %u\n", aio_jobs_count); 1161 (*pr)("AIO: Count of the jobs = %u\n", aio->jobs_count); 1162 1163 if (aio->curjob) { 1164 a_job = aio->curjob; 1165 (*pr)("\nAIO current job:\n"); 1166 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n", 1167 a_job->aio_op, a_job->aiocbp._errno, 1168 a_job->aiocbp._state, a_job->aiocb_uptr); 1169 aiocbp = &a_job->aiocbp; 1170 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n", 1171 aiocbp->aio_fildes, aiocbp->aio_offset, 1172 aiocbp->aio_buf, aiocbp->aio_nbytes); 1173 } 1174 1175 (*pr)("\nAIO queue:\n"); 1176 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) { 1177 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n", 1178 a_job->aio_op, a_job->aiocbp._errno, 1179 a_job->aiocbp._state, a_job->aiocb_uptr); 1180 aiocbp = &a_job->aiocbp; 1181 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n", 1182 aiocbp->aio_fildes, aiocbp->aio_offset, 1183 aiocbp->aio_buf, aiocbp->aio_nbytes); 1184 } 1185 } 1186 #endif /* defined(DDB) */ 1187