xref: /netbsd-src/sys/kern/subr_vmem.c (revision a536ee5124e62c9a0051a252f7833dc8f50f44c9)
1 /*	$NetBSD: subr_vmem.c,v 1.76 2012/09/13 21:44:50 joerg Exp $	*/
2 
3 /*-
4  * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * reference:
31  * -	Magazines and Vmem: Extending the Slab Allocator
32  *	to Many CPUs and Arbitrary Resources
33  *	http://www.usenix.org/event/usenix01/bonwick.html
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.76 2012/09/13 21:44:50 joerg Exp $");
38 
39 #if defined(_KERNEL)
40 #include "opt_ddb.h"
41 #define	QCACHE
42 #endif /* defined(_KERNEL) */
43 
44 #include <sys/param.h>
45 #include <sys/hash.h>
46 #include <sys/queue.h>
47 #include <sys/bitops.h>
48 
49 #if defined(_KERNEL)
50 #include <sys/systm.h>
51 #include <sys/kernel.h>	/* hz */
52 #include <sys/callout.h>
53 #include <sys/kmem.h>
54 #include <sys/pool.h>
55 #include <sys/vmem.h>
56 #include <sys/workqueue.h>
57 #include <sys/atomic.h>
58 #include <uvm/uvm.h>
59 #include <uvm/uvm_extern.h>
60 #include <uvm/uvm_km.h>
61 #include <uvm/uvm_page.h>
62 #include <uvm/uvm_pdaemon.h>
63 #else /* defined(_KERNEL) */
64 #include "../sys/vmem.h"
65 #endif /* defined(_KERNEL) */
66 
67 
68 #if defined(_KERNEL)
69 #include <sys/evcnt.h>
70 #define VMEM_EVCNT_DEFINE(name) \
71 struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
72     "vmemev", #name); \
73 EVCNT_ATTACH_STATIC(vmem_evcnt_##name);
74 #define VMEM_EVCNT_INCR(ev)	vmem_evcnt_##ev.ev_count++
75 #define VMEM_EVCNT_DECR(ev)	vmem_evcnt_##ev.ev_count--
76 
77 VMEM_EVCNT_DEFINE(bt_pages)
78 VMEM_EVCNT_DEFINE(bt_count)
79 VMEM_EVCNT_DEFINE(bt_inuse)
80 
81 #define	LOCK_DECL(name)		\
82     kmutex_t name; char lockpad[COHERENCY_UNIT - sizeof(kmutex_t)]
83 
84 #define CONDVAR_DECL(name)	\
85     kcondvar_t name
86 
87 #else /* defined(_KERNEL) */
88 #include <stdio.h>
89 #include <errno.h>
90 #include <assert.h>
91 #include <stdlib.h>
92 #include <string.h>
93 
94 #define VMEM_EVCNT_INCR(ev)	/* nothing */
95 #define VMEM_EVCNT_DECR(ev)	/* nothing */
96 
97 #define	UNITTEST
98 #define	KASSERT(a)		assert(a)
99 #define	LOCK_DECL(name)		/* nothing */
100 #define	CONDVAR_DECL(name)	/* nothing */
101 #define	VMEM_CONDVAR_INIT(vm, wchan)	/* nothing */
102 #define	VMEM_CONDVAR_BROADCAST(vm)	/* nothing */
103 #define	mutex_init(a, b, c)	/* nothing */
104 #define	mutex_destroy(a)	/* nothing */
105 #define	mutex_enter(a)		/* nothing */
106 #define	mutex_tryenter(a)	true
107 #define	mutex_exit(a)		/* nothing */
108 #define	mutex_owned(a)		/* nothing */
109 #define	ASSERT_SLEEPABLE()	/* nothing */
110 #define	panic(...)		printf(__VA_ARGS__); abort()
111 #endif /* defined(_KERNEL) */
112 
113 struct vmem;
114 struct vmem_btag;
115 
116 #if defined(VMEM_SANITY)
117 static void vmem_check(vmem_t *);
118 #else /* defined(VMEM_SANITY) */
119 #define vmem_check(vm)	/* nothing */
120 #endif /* defined(VMEM_SANITY) */
121 
122 #define	VMEM_MAXORDER		(sizeof(vmem_size_t) * CHAR_BIT)
123 
124 #define	VMEM_HASHSIZE_MIN	1	/* XXX */
125 #define	VMEM_HASHSIZE_MAX	65536	/* XXX */
126 #define	VMEM_HASHSIZE_INIT	1
127 
128 #define	VM_FITMASK	(VM_BESTFIT | VM_INSTANTFIT)
129 
130 CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
131 LIST_HEAD(vmem_freelist, vmem_btag);
132 LIST_HEAD(vmem_hashlist, vmem_btag);
133 
134 #if defined(QCACHE)
135 #define	VMEM_QCACHE_IDX_MAX	32
136 
137 #define	QC_NAME_MAX	16
138 
139 struct qcache {
140 	pool_cache_t qc_cache;
141 	vmem_t *qc_vmem;
142 	char qc_name[QC_NAME_MAX];
143 };
144 typedef struct qcache qcache_t;
145 #define	QC_POOL_TO_QCACHE(pool)	((qcache_t *)(pool->pr_qcache))
146 #endif /* defined(QCACHE) */
147 
148 #define	VMEM_NAME_MAX	16
149 
150 /* vmem arena */
151 struct vmem {
152 	CONDVAR_DECL(vm_cv);
153 	LOCK_DECL(vm_lock);
154 	vm_flag_t vm_flags;
155 	vmem_import_t *vm_importfn;
156 	vmem_release_t *vm_releasefn;
157 	size_t vm_nfreetags;
158 	LIST_HEAD(, vmem_btag) vm_freetags;
159 	void *vm_arg;
160 	struct vmem_seglist vm_seglist;
161 	struct vmem_freelist vm_freelist[VMEM_MAXORDER];
162 	size_t vm_hashsize;
163 	size_t vm_nbusytag;
164 	struct vmem_hashlist *vm_hashlist;
165 	struct vmem_hashlist vm_hash0;
166 	size_t vm_quantum_mask;
167 	int vm_quantum_shift;
168 	size_t vm_size;
169 	size_t vm_inuse;
170 	char vm_name[VMEM_NAME_MAX+1];
171 	LIST_ENTRY(vmem) vm_alllist;
172 
173 #if defined(QCACHE)
174 	/* quantum cache */
175 	size_t vm_qcache_max;
176 	struct pool_allocator vm_qcache_allocator;
177 	qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
178 	qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
179 #endif /* defined(QCACHE) */
180 };
181 
182 #define	VMEM_LOCK(vm)		mutex_enter(&vm->vm_lock)
183 #define	VMEM_TRYLOCK(vm)	mutex_tryenter(&vm->vm_lock)
184 #define	VMEM_UNLOCK(vm)		mutex_exit(&vm->vm_lock)
185 #define	VMEM_LOCK_INIT(vm, ipl)	mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
186 #define	VMEM_LOCK_DESTROY(vm)	mutex_destroy(&vm->vm_lock)
187 #define	VMEM_ASSERT_LOCKED(vm)	KASSERT(mutex_owned(&vm->vm_lock))
188 
189 #if defined(_KERNEL)
190 #define	VMEM_CONDVAR_INIT(vm, wchan)	cv_init(&vm->vm_cv, wchan)
191 #define	VMEM_CONDVAR_DESTROY(vm)	cv_destroy(&vm->vm_cv)
192 #define	VMEM_CONDVAR_WAIT(vm)		cv_wait(&vm->vm_cv, &vm->vm_lock)
193 #define	VMEM_CONDVAR_BROADCAST(vm)	cv_broadcast(&vm->vm_cv)
194 #endif /* defined(_KERNEL) */
195 
196 /* boundary tag */
197 struct vmem_btag {
198 	CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
199 	union {
200 		LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
201 		LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
202 	} bt_u;
203 #define	bt_hashlist	bt_u.u_hashlist
204 #define	bt_freelist	bt_u.u_freelist
205 	vmem_addr_t bt_start;
206 	vmem_size_t bt_size;
207 	int bt_type;
208 };
209 
210 #define	BT_TYPE_SPAN		1
211 #define	BT_TYPE_SPAN_STATIC	2
212 #define	BT_TYPE_FREE		3
213 #define	BT_TYPE_BUSY		4
214 #define	BT_ISSPAN_P(bt)	((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
215 
216 #define	BT_END(bt)	((bt)->bt_start + (bt)->bt_size - 1)
217 
218 typedef struct vmem_btag bt_t;
219 
220 #if defined(_KERNEL)
221 static kmutex_t vmem_list_lock;
222 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
223 #endif /* defined(_KERNEL) */
224 
225 /* ---- misc */
226 
227 #define	VMEM_ALIGNUP(addr, align) \
228 	(-(-(addr) & -(align)))
229 
230 #define	VMEM_CROSS_P(addr1, addr2, boundary) \
231 	((((addr1) ^ (addr2)) & -(boundary)) != 0)
232 
233 #define	ORDER2SIZE(order)	((vmem_size_t)1 << (order))
234 #define	SIZE2ORDER(size)	((int)ilog2(size))
235 
236 #if !defined(_KERNEL)
237 #define	xmalloc(sz, flags)	malloc(sz)
238 #define	xfree(p, sz)		free(p)
239 #define	bt_alloc(vm, flags)	malloc(sizeof(bt_t))
240 #define	bt_free(vm, bt)		free(bt)
241 #else /* defined(_KERNEL) */
242 
243 #define	xmalloc(sz, flags) \
244     kmem_intr_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
245 #define	xfree(p, sz)		kmem_intr_free(p, sz);
246 
247 /*
248  * Memory for arenas initialized during bootstrap.
249  * There is memory for STATIC_VMEM_COUNT bootstrap arenas.
250  *
251  * BT_RESERVE calculation:
252  * we allocate memory for boundry tags with vmem, therefor we have
253  * to keep a reserve of bts used to allocated memory for bts.
254  * This reserve is 4 for each arena involved in allocating vmems memory.
255  * BT_MAXFREE: don't cache excessive counts of bts in arenas
256  */
257 #define STATIC_VMEM_COUNT 4
258 #define STATIC_BT_COUNT 200
259 #define BT_MINRESERVE 4
260 #define BT_MAXFREE 64
261 /* must be equal or greater then qcache multiplier for kmem_va_arena */
262 #define STATIC_QC_POOL_COUNT 8
263 
264 static struct vmem static_vmems[STATIC_VMEM_COUNT];
265 static int static_vmem_count = STATIC_VMEM_COUNT;
266 
267 static struct vmem_btag static_bts[STATIC_BT_COUNT];
268 static int static_bt_count = STATIC_BT_COUNT;
269 
270 static struct pool_cache static_qc_pools[STATIC_QC_POOL_COUNT];
271 static int static_qc_pool_count = STATIC_QC_POOL_COUNT;
272 
273 vmem_t *kmem_va_meta_arena;
274 vmem_t *kmem_meta_arena;
275 
276 static kmutex_t vmem_btag_lock;
277 static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
278 static size_t vmem_btag_freelist_count = 0;
279 static size_t vmem_btag_count = STATIC_BT_COUNT;
280 
281 /* ---- boundary tag */
282 
283 #define	BT_PER_PAGE	(PAGE_SIZE / sizeof(bt_t))
284 
285 static int bt_refill(vmem_t *vm, vm_flag_t flags);
286 
287 static int
288 bt_refillglobal(vm_flag_t flags)
289 {
290 	vmem_addr_t va;
291 	bt_t *btp;
292 	bt_t *bt;
293 	int i;
294 
295 	mutex_enter(&vmem_btag_lock);
296 	if (vmem_btag_freelist_count > 0) {
297 		mutex_exit(&vmem_btag_lock);
298 		return 0;
299 	}
300 
301 	if (vmem_alloc(kmem_meta_arena, PAGE_SIZE,
302 	    (flags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va) != 0) {
303 		mutex_exit(&vmem_btag_lock);
304 		return ENOMEM;
305 	}
306 	VMEM_EVCNT_INCR(bt_pages);
307 
308 	btp = (void *) va;
309 	for (i = 0; i < (BT_PER_PAGE); i++) {
310 		bt = btp;
311 		memset(bt, 0, sizeof(*bt));
312 		LIST_INSERT_HEAD(&vmem_btag_freelist, bt,
313 		    bt_freelist);
314 		vmem_btag_freelist_count++;
315 		vmem_btag_count++;
316 		VMEM_EVCNT_INCR(bt_count);
317 		btp++;
318 	}
319 	mutex_exit(&vmem_btag_lock);
320 
321 	bt_refill(kmem_arena, (flags & ~VM_FITMASK) | VM_INSTANTFIT);
322 	bt_refill(kmem_va_meta_arena, (flags & ~VM_FITMASK) | VM_INSTANTFIT);
323 	bt_refill(kmem_meta_arena, (flags & ~VM_FITMASK) | VM_INSTANTFIT);
324 
325 	return 0;
326 }
327 
328 static int
329 bt_refill(vmem_t *vm, vm_flag_t flags)
330 {
331 	bt_t *bt;
332 
333 	bt_refillglobal(flags);
334 
335 	VMEM_LOCK(vm);
336 	mutex_enter(&vmem_btag_lock);
337 	while (!LIST_EMPTY(&vmem_btag_freelist) &&
338 	    vm->vm_nfreetags <= BT_MINRESERVE) {
339 		bt = LIST_FIRST(&vmem_btag_freelist);
340 		LIST_REMOVE(bt, bt_freelist);
341 		LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
342 		vm->vm_nfreetags++;
343 		vmem_btag_freelist_count--;
344 	}
345 	mutex_exit(&vmem_btag_lock);
346 
347 	if (vm->vm_nfreetags == 0) {
348 		VMEM_UNLOCK(vm);
349 		return ENOMEM;
350 	}
351 	VMEM_UNLOCK(vm);
352 
353 	return 0;
354 }
355 
356 static inline bt_t *
357 bt_alloc(vmem_t *vm, vm_flag_t flags)
358 {
359 	bt_t *bt;
360 again:
361 	VMEM_LOCK(vm);
362 	if (vm->vm_nfreetags <= BT_MINRESERVE &&
363 	    (flags & VM_POPULATING) == 0) {
364 		VMEM_UNLOCK(vm);
365 		if (bt_refill(vm, VM_NOSLEEP | VM_INSTANTFIT)) {
366 			return NULL;
367 		}
368 		goto again;
369 	}
370 	bt = LIST_FIRST(&vm->vm_freetags);
371 	LIST_REMOVE(bt, bt_freelist);
372 	vm->vm_nfreetags--;
373 	VMEM_UNLOCK(vm);
374 	VMEM_EVCNT_INCR(bt_inuse);
375 
376 	return bt;
377 }
378 
379 static inline void
380 bt_free(vmem_t *vm, bt_t *bt)
381 {
382 
383 	VMEM_LOCK(vm);
384 	LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
385 	vm->vm_nfreetags++;
386 	while (vm->vm_nfreetags > BT_MAXFREE) {
387 		bt = LIST_FIRST(&vm->vm_freetags);
388 		LIST_REMOVE(bt, bt_freelist);
389 		vm->vm_nfreetags--;
390 		mutex_enter(&vmem_btag_lock);
391 		LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
392 		vmem_btag_freelist_count++;
393 		mutex_exit(&vmem_btag_lock);
394 	}
395 	VMEM_UNLOCK(vm);
396 	VMEM_EVCNT_DECR(bt_inuse);
397 }
398 
399 #endif	/* defined(_KERNEL) */
400 
401 /*
402  * freelist[0] ... [1, 1]
403  * freelist[1] ... [2, 3]
404  * freelist[2] ... [4, 7]
405  * freelist[3] ... [8, 15]
406  *  :
407  * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
408  *  :
409  */
410 
411 static struct vmem_freelist *
412 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
413 {
414 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
415 	const int idx = SIZE2ORDER(qsize);
416 
417 	KASSERT(size != 0 && qsize != 0);
418 	KASSERT((size & vm->vm_quantum_mask) == 0);
419 	KASSERT(idx >= 0);
420 	KASSERT(idx < VMEM_MAXORDER);
421 
422 	return &vm->vm_freelist[idx];
423 }
424 
425 /*
426  * bt_freehead_toalloc: return the freelist for the given size and allocation
427  * strategy.
428  *
429  * for VM_INSTANTFIT, return the list in which any blocks are large enough
430  * for the requested size.  otherwise, return the list which can have blocks
431  * large enough for the requested size.
432  */
433 
434 static struct vmem_freelist *
435 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
436 {
437 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
438 	int idx = SIZE2ORDER(qsize);
439 
440 	KASSERT(size != 0 && qsize != 0);
441 	KASSERT((size & vm->vm_quantum_mask) == 0);
442 
443 	if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
444 		idx++;
445 		/* check too large request? */
446 	}
447 	KASSERT(idx >= 0);
448 	KASSERT(idx < VMEM_MAXORDER);
449 
450 	return &vm->vm_freelist[idx];
451 }
452 
453 /* ---- boundary tag hash */
454 
455 static struct vmem_hashlist *
456 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
457 {
458 	struct vmem_hashlist *list;
459 	unsigned int hash;
460 
461 	hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
462 	list = &vm->vm_hashlist[hash % vm->vm_hashsize];
463 
464 	return list;
465 }
466 
467 static bt_t *
468 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
469 {
470 	struct vmem_hashlist *list;
471 	bt_t *bt;
472 
473 	list = bt_hashhead(vm, addr);
474 	LIST_FOREACH(bt, list, bt_hashlist) {
475 		if (bt->bt_start == addr) {
476 			break;
477 		}
478 	}
479 
480 	return bt;
481 }
482 
483 static void
484 bt_rembusy(vmem_t *vm, bt_t *bt)
485 {
486 
487 	KASSERT(vm->vm_nbusytag > 0);
488 	vm->vm_inuse -= bt->bt_size;
489 	vm->vm_nbusytag--;
490 	LIST_REMOVE(bt, bt_hashlist);
491 }
492 
493 static void
494 bt_insbusy(vmem_t *vm, bt_t *bt)
495 {
496 	struct vmem_hashlist *list;
497 
498 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
499 
500 	list = bt_hashhead(vm, bt->bt_start);
501 	LIST_INSERT_HEAD(list, bt, bt_hashlist);
502 	vm->vm_nbusytag++;
503 	vm->vm_inuse += bt->bt_size;
504 }
505 
506 /* ---- boundary tag list */
507 
508 static void
509 bt_remseg(vmem_t *vm, bt_t *bt)
510 {
511 
512 	CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
513 }
514 
515 static void
516 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
517 {
518 
519 	CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
520 }
521 
522 static void
523 bt_insseg_tail(vmem_t *vm, bt_t *bt)
524 {
525 
526 	CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
527 }
528 
529 static void
530 bt_remfree(vmem_t *vm, bt_t *bt)
531 {
532 
533 	KASSERT(bt->bt_type == BT_TYPE_FREE);
534 
535 	LIST_REMOVE(bt, bt_freelist);
536 }
537 
538 static void
539 bt_insfree(vmem_t *vm, bt_t *bt)
540 {
541 	struct vmem_freelist *list;
542 
543 	list = bt_freehead_tofree(vm, bt->bt_size);
544 	LIST_INSERT_HEAD(list, bt, bt_freelist);
545 }
546 
547 /* ---- vmem internal functions */
548 
549 #if defined(QCACHE)
550 static inline vm_flag_t
551 prf_to_vmf(int prflags)
552 {
553 	vm_flag_t vmflags;
554 
555 	KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
556 	if ((prflags & PR_WAITOK) != 0) {
557 		vmflags = VM_SLEEP;
558 	} else {
559 		vmflags = VM_NOSLEEP;
560 	}
561 	return vmflags;
562 }
563 
564 static inline int
565 vmf_to_prf(vm_flag_t vmflags)
566 {
567 	int prflags;
568 
569 	if ((vmflags & VM_SLEEP) != 0) {
570 		prflags = PR_WAITOK;
571 	} else {
572 		prflags = PR_NOWAIT;
573 	}
574 	return prflags;
575 }
576 
577 static size_t
578 qc_poolpage_size(size_t qcache_max)
579 {
580 	int i;
581 
582 	for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
583 		/* nothing */
584 	}
585 	return ORDER2SIZE(i);
586 }
587 
588 static void *
589 qc_poolpage_alloc(struct pool *pool, int prflags)
590 {
591 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
592 	vmem_t *vm = qc->qc_vmem;
593 	vmem_addr_t addr;
594 
595 	if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
596 	    prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
597 		return NULL;
598 	return (void *)addr;
599 }
600 
601 static void
602 qc_poolpage_free(struct pool *pool, void *addr)
603 {
604 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
605 	vmem_t *vm = qc->qc_vmem;
606 
607 	vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
608 }
609 
610 static void
611 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
612 {
613 	qcache_t *prevqc;
614 	struct pool_allocator *pa;
615 	int qcache_idx_max;
616 	int i;
617 
618 	KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
619 	if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
620 		qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
621 	}
622 	vm->vm_qcache_max = qcache_max;
623 	pa = &vm->vm_qcache_allocator;
624 	memset(pa, 0, sizeof(*pa));
625 	pa->pa_alloc = qc_poolpage_alloc;
626 	pa->pa_free = qc_poolpage_free;
627 	pa->pa_pagesz = qc_poolpage_size(qcache_max);
628 
629 	qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
630 	prevqc = NULL;
631 	for (i = qcache_idx_max; i > 0; i--) {
632 		qcache_t *qc = &vm->vm_qcache_store[i - 1];
633 		size_t size = i << vm->vm_quantum_shift;
634 		pool_cache_t pc;
635 
636 		qc->qc_vmem = vm;
637 		snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
638 		    vm->vm_name, size);
639 
640 		if (vm->vm_flags & VM_BOOTSTRAP) {
641 			KASSERT(static_qc_pool_count > 0);
642 			pc = &static_qc_pools[--static_qc_pool_count];
643 			pool_cache_bootstrap(pc, size,
644 			    ORDER2SIZE(vm->vm_quantum_shift), 0,
645 			    PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
646 			    qc->qc_name, pa, ipl, NULL, NULL, NULL);
647 		} else {
648 			pc = pool_cache_init(size,
649 			    ORDER2SIZE(vm->vm_quantum_shift), 0,
650 			    PR_NOALIGN | PR_NOTOUCH /* XXX */,
651 			    qc->qc_name, pa, ipl, NULL, NULL, NULL);
652 		}
653 		qc->qc_cache = pc;
654 		KASSERT(qc->qc_cache != NULL);	/* XXX */
655 		if (prevqc != NULL &&
656 		    qc->qc_cache->pc_pool.pr_itemsperpage ==
657 		    prevqc->qc_cache->pc_pool.pr_itemsperpage) {
658 			if (vm->vm_flags & VM_BOOTSTRAP) {
659 				pool_cache_bootstrap_destroy(pc);
660 				//static_qc_pool_count++;
661 			} else {
662 				pool_cache_destroy(qc->qc_cache);
663 			}
664 			vm->vm_qcache[i - 1] = prevqc;
665 			continue;
666 		}
667 		qc->qc_cache->pc_pool.pr_qcache = qc;
668 		vm->vm_qcache[i - 1] = qc;
669 		prevqc = qc;
670 	}
671 }
672 
673 static void
674 qc_destroy(vmem_t *vm)
675 {
676 	const qcache_t *prevqc;
677 	int i;
678 	int qcache_idx_max;
679 
680 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
681 	prevqc = NULL;
682 	for (i = 0; i < qcache_idx_max; i++) {
683 		qcache_t *qc = vm->vm_qcache[i];
684 
685 		if (prevqc == qc) {
686 			continue;
687 		}
688 		if (vm->vm_flags & VM_BOOTSTRAP) {
689 			pool_cache_bootstrap_destroy(qc->qc_cache);
690 		} else {
691 			pool_cache_destroy(qc->qc_cache);
692 		}
693 		prevqc = qc;
694 	}
695 }
696 #endif
697 
698 #if defined(_KERNEL)
699 void
700 vmem_bootstrap(void)
701 {
702 
703 	mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_VM);
704 	mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
705 
706 	while (static_bt_count-- > 0) {
707 		bt_t *bt = &static_bts[static_bt_count];
708 		LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
709 		VMEM_EVCNT_INCR(bt_count);
710 		vmem_btag_freelist_count++;
711 	}
712 }
713 
714 void
715 vmem_init(vmem_t *vm)
716 {
717 
718 	kmem_va_meta_arena = vmem_create("vmem-va", 0, 0, PAGE_SIZE,
719 	    vmem_alloc, vmem_free, vm,
720 	    0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
721 	    IPL_VM);
722 
723 	kmem_meta_arena = vmem_create("vmem-meta", 0, 0, PAGE_SIZE,
724 	    uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
725 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
726 }
727 #endif /* defined(_KERNEL) */
728 
729 static int
730 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
731     int spanbttype)
732 {
733 	bt_t *btspan;
734 	bt_t *btfree;
735 
736 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
737 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
738 	KASSERT(spanbttype == BT_TYPE_SPAN ||
739 	    spanbttype == BT_TYPE_SPAN_STATIC);
740 
741 	btspan = bt_alloc(vm, flags);
742 	if (btspan == NULL) {
743 		return ENOMEM;
744 	}
745 	btfree = bt_alloc(vm, flags);
746 	if (btfree == NULL) {
747 		bt_free(vm, btspan);
748 		return ENOMEM;
749 	}
750 
751 	btspan->bt_type = spanbttype;
752 	btspan->bt_start = addr;
753 	btspan->bt_size = size;
754 
755 	btfree->bt_type = BT_TYPE_FREE;
756 	btfree->bt_start = addr;
757 	btfree->bt_size = size;
758 
759 	VMEM_LOCK(vm);
760 	bt_insseg_tail(vm, btspan);
761 	bt_insseg(vm, btfree, btspan);
762 	bt_insfree(vm, btfree);
763 	vm->vm_size += size;
764 	VMEM_UNLOCK(vm);
765 
766 	return 0;
767 }
768 
769 static void
770 vmem_destroy1(vmem_t *vm)
771 {
772 
773 #if defined(QCACHE)
774 	qc_destroy(vm);
775 #endif /* defined(QCACHE) */
776 	if (vm->vm_hashlist != NULL) {
777 		int i;
778 
779 		for (i = 0; i < vm->vm_hashsize; i++) {
780 			bt_t *bt;
781 
782 			while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
783 				KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
784 				bt_free(vm, bt);
785 			}
786 		}
787 		if (vm->vm_hashlist != &vm->vm_hash0) {
788 			xfree(vm->vm_hashlist,
789 			    sizeof(struct vmem_hashlist *) * vm->vm_hashsize);
790 		}
791 	}
792 
793 	while (vm->vm_nfreetags > 0) {
794 		bt_t *bt = LIST_FIRST(&vm->vm_freetags);
795 		LIST_REMOVE(bt, bt_freelist);
796 		vm->vm_nfreetags--;
797 		mutex_enter(&vmem_btag_lock);
798 #if defined (_KERNEL)
799 		LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
800 		vmem_btag_freelist_count++;
801 #endif /* defined(_KERNEL) */
802 		mutex_exit(&vmem_btag_lock);
803 	}
804 
805 	VMEM_LOCK_DESTROY(vm);
806 	xfree(vm, sizeof(*vm));
807 }
808 
809 static int
810 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
811 {
812 	vmem_addr_t addr;
813 	int rc;
814 
815 	if (vm->vm_importfn == NULL) {
816 		return EINVAL;
817 	}
818 
819 	if (vm->vm_flags & VM_LARGEIMPORT) {
820 		size *= 8;
821 	}
822 
823 	if (vm->vm_flags & VM_XIMPORT) {
824 		rc = ((vmem_ximport_t *)vm->vm_importfn)(vm->vm_arg, size,
825 		    &size, flags, &addr);
826 	} else {
827 		rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
828 	}
829 	if (rc) {
830 		return ENOMEM;
831 	}
832 
833 	if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
834 		(*vm->vm_releasefn)(vm->vm_arg, addr, size);
835 		return ENOMEM;
836 	}
837 
838 	return 0;
839 }
840 
841 static int
842 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
843 {
844 	bt_t *bt;
845 	int i;
846 	struct vmem_hashlist *newhashlist;
847 	struct vmem_hashlist *oldhashlist;
848 	size_t oldhashsize;
849 
850 	KASSERT(newhashsize > 0);
851 
852 	newhashlist =
853 	    xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
854 	if (newhashlist == NULL) {
855 		return ENOMEM;
856 	}
857 	for (i = 0; i < newhashsize; i++) {
858 		LIST_INIT(&newhashlist[i]);
859 	}
860 
861 	if (!VMEM_TRYLOCK(vm)) {
862 		xfree(newhashlist,
863 		    sizeof(struct vmem_hashlist *) * newhashsize);
864 		return EBUSY;
865 	}
866 	oldhashlist = vm->vm_hashlist;
867 	oldhashsize = vm->vm_hashsize;
868 	vm->vm_hashlist = newhashlist;
869 	vm->vm_hashsize = newhashsize;
870 	if (oldhashlist == NULL) {
871 		VMEM_UNLOCK(vm);
872 		return 0;
873 	}
874 	for (i = 0; i < oldhashsize; i++) {
875 		while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
876 			bt_rembusy(vm, bt); /* XXX */
877 			bt_insbusy(vm, bt);
878 		}
879 	}
880 	VMEM_UNLOCK(vm);
881 
882 	if (oldhashlist != &vm->vm_hash0) {
883 		xfree(oldhashlist,
884 		    sizeof(struct vmem_hashlist *) * oldhashsize);
885 	}
886 
887 	return 0;
888 }
889 
890 /*
891  * vmem_fit: check if a bt can satisfy the given restrictions.
892  *
893  * it's a caller's responsibility to ensure the region is big enough
894  * before calling us.
895  */
896 
897 static int
898 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
899     vmem_size_t phase, vmem_size_t nocross,
900     vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
901 {
902 	vmem_addr_t start;
903 	vmem_addr_t end;
904 
905 	KASSERT(size > 0);
906 	KASSERT(bt->bt_size >= size); /* caller's responsibility */
907 
908 	/*
909 	 * XXX assumption: vmem_addr_t and vmem_size_t are
910 	 * unsigned integer of the same size.
911 	 */
912 
913 	start = bt->bt_start;
914 	if (start < minaddr) {
915 		start = minaddr;
916 	}
917 	end = BT_END(bt);
918 	if (end > maxaddr) {
919 		end = maxaddr;
920 	}
921 	if (start > end) {
922 		return ENOMEM;
923 	}
924 
925 	start = VMEM_ALIGNUP(start - phase, align) + phase;
926 	if (start < bt->bt_start) {
927 		start += align;
928 	}
929 	if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
930 		KASSERT(align < nocross);
931 		start = VMEM_ALIGNUP(start - phase, nocross) + phase;
932 	}
933 	if (start <= end && end - start >= size - 1) {
934 		KASSERT((start & (align - 1)) == phase);
935 		KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
936 		KASSERT(minaddr <= start);
937 		KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
938 		KASSERT(bt->bt_start <= start);
939 		KASSERT(BT_END(bt) - start >= size - 1);
940 		*addrp = start;
941 		return 0;
942 	}
943 	return ENOMEM;
944 }
945 
946 
947 /*
948  * vmem_create_internal: creates a vmem arena.
949  */
950 
951 static vmem_t *
952 vmem_create_internal(const char *name, vmem_addr_t base, vmem_size_t size,
953     vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
954     void *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
955 {
956 	vmem_t *vm = NULL;
957 	int i;
958 
959 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
960 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
961 	KASSERT(quantum > 0);
962 
963 	if (flags & VM_BOOTSTRAP) {
964 #if defined(_KERNEL)
965 		KASSERT(static_vmem_count > 0);
966 		vm = &static_vmems[--static_vmem_count];
967 #endif /* defined(_KERNEL) */
968 	} else {
969 		vm = xmalloc(sizeof(*vm), flags);
970 	}
971 	if (vm == NULL) {
972 		return NULL;
973 	}
974 
975 	VMEM_CONDVAR_INIT(vm, "vmem");
976 	VMEM_LOCK_INIT(vm, ipl);
977 	vm->vm_flags = flags;
978 	vm->vm_nfreetags = 0;
979 	LIST_INIT(&vm->vm_freetags);
980 	strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
981 	vm->vm_quantum_mask = quantum - 1;
982 	vm->vm_quantum_shift = SIZE2ORDER(quantum);
983 	KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
984 	vm->vm_importfn = importfn;
985 	vm->vm_releasefn = releasefn;
986 	vm->vm_arg = arg;
987 	vm->vm_nbusytag = 0;
988 	vm->vm_size = 0;
989 	vm->vm_inuse = 0;
990 #if defined(QCACHE)
991 	qc_init(vm, qcache_max, ipl);
992 #endif /* defined(QCACHE) */
993 
994 	CIRCLEQ_INIT(&vm->vm_seglist);
995 	for (i = 0; i < VMEM_MAXORDER; i++) {
996 		LIST_INIT(&vm->vm_freelist[i]);
997 	}
998 	vm->vm_hashlist = NULL;
999 	if (flags & VM_BOOTSTRAP) {
1000 		vm->vm_hashsize = 1;
1001 		vm->vm_hashlist = &vm->vm_hash0;
1002 	} else if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
1003 		vmem_destroy1(vm);
1004 		return NULL;
1005 	}
1006 
1007 	if (size != 0) {
1008 		if (vmem_add(vm, base, size, flags) != 0) {
1009 			vmem_destroy1(vm);
1010 			return NULL;
1011 		}
1012 	}
1013 
1014 #if defined(_KERNEL)
1015 	if (flags & VM_BOOTSTRAP) {
1016 		bt_refill(vm, VM_NOSLEEP);
1017 	}
1018 
1019 	mutex_enter(&vmem_list_lock);
1020 	LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
1021 	mutex_exit(&vmem_list_lock);
1022 #endif /* defined(_KERNEL) */
1023 
1024 	return vm;
1025 }
1026 
1027 
1028 /* ---- vmem API */
1029 
1030 /*
1031  * vmem_create: create an arena.
1032  *
1033  * => must not be called from interrupt context.
1034  */
1035 
1036 vmem_t *
1037 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
1038     vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
1039     vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1040 {
1041 
1042 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1043 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1044 	KASSERT((flags & (VM_XIMPORT)) == 0);
1045 
1046 	return vmem_create_internal(name, base, size, quantum,
1047 	    importfn, releasefn, source, qcache_max, flags, ipl);
1048 }
1049 
1050 /*
1051  * vmem_xcreate: create an arena takes alternative import func.
1052  *
1053  * => must not be called from interrupt context.
1054  */
1055 
1056 vmem_t *
1057 vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
1058     vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
1059     vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1060 {
1061 
1062 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1063 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1064 	KASSERT((flags & (VM_XIMPORT)) == 0);
1065 
1066 	return vmem_create_internal(name, base, size, quantum,
1067 	    (vmem_import_t *)importfn, releasefn, source,
1068 	    qcache_max, flags | VM_XIMPORT, ipl);
1069 }
1070 
1071 void
1072 vmem_destroy(vmem_t *vm)
1073 {
1074 
1075 #if defined(_KERNEL)
1076 	mutex_enter(&vmem_list_lock);
1077 	LIST_REMOVE(vm, vm_alllist);
1078 	mutex_exit(&vmem_list_lock);
1079 #endif /* defined(_KERNEL) */
1080 
1081 	vmem_destroy1(vm);
1082 }
1083 
1084 vmem_size_t
1085 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1086 {
1087 
1088 	return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1089 }
1090 
1091 /*
1092  * vmem_alloc:
1093  *
1094  * => caller must ensure appropriate spl,
1095  *    if the arena can be accessed from interrupt context.
1096  */
1097 
1098 int
1099 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
1100 {
1101 	const vm_flag_t strat __unused = flags & VM_FITMASK;
1102 
1103 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1104 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1105 
1106 	KASSERT(size > 0);
1107 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1108 	if ((flags & VM_SLEEP) != 0) {
1109 		ASSERT_SLEEPABLE();
1110 	}
1111 
1112 #if defined(QCACHE)
1113 	if (size <= vm->vm_qcache_max) {
1114 		void *p;
1115 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1116 		qcache_t *qc = vm->vm_qcache[qidx - 1];
1117 
1118 		p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
1119 		if (addrp != NULL)
1120 			*addrp = (vmem_addr_t)p;
1121 		return (p == NULL) ? ENOMEM : 0;
1122 	}
1123 #endif /* defined(QCACHE) */
1124 
1125 	return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1126 	    flags, addrp);
1127 }
1128 
1129 int
1130 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1131     const vmem_size_t phase, const vmem_size_t nocross,
1132     const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
1133     vmem_addr_t *addrp)
1134 {
1135 	struct vmem_freelist *list;
1136 	struct vmem_freelist *first;
1137 	struct vmem_freelist *end;
1138 	bt_t *bt;
1139 	bt_t *btnew;
1140 	bt_t *btnew2;
1141 	const vmem_size_t size = vmem_roundup_size(vm, size0);
1142 	vm_flag_t strat = flags & VM_FITMASK;
1143 	vmem_addr_t start;
1144 	int rc;
1145 
1146 	KASSERT(size0 > 0);
1147 	KASSERT(size > 0);
1148 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1149 	if ((flags & VM_SLEEP) != 0) {
1150 		ASSERT_SLEEPABLE();
1151 	}
1152 	KASSERT((align & vm->vm_quantum_mask) == 0);
1153 	KASSERT((align & (align - 1)) == 0);
1154 	KASSERT((phase & vm->vm_quantum_mask) == 0);
1155 	KASSERT((nocross & vm->vm_quantum_mask) == 0);
1156 	KASSERT((nocross & (nocross - 1)) == 0);
1157 	KASSERT((align == 0 && phase == 0) || phase < align);
1158 	KASSERT(nocross == 0 || nocross >= size);
1159 	KASSERT(minaddr <= maxaddr);
1160 	KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1161 
1162 	if (align == 0) {
1163 		align = vm->vm_quantum_mask + 1;
1164 	}
1165 
1166 	/*
1167 	 * allocate boundary tags before acquiring the vmem lock.
1168 	 */
1169 	btnew = bt_alloc(vm, flags);
1170 	if (btnew == NULL) {
1171 		return ENOMEM;
1172 	}
1173 	btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1174 	if (btnew2 == NULL) {
1175 		bt_free(vm, btnew);
1176 		return ENOMEM;
1177 	}
1178 
1179 	/*
1180 	 * choose a free block from which we allocate.
1181 	 */
1182 retry_strat:
1183 	first = bt_freehead_toalloc(vm, size, strat);
1184 	end = &vm->vm_freelist[VMEM_MAXORDER];
1185 retry:
1186 	bt = NULL;
1187 	VMEM_LOCK(vm);
1188 	vmem_check(vm);
1189 	if (strat == VM_INSTANTFIT) {
1190 		/*
1191 		 * just choose the first block which satisfies our restrictions.
1192 		 *
1193 		 * note that we don't need to check the size of the blocks
1194 		 * because any blocks found on these list should be larger than
1195 		 * the given size.
1196 		 */
1197 		for (list = first; list < end; list++) {
1198 			bt = LIST_FIRST(list);
1199 			if (bt != NULL) {
1200 				rc = vmem_fit(bt, size, align, phase,
1201 				    nocross, minaddr, maxaddr, &start);
1202 				if (rc == 0) {
1203 					goto gotit;
1204 				}
1205 				/*
1206 				 * don't bother to follow the bt_freelist link
1207 				 * here.  the list can be very long and we are
1208 				 * told to run fast.  blocks from the later free
1209 				 * lists are larger and have better chances to
1210 				 * satisfy our restrictions.
1211 				 */
1212 			}
1213 		}
1214 	} else { /* VM_BESTFIT */
1215 		/*
1216 		 * we assume that, for space efficiency, it's better to
1217 		 * allocate from a smaller block.  thus we will start searching
1218 		 * from the lower-order list than VM_INSTANTFIT.
1219 		 * however, don't bother to find the smallest block in a free
1220 		 * list because the list can be very long.  we can revisit it
1221 		 * if/when it turns out to be a problem.
1222 		 *
1223 		 * note that the 'first' list can contain blocks smaller than
1224 		 * the requested size.  thus we need to check bt_size.
1225 		 */
1226 		for (list = first; list < end; list++) {
1227 			LIST_FOREACH(bt, list, bt_freelist) {
1228 				if (bt->bt_size >= size) {
1229 					rc = vmem_fit(bt, size, align, phase,
1230 					    nocross, minaddr, maxaddr, &start);
1231 					if (rc == 0) {
1232 						goto gotit;
1233 					}
1234 				}
1235 			}
1236 		}
1237 	}
1238 	VMEM_UNLOCK(vm);
1239 #if 1
1240 	if (strat == VM_INSTANTFIT) {
1241 		strat = VM_BESTFIT;
1242 		goto retry_strat;
1243 	}
1244 #endif
1245 	if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) {
1246 
1247 		/*
1248 		 * XXX should try to import a region large enough to
1249 		 * satisfy restrictions?
1250 		 */
1251 
1252 		goto fail;
1253 	}
1254 	/* XXX eeek, minaddr & maxaddr not respected */
1255 	if (vmem_import(vm, size, flags) == 0) {
1256 		goto retry;
1257 	}
1258 	/* XXX */
1259 
1260 	if ((flags & VM_SLEEP) != 0) {
1261 #if defined(_KERNEL) && !defined(_RUMPKERNEL)
1262 		mutex_spin_enter(&uvm_fpageqlock);
1263 		uvm_kick_pdaemon();
1264 		mutex_spin_exit(&uvm_fpageqlock);
1265 #endif
1266 		VMEM_LOCK(vm);
1267 		VMEM_CONDVAR_WAIT(vm);
1268 		VMEM_UNLOCK(vm);
1269 		goto retry;
1270 	}
1271 fail:
1272 	bt_free(vm, btnew);
1273 	bt_free(vm, btnew2);
1274 	return ENOMEM;
1275 
1276 gotit:
1277 	KASSERT(bt->bt_type == BT_TYPE_FREE);
1278 	KASSERT(bt->bt_size >= size);
1279 	bt_remfree(vm, bt);
1280 	vmem_check(vm);
1281 	if (bt->bt_start != start) {
1282 		btnew2->bt_type = BT_TYPE_FREE;
1283 		btnew2->bt_start = bt->bt_start;
1284 		btnew2->bt_size = start - bt->bt_start;
1285 		bt->bt_start = start;
1286 		bt->bt_size -= btnew2->bt_size;
1287 		bt_insfree(vm, btnew2);
1288 		bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
1289 		btnew2 = NULL;
1290 		vmem_check(vm);
1291 	}
1292 	KASSERT(bt->bt_start == start);
1293 	if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1294 		/* split */
1295 		btnew->bt_type = BT_TYPE_BUSY;
1296 		btnew->bt_start = bt->bt_start;
1297 		btnew->bt_size = size;
1298 		bt->bt_start = bt->bt_start + size;
1299 		bt->bt_size -= size;
1300 		bt_insfree(vm, bt);
1301 		bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1302 		bt_insbusy(vm, btnew);
1303 		vmem_check(vm);
1304 		VMEM_UNLOCK(vm);
1305 	} else {
1306 		bt->bt_type = BT_TYPE_BUSY;
1307 		bt_insbusy(vm, bt);
1308 		vmem_check(vm);
1309 		VMEM_UNLOCK(vm);
1310 		bt_free(vm, btnew);
1311 		btnew = bt;
1312 	}
1313 	if (btnew2 != NULL) {
1314 		bt_free(vm, btnew2);
1315 	}
1316 	KASSERT(btnew->bt_size >= size);
1317 	btnew->bt_type = BT_TYPE_BUSY;
1318 
1319 	if (addrp != NULL)
1320 		*addrp = btnew->bt_start;
1321 	return 0;
1322 }
1323 
1324 /*
1325  * vmem_free:
1326  *
1327  * => caller must ensure appropriate spl,
1328  *    if the arena can be accessed from interrupt context.
1329  */
1330 
1331 void
1332 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1333 {
1334 
1335 	KASSERT(size > 0);
1336 
1337 #if defined(QCACHE)
1338 	if (size <= vm->vm_qcache_max) {
1339 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1340 		qcache_t *qc = vm->vm_qcache[qidx - 1];
1341 
1342 		pool_cache_put(qc->qc_cache, (void *)addr);
1343 		return;
1344 	}
1345 #endif /* defined(QCACHE) */
1346 
1347 	vmem_xfree(vm, addr, size);
1348 }
1349 
1350 void
1351 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1352 {
1353 	bt_t *bt;
1354 	bt_t *t;
1355 	LIST_HEAD(, vmem_btag) tofree;
1356 
1357 	LIST_INIT(&tofree);
1358 
1359 	KASSERT(size > 0);
1360 
1361 	VMEM_LOCK(vm);
1362 
1363 	bt = bt_lookupbusy(vm, addr);
1364 	KASSERT(bt != NULL);
1365 	KASSERT(bt->bt_start == addr);
1366 	KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1367 	    bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1368 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
1369 	bt_rembusy(vm, bt);
1370 	bt->bt_type = BT_TYPE_FREE;
1371 
1372 	/* coalesce */
1373 	t = CIRCLEQ_NEXT(bt, bt_seglist);
1374 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1375 		KASSERT(BT_END(bt) < t->bt_start);	/* YYY */
1376 		bt_remfree(vm, t);
1377 		bt_remseg(vm, t);
1378 		bt->bt_size += t->bt_size;
1379 		LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1380 	}
1381 	t = CIRCLEQ_PREV(bt, bt_seglist);
1382 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1383 		KASSERT(BT_END(t) < bt->bt_start);	/* YYY */
1384 		bt_remfree(vm, t);
1385 		bt_remseg(vm, t);
1386 		bt->bt_size += t->bt_size;
1387 		bt->bt_start = t->bt_start;
1388 		LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1389 	}
1390 
1391 	t = CIRCLEQ_PREV(bt, bt_seglist);
1392 	KASSERT(t != NULL);
1393 	KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1394 	if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1395 	    t->bt_size == bt->bt_size) {
1396 		vmem_addr_t spanaddr;
1397 		vmem_size_t spansize;
1398 
1399 		KASSERT(t->bt_start == bt->bt_start);
1400 		spanaddr = bt->bt_start;
1401 		spansize = bt->bt_size;
1402 		bt_remseg(vm, bt);
1403 		LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
1404 		bt_remseg(vm, t);
1405 		LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1406 		vm->vm_size -= spansize;
1407 		VMEM_CONDVAR_BROADCAST(vm);
1408 		VMEM_UNLOCK(vm);
1409 		(*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1410 	} else {
1411 		bt_insfree(vm, bt);
1412 		VMEM_CONDVAR_BROADCAST(vm);
1413 		VMEM_UNLOCK(vm);
1414 	}
1415 
1416 	while (!LIST_EMPTY(&tofree)) {
1417 		t = LIST_FIRST(&tofree);
1418 		LIST_REMOVE(t, bt_freelist);
1419 		bt_free(vm, t);
1420 	}
1421 }
1422 
1423 /*
1424  * vmem_add:
1425  *
1426  * => caller must ensure appropriate spl,
1427  *    if the arena can be accessed from interrupt context.
1428  */
1429 
1430 int
1431 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1432 {
1433 
1434 	return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1435 }
1436 
1437 /*
1438  * vmem_size: information about arenas size
1439  *
1440  * => return free/allocated size in arena
1441  */
1442 vmem_size_t
1443 vmem_size(vmem_t *vm, int typemask)
1444 {
1445 
1446 	switch (typemask) {
1447 	case VMEM_ALLOC:
1448 		return vm->vm_inuse;
1449 	case VMEM_FREE:
1450 		return vm->vm_size - vm->vm_inuse;
1451 	case VMEM_FREE|VMEM_ALLOC:
1452 		return vm->vm_size;
1453 	default:
1454 		panic("vmem_size");
1455 	}
1456 }
1457 
1458 /* ---- rehash */
1459 
1460 #if defined(_KERNEL)
1461 static struct callout vmem_rehash_ch;
1462 static int vmem_rehash_interval;
1463 static struct workqueue *vmem_rehash_wq;
1464 static struct work vmem_rehash_wk;
1465 
1466 static void
1467 vmem_rehash_all(struct work *wk, void *dummy)
1468 {
1469 	vmem_t *vm;
1470 
1471 	KASSERT(wk == &vmem_rehash_wk);
1472 	mutex_enter(&vmem_list_lock);
1473 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1474 		size_t desired;
1475 		size_t current;
1476 
1477 		if (!VMEM_TRYLOCK(vm)) {
1478 			continue;
1479 		}
1480 		desired = vm->vm_nbusytag;
1481 		current = vm->vm_hashsize;
1482 		VMEM_UNLOCK(vm);
1483 
1484 		if (desired > VMEM_HASHSIZE_MAX) {
1485 			desired = VMEM_HASHSIZE_MAX;
1486 		} else if (desired < VMEM_HASHSIZE_MIN) {
1487 			desired = VMEM_HASHSIZE_MIN;
1488 		}
1489 		if (desired > current * 2 || desired * 2 < current) {
1490 			vmem_rehash(vm, desired, VM_NOSLEEP);
1491 		}
1492 	}
1493 	mutex_exit(&vmem_list_lock);
1494 
1495 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1496 }
1497 
1498 static void
1499 vmem_rehash_all_kick(void *dummy)
1500 {
1501 
1502 	workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1503 }
1504 
1505 void
1506 vmem_rehash_start(void)
1507 {
1508 	int error;
1509 
1510 	error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1511 	    vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1512 	if (error) {
1513 		panic("%s: workqueue_create %d\n", __func__, error);
1514 	}
1515 	callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1516 	callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1517 
1518 	vmem_rehash_interval = hz * 10;
1519 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1520 }
1521 #endif /* defined(_KERNEL) */
1522 
1523 /* ---- debug */
1524 
1525 #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1526 
1527 static void bt_dump(const bt_t *, void (*)(const char *, ...));
1528 
1529 static const char *
1530 bt_type_string(int type)
1531 {
1532 	static const char * const table[] = {
1533 		[BT_TYPE_BUSY] = "busy",
1534 		[BT_TYPE_FREE] = "free",
1535 		[BT_TYPE_SPAN] = "span",
1536 		[BT_TYPE_SPAN_STATIC] = "static span",
1537 	};
1538 
1539 	if (type >= __arraycount(table)) {
1540 		return "BOGUS";
1541 	}
1542 	return table[type];
1543 }
1544 
1545 static void
1546 bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1547 {
1548 
1549 	(*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1550 	    bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1551 	    bt->bt_type, bt_type_string(bt->bt_type));
1552 }
1553 
1554 static void
1555 vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...))
1556 {
1557 	const bt_t *bt;
1558 	int i;
1559 
1560 	(*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1561 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1562 		bt_dump(bt, pr);
1563 	}
1564 
1565 	for (i = 0; i < VMEM_MAXORDER; i++) {
1566 		const struct vmem_freelist *fl = &vm->vm_freelist[i];
1567 
1568 		if (LIST_EMPTY(fl)) {
1569 			continue;
1570 		}
1571 
1572 		(*pr)("freelist[%d]\n", i);
1573 		LIST_FOREACH(bt, fl, bt_freelist) {
1574 			bt_dump(bt, pr);
1575 		}
1576 	}
1577 }
1578 
1579 #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1580 
1581 #if defined(DDB)
1582 static bt_t *
1583 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1584 {
1585 	bt_t *bt;
1586 
1587 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1588 		if (BT_ISSPAN_P(bt)) {
1589 			continue;
1590 		}
1591 		if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1592 			return bt;
1593 		}
1594 	}
1595 
1596 	return NULL;
1597 }
1598 
1599 void
1600 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1601 {
1602 	vmem_t *vm;
1603 
1604 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1605 		bt_t *bt;
1606 
1607 		bt = vmem_whatis_lookup(vm, addr);
1608 		if (bt == NULL) {
1609 			continue;
1610 		}
1611 		(*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1612 		    (void *)addr, (void *)bt->bt_start,
1613 		    (size_t)(addr - bt->bt_start), vm->vm_name,
1614 		    (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1615 	}
1616 }
1617 
1618 void
1619 vmem_printall(const char *modif, void (*pr)(const char *, ...))
1620 {
1621 	const vmem_t *vm;
1622 
1623 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1624 		vmem_dump(vm, pr);
1625 	}
1626 }
1627 
1628 void
1629 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1630 {
1631 	const vmem_t *vm = (const void *)addr;
1632 
1633 	vmem_dump(vm, pr);
1634 }
1635 #endif /* defined(DDB) */
1636 
1637 #if defined(_KERNEL)
1638 #define vmem_printf printf
1639 #else
1640 #include <stdio.h>
1641 #include <stdarg.h>
1642 
1643 static void
1644 vmem_printf(const char *fmt, ...)
1645 {
1646 	va_list ap;
1647 	va_start(ap, fmt);
1648 	vprintf(fmt, ap);
1649 	va_end(ap);
1650 }
1651 #endif
1652 
1653 #if defined(VMEM_SANITY)
1654 
1655 static bool
1656 vmem_check_sanity(vmem_t *vm)
1657 {
1658 	const bt_t *bt, *bt2;
1659 
1660 	KASSERT(vm != NULL);
1661 
1662 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1663 		if (bt->bt_start > BT_END(bt)) {
1664 			printf("corrupted tag\n");
1665 			bt_dump(bt, vmem_printf);
1666 			return false;
1667 		}
1668 	}
1669 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1670 		CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1671 			if (bt == bt2) {
1672 				continue;
1673 			}
1674 			if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1675 				continue;
1676 			}
1677 			if (bt->bt_start <= BT_END(bt2) &&
1678 			    bt2->bt_start <= BT_END(bt)) {
1679 				printf("overwrapped tags\n");
1680 				bt_dump(bt, vmem_printf);
1681 				bt_dump(bt2, vmem_printf);
1682 				return false;
1683 			}
1684 		}
1685 	}
1686 
1687 	return true;
1688 }
1689 
1690 static void
1691 vmem_check(vmem_t *vm)
1692 {
1693 
1694 	if (!vmem_check_sanity(vm)) {
1695 		panic("insanity vmem %p", vm);
1696 	}
1697 }
1698 
1699 #endif /* defined(VMEM_SANITY) */
1700 
1701 #if defined(UNITTEST)
1702 int
1703 main(void)
1704 {
1705 	int rc;
1706 	vmem_t *vm;
1707 	vmem_addr_t p;
1708 	struct reg {
1709 		vmem_addr_t p;
1710 		vmem_size_t sz;
1711 		bool x;
1712 	} *reg = NULL;
1713 	int nreg = 0;
1714 	int nalloc = 0;
1715 	int nfree = 0;
1716 	vmem_size_t total = 0;
1717 #if 1
1718 	vm_flag_t strat = VM_INSTANTFIT;
1719 #else
1720 	vm_flag_t strat = VM_BESTFIT;
1721 #endif
1722 
1723 	vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1724 #ifdef _KERNEL
1725 	    IPL_NONE
1726 #else
1727 	    0
1728 #endif
1729 	    );
1730 	if (vm == NULL) {
1731 		printf("vmem_create\n");
1732 		exit(EXIT_FAILURE);
1733 	}
1734 	vmem_dump(vm, vmem_printf);
1735 
1736 	rc = vmem_add(vm, 0, 50, VM_SLEEP);
1737 	assert(rc == 0);
1738 	rc = vmem_add(vm, 100, 200, VM_SLEEP);
1739 	assert(rc == 0);
1740 	rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1741 	assert(rc == 0);
1742 	rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1743 	assert(rc == 0);
1744 	rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1745 	assert(rc == 0);
1746 	rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1747 	assert(rc == 0);
1748 	rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1749 	assert(rc == 0);
1750 	rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1751 	    0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1752 	assert(rc != 0);
1753 	rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1754 	assert(rc == 0 && p == 0);
1755 	vmem_xfree(vm, p, 50);
1756 	rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1757 	assert(rc == 0 && p == 0);
1758 	rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1759 	    0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1760 	assert(rc != 0);
1761 	rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1762 	    0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1763 	assert(rc != 0);
1764 	rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1765 	    0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1766 	assert(rc == 0);
1767 	vmem_dump(vm, vmem_printf);
1768 	for (;;) {
1769 		struct reg *r;
1770 		int t = rand() % 100;
1771 
1772 		if (t > 45) {
1773 			/* alloc */
1774 			vmem_size_t sz = rand() % 500 + 1;
1775 			bool x;
1776 			vmem_size_t align, phase, nocross;
1777 			vmem_addr_t minaddr, maxaddr;
1778 
1779 			if (t > 70) {
1780 				x = true;
1781 				/* XXX */
1782 				align = 1 << (rand() % 15);
1783 				phase = rand() % 65536;
1784 				nocross = 1 << (rand() % 15);
1785 				if (align <= phase) {
1786 					phase = 0;
1787 				}
1788 				if (VMEM_CROSS_P(phase, phase + sz - 1,
1789 				    nocross)) {
1790 					nocross = 0;
1791 				}
1792 				do {
1793 					minaddr = rand() % 50000;
1794 					maxaddr = rand() % 70000;
1795 				} while (minaddr > maxaddr);
1796 				printf("=== xalloc %" PRIu64
1797 				    " align=%" PRIu64 ", phase=%" PRIu64
1798 				    ", nocross=%" PRIu64 ", min=%" PRIu64
1799 				    ", max=%" PRIu64 "\n",
1800 				    (uint64_t)sz,
1801 				    (uint64_t)align,
1802 				    (uint64_t)phase,
1803 				    (uint64_t)nocross,
1804 				    (uint64_t)minaddr,
1805 				    (uint64_t)maxaddr);
1806 				rc = vmem_xalloc(vm, sz, align, phase, nocross,
1807 				    minaddr, maxaddr, strat|VM_SLEEP, &p);
1808 			} else {
1809 				x = false;
1810 				printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1811 				rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1812 			}
1813 			printf("-> %" PRIu64 "\n", (uint64_t)p);
1814 			vmem_dump(vm, vmem_printf);
1815 			if (rc != 0) {
1816 				if (x) {
1817 					continue;
1818 				}
1819 				break;
1820 			}
1821 			nreg++;
1822 			reg = realloc(reg, sizeof(*reg) * nreg);
1823 			r = &reg[nreg - 1];
1824 			r->p = p;
1825 			r->sz = sz;
1826 			r->x = x;
1827 			total += sz;
1828 			nalloc++;
1829 		} else if (nreg != 0) {
1830 			/* free */
1831 			r = &reg[rand() % nreg];
1832 			printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1833 			    (uint64_t)r->p, (uint64_t)r->sz);
1834 			if (r->x) {
1835 				vmem_xfree(vm, r->p, r->sz);
1836 			} else {
1837 				vmem_free(vm, r->p, r->sz);
1838 			}
1839 			total -= r->sz;
1840 			vmem_dump(vm, vmem_printf);
1841 			*r = reg[nreg - 1];
1842 			nreg--;
1843 			nfree++;
1844 		}
1845 		printf("total=%" PRIu64 "\n", (uint64_t)total);
1846 	}
1847 	fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1848 	    (uint64_t)total, nalloc, nfree);
1849 	exit(EXIT_SUCCESS);
1850 }
1851 #endif /* defined(UNITTEST) */
1852