xref: /netbsd-src/sys/kern/subr_workqueue.c (revision 7330f729ccf0bd976a06f95fad452fe774fc7fd1)
1 /*	$NetBSD: subr_workqueue.c,v 1.37 2018/06/13 05:26:12 ozaki-r Exp $	*/
2 
3 /*-
4  * Copyright (c)2002, 2005, 2006, 2007 YAMAMOTO Takashi,
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: subr_workqueue.c,v 1.37 2018/06/13 05:26:12 ozaki-r Exp $");
31 
32 #include <sys/param.h>
33 #include <sys/cpu.h>
34 #include <sys/systm.h>
35 #include <sys/kthread.h>
36 #include <sys/kmem.h>
37 #include <sys/proc.h>
38 #include <sys/workqueue.h>
39 #include <sys/mutex.h>
40 #include <sys/condvar.h>
41 #include <sys/queue.h>
42 
43 typedef struct work_impl {
44 	SIMPLEQ_ENTRY(work_impl) wk_entry;
45 } work_impl_t;
46 
47 SIMPLEQ_HEAD(workqhead, work_impl);
48 
49 struct workqueue_queue {
50 	kmutex_t q_mutex;
51 	kcondvar_t q_cv;
52 	struct workqhead q_queue_pending;
53 	struct workqhead q_queue_running;
54 	lwp_t *q_worker;
55 	work_impl_t *q_waiter;
56 };
57 
58 struct workqueue {
59 	void (*wq_func)(struct work *, void *);
60 	void *wq_arg;
61 	int wq_flags;
62 
63 	char wq_name[MAXCOMLEN];
64 	pri_t wq_prio;
65 	void *wq_ptr;
66 };
67 
68 #define	WQ_SIZE		(roundup2(sizeof(struct workqueue), coherency_unit))
69 #define	WQ_QUEUE_SIZE	(roundup2(sizeof(struct workqueue_queue), coherency_unit))
70 
71 #define	POISON	0xaabbccdd
72 
73 static size_t
74 workqueue_size(int flags)
75 {
76 
77 	return WQ_SIZE
78 	    + ((flags & WQ_PERCPU) != 0 ? ncpu : 1) * WQ_QUEUE_SIZE
79 	    + coherency_unit;
80 }
81 
82 static struct workqueue_queue *
83 workqueue_queue_lookup(struct workqueue *wq, struct cpu_info *ci)
84 {
85 	u_int idx = 0;
86 
87 	if (wq->wq_flags & WQ_PERCPU) {
88 		idx = ci ? cpu_index(ci) : cpu_index(curcpu());
89 	}
90 
91 	return (void *)((uintptr_t)(wq) + WQ_SIZE + (idx * WQ_QUEUE_SIZE));
92 }
93 
94 static void
95 workqueue_runlist(struct workqueue *wq, struct workqhead *list)
96 {
97 	work_impl_t *wk;
98 	work_impl_t *next;
99 
100 	/*
101 	 * note that "list" is not a complete SIMPLEQ.
102 	 */
103 
104 	for (wk = SIMPLEQ_FIRST(list); wk != NULL; wk = next) {
105 		next = SIMPLEQ_NEXT(wk, wk_entry);
106 		(*wq->wq_func)((void *)wk, wq->wq_arg);
107 	}
108 }
109 
110 static void
111 workqueue_worker(void *cookie)
112 {
113 	struct workqueue *wq = cookie;
114 	struct workqueue_queue *q;
115 
116 	/* find the workqueue of this kthread */
117 	q = workqueue_queue_lookup(wq, curlwp->l_cpu);
118 
119 	for (;;) {
120 		/*
121 		 * we violate abstraction of SIMPLEQ.
122 		 */
123 
124 		mutex_enter(&q->q_mutex);
125 		while (SIMPLEQ_EMPTY(&q->q_queue_pending))
126 			cv_wait(&q->q_cv, &q->q_mutex);
127 		KASSERT(SIMPLEQ_EMPTY(&q->q_queue_running));
128 		q->q_queue_running.sqh_first =
129 		    q->q_queue_pending.sqh_first; /* XXX */
130 		SIMPLEQ_INIT(&q->q_queue_pending);
131 		mutex_exit(&q->q_mutex);
132 
133 		workqueue_runlist(wq, &q->q_queue_running);
134 
135 		mutex_enter(&q->q_mutex);
136 		KASSERT(!SIMPLEQ_EMPTY(&q->q_queue_running));
137 		SIMPLEQ_INIT(&q->q_queue_running);
138 		if (__predict_false(q->q_waiter != NULL)) {
139 			/* Wake up workqueue_wait */
140 			cv_signal(&q->q_cv);
141 		}
142 		mutex_exit(&q->q_mutex);
143 	}
144 }
145 
146 static void
147 workqueue_init(struct workqueue *wq, const char *name,
148     void (*callback_func)(struct work *, void *), void *callback_arg,
149     pri_t prio, int ipl)
150 {
151 
152 	KASSERT(sizeof(wq->wq_name) > strlen(name));
153 	strncpy(wq->wq_name, name, sizeof(wq->wq_name));
154 
155 	wq->wq_prio = prio;
156 	wq->wq_func = callback_func;
157 	wq->wq_arg = callback_arg;
158 }
159 
160 static int
161 workqueue_initqueue(struct workqueue *wq, struct workqueue_queue *q,
162     int ipl, struct cpu_info *ci)
163 {
164 	int error, ktf;
165 
166 	KASSERT(q->q_worker == NULL);
167 
168 	mutex_init(&q->q_mutex, MUTEX_DEFAULT, ipl);
169 	cv_init(&q->q_cv, wq->wq_name);
170 	SIMPLEQ_INIT(&q->q_queue_pending);
171 	SIMPLEQ_INIT(&q->q_queue_running);
172 	ktf = ((wq->wq_flags & WQ_MPSAFE) != 0 ? KTHREAD_MPSAFE : 0);
173 	if (wq->wq_prio < PRI_KERNEL)
174 		ktf |= KTHREAD_TS;
175 	if (ci) {
176 		error = kthread_create(wq->wq_prio, ktf, ci, workqueue_worker,
177 		    wq, &q->q_worker, "%s/%u", wq->wq_name, ci->ci_index);
178 	} else {
179 		error = kthread_create(wq->wq_prio, ktf, ci, workqueue_worker,
180 		    wq, &q->q_worker, "%s", wq->wq_name);
181 	}
182 	if (error != 0) {
183 		mutex_destroy(&q->q_mutex);
184 		cv_destroy(&q->q_cv);
185 		KASSERT(q->q_worker == NULL);
186 	}
187 	return error;
188 }
189 
190 struct workqueue_exitargs {
191 	work_impl_t wqe_wk;
192 	struct workqueue_queue *wqe_q;
193 };
194 
195 static void
196 workqueue_exit(struct work *wk, void *arg)
197 {
198 	struct workqueue_exitargs *wqe = (void *)wk;
199 	struct workqueue_queue *q = wqe->wqe_q;
200 
201 	/*
202 	 * only competition at this point is workqueue_finiqueue.
203 	 */
204 
205 	KASSERT(q->q_worker == curlwp);
206 	KASSERT(SIMPLEQ_EMPTY(&q->q_queue_pending));
207 	mutex_enter(&q->q_mutex);
208 	q->q_worker = NULL;
209 	cv_signal(&q->q_cv);
210 	mutex_exit(&q->q_mutex);
211 	kthread_exit(0);
212 }
213 
214 static void
215 workqueue_finiqueue(struct workqueue *wq, struct workqueue_queue *q)
216 {
217 	struct workqueue_exitargs wqe;
218 
219 	KASSERT(wq->wq_func == workqueue_exit);
220 
221 	wqe.wqe_q = q;
222 	KASSERT(SIMPLEQ_EMPTY(&q->q_queue_pending));
223 	KASSERT(q->q_worker != NULL);
224 	mutex_enter(&q->q_mutex);
225 	SIMPLEQ_INSERT_TAIL(&q->q_queue_pending, &wqe.wqe_wk, wk_entry);
226 	cv_signal(&q->q_cv);
227 	while (q->q_worker != NULL) {
228 		cv_wait(&q->q_cv, &q->q_mutex);
229 	}
230 	mutex_exit(&q->q_mutex);
231 	mutex_destroy(&q->q_mutex);
232 	cv_destroy(&q->q_cv);
233 }
234 
235 /* --- */
236 
237 int
238 workqueue_create(struct workqueue **wqp, const char *name,
239     void (*callback_func)(struct work *, void *), void *callback_arg,
240     pri_t prio, int ipl, int flags)
241 {
242 	struct workqueue *wq;
243 	struct workqueue_queue *q;
244 	void *ptr;
245 	int error = 0;
246 
247 	CTASSERT(sizeof(work_impl_t) <= sizeof(struct work));
248 
249 	ptr = kmem_zalloc(workqueue_size(flags), KM_SLEEP);
250 	wq = (void *)roundup2((uintptr_t)ptr, coherency_unit);
251 	wq->wq_ptr = ptr;
252 	wq->wq_flags = flags;
253 
254 	workqueue_init(wq, name, callback_func, callback_arg, prio, ipl);
255 
256 	if (flags & WQ_PERCPU) {
257 		struct cpu_info *ci;
258 		CPU_INFO_ITERATOR cii;
259 
260 		/* create the work-queue for each CPU */
261 		for (CPU_INFO_FOREACH(cii, ci)) {
262 			q = workqueue_queue_lookup(wq, ci);
263 			error = workqueue_initqueue(wq, q, ipl, ci);
264 			if (error) {
265 				break;
266 			}
267 		}
268 	} else {
269 		/* initialize a work-queue */
270 		q = workqueue_queue_lookup(wq, NULL);
271 		error = workqueue_initqueue(wq, q, ipl, NULL);
272 	}
273 
274 	if (error != 0) {
275 		workqueue_destroy(wq);
276 	} else {
277 		*wqp = wq;
278 	}
279 
280 	return error;
281 }
282 
283 static bool
284 workqueue_q_wait(struct workqueue_queue *q, work_impl_t *wk_target)
285 {
286 	work_impl_t *wk;
287 	bool found = false;
288 
289 	mutex_enter(&q->q_mutex);
290 	if (q->q_worker == curlwp)
291 		goto out;
292     again:
293 	SIMPLEQ_FOREACH(wk, &q->q_queue_pending, wk_entry) {
294 		if (wk == wk_target)
295 			goto found;
296 	}
297 	SIMPLEQ_FOREACH(wk, &q->q_queue_running, wk_entry) {
298 		if (wk == wk_target)
299 			goto found;
300 	}
301     found:
302 	if (wk != NULL) {
303 		found = true;
304 		KASSERT(q->q_waiter == NULL);
305 		q->q_waiter = wk;
306 		cv_wait(&q->q_cv, &q->q_mutex);
307 		goto again;
308 	}
309 	if (q->q_waiter != NULL)
310 		q->q_waiter = NULL;
311     out:
312 	mutex_exit(&q->q_mutex);
313 
314 	return found;
315 }
316 
317 /*
318  * Wait for a specified work to finish.  The caller must ensure that no new
319  * work will be enqueued before calling workqueue_wait.  Note that if the
320  * workqueue is WQ_PERCPU, the caller can enqueue a new work to another queue
321  * other than the waiting queue.
322  */
323 void
324 workqueue_wait(struct workqueue *wq, struct work *wk)
325 {
326 	struct workqueue_queue *q;
327 	bool found;
328 
329 	if (ISSET(wq->wq_flags, WQ_PERCPU)) {
330 		struct cpu_info *ci;
331 		CPU_INFO_ITERATOR cii;
332 		for (CPU_INFO_FOREACH(cii, ci)) {
333 			q = workqueue_queue_lookup(wq, ci);
334 			found = workqueue_q_wait(q, (work_impl_t *)wk);
335 			if (found)
336 				break;
337 		}
338 	} else {
339 		q = workqueue_queue_lookup(wq, NULL);
340 		(void) workqueue_q_wait(q, (work_impl_t *)wk);
341 	}
342 }
343 
344 void
345 workqueue_destroy(struct workqueue *wq)
346 {
347 	struct workqueue_queue *q;
348 	struct cpu_info *ci;
349 	CPU_INFO_ITERATOR cii;
350 
351 	wq->wq_func = workqueue_exit;
352 	for (CPU_INFO_FOREACH(cii, ci)) {
353 		q = workqueue_queue_lookup(wq, ci);
354 		if (q->q_worker != NULL) {
355 			workqueue_finiqueue(wq, q);
356 		}
357 	}
358 	kmem_free(wq->wq_ptr, workqueue_size(wq->wq_flags));
359 }
360 
361 #ifdef DEBUG
362 static void
363 workqueue_check_duplication(struct workqueue_queue *q, work_impl_t *wk)
364 {
365 	work_impl_t *_wk;
366 
367 	SIMPLEQ_FOREACH(_wk, &q->q_queue_pending, wk_entry) {
368 		if (_wk == wk)
369 			panic("%s: tried to enqueue a queued work", __func__);
370 	}
371 }
372 #endif
373 
374 void
375 workqueue_enqueue(struct workqueue *wq, struct work *wk0, struct cpu_info *ci)
376 {
377 	struct workqueue_queue *q;
378 	work_impl_t *wk = (void *)wk0;
379 
380 	KASSERT(wq->wq_flags & WQ_PERCPU || ci == NULL);
381 	q = workqueue_queue_lookup(wq, ci);
382 
383 	mutex_enter(&q->q_mutex);
384 	KASSERT(q->q_waiter == NULL);
385 #ifdef DEBUG
386 	workqueue_check_duplication(q, wk);
387 #endif
388 	SIMPLEQ_INSERT_TAIL(&q->q_queue_pending, wk, wk_entry);
389 	cv_signal(&q->q_cv);
390 	mutex_exit(&q->q_mutex);
391 }
392