1 /* $NetBSD: subr_pool.c,v 1.266 2020/02/08 07:07:07 maxv Exp $ */ 2 3 /* 4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018 5 * The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by 11 * Maxime Villard. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 32 * POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.266 2020/02/08 07:07:07 maxv Exp $"); 37 38 #ifdef _KERNEL_OPT 39 #include "opt_ddb.h" 40 #include "opt_lockdebug.h" 41 #include "opt_pool.h" 42 #endif 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/sysctl.h> 47 #include <sys/bitops.h> 48 #include <sys/proc.h> 49 #include <sys/errno.h> 50 #include <sys/kernel.h> 51 #include <sys/vmem.h> 52 #include <sys/pool.h> 53 #include <sys/syslog.h> 54 #include <sys/debug.h> 55 #include <sys/lockdebug.h> 56 #include <sys/xcall.h> 57 #include <sys/cpu.h> 58 #include <sys/atomic.h> 59 #include <sys/asan.h> 60 #include <sys/msan.h> 61 62 #include <uvm/uvm_extern.h> 63 64 /* 65 * Pool resource management utility. 66 * 67 * Memory is allocated in pages which are split into pieces according to 68 * the pool item size. Each page is kept on one of three lists in the 69 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', 70 * for empty, full and partially-full pages respectively. The individual 71 * pool items are on a linked list headed by `ph_itemlist' in each page 72 * header. The memory for building the page list is either taken from 73 * the allocated pages themselves (for small pool items) or taken from 74 * an internal pool of page headers (`phpool'). 75 */ 76 77 /* List of all pools. Non static as needed by 'vmstat -m' */ 78 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 79 80 /* Private pool for page header structures */ 81 #define PHPOOL_MAX 8 82 static struct pool phpool[PHPOOL_MAX]; 83 #define PHPOOL_FREELIST_NELEM(idx) \ 84 (((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx))) 85 86 #if !defined(KMSAN) && (defined(DIAGNOSTIC) || defined(KASAN)) 87 #define POOL_REDZONE 88 #endif 89 90 #ifdef POOL_REDZONE 91 # ifdef KASAN 92 # define POOL_REDZONE_SIZE 8 93 # else 94 # define POOL_REDZONE_SIZE 2 95 # endif 96 static void pool_redzone_init(struct pool *, size_t); 97 static void pool_redzone_fill(struct pool *, void *); 98 static void pool_redzone_check(struct pool *, void *); 99 static void pool_cache_redzone_check(pool_cache_t, void *); 100 #else 101 # define pool_redzone_init(pp, sz) __nothing 102 # define pool_redzone_fill(pp, ptr) __nothing 103 # define pool_redzone_check(pp, ptr) __nothing 104 # define pool_cache_redzone_check(pc, ptr) __nothing 105 #endif 106 107 #ifdef KMSAN 108 static inline void pool_get_kmsan(struct pool *, void *); 109 static inline void pool_put_kmsan(struct pool *, void *); 110 static inline void pool_cache_get_kmsan(pool_cache_t, void *); 111 static inline void pool_cache_put_kmsan(pool_cache_t, void *); 112 #else 113 #define pool_get_kmsan(pp, ptr) __nothing 114 #define pool_put_kmsan(pp, ptr) __nothing 115 #define pool_cache_get_kmsan(pc, ptr) __nothing 116 #define pool_cache_put_kmsan(pc, ptr) __nothing 117 #endif 118 119 #ifdef POOL_QUARANTINE 120 static void pool_quarantine_init(struct pool *); 121 static void pool_quarantine_flush(struct pool *); 122 static bool pool_put_quarantine(struct pool *, void *, 123 struct pool_pagelist *); 124 static bool pool_cache_put_quarantine(pool_cache_t, void *, paddr_t); 125 #else 126 #define pool_quarantine_init(a) __nothing 127 #define pool_quarantine_flush(a) __nothing 128 #define pool_put_quarantine(a, b, c) false 129 #define pool_cache_put_quarantine(a, b, c) false 130 #endif 131 132 #define NO_CTOR __FPTRCAST(int (*)(void *, void *, int), nullop) 133 #define NO_DTOR __FPTRCAST(void (*)(void *, void *), nullop) 134 135 #define pc_has_ctor(pc) ((pc)->pc_ctor != NO_CTOR) 136 #define pc_has_dtor(pc) ((pc)->pc_dtor != NO_DTOR) 137 138 /* 139 * Pool backend allocators. 140 * 141 * Each pool has a backend allocator that handles allocation, deallocation, 142 * and any additional draining that might be needed. 143 * 144 * We provide two standard allocators: 145 * 146 * pool_allocator_kmem - the default when no allocator is specified 147 * 148 * pool_allocator_nointr - used for pools that will not be accessed 149 * in interrupt context. 150 */ 151 void *pool_page_alloc(struct pool *, int); 152 void pool_page_free(struct pool *, void *); 153 154 static void *pool_page_alloc_meta(struct pool *, int); 155 static void pool_page_free_meta(struct pool *, void *); 156 157 struct pool_allocator pool_allocator_kmem = { 158 .pa_alloc = pool_page_alloc, 159 .pa_free = pool_page_free, 160 .pa_pagesz = 0 161 }; 162 163 struct pool_allocator pool_allocator_nointr = { 164 .pa_alloc = pool_page_alloc, 165 .pa_free = pool_page_free, 166 .pa_pagesz = 0 167 }; 168 169 struct pool_allocator pool_allocator_meta = { 170 .pa_alloc = pool_page_alloc_meta, 171 .pa_free = pool_page_free_meta, 172 .pa_pagesz = 0 173 }; 174 175 #define POOL_ALLOCATOR_BIG_BASE 13 176 static struct pool_allocator pool_allocator_big[] = { 177 { 178 .pa_alloc = pool_page_alloc, 179 .pa_free = pool_page_free, 180 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0), 181 }, 182 { 183 .pa_alloc = pool_page_alloc, 184 .pa_free = pool_page_free, 185 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1), 186 }, 187 { 188 .pa_alloc = pool_page_alloc, 189 .pa_free = pool_page_free, 190 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2), 191 }, 192 { 193 .pa_alloc = pool_page_alloc, 194 .pa_free = pool_page_free, 195 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3), 196 }, 197 { 198 .pa_alloc = pool_page_alloc, 199 .pa_free = pool_page_free, 200 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4), 201 }, 202 { 203 .pa_alloc = pool_page_alloc, 204 .pa_free = pool_page_free, 205 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5), 206 }, 207 { 208 .pa_alloc = pool_page_alloc, 209 .pa_free = pool_page_free, 210 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6), 211 }, 212 { 213 .pa_alloc = pool_page_alloc, 214 .pa_free = pool_page_free, 215 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7), 216 } 217 }; 218 219 static int pool_bigidx(size_t); 220 221 /* # of seconds to retain page after last use */ 222 int pool_inactive_time = 10; 223 224 /* Next candidate for drainage (see pool_drain()) */ 225 static struct pool *drainpp; 226 227 /* This lock protects both pool_head and drainpp. */ 228 static kmutex_t pool_head_lock; 229 static kcondvar_t pool_busy; 230 231 /* This lock protects initialization of a potentially shared pool allocator */ 232 static kmutex_t pool_allocator_lock; 233 234 static unsigned int poolid_counter = 0; 235 236 typedef uint32_t pool_item_bitmap_t; 237 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t)) 238 #define BITMAP_MASK (BITMAP_SIZE - 1) 239 #define BITMAP_MIN_SIZE (CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2)) 240 241 struct pool_item_header { 242 /* Page headers */ 243 LIST_ENTRY(pool_item_header) 244 ph_pagelist; /* pool page list */ 245 union { 246 /* !PR_PHINPAGE */ 247 struct { 248 SPLAY_ENTRY(pool_item_header) 249 phu_node; /* off-page page headers */ 250 } phu_offpage; 251 /* PR_PHINPAGE */ 252 struct { 253 unsigned int phu_poolid; 254 } phu_onpage; 255 } ph_u1; 256 void * ph_page; /* this page's address */ 257 uint32_t ph_time; /* last referenced */ 258 uint16_t ph_nmissing; /* # of chunks in use */ 259 uint16_t ph_off; /* start offset in page */ 260 union { 261 /* !PR_USEBMAP */ 262 struct { 263 LIST_HEAD(, pool_item) 264 phu_itemlist; /* chunk list for this page */ 265 } phu_normal; 266 /* PR_USEBMAP */ 267 struct { 268 pool_item_bitmap_t phu_bitmap[1]; 269 } phu_notouch; 270 } ph_u2; 271 }; 272 #define ph_node ph_u1.phu_offpage.phu_node 273 #define ph_poolid ph_u1.phu_onpage.phu_poolid 274 #define ph_itemlist ph_u2.phu_normal.phu_itemlist 275 #define ph_bitmap ph_u2.phu_notouch.phu_bitmap 276 277 #define PHSIZE ALIGN(sizeof(struct pool_item_header)) 278 279 CTASSERT(offsetof(struct pool_item_header, ph_u2) + 280 BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header)); 281 282 #if defined(DIAGNOSTIC) && !defined(KASAN) 283 #define POOL_CHECK_MAGIC 284 #endif 285 286 struct pool_item { 287 #ifdef POOL_CHECK_MAGIC 288 u_int pi_magic; 289 #endif 290 #define PI_MAGIC 0xdeaddeadU 291 /* Other entries use only this list entry */ 292 LIST_ENTRY(pool_item) pi_list; 293 }; 294 295 #define POOL_NEEDS_CATCHUP(pp) \ 296 ((pp)->pr_nitems < (pp)->pr_minitems) 297 #define POOL_OBJ_TO_PAGE(pp, v) \ 298 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask) 299 300 /* 301 * Pool cache management. 302 * 303 * Pool caches provide a way for constructed objects to be cached by the 304 * pool subsystem. This can lead to performance improvements by avoiding 305 * needless object construction/destruction; it is deferred until absolutely 306 * necessary. 307 * 308 * Caches are grouped into cache groups. Each cache group references up 309 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an 310 * object from the pool, it calls the object's constructor and places it 311 * into a cache group. When a cache group frees an object back to the 312 * pool, it first calls the object's destructor. This allows the object 313 * to persist in constructed form while freed to the cache. 314 * 315 * The pool references each cache, so that when a pool is drained by the 316 * pagedaemon, it can drain each individual cache as well. Each time a 317 * cache is drained, the most idle cache group is freed to the pool in 318 * its entirety. 319 * 320 * Pool caches are layed on top of pools. By layering them, we can avoid 321 * the complexity of cache management for pools which would not benefit 322 * from it. 323 */ 324 325 static struct pool pcg_normal_pool; 326 static struct pool pcg_large_pool; 327 static struct pool cache_pool; 328 static struct pool cache_cpu_pool; 329 330 /* List of all caches. */ 331 TAILQ_HEAD(,pool_cache) pool_cache_head = 332 TAILQ_HEAD_INITIALIZER(pool_cache_head); 333 334 int pool_cache_disable; /* global disable for caching */ 335 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */ 336 337 static bool pool_cache_put_slow(pool_cache_cpu_t *, int, 338 void *); 339 static bool pool_cache_get_slow(pool_cache_cpu_t *, int, 340 void **, paddr_t *, int); 341 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t); 342 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *); 343 static void pool_cache_invalidate_cpu(pool_cache_t, u_int); 344 static void pool_cache_transfer(pool_cache_t); 345 346 static int pool_catchup(struct pool *); 347 static void pool_prime_page(struct pool *, void *, 348 struct pool_item_header *); 349 static void pool_update_curpage(struct pool *); 350 351 static int pool_grow(struct pool *, int); 352 static void *pool_allocator_alloc(struct pool *, int); 353 static void pool_allocator_free(struct pool *, void *); 354 355 static void pool_print_pagelist(struct pool *, struct pool_pagelist *, 356 void (*)(const char *, ...) __printflike(1, 2)); 357 static void pool_print1(struct pool *, const char *, 358 void (*)(const char *, ...) __printflike(1, 2)); 359 360 static int pool_chk_page(struct pool *, const char *, 361 struct pool_item_header *); 362 363 /* -------------------------------------------------------------------------- */ 364 365 static inline unsigned int 366 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph, 367 const void *v) 368 { 369 const char *cp = v; 370 unsigned int idx; 371 372 KASSERT(pp->pr_roflags & PR_USEBMAP); 373 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size; 374 375 if (__predict_false(idx >= pp->pr_itemsperpage)) { 376 panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx, 377 pp->pr_itemsperpage); 378 } 379 380 return idx; 381 } 382 383 static inline void 384 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph, 385 void *obj) 386 { 387 unsigned int idx = pr_item_bitmap_index(pp, ph, obj); 388 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE); 389 pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK); 390 391 if (__predict_false((*bitmap & mask) != 0)) { 392 panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj); 393 } 394 395 *bitmap |= mask; 396 } 397 398 static inline void * 399 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph) 400 { 401 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 402 unsigned int idx; 403 int i; 404 405 for (i = 0; ; i++) { 406 int bit; 407 408 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage); 409 bit = ffs32(bitmap[i]); 410 if (bit) { 411 pool_item_bitmap_t mask; 412 413 bit--; 414 idx = (i * BITMAP_SIZE) + bit; 415 mask = 1U << bit; 416 KASSERT((bitmap[i] & mask) != 0); 417 bitmap[i] &= ~mask; 418 break; 419 } 420 } 421 KASSERT(idx < pp->pr_itemsperpage); 422 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size; 423 } 424 425 static inline void 426 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph) 427 { 428 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 429 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE); 430 int i; 431 432 for (i = 0; i < n; i++) { 433 bitmap[i] = (pool_item_bitmap_t)-1; 434 } 435 } 436 437 /* -------------------------------------------------------------------------- */ 438 439 static inline void 440 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph, 441 void *obj) 442 { 443 struct pool_item *pi = obj; 444 445 #ifdef POOL_CHECK_MAGIC 446 pi->pi_magic = PI_MAGIC; 447 #endif 448 449 if (pp->pr_redzone) { 450 /* 451 * Mark the pool_item as valid. The rest is already 452 * invalid. 453 */ 454 kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0); 455 } 456 457 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 458 } 459 460 static inline void * 461 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph) 462 { 463 struct pool_item *pi; 464 void *v; 465 466 v = pi = LIST_FIRST(&ph->ph_itemlist); 467 if (__predict_false(v == NULL)) { 468 mutex_exit(&pp->pr_lock); 469 panic("%s: [%s] page empty", __func__, pp->pr_wchan); 470 } 471 KASSERTMSG((pp->pr_nitems > 0), 472 "%s: [%s] nitems %u inconsistent on itemlist", 473 __func__, pp->pr_wchan, pp->pr_nitems); 474 #ifdef POOL_CHECK_MAGIC 475 KASSERTMSG((pi->pi_magic == PI_MAGIC), 476 "%s: [%s] free list modified: " 477 "magic=%x; page %p; item addr %p", __func__, 478 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 479 #endif 480 481 /* 482 * Remove from item list. 483 */ 484 LIST_REMOVE(pi, pi_list); 485 486 return v; 487 } 488 489 /* -------------------------------------------------------------------------- */ 490 491 static inline void 492 pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page, 493 void *object) 494 { 495 if (__predict_false((void *)ph->ph_page != page)) { 496 panic("%s: [%s] item %p not part of pool", __func__, 497 pp->pr_wchan, object); 498 } 499 if (__predict_false((char *)object < (char *)page + ph->ph_off)) { 500 panic("%s: [%s] item %p below item space", __func__, 501 pp->pr_wchan, object); 502 } 503 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) { 504 panic("%s: [%s] item %p poolid %u != %u", __func__, 505 pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid); 506 } 507 } 508 509 static inline void 510 pc_phinpage_check(pool_cache_t pc, void *object) 511 { 512 struct pool_item_header *ph; 513 struct pool *pp; 514 void *page; 515 516 pp = &pc->pc_pool; 517 page = POOL_OBJ_TO_PAGE(pp, object); 518 ph = (struct pool_item_header *)page; 519 520 pr_phinpage_check(pp, ph, page, object); 521 } 522 523 /* -------------------------------------------------------------------------- */ 524 525 static inline int 526 phtree_compare(struct pool_item_header *a, struct pool_item_header *b) 527 { 528 529 /* 530 * We consider pool_item_header with smaller ph_page bigger. This 531 * unnatural ordering is for the benefit of pr_find_pagehead. 532 */ 533 if (a->ph_page < b->ph_page) 534 return 1; 535 else if (a->ph_page > b->ph_page) 536 return -1; 537 else 538 return 0; 539 } 540 541 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare); 542 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare); 543 544 static inline struct pool_item_header * 545 pr_find_pagehead_noalign(struct pool *pp, void *v) 546 { 547 struct pool_item_header *ph, tmp; 548 549 tmp.ph_page = (void *)(uintptr_t)v; 550 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 551 if (ph == NULL) { 552 ph = SPLAY_ROOT(&pp->pr_phtree); 553 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) { 554 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph); 555 } 556 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0); 557 } 558 559 return ph; 560 } 561 562 /* 563 * Return the pool page header based on item address. 564 */ 565 static inline struct pool_item_header * 566 pr_find_pagehead(struct pool *pp, void *v) 567 { 568 struct pool_item_header *ph, tmp; 569 570 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 571 ph = pr_find_pagehead_noalign(pp, v); 572 } else { 573 void *page = POOL_OBJ_TO_PAGE(pp, v); 574 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 575 ph = (struct pool_item_header *)page; 576 pr_phinpage_check(pp, ph, page, v); 577 } else { 578 tmp.ph_page = page; 579 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 580 } 581 } 582 583 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) || 584 ((char *)ph->ph_page <= (char *)v && 585 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz)); 586 return ph; 587 } 588 589 static void 590 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq) 591 { 592 struct pool_item_header *ph; 593 594 while ((ph = LIST_FIRST(pq)) != NULL) { 595 LIST_REMOVE(ph, ph_pagelist); 596 pool_allocator_free(pp, ph->ph_page); 597 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 598 pool_put(pp->pr_phpool, ph); 599 } 600 } 601 602 /* 603 * Remove a page from the pool. 604 */ 605 static inline void 606 pr_rmpage(struct pool *pp, struct pool_item_header *ph, 607 struct pool_pagelist *pq) 608 { 609 610 KASSERT(mutex_owned(&pp->pr_lock)); 611 612 /* 613 * If the page was idle, decrement the idle page count. 614 */ 615 if (ph->ph_nmissing == 0) { 616 KASSERT(pp->pr_nidle != 0); 617 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage), 618 "%s: [%s] nitems=%u < itemsperpage=%u", __func__, 619 pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage); 620 pp->pr_nidle--; 621 } 622 623 pp->pr_nitems -= pp->pr_itemsperpage; 624 625 /* 626 * Unlink the page from the pool and queue it for release. 627 */ 628 LIST_REMOVE(ph, ph_pagelist); 629 if (pp->pr_roflags & PR_PHINPAGE) { 630 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) { 631 panic("%s: [%s] ph %p poolid %u != %u", 632 __func__, pp->pr_wchan, ph, ph->ph_poolid, 633 pp->pr_poolid); 634 } 635 } else { 636 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph); 637 } 638 LIST_INSERT_HEAD(pq, ph, ph_pagelist); 639 640 pp->pr_npages--; 641 pp->pr_npagefree++; 642 643 pool_update_curpage(pp); 644 } 645 646 /* 647 * Initialize all the pools listed in the "pools" link set. 648 */ 649 void 650 pool_subsystem_init(void) 651 { 652 size_t size; 653 int idx; 654 655 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE); 656 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE); 657 cv_init(&pool_busy, "poolbusy"); 658 659 /* 660 * Initialize private page header pool and cache magazine pool if we 661 * haven't done so yet. 662 */ 663 for (idx = 0; idx < PHPOOL_MAX; idx++) { 664 static char phpool_names[PHPOOL_MAX][6+1+6+1]; 665 int nelem; 666 size_t sz; 667 668 nelem = PHPOOL_FREELIST_NELEM(idx); 669 KASSERT(nelem != 0); 670 snprintf(phpool_names[idx], sizeof(phpool_names[idx]), 671 "phpool-%d", nelem); 672 sz = offsetof(struct pool_item_header, 673 ph_bitmap[howmany(nelem, BITMAP_SIZE)]); 674 pool_init(&phpool[idx], sz, 0, 0, 0, 675 phpool_names[idx], &pool_allocator_meta, IPL_VM); 676 } 677 678 size = sizeof(pcg_t) + 679 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t); 680 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0, 681 "pcgnormal", &pool_allocator_meta, IPL_VM); 682 683 size = sizeof(pcg_t) + 684 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t); 685 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0, 686 "pcglarge", &pool_allocator_meta, IPL_VM); 687 688 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit, 689 0, 0, "pcache", &pool_allocator_meta, IPL_NONE); 690 691 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit, 692 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE); 693 } 694 695 static inline bool 696 pool_init_is_phinpage(const struct pool *pp) 697 { 698 size_t pagesize; 699 700 if (pp->pr_roflags & PR_PHINPAGE) { 701 return true; 702 } 703 if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) { 704 return false; 705 } 706 707 pagesize = pp->pr_alloc->pa_pagesz; 708 709 /* 710 * Threshold: the item size is below 1/16 of a page size, and below 711 * 8 times the page header size. The latter ensures we go off-page 712 * if the page header would make us waste a rather big item. 713 */ 714 if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) { 715 return true; 716 } 717 718 /* Put the header into the page if it doesn't waste any items. */ 719 if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) { 720 return true; 721 } 722 723 return false; 724 } 725 726 static inline bool 727 pool_init_is_usebmap(const struct pool *pp) 728 { 729 size_t bmapsize; 730 731 if (pp->pr_roflags & PR_NOTOUCH) { 732 return true; 733 } 734 735 /* 736 * If we're off-page, go with a bitmap. 737 */ 738 if (!(pp->pr_roflags & PR_PHINPAGE)) { 739 return true; 740 } 741 742 /* 743 * If we're on-page, and the page header can already contain a bitmap 744 * big enough to cover all the items of the page, go with a bitmap. 745 */ 746 bmapsize = roundup(PHSIZE, pp->pr_align) - 747 offsetof(struct pool_item_header, ph_bitmap[0]); 748 KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0); 749 if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) { 750 return true; 751 } 752 753 return false; 754 } 755 756 /* 757 * Initialize the given pool resource structure. 758 * 759 * We export this routine to allow other kernel parts to declare 760 * static pools that must be initialized before kmem(9) is available. 761 */ 762 void 763 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 764 const char *wchan, struct pool_allocator *palloc, int ipl) 765 { 766 struct pool *pp1; 767 size_t prsize; 768 int itemspace, slack; 769 770 /* XXX ioff will be removed. */ 771 KASSERT(ioff == 0); 772 773 #ifdef DEBUG 774 if (__predict_true(!cold)) 775 mutex_enter(&pool_head_lock); 776 /* 777 * Check that the pool hasn't already been initialised and 778 * added to the list of all pools. 779 */ 780 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 781 if (pp == pp1) 782 panic("%s: [%s] already initialised", __func__, 783 wchan); 784 } 785 if (__predict_true(!cold)) 786 mutex_exit(&pool_head_lock); 787 #endif 788 789 if (palloc == NULL) 790 palloc = &pool_allocator_kmem; 791 792 if (!cold) 793 mutex_enter(&pool_allocator_lock); 794 if (palloc->pa_refcnt++ == 0) { 795 if (palloc->pa_pagesz == 0) 796 palloc->pa_pagesz = PAGE_SIZE; 797 798 TAILQ_INIT(&palloc->pa_list); 799 800 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM); 801 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1); 802 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1; 803 } 804 if (!cold) 805 mutex_exit(&pool_allocator_lock); 806 807 if (align == 0) 808 align = ALIGN(1); 809 810 prsize = size; 811 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item)) 812 prsize = sizeof(struct pool_item); 813 814 prsize = roundup(prsize, align); 815 KASSERTMSG((prsize <= palloc->pa_pagesz), 816 "%s: [%s] pool item size (%zu) larger than page size (%u)", 817 __func__, wchan, prsize, palloc->pa_pagesz); 818 819 /* 820 * Initialize the pool structure. 821 */ 822 LIST_INIT(&pp->pr_emptypages); 823 LIST_INIT(&pp->pr_fullpages); 824 LIST_INIT(&pp->pr_partpages); 825 pp->pr_cache = NULL; 826 pp->pr_curpage = NULL; 827 pp->pr_npages = 0; 828 pp->pr_minitems = 0; 829 pp->pr_minpages = 0; 830 pp->pr_maxpages = UINT_MAX; 831 pp->pr_roflags = flags; 832 pp->pr_flags = 0; 833 pp->pr_size = prsize; 834 pp->pr_reqsize = size; 835 pp->pr_align = align; 836 pp->pr_wchan = wchan; 837 pp->pr_alloc = palloc; 838 pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter); 839 pp->pr_nitems = 0; 840 pp->pr_nout = 0; 841 pp->pr_hardlimit = UINT_MAX; 842 pp->pr_hardlimit_warning = NULL; 843 pp->pr_hardlimit_ratecap.tv_sec = 0; 844 pp->pr_hardlimit_ratecap.tv_usec = 0; 845 pp->pr_hardlimit_warning_last.tv_sec = 0; 846 pp->pr_hardlimit_warning_last.tv_usec = 0; 847 pp->pr_drain_hook = NULL; 848 pp->pr_drain_hook_arg = NULL; 849 pp->pr_freecheck = NULL; 850 pp->pr_redzone = false; 851 pool_redzone_init(pp, size); 852 pool_quarantine_init(pp); 853 854 /* 855 * Decide whether to put the page header off-page to avoid wasting too 856 * large a part of the page or too big an item. Off-page page headers 857 * go on a hash table, so we can match a returned item with its header 858 * based on the page address. 859 */ 860 if (pool_init_is_phinpage(pp)) { 861 /* Use the beginning of the page for the page header */ 862 itemspace = palloc->pa_pagesz - roundup(PHSIZE, align); 863 pp->pr_itemoffset = roundup(PHSIZE, align); 864 pp->pr_roflags |= PR_PHINPAGE; 865 } else { 866 /* The page header will be taken from our page header pool */ 867 itemspace = palloc->pa_pagesz; 868 pp->pr_itemoffset = 0; 869 SPLAY_INIT(&pp->pr_phtree); 870 } 871 872 pp->pr_itemsperpage = itemspace / pp->pr_size; 873 KASSERT(pp->pr_itemsperpage != 0); 874 875 /* 876 * Decide whether to use a bitmap or a linked list to manage freed 877 * items. 878 */ 879 if (pool_init_is_usebmap(pp)) { 880 pp->pr_roflags |= PR_USEBMAP; 881 } 882 883 /* 884 * If we're off-page, then we're using a bitmap; choose the appropriate 885 * pool to allocate page headers, whose size varies depending on the 886 * bitmap. If we're on-page, nothing to do. 887 */ 888 if (!(pp->pr_roflags & PR_PHINPAGE)) { 889 int idx; 890 891 KASSERT(pp->pr_roflags & PR_USEBMAP); 892 893 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx); 894 idx++) { 895 /* nothing */ 896 } 897 if (idx >= PHPOOL_MAX) { 898 /* 899 * if you see this panic, consider to tweak 900 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM. 901 */ 902 panic("%s: [%s] too large itemsperpage(%d) for " 903 "PR_USEBMAP", __func__, 904 pp->pr_wchan, pp->pr_itemsperpage); 905 } 906 pp->pr_phpool = &phpool[idx]; 907 } else { 908 pp->pr_phpool = NULL; 909 } 910 911 /* 912 * Use the slack between the chunks and the page header 913 * for "cache coloring". 914 */ 915 slack = itemspace - pp->pr_itemsperpage * pp->pr_size; 916 pp->pr_maxcolor = rounddown(slack, align); 917 pp->pr_curcolor = 0; 918 919 pp->pr_nget = 0; 920 pp->pr_nfail = 0; 921 pp->pr_nput = 0; 922 pp->pr_npagealloc = 0; 923 pp->pr_npagefree = 0; 924 pp->pr_hiwat = 0; 925 pp->pr_nidle = 0; 926 pp->pr_refcnt = 0; 927 928 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl); 929 cv_init(&pp->pr_cv, wchan); 930 pp->pr_ipl = ipl; 931 932 /* Insert into the list of all pools. */ 933 if (!cold) 934 mutex_enter(&pool_head_lock); 935 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 936 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0) 937 break; 938 } 939 if (pp1 == NULL) 940 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 941 else 942 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist); 943 if (!cold) 944 mutex_exit(&pool_head_lock); 945 946 /* Insert this into the list of pools using this allocator. */ 947 if (!cold) 948 mutex_enter(&palloc->pa_lock); 949 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list); 950 if (!cold) 951 mutex_exit(&palloc->pa_lock); 952 } 953 954 /* 955 * De-commision a pool resource. 956 */ 957 void 958 pool_destroy(struct pool *pp) 959 { 960 struct pool_pagelist pq; 961 struct pool_item_header *ph; 962 963 pool_quarantine_flush(pp); 964 965 /* Remove from global pool list */ 966 mutex_enter(&pool_head_lock); 967 while (pp->pr_refcnt != 0) 968 cv_wait(&pool_busy, &pool_head_lock); 969 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 970 if (drainpp == pp) 971 drainpp = NULL; 972 mutex_exit(&pool_head_lock); 973 974 /* Remove this pool from its allocator's list of pools. */ 975 mutex_enter(&pp->pr_alloc->pa_lock); 976 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list); 977 mutex_exit(&pp->pr_alloc->pa_lock); 978 979 mutex_enter(&pool_allocator_lock); 980 if (--pp->pr_alloc->pa_refcnt == 0) 981 mutex_destroy(&pp->pr_alloc->pa_lock); 982 mutex_exit(&pool_allocator_lock); 983 984 mutex_enter(&pp->pr_lock); 985 986 KASSERT(pp->pr_cache == NULL); 987 KASSERTMSG((pp->pr_nout == 0), 988 "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan, 989 pp->pr_nout); 990 KASSERT(LIST_EMPTY(&pp->pr_fullpages)); 991 KASSERT(LIST_EMPTY(&pp->pr_partpages)); 992 993 /* Remove all pages */ 994 LIST_INIT(&pq); 995 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 996 pr_rmpage(pp, ph, &pq); 997 998 mutex_exit(&pp->pr_lock); 999 1000 pr_pagelist_free(pp, &pq); 1001 cv_destroy(&pp->pr_cv); 1002 mutex_destroy(&pp->pr_lock); 1003 } 1004 1005 void 1006 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg) 1007 { 1008 1009 /* XXX no locking -- must be used just after pool_init() */ 1010 KASSERTMSG((pp->pr_drain_hook == NULL), 1011 "%s: [%s] already set", __func__, pp->pr_wchan); 1012 pp->pr_drain_hook = fn; 1013 pp->pr_drain_hook_arg = arg; 1014 } 1015 1016 static struct pool_item_header * 1017 pool_alloc_item_header(struct pool *pp, void *storage, int flags) 1018 { 1019 struct pool_item_header *ph; 1020 1021 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 1022 ph = storage; 1023 else 1024 ph = pool_get(pp->pr_phpool, flags); 1025 1026 return ph; 1027 } 1028 1029 /* 1030 * Grab an item from the pool. 1031 */ 1032 void * 1033 pool_get(struct pool *pp, int flags) 1034 { 1035 struct pool_item_header *ph; 1036 void *v; 1037 1038 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK)); 1039 KASSERTMSG((pp->pr_itemsperpage != 0), 1040 "%s: [%s] pr_itemsperpage is zero, " 1041 "pool not initialized?", __func__, pp->pr_wchan); 1042 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p()) 1043 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL), 1044 "%s: [%s] is IPL_NONE, but called from interrupt context", 1045 __func__, pp->pr_wchan); 1046 if (flags & PR_WAITOK) { 1047 ASSERT_SLEEPABLE(); 1048 } 1049 1050 mutex_enter(&pp->pr_lock); 1051 startover: 1052 /* 1053 * Check to see if we've reached the hard limit. If we have, 1054 * and we can wait, then wait until an item has been returned to 1055 * the pool. 1056 */ 1057 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit), 1058 "%s: %s: crossed hard limit", __func__, pp->pr_wchan); 1059 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 1060 if (pp->pr_drain_hook != NULL) { 1061 /* 1062 * Since the drain hook is going to free things 1063 * back to the pool, unlock, call the hook, re-lock, 1064 * and check the hardlimit condition again. 1065 */ 1066 mutex_exit(&pp->pr_lock); 1067 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 1068 mutex_enter(&pp->pr_lock); 1069 if (pp->pr_nout < pp->pr_hardlimit) 1070 goto startover; 1071 } 1072 1073 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 1074 /* 1075 * XXX: A warning isn't logged in this case. Should 1076 * it be? 1077 */ 1078 pp->pr_flags |= PR_WANTED; 1079 do { 1080 cv_wait(&pp->pr_cv, &pp->pr_lock); 1081 } while (pp->pr_flags & PR_WANTED); 1082 goto startover; 1083 } 1084 1085 /* 1086 * Log a message that the hard limit has been hit. 1087 */ 1088 if (pp->pr_hardlimit_warning != NULL && 1089 ratecheck(&pp->pr_hardlimit_warning_last, 1090 &pp->pr_hardlimit_ratecap)) 1091 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 1092 1093 pp->pr_nfail++; 1094 1095 mutex_exit(&pp->pr_lock); 1096 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0); 1097 return NULL; 1098 } 1099 1100 /* 1101 * The convention we use is that if `curpage' is not NULL, then 1102 * it points at a non-empty bucket. In particular, `curpage' 1103 * never points at a page header which has PR_PHINPAGE set and 1104 * has no items in its bucket. 1105 */ 1106 if ((ph = pp->pr_curpage) == NULL) { 1107 int error; 1108 1109 KASSERTMSG((pp->pr_nitems == 0), 1110 "%s: [%s] curpage NULL, inconsistent nitems %u", 1111 __func__, pp->pr_wchan, pp->pr_nitems); 1112 1113 /* 1114 * Call the back-end page allocator for more memory. 1115 * Release the pool lock, as the back-end page allocator 1116 * may block. 1117 */ 1118 error = pool_grow(pp, flags); 1119 if (error != 0) { 1120 /* 1121 * pool_grow aborts when another thread 1122 * is allocating a new page. Retry if it 1123 * waited for it. 1124 */ 1125 if (error == ERESTART) 1126 goto startover; 1127 1128 /* 1129 * We were unable to allocate a page or item 1130 * header, but we released the lock during 1131 * allocation, so perhaps items were freed 1132 * back to the pool. Check for this case. 1133 */ 1134 if (pp->pr_curpage != NULL) 1135 goto startover; 1136 1137 pp->pr_nfail++; 1138 mutex_exit(&pp->pr_lock); 1139 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0); 1140 return NULL; 1141 } 1142 1143 /* Start the allocation process over. */ 1144 goto startover; 1145 } 1146 if (pp->pr_roflags & PR_USEBMAP) { 1147 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage), 1148 "%s: [%s] pool page empty", __func__, pp->pr_wchan); 1149 v = pr_item_bitmap_get(pp, ph); 1150 } else { 1151 v = pr_item_linkedlist_get(pp, ph); 1152 } 1153 pp->pr_nitems--; 1154 pp->pr_nout++; 1155 if (ph->ph_nmissing == 0) { 1156 KASSERT(pp->pr_nidle > 0); 1157 pp->pr_nidle--; 1158 1159 /* 1160 * This page was previously empty. Move it to the list of 1161 * partially-full pages. This page is already curpage. 1162 */ 1163 LIST_REMOVE(ph, ph_pagelist); 1164 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1165 } 1166 ph->ph_nmissing++; 1167 if (ph->ph_nmissing == pp->pr_itemsperpage) { 1168 KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) || 1169 LIST_EMPTY(&ph->ph_itemlist)), 1170 "%s: [%s] nmissing (%u) inconsistent", __func__, 1171 pp->pr_wchan, ph->ph_nmissing); 1172 /* 1173 * This page is now full. Move it to the full list 1174 * and select a new current page. 1175 */ 1176 LIST_REMOVE(ph, ph_pagelist); 1177 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist); 1178 pool_update_curpage(pp); 1179 } 1180 1181 pp->pr_nget++; 1182 1183 /* 1184 * If we have a low water mark and we are now below that low 1185 * water mark, add more items to the pool. 1186 */ 1187 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1188 /* 1189 * XXX: Should we log a warning? Should we set up a timeout 1190 * to try again in a second or so? The latter could break 1191 * a caller's assumptions about interrupt protection, etc. 1192 */ 1193 } 1194 1195 mutex_exit(&pp->pr_lock); 1196 KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0); 1197 FREECHECK_OUT(&pp->pr_freecheck, v); 1198 pool_redzone_fill(pp, v); 1199 pool_get_kmsan(pp, v); 1200 if (flags & PR_ZERO) 1201 memset(v, 0, pp->pr_reqsize); 1202 return v; 1203 } 1204 1205 /* 1206 * Internal version of pool_put(). Pool is already locked/entered. 1207 */ 1208 static void 1209 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq) 1210 { 1211 struct pool_item_header *ph; 1212 1213 KASSERT(mutex_owned(&pp->pr_lock)); 1214 pool_redzone_check(pp, v); 1215 pool_put_kmsan(pp, v); 1216 FREECHECK_IN(&pp->pr_freecheck, v); 1217 LOCKDEBUG_MEM_CHECK(v, pp->pr_size); 1218 1219 KASSERTMSG((pp->pr_nout > 0), 1220 "%s: [%s] putting with none out", __func__, pp->pr_wchan); 1221 1222 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) { 1223 panic("%s: [%s] page header missing", __func__, pp->pr_wchan); 1224 } 1225 1226 /* 1227 * Return to item list. 1228 */ 1229 if (pp->pr_roflags & PR_USEBMAP) { 1230 pr_item_bitmap_put(pp, ph, v); 1231 } else { 1232 pr_item_linkedlist_put(pp, ph, v); 1233 } 1234 KDASSERT(ph->ph_nmissing != 0); 1235 ph->ph_nmissing--; 1236 pp->pr_nput++; 1237 pp->pr_nitems++; 1238 pp->pr_nout--; 1239 1240 /* Cancel "pool empty" condition if it exists */ 1241 if (pp->pr_curpage == NULL) 1242 pp->pr_curpage = ph; 1243 1244 if (pp->pr_flags & PR_WANTED) { 1245 pp->pr_flags &= ~PR_WANTED; 1246 cv_broadcast(&pp->pr_cv); 1247 } 1248 1249 /* 1250 * If this page is now empty, do one of two things: 1251 * 1252 * (1) If we have more pages than the page high water mark, 1253 * free the page back to the system. ONLY CONSIDER 1254 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE 1255 * CLAIM. 1256 * 1257 * (2) Otherwise, move the page to the empty page list. 1258 * 1259 * Either way, select a new current page (so we use a partially-full 1260 * page if one is available). 1261 */ 1262 if (ph->ph_nmissing == 0) { 1263 pp->pr_nidle++; 1264 if (pp->pr_npages > pp->pr_minpages && 1265 pp->pr_npages > pp->pr_maxpages) { 1266 pr_rmpage(pp, ph, pq); 1267 } else { 1268 LIST_REMOVE(ph, ph_pagelist); 1269 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1270 1271 /* 1272 * Update the timestamp on the page. A page must 1273 * be idle for some period of time before it can 1274 * be reclaimed by the pagedaemon. This minimizes 1275 * ping-pong'ing for memory. 1276 * 1277 * note for 64-bit time_t: truncating to 32-bit is not 1278 * a problem for our usage. 1279 */ 1280 ph->ph_time = time_uptime; 1281 } 1282 pool_update_curpage(pp); 1283 } 1284 1285 /* 1286 * If the page was previously completely full, move it to the 1287 * partially-full list and make it the current page. The next 1288 * allocation will get the item from this page, instead of 1289 * further fragmenting the pool. 1290 */ 1291 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 1292 LIST_REMOVE(ph, ph_pagelist); 1293 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1294 pp->pr_curpage = ph; 1295 } 1296 } 1297 1298 void 1299 pool_put(struct pool *pp, void *v) 1300 { 1301 struct pool_pagelist pq; 1302 1303 LIST_INIT(&pq); 1304 1305 mutex_enter(&pp->pr_lock); 1306 if (!pool_put_quarantine(pp, v, &pq)) { 1307 pool_do_put(pp, v, &pq); 1308 } 1309 mutex_exit(&pp->pr_lock); 1310 1311 pr_pagelist_free(pp, &pq); 1312 } 1313 1314 /* 1315 * pool_grow: grow a pool by a page. 1316 * 1317 * => called with pool locked. 1318 * => unlock and relock the pool. 1319 * => return with pool locked. 1320 */ 1321 1322 static int 1323 pool_grow(struct pool *pp, int flags) 1324 { 1325 struct pool_item_header *ph; 1326 char *storage; 1327 1328 /* 1329 * If there's a pool_grow in progress, wait for it to complete 1330 * and try again from the top. 1331 */ 1332 if (pp->pr_flags & PR_GROWING) { 1333 if (flags & PR_WAITOK) { 1334 do { 1335 cv_wait(&pp->pr_cv, &pp->pr_lock); 1336 } while (pp->pr_flags & PR_GROWING); 1337 return ERESTART; 1338 } else { 1339 if (pp->pr_flags & PR_GROWINGNOWAIT) { 1340 /* 1341 * This needs an unlock/relock dance so 1342 * that the other caller has a chance to 1343 * run and actually do the thing. Note 1344 * that this is effectively a busy-wait. 1345 */ 1346 mutex_exit(&pp->pr_lock); 1347 mutex_enter(&pp->pr_lock); 1348 return ERESTART; 1349 } 1350 return EWOULDBLOCK; 1351 } 1352 } 1353 pp->pr_flags |= PR_GROWING; 1354 if (flags & PR_WAITOK) 1355 mutex_exit(&pp->pr_lock); 1356 else 1357 pp->pr_flags |= PR_GROWINGNOWAIT; 1358 1359 storage = pool_allocator_alloc(pp, flags); 1360 if (__predict_false(storage == NULL)) 1361 goto out; 1362 1363 ph = pool_alloc_item_header(pp, storage, flags); 1364 if (__predict_false(ph == NULL)) { 1365 pool_allocator_free(pp, storage); 1366 goto out; 1367 } 1368 1369 if (flags & PR_WAITOK) 1370 mutex_enter(&pp->pr_lock); 1371 pool_prime_page(pp, storage, ph); 1372 pp->pr_npagealloc++; 1373 KASSERT(pp->pr_flags & PR_GROWING); 1374 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT); 1375 /* 1376 * If anyone was waiting for pool_grow, notify them that we 1377 * may have just done it. 1378 */ 1379 cv_broadcast(&pp->pr_cv); 1380 return 0; 1381 out: 1382 if (flags & PR_WAITOK) 1383 mutex_enter(&pp->pr_lock); 1384 KASSERT(pp->pr_flags & PR_GROWING); 1385 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT); 1386 return ENOMEM; 1387 } 1388 1389 /* 1390 * Add N items to the pool. 1391 */ 1392 int 1393 pool_prime(struct pool *pp, int n) 1394 { 1395 int newpages; 1396 int error = 0; 1397 1398 mutex_enter(&pp->pr_lock); 1399 1400 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1401 1402 while (newpages > 0) { 1403 error = pool_grow(pp, PR_NOWAIT); 1404 if (error) { 1405 if (error == ERESTART) 1406 continue; 1407 break; 1408 } 1409 pp->pr_minpages++; 1410 newpages--; 1411 } 1412 1413 if (pp->pr_minpages >= pp->pr_maxpages) 1414 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1415 1416 mutex_exit(&pp->pr_lock); 1417 return error; 1418 } 1419 1420 /* 1421 * Add a page worth of items to the pool. 1422 * 1423 * Note, we must be called with the pool descriptor LOCKED. 1424 */ 1425 static void 1426 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph) 1427 { 1428 const unsigned int align = pp->pr_align; 1429 struct pool_item *pi; 1430 void *cp = storage; 1431 int n; 1432 1433 KASSERT(mutex_owned(&pp->pr_lock)); 1434 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) || 1435 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)), 1436 "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp); 1437 1438 /* 1439 * Insert page header. 1440 */ 1441 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1442 LIST_INIT(&ph->ph_itemlist); 1443 ph->ph_page = storage; 1444 ph->ph_nmissing = 0; 1445 ph->ph_time = time_uptime; 1446 if (pp->pr_roflags & PR_PHINPAGE) 1447 ph->ph_poolid = pp->pr_poolid; 1448 else 1449 SPLAY_INSERT(phtree, &pp->pr_phtree, ph); 1450 1451 pp->pr_nidle++; 1452 1453 /* 1454 * The item space starts after the on-page header, if any. 1455 */ 1456 ph->ph_off = pp->pr_itemoffset; 1457 1458 /* 1459 * Color this page. 1460 */ 1461 ph->ph_off += pp->pr_curcolor; 1462 cp = (char *)cp + ph->ph_off; 1463 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1464 pp->pr_curcolor = 0; 1465 1466 KASSERT((((vaddr_t)cp) & (align - 1)) == 0); 1467 1468 /* 1469 * Insert remaining chunks on the bucket list. 1470 */ 1471 n = pp->pr_itemsperpage; 1472 pp->pr_nitems += n; 1473 1474 if (pp->pr_roflags & PR_USEBMAP) { 1475 pr_item_bitmap_init(pp, ph); 1476 } else { 1477 while (n--) { 1478 pi = (struct pool_item *)cp; 1479 1480 KASSERT((((vaddr_t)pi) & (align - 1)) == 0); 1481 1482 /* Insert on page list */ 1483 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1484 #ifdef POOL_CHECK_MAGIC 1485 pi->pi_magic = PI_MAGIC; 1486 #endif 1487 cp = (char *)cp + pp->pr_size; 1488 1489 KASSERT((((vaddr_t)cp) & (align - 1)) == 0); 1490 } 1491 } 1492 1493 /* 1494 * If the pool was depleted, point at the new page. 1495 */ 1496 if (pp->pr_curpage == NULL) 1497 pp->pr_curpage = ph; 1498 1499 if (++pp->pr_npages > pp->pr_hiwat) 1500 pp->pr_hiwat = pp->pr_npages; 1501 } 1502 1503 /* 1504 * Used by pool_get() when nitems drops below the low water mark. This 1505 * is used to catch up pr_nitems with the low water mark. 1506 * 1507 * Note 1, we never wait for memory here, we let the caller decide what to do. 1508 * 1509 * Note 2, we must be called with the pool already locked, and we return 1510 * with it locked. 1511 */ 1512 static int 1513 pool_catchup(struct pool *pp) 1514 { 1515 int error = 0; 1516 1517 while (POOL_NEEDS_CATCHUP(pp)) { 1518 error = pool_grow(pp, PR_NOWAIT); 1519 if (error) { 1520 if (error == ERESTART) 1521 continue; 1522 break; 1523 } 1524 } 1525 return error; 1526 } 1527 1528 static void 1529 pool_update_curpage(struct pool *pp) 1530 { 1531 1532 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages); 1533 if (pp->pr_curpage == NULL) { 1534 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages); 1535 } 1536 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) || 1537 (pp->pr_curpage != NULL && pp->pr_nitems > 0)); 1538 } 1539 1540 void 1541 pool_setlowat(struct pool *pp, int n) 1542 { 1543 1544 mutex_enter(&pp->pr_lock); 1545 1546 pp->pr_minitems = n; 1547 pp->pr_minpages = (n == 0) 1548 ? 0 1549 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1550 1551 /* Make sure we're caught up with the newly-set low water mark. */ 1552 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1553 /* 1554 * XXX: Should we log a warning? Should we set up a timeout 1555 * to try again in a second or so? The latter could break 1556 * a caller's assumptions about interrupt protection, etc. 1557 */ 1558 } 1559 1560 mutex_exit(&pp->pr_lock); 1561 } 1562 1563 void 1564 pool_sethiwat(struct pool *pp, int n) 1565 { 1566 1567 mutex_enter(&pp->pr_lock); 1568 1569 pp->pr_maxpages = (n == 0) 1570 ? 0 1571 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1572 1573 mutex_exit(&pp->pr_lock); 1574 } 1575 1576 void 1577 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) 1578 { 1579 1580 mutex_enter(&pp->pr_lock); 1581 1582 pp->pr_hardlimit = n; 1583 pp->pr_hardlimit_warning = warnmess; 1584 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1585 pp->pr_hardlimit_warning_last.tv_sec = 0; 1586 pp->pr_hardlimit_warning_last.tv_usec = 0; 1587 1588 /* 1589 * In-line version of pool_sethiwat(), because we don't want to 1590 * release the lock. 1591 */ 1592 pp->pr_maxpages = (n == 0) 1593 ? 0 1594 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1595 1596 mutex_exit(&pp->pr_lock); 1597 } 1598 1599 /* 1600 * Release all complete pages that have not been used recently. 1601 * 1602 * Must not be called from interrupt context. 1603 */ 1604 int 1605 pool_reclaim(struct pool *pp) 1606 { 1607 struct pool_item_header *ph, *phnext; 1608 struct pool_pagelist pq; 1609 uint32_t curtime; 1610 bool klock; 1611 int rv; 1612 1613 KASSERT(!cpu_intr_p() && !cpu_softintr_p()); 1614 1615 if (pp->pr_drain_hook != NULL) { 1616 /* 1617 * The drain hook must be called with the pool unlocked. 1618 */ 1619 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT); 1620 } 1621 1622 /* 1623 * XXXSMP Because we do not want to cause non-MPSAFE code 1624 * to block. 1625 */ 1626 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK || 1627 pp->pr_ipl == IPL_SOFTSERIAL) { 1628 KERNEL_LOCK(1, NULL); 1629 klock = true; 1630 } else 1631 klock = false; 1632 1633 /* Reclaim items from the pool's cache (if any). */ 1634 if (pp->pr_cache != NULL) 1635 pool_cache_invalidate(pp->pr_cache); 1636 1637 if (mutex_tryenter(&pp->pr_lock) == 0) { 1638 if (klock) { 1639 KERNEL_UNLOCK_ONE(NULL); 1640 } 1641 return 0; 1642 } 1643 1644 LIST_INIT(&pq); 1645 1646 curtime = time_uptime; 1647 1648 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { 1649 phnext = LIST_NEXT(ph, ph_pagelist); 1650 1651 /* Check our minimum page claim */ 1652 if (pp->pr_npages <= pp->pr_minpages) 1653 break; 1654 1655 KASSERT(ph->ph_nmissing == 0); 1656 if (curtime - ph->ph_time < pool_inactive_time) 1657 continue; 1658 1659 /* 1660 * If freeing this page would put us below 1661 * the low water mark, stop now. 1662 */ 1663 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1664 pp->pr_minitems) 1665 break; 1666 1667 pr_rmpage(pp, ph, &pq); 1668 } 1669 1670 mutex_exit(&pp->pr_lock); 1671 1672 if (LIST_EMPTY(&pq)) 1673 rv = 0; 1674 else { 1675 pr_pagelist_free(pp, &pq); 1676 rv = 1; 1677 } 1678 1679 if (klock) { 1680 KERNEL_UNLOCK_ONE(NULL); 1681 } 1682 1683 return rv; 1684 } 1685 1686 /* 1687 * Drain pools, one at a time. The drained pool is returned within ppp. 1688 * 1689 * Note, must never be called from interrupt context. 1690 */ 1691 bool 1692 pool_drain(struct pool **ppp) 1693 { 1694 bool reclaimed; 1695 struct pool *pp; 1696 1697 KASSERT(!TAILQ_EMPTY(&pool_head)); 1698 1699 pp = NULL; 1700 1701 /* Find next pool to drain, and add a reference. */ 1702 mutex_enter(&pool_head_lock); 1703 do { 1704 if (drainpp == NULL) { 1705 drainpp = TAILQ_FIRST(&pool_head); 1706 } 1707 if (drainpp != NULL) { 1708 pp = drainpp; 1709 drainpp = TAILQ_NEXT(pp, pr_poollist); 1710 } 1711 /* 1712 * Skip completely idle pools. We depend on at least 1713 * one pool in the system being active. 1714 */ 1715 } while (pp == NULL || pp->pr_npages == 0); 1716 pp->pr_refcnt++; 1717 mutex_exit(&pool_head_lock); 1718 1719 /* Drain the cache (if any) and pool.. */ 1720 reclaimed = pool_reclaim(pp); 1721 1722 /* Finally, unlock the pool. */ 1723 mutex_enter(&pool_head_lock); 1724 pp->pr_refcnt--; 1725 cv_broadcast(&pool_busy); 1726 mutex_exit(&pool_head_lock); 1727 1728 if (ppp != NULL) 1729 *ppp = pp; 1730 1731 return reclaimed; 1732 } 1733 1734 /* 1735 * Calculate the total number of pages consumed by pools. 1736 */ 1737 int 1738 pool_totalpages(void) 1739 { 1740 1741 mutex_enter(&pool_head_lock); 1742 int pages = pool_totalpages_locked(); 1743 mutex_exit(&pool_head_lock); 1744 1745 return pages; 1746 } 1747 1748 int 1749 pool_totalpages_locked(void) 1750 { 1751 struct pool *pp; 1752 uint64_t total = 0; 1753 1754 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1755 uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz; 1756 1757 if ((pp->pr_roflags & PR_RECURSIVE) != 0) 1758 bytes -= (pp->pr_nout * pp->pr_size); 1759 total += bytes; 1760 } 1761 1762 return atop(total); 1763 } 1764 1765 /* 1766 * Diagnostic helpers. 1767 */ 1768 1769 void 1770 pool_printall(const char *modif, void (*pr)(const char *, ...)) 1771 { 1772 struct pool *pp; 1773 1774 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1775 pool_printit(pp, modif, pr); 1776 } 1777 } 1778 1779 void 1780 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1781 { 1782 1783 if (pp == NULL) { 1784 (*pr)("Must specify a pool to print.\n"); 1785 return; 1786 } 1787 1788 pool_print1(pp, modif, pr); 1789 } 1790 1791 static void 1792 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl, 1793 void (*pr)(const char *, ...)) 1794 { 1795 struct pool_item_header *ph; 1796 1797 LIST_FOREACH(ph, pl, ph_pagelist) { 1798 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n", 1799 ph->ph_page, ph->ph_nmissing, ph->ph_time); 1800 #ifdef POOL_CHECK_MAGIC 1801 struct pool_item *pi; 1802 if (!(pp->pr_roflags & PR_USEBMAP)) { 1803 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1804 if (pi->pi_magic != PI_MAGIC) { 1805 (*pr)("\t\t\titem %p, magic 0x%x\n", 1806 pi, pi->pi_magic); 1807 } 1808 } 1809 } 1810 #endif 1811 } 1812 } 1813 1814 static void 1815 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1816 { 1817 struct pool_item_header *ph; 1818 pool_cache_t pc; 1819 pcg_t *pcg; 1820 pool_cache_cpu_t *cc; 1821 uint64_t cpuhit, cpumiss; 1822 int i, print_log = 0, print_pagelist = 0, print_cache = 0; 1823 char c; 1824 1825 while ((c = *modif++) != '\0') { 1826 if (c == 'l') 1827 print_log = 1; 1828 if (c == 'p') 1829 print_pagelist = 1; 1830 if (c == 'c') 1831 print_cache = 1; 1832 } 1833 1834 if ((pc = pp->pr_cache) != NULL) { 1835 (*pr)("POOL CACHE"); 1836 } else { 1837 (*pr)("POOL"); 1838 } 1839 1840 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1841 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1842 pp->pr_roflags); 1843 (*pr)("\talloc %p\n", pp->pr_alloc); 1844 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1845 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1846 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1847 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1848 1849 (*pr)("\tnget %lu, nfail %lu, nput %lu\n", 1850 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1851 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1852 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1853 1854 if (print_pagelist == 0) 1855 goto skip_pagelist; 1856 1857 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1858 (*pr)("\n\tempty page list:\n"); 1859 pool_print_pagelist(pp, &pp->pr_emptypages, pr); 1860 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL) 1861 (*pr)("\n\tfull page list:\n"); 1862 pool_print_pagelist(pp, &pp->pr_fullpages, pr); 1863 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL) 1864 (*pr)("\n\tpartial-page list:\n"); 1865 pool_print_pagelist(pp, &pp->pr_partpages, pr); 1866 1867 if (pp->pr_curpage == NULL) 1868 (*pr)("\tno current page\n"); 1869 else 1870 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1871 1872 skip_pagelist: 1873 if (print_log == 0) 1874 goto skip_log; 1875 1876 (*pr)("\n"); 1877 1878 skip_log: 1879 1880 #define PR_GROUPLIST(pcg) \ 1881 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \ 1882 for (i = 0; i < pcg->pcg_size; i++) { \ 1883 if (pcg->pcg_objects[i].pcgo_pa != \ 1884 POOL_PADDR_INVALID) { \ 1885 (*pr)("\t\t\t%p, 0x%llx\n", \ 1886 pcg->pcg_objects[i].pcgo_va, \ 1887 (unsigned long long) \ 1888 pcg->pcg_objects[i].pcgo_pa); \ 1889 } else { \ 1890 (*pr)("\t\t\t%p\n", \ 1891 pcg->pcg_objects[i].pcgo_va); \ 1892 } \ 1893 } 1894 1895 if (pc != NULL) { 1896 cpuhit = 0; 1897 cpumiss = 0; 1898 for (i = 0; i < __arraycount(pc->pc_cpus); i++) { 1899 if ((cc = pc->pc_cpus[i]) == NULL) 1900 continue; 1901 cpuhit += cc->cc_hits; 1902 cpumiss += cc->cc_misses; 1903 } 1904 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss); 1905 (*pr)("\tcache layer hits %llu misses %llu\n", 1906 pc->pc_hits, pc->pc_misses); 1907 (*pr)("\tcache layer entry uncontended %llu contended %llu\n", 1908 pc->pc_hits + pc->pc_misses - pc->pc_contended, 1909 pc->pc_contended); 1910 (*pr)("\tcache layer empty groups %u full groups %u\n", 1911 pc->pc_nempty, pc->pc_nfull); 1912 if (print_cache) { 1913 (*pr)("\tfull cache groups:\n"); 1914 for (pcg = pc->pc_fullgroups; pcg != NULL; 1915 pcg = pcg->pcg_next) { 1916 PR_GROUPLIST(pcg); 1917 } 1918 (*pr)("\tempty cache groups:\n"); 1919 for (pcg = pc->pc_emptygroups; pcg != NULL; 1920 pcg = pcg->pcg_next) { 1921 PR_GROUPLIST(pcg); 1922 } 1923 } 1924 } 1925 #undef PR_GROUPLIST 1926 } 1927 1928 static int 1929 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph) 1930 { 1931 struct pool_item *pi; 1932 void *page; 1933 int n; 1934 1935 if ((pp->pr_roflags & PR_NOALIGN) == 0) { 1936 page = POOL_OBJ_TO_PAGE(pp, ph); 1937 if (page != ph->ph_page && 1938 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1939 if (label != NULL) 1940 printf("%s: ", label); 1941 printf("pool(%p:%s): page inconsistency: page %p;" 1942 " at page head addr %p (p %p)\n", pp, 1943 pp->pr_wchan, ph->ph_page, 1944 ph, page); 1945 return 1; 1946 } 1947 } 1948 1949 if ((pp->pr_roflags & PR_USEBMAP) != 0) 1950 return 0; 1951 1952 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0; 1953 pi != NULL; 1954 pi = LIST_NEXT(pi,pi_list), n++) { 1955 1956 #ifdef POOL_CHECK_MAGIC 1957 if (pi->pi_magic != PI_MAGIC) { 1958 if (label != NULL) 1959 printf("%s: ", label); 1960 printf("pool(%s): free list modified: magic=%x;" 1961 " page %p; item ordinal %d; addr %p\n", 1962 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1963 n, pi); 1964 panic("pool"); 1965 } 1966 #endif 1967 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 1968 continue; 1969 } 1970 page = POOL_OBJ_TO_PAGE(pp, pi); 1971 if (page == ph->ph_page) 1972 continue; 1973 1974 if (label != NULL) 1975 printf("%s: ", label); 1976 printf("pool(%p:%s): page inconsistency: page %p;" 1977 " item ordinal %d; addr %p (p %p)\n", pp, 1978 pp->pr_wchan, ph->ph_page, 1979 n, pi, page); 1980 return 1; 1981 } 1982 return 0; 1983 } 1984 1985 1986 int 1987 pool_chk(struct pool *pp, const char *label) 1988 { 1989 struct pool_item_header *ph; 1990 int r = 0; 1991 1992 mutex_enter(&pp->pr_lock); 1993 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 1994 r = pool_chk_page(pp, label, ph); 1995 if (r) { 1996 goto out; 1997 } 1998 } 1999 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 2000 r = pool_chk_page(pp, label, ph); 2001 if (r) { 2002 goto out; 2003 } 2004 } 2005 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 2006 r = pool_chk_page(pp, label, ph); 2007 if (r) { 2008 goto out; 2009 } 2010 } 2011 2012 out: 2013 mutex_exit(&pp->pr_lock); 2014 return r; 2015 } 2016 2017 /* 2018 * pool_cache_init: 2019 * 2020 * Initialize a pool cache. 2021 */ 2022 pool_cache_t 2023 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags, 2024 const char *wchan, struct pool_allocator *palloc, int ipl, 2025 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg) 2026 { 2027 pool_cache_t pc; 2028 2029 pc = pool_get(&cache_pool, PR_WAITOK); 2030 if (pc == NULL) 2031 return NULL; 2032 2033 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan, 2034 palloc, ipl, ctor, dtor, arg); 2035 2036 return pc; 2037 } 2038 2039 /* 2040 * pool_cache_bootstrap: 2041 * 2042 * Kernel-private version of pool_cache_init(). The caller 2043 * provides initial storage. 2044 */ 2045 void 2046 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align, 2047 u_int align_offset, u_int flags, const char *wchan, 2048 struct pool_allocator *palloc, int ipl, 2049 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), 2050 void *arg) 2051 { 2052 CPU_INFO_ITERATOR cii; 2053 pool_cache_t pc1; 2054 struct cpu_info *ci; 2055 struct pool *pp; 2056 2057 pp = &pc->pc_pool; 2058 if (palloc == NULL && ipl == IPL_NONE) { 2059 if (size > PAGE_SIZE) { 2060 int bigidx = pool_bigidx(size); 2061 2062 palloc = &pool_allocator_big[bigidx]; 2063 flags |= PR_NOALIGN; 2064 } else 2065 palloc = &pool_allocator_nointr; 2066 } 2067 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl); 2068 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl); 2069 2070 if (ctor == NULL) { 2071 ctor = NO_CTOR; 2072 } 2073 if (dtor == NULL) { 2074 dtor = NO_DTOR; 2075 } 2076 2077 pc->pc_emptygroups = NULL; 2078 pc->pc_fullgroups = NULL; 2079 pc->pc_partgroups = NULL; 2080 pc->pc_ctor = ctor; 2081 pc->pc_dtor = dtor; 2082 pc->pc_arg = arg; 2083 pc->pc_hits = 0; 2084 pc->pc_misses = 0; 2085 pc->pc_nempty = 0; 2086 pc->pc_npart = 0; 2087 pc->pc_nfull = 0; 2088 pc->pc_contended = 0; 2089 pc->pc_refcnt = 0; 2090 pc->pc_freecheck = NULL; 2091 2092 if ((flags & PR_LARGECACHE) != 0) { 2093 pc->pc_pcgsize = PCG_NOBJECTS_LARGE; 2094 pc->pc_pcgpool = &pcg_large_pool; 2095 } else { 2096 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL; 2097 pc->pc_pcgpool = &pcg_normal_pool; 2098 } 2099 2100 /* Allocate per-CPU caches. */ 2101 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus)); 2102 pc->pc_ncpu = 0; 2103 if (ncpu < 2) { 2104 /* XXX For sparc: boot CPU is not attached yet. */ 2105 pool_cache_cpu_init1(curcpu(), pc); 2106 } else { 2107 for (CPU_INFO_FOREACH(cii, ci)) { 2108 pool_cache_cpu_init1(ci, pc); 2109 } 2110 } 2111 2112 /* Add to list of all pools. */ 2113 if (__predict_true(!cold)) 2114 mutex_enter(&pool_head_lock); 2115 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) { 2116 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0) 2117 break; 2118 } 2119 if (pc1 == NULL) 2120 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist); 2121 else 2122 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist); 2123 if (__predict_true(!cold)) 2124 mutex_exit(&pool_head_lock); 2125 2126 membar_sync(); 2127 pp->pr_cache = pc; 2128 } 2129 2130 /* 2131 * pool_cache_destroy: 2132 * 2133 * Destroy a pool cache. 2134 */ 2135 void 2136 pool_cache_destroy(pool_cache_t pc) 2137 { 2138 2139 pool_cache_bootstrap_destroy(pc); 2140 pool_put(&cache_pool, pc); 2141 } 2142 2143 /* 2144 * pool_cache_bootstrap_destroy: 2145 * 2146 * Destroy a pool cache. 2147 */ 2148 void 2149 pool_cache_bootstrap_destroy(pool_cache_t pc) 2150 { 2151 struct pool *pp = &pc->pc_pool; 2152 u_int i; 2153 2154 /* Remove it from the global list. */ 2155 mutex_enter(&pool_head_lock); 2156 while (pc->pc_refcnt != 0) 2157 cv_wait(&pool_busy, &pool_head_lock); 2158 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist); 2159 mutex_exit(&pool_head_lock); 2160 2161 /* First, invalidate the entire cache. */ 2162 pool_cache_invalidate(pc); 2163 2164 /* Disassociate it from the pool. */ 2165 mutex_enter(&pp->pr_lock); 2166 pp->pr_cache = NULL; 2167 mutex_exit(&pp->pr_lock); 2168 2169 /* Destroy per-CPU data */ 2170 for (i = 0; i < __arraycount(pc->pc_cpus); i++) 2171 pool_cache_invalidate_cpu(pc, i); 2172 2173 /* Finally, destroy it. */ 2174 mutex_destroy(&pc->pc_lock); 2175 pool_destroy(pp); 2176 } 2177 2178 /* 2179 * pool_cache_cpu_init1: 2180 * 2181 * Called for each pool_cache whenever a new CPU is attached. 2182 */ 2183 static void 2184 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc) 2185 { 2186 pool_cache_cpu_t *cc; 2187 int index; 2188 2189 index = ci->ci_index; 2190 2191 KASSERT(index < __arraycount(pc->pc_cpus)); 2192 2193 if ((cc = pc->pc_cpus[index]) != NULL) { 2194 KASSERT(cc->cc_cpuindex == index); 2195 return; 2196 } 2197 2198 /* 2199 * The first CPU is 'free'. This needs to be the case for 2200 * bootstrap - we may not be able to allocate yet. 2201 */ 2202 if (pc->pc_ncpu == 0) { 2203 cc = &pc->pc_cpu0; 2204 pc->pc_ncpu = 1; 2205 } else { 2206 mutex_enter(&pc->pc_lock); 2207 pc->pc_ncpu++; 2208 mutex_exit(&pc->pc_lock); 2209 cc = pool_get(&cache_cpu_pool, PR_WAITOK); 2210 } 2211 2212 cc->cc_ipl = pc->pc_pool.pr_ipl; 2213 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl); 2214 cc->cc_cache = pc; 2215 cc->cc_cpuindex = index; 2216 cc->cc_hits = 0; 2217 cc->cc_misses = 0; 2218 cc->cc_current = __UNCONST(&pcg_dummy); 2219 cc->cc_previous = __UNCONST(&pcg_dummy); 2220 2221 pc->pc_cpus[index] = cc; 2222 } 2223 2224 /* 2225 * pool_cache_cpu_init: 2226 * 2227 * Called whenever a new CPU is attached. 2228 */ 2229 void 2230 pool_cache_cpu_init(struct cpu_info *ci) 2231 { 2232 pool_cache_t pc; 2233 2234 mutex_enter(&pool_head_lock); 2235 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) { 2236 pc->pc_refcnt++; 2237 mutex_exit(&pool_head_lock); 2238 2239 pool_cache_cpu_init1(ci, pc); 2240 2241 mutex_enter(&pool_head_lock); 2242 pc->pc_refcnt--; 2243 cv_broadcast(&pool_busy); 2244 } 2245 mutex_exit(&pool_head_lock); 2246 } 2247 2248 /* 2249 * pool_cache_reclaim: 2250 * 2251 * Reclaim memory from a pool cache. 2252 */ 2253 bool 2254 pool_cache_reclaim(pool_cache_t pc) 2255 { 2256 2257 return pool_reclaim(&pc->pc_pool); 2258 } 2259 2260 static void 2261 pool_cache_destruct_object1(pool_cache_t pc, void *object) 2262 { 2263 (*pc->pc_dtor)(pc->pc_arg, object); 2264 pool_put(&pc->pc_pool, object); 2265 } 2266 2267 /* 2268 * pool_cache_destruct_object: 2269 * 2270 * Force destruction of an object and its release back into 2271 * the pool. 2272 */ 2273 void 2274 pool_cache_destruct_object(pool_cache_t pc, void *object) 2275 { 2276 2277 FREECHECK_IN(&pc->pc_freecheck, object); 2278 2279 pool_cache_destruct_object1(pc, object); 2280 } 2281 2282 /* 2283 * pool_cache_invalidate_groups: 2284 * 2285 * Invalidate a chain of groups and destruct all objects. 2286 */ 2287 static void 2288 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg) 2289 { 2290 void *object; 2291 pcg_t *next; 2292 int i; 2293 2294 for (; pcg != NULL; pcg = next) { 2295 next = pcg->pcg_next; 2296 2297 for (i = 0; i < pcg->pcg_avail; i++) { 2298 object = pcg->pcg_objects[i].pcgo_va; 2299 pool_cache_destruct_object1(pc, object); 2300 } 2301 2302 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) { 2303 pool_put(&pcg_large_pool, pcg); 2304 } else { 2305 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL); 2306 pool_put(&pcg_normal_pool, pcg); 2307 } 2308 } 2309 } 2310 2311 /* 2312 * pool_cache_invalidate: 2313 * 2314 * Invalidate a pool cache (destruct and release all of the 2315 * cached objects). Does not reclaim objects from the pool. 2316 * 2317 * Note: For pool caches that provide constructed objects, there 2318 * is an assumption that another level of synchronization is occurring 2319 * between the input to the constructor and the cache invalidation. 2320 * 2321 * Invalidation is a costly process and should not be called from 2322 * interrupt context. 2323 */ 2324 void 2325 pool_cache_invalidate(pool_cache_t pc) 2326 { 2327 uint64_t where; 2328 pcg_t *full, *empty, *part; 2329 2330 KASSERT(!cpu_intr_p() && !cpu_softintr_p()); 2331 2332 if (ncpu < 2 || !mp_online) { 2333 /* 2334 * We might be called early enough in the boot process 2335 * for the CPU data structures to not be fully initialized. 2336 * In this case, transfer the content of the local CPU's 2337 * cache back into global cache as only this CPU is currently 2338 * running. 2339 */ 2340 pool_cache_transfer(pc); 2341 } else { 2342 /* 2343 * Signal all CPUs that they must transfer their local 2344 * cache back to the global pool then wait for the xcall to 2345 * complete. 2346 */ 2347 where = xc_broadcast(0, 2348 __FPTRCAST(xcfunc_t, pool_cache_transfer), pc, NULL); 2349 xc_wait(where); 2350 } 2351 2352 /* Empty pool caches, then invalidate objects */ 2353 mutex_enter(&pc->pc_lock); 2354 full = pc->pc_fullgroups; 2355 empty = pc->pc_emptygroups; 2356 part = pc->pc_partgroups; 2357 pc->pc_fullgroups = NULL; 2358 pc->pc_emptygroups = NULL; 2359 pc->pc_partgroups = NULL; 2360 pc->pc_nfull = 0; 2361 pc->pc_nempty = 0; 2362 pc->pc_npart = 0; 2363 mutex_exit(&pc->pc_lock); 2364 2365 pool_cache_invalidate_groups(pc, full); 2366 pool_cache_invalidate_groups(pc, empty); 2367 pool_cache_invalidate_groups(pc, part); 2368 } 2369 2370 /* 2371 * pool_cache_invalidate_cpu: 2372 * 2373 * Invalidate all CPU-bound cached objects in pool cache, the CPU being 2374 * identified by its associated index. 2375 * It is caller's responsibility to ensure that no operation is 2376 * taking place on this pool cache while doing this invalidation. 2377 * WARNING: as no inter-CPU locking is enforced, trying to invalidate 2378 * pool cached objects from a CPU different from the one currently running 2379 * may result in an undefined behaviour. 2380 */ 2381 static void 2382 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index) 2383 { 2384 pool_cache_cpu_t *cc; 2385 pcg_t *pcg; 2386 2387 if ((cc = pc->pc_cpus[index]) == NULL) 2388 return; 2389 2390 if ((pcg = cc->cc_current) != &pcg_dummy) { 2391 pcg->pcg_next = NULL; 2392 pool_cache_invalidate_groups(pc, pcg); 2393 } 2394 if ((pcg = cc->cc_previous) != &pcg_dummy) { 2395 pcg->pcg_next = NULL; 2396 pool_cache_invalidate_groups(pc, pcg); 2397 } 2398 if (cc != &pc->pc_cpu0) 2399 pool_put(&cache_cpu_pool, cc); 2400 2401 } 2402 2403 void 2404 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg) 2405 { 2406 2407 pool_set_drain_hook(&pc->pc_pool, fn, arg); 2408 } 2409 2410 void 2411 pool_cache_setlowat(pool_cache_t pc, int n) 2412 { 2413 2414 pool_setlowat(&pc->pc_pool, n); 2415 } 2416 2417 void 2418 pool_cache_sethiwat(pool_cache_t pc, int n) 2419 { 2420 2421 pool_sethiwat(&pc->pc_pool, n); 2422 } 2423 2424 void 2425 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap) 2426 { 2427 2428 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap); 2429 } 2430 2431 static bool __noinline 2432 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp, 2433 paddr_t *pap, int flags) 2434 { 2435 pcg_t *pcg, *cur; 2436 uint64_t ncsw; 2437 pool_cache_t pc; 2438 void *object; 2439 2440 KASSERT(cc->cc_current->pcg_avail == 0); 2441 KASSERT(cc->cc_previous->pcg_avail == 0); 2442 2443 pc = cc->cc_cache; 2444 cc->cc_misses++; 2445 2446 /* 2447 * Nothing was available locally. Try and grab a group 2448 * from the cache. 2449 */ 2450 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) { 2451 ncsw = curlwp->l_ncsw; 2452 __insn_barrier(); 2453 mutex_enter(&pc->pc_lock); 2454 pc->pc_contended++; 2455 2456 /* 2457 * If we context switched while locking, then 2458 * our view of the per-CPU data is invalid: 2459 * retry. 2460 */ 2461 __insn_barrier(); 2462 if (curlwp->l_ncsw != ncsw) { 2463 mutex_exit(&pc->pc_lock); 2464 return true; 2465 } 2466 } 2467 2468 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) { 2469 /* 2470 * If there's a full group, release our empty 2471 * group back to the cache. Install the full 2472 * group as cc_current and return. 2473 */ 2474 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) { 2475 KASSERT(cur->pcg_avail == 0); 2476 cur->pcg_next = pc->pc_emptygroups; 2477 pc->pc_emptygroups = cur; 2478 pc->pc_nempty++; 2479 } 2480 KASSERT(pcg->pcg_avail == pcg->pcg_size); 2481 cc->cc_current = pcg; 2482 pc->pc_fullgroups = pcg->pcg_next; 2483 pc->pc_hits++; 2484 pc->pc_nfull--; 2485 mutex_exit(&pc->pc_lock); 2486 return true; 2487 } 2488 2489 /* 2490 * Nothing available locally or in cache. Take the slow 2491 * path: fetch a new object from the pool and construct 2492 * it. 2493 */ 2494 pc->pc_misses++; 2495 mutex_exit(&pc->pc_lock); 2496 splx(s); 2497 2498 object = pool_get(&pc->pc_pool, flags); 2499 *objectp = object; 2500 if (__predict_false(object == NULL)) { 2501 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0); 2502 return false; 2503 } 2504 2505 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) { 2506 pool_put(&pc->pc_pool, object); 2507 *objectp = NULL; 2508 return false; 2509 } 2510 2511 KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0); 2512 2513 if (pap != NULL) { 2514 #ifdef POOL_VTOPHYS 2515 *pap = POOL_VTOPHYS(object); 2516 #else 2517 *pap = POOL_PADDR_INVALID; 2518 #endif 2519 } 2520 2521 FREECHECK_OUT(&pc->pc_freecheck, object); 2522 return false; 2523 } 2524 2525 /* 2526 * pool_cache_get{,_paddr}: 2527 * 2528 * Get an object from a pool cache (optionally returning 2529 * the physical address of the object). 2530 */ 2531 void * 2532 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap) 2533 { 2534 pool_cache_cpu_t *cc; 2535 pcg_t *pcg; 2536 void *object; 2537 int s; 2538 2539 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK)); 2540 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) || 2541 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL), 2542 "%s: [%s] is IPL_NONE, but called from interrupt context", 2543 __func__, pc->pc_pool.pr_wchan); 2544 2545 if (flags & PR_WAITOK) { 2546 ASSERT_SLEEPABLE(); 2547 } 2548 2549 /* Lock out interrupts and disable preemption. */ 2550 s = splvm(); 2551 while (/* CONSTCOND */ true) { 2552 /* Try and allocate an object from the current group. */ 2553 cc = pc->pc_cpus[curcpu()->ci_index]; 2554 KASSERT(cc->cc_cache == pc); 2555 pcg = cc->cc_current; 2556 if (__predict_true(pcg->pcg_avail > 0)) { 2557 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va; 2558 if (__predict_false(pap != NULL)) 2559 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa; 2560 #if defined(DIAGNOSTIC) 2561 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL; 2562 KASSERT(pcg->pcg_avail < pcg->pcg_size); 2563 KASSERT(object != NULL); 2564 #endif 2565 cc->cc_hits++; 2566 splx(s); 2567 FREECHECK_OUT(&pc->pc_freecheck, object); 2568 pool_redzone_fill(&pc->pc_pool, object); 2569 pool_cache_get_kmsan(pc, object); 2570 return object; 2571 } 2572 2573 /* 2574 * That failed. If the previous group isn't empty, swap 2575 * it with the current group and allocate from there. 2576 */ 2577 pcg = cc->cc_previous; 2578 if (__predict_true(pcg->pcg_avail > 0)) { 2579 cc->cc_previous = cc->cc_current; 2580 cc->cc_current = pcg; 2581 continue; 2582 } 2583 2584 /* 2585 * Can't allocate from either group: try the slow path. 2586 * If get_slow() allocated an object for us, or if 2587 * no more objects are available, it will return false. 2588 * Otherwise, we need to retry. 2589 */ 2590 if (!pool_cache_get_slow(cc, s, &object, pap, flags)) 2591 break; 2592 } 2593 2594 /* 2595 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but 2596 * pool_cache_get can fail even in the PR_WAITOK case, if the 2597 * constructor fails. 2598 */ 2599 return object; 2600 } 2601 2602 static bool __noinline 2603 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object) 2604 { 2605 struct lwp *l = curlwp; 2606 pcg_t *pcg, *cur; 2607 uint64_t ncsw; 2608 pool_cache_t pc; 2609 2610 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size); 2611 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size); 2612 2613 pc = cc->cc_cache; 2614 pcg = NULL; 2615 cc->cc_misses++; 2616 ncsw = l->l_ncsw; 2617 __insn_barrier(); 2618 2619 /* 2620 * If there are no empty groups in the cache then allocate one 2621 * while still unlocked. 2622 */ 2623 if (__predict_false(pc->pc_emptygroups == NULL)) { 2624 if (__predict_true(!pool_cache_disable)) { 2625 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT); 2626 } 2627 /* 2628 * If pool_get() blocked, then our view of 2629 * the per-CPU data is invalid: retry. 2630 */ 2631 __insn_barrier(); 2632 if (__predict_false(l->l_ncsw != ncsw)) { 2633 if (pcg != NULL) { 2634 pool_put(pc->pc_pcgpool, pcg); 2635 } 2636 return true; 2637 } 2638 if (__predict_true(pcg != NULL)) { 2639 pcg->pcg_avail = 0; 2640 pcg->pcg_size = pc->pc_pcgsize; 2641 } 2642 } 2643 2644 /* Lock the cache. */ 2645 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) { 2646 mutex_enter(&pc->pc_lock); 2647 pc->pc_contended++; 2648 2649 /* 2650 * If we context switched while locking, then our view of 2651 * the per-CPU data is invalid: retry. 2652 */ 2653 __insn_barrier(); 2654 if (__predict_false(l->l_ncsw != ncsw)) { 2655 mutex_exit(&pc->pc_lock); 2656 if (pcg != NULL) { 2657 pool_put(pc->pc_pcgpool, pcg); 2658 } 2659 return true; 2660 } 2661 } 2662 2663 /* If there are no empty groups in the cache then allocate one. */ 2664 if (pcg == NULL && pc->pc_emptygroups != NULL) { 2665 pcg = pc->pc_emptygroups; 2666 pc->pc_emptygroups = pcg->pcg_next; 2667 pc->pc_nempty--; 2668 } 2669 2670 /* 2671 * If there's a empty group, release our full group back 2672 * to the cache. Install the empty group to the local CPU 2673 * and return. 2674 */ 2675 if (pcg != NULL) { 2676 KASSERT(pcg->pcg_avail == 0); 2677 if (__predict_false(cc->cc_previous == &pcg_dummy)) { 2678 cc->cc_previous = pcg; 2679 } else { 2680 cur = cc->cc_current; 2681 if (__predict_true(cur != &pcg_dummy)) { 2682 KASSERT(cur->pcg_avail == cur->pcg_size); 2683 cur->pcg_next = pc->pc_fullgroups; 2684 pc->pc_fullgroups = cur; 2685 pc->pc_nfull++; 2686 } 2687 cc->cc_current = pcg; 2688 } 2689 pc->pc_hits++; 2690 mutex_exit(&pc->pc_lock); 2691 return true; 2692 } 2693 2694 /* 2695 * Nothing available locally or in cache, and we didn't 2696 * allocate an empty group. Take the slow path and destroy 2697 * the object here and now. 2698 */ 2699 pc->pc_misses++; 2700 mutex_exit(&pc->pc_lock); 2701 splx(s); 2702 pool_cache_destruct_object(pc, object); 2703 2704 return false; 2705 } 2706 2707 /* 2708 * pool_cache_put{,_paddr}: 2709 * 2710 * Put an object back to the pool cache (optionally caching the 2711 * physical address of the object). 2712 */ 2713 void 2714 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa) 2715 { 2716 pool_cache_cpu_t *cc; 2717 pcg_t *pcg; 2718 int s; 2719 2720 KASSERT(object != NULL); 2721 pool_cache_put_kmsan(pc, object); 2722 pool_cache_redzone_check(pc, object); 2723 FREECHECK_IN(&pc->pc_freecheck, object); 2724 2725 if (pc->pc_pool.pr_roflags & PR_PHINPAGE) { 2726 pc_phinpage_check(pc, object); 2727 } 2728 2729 if (pool_cache_put_quarantine(pc, object, pa)) { 2730 return; 2731 } 2732 2733 /* Lock out interrupts and disable preemption. */ 2734 s = splvm(); 2735 while (/* CONSTCOND */ true) { 2736 /* If the current group isn't full, release it there. */ 2737 cc = pc->pc_cpus[curcpu()->ci_index]; 2738 KASSERT(cc->cc_cache == pc); 2739 pcg = cc->cc_current; 2740 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2741 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object; 2742 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa; 2743 pcg->pcg_avail++; 2744 cc->cc_hits++; 2745 splx(s); 2746 return; 2747 } 2748 2749 /* 2750 * That failed. If the previous group isn't full, swap 2751 * it with the current group and try again. 2752 */ 2753 pcg = cc->cc_previous; 2754 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2755 cc->cc_previous = cc->cc_current; 2756 cc->cc_current = pcg; 2757 continue; 2758 } 2759 2760 /* 2761 * Can't free to either group: try the slow path. 2762 * If put_slow() releases the object for us, it 2763 * will return false. Otherwise we need to retry. 2764 */ 2765 if (!pool_cache_put_slow(cc, s, object)) 2766 break; 2767 } 2768 } 2769 2770 /* 2771 * pool_cache_transfer: 2772 * 2773 * Transfer objects from the per-CPU cache to the global cache. 2774 * Run within a cross-call thread. 2775 */ 2776 static void 2777 pool_cache_transfer(pool_cache_t pc) 2778 { 2779 pool_cache_cpu_t *cc; 2780 pcg_t *prev, *cur, **list; 2781 int s; 2782 2783 s = splvm(); 2784 mutex_enter(&pc->pc_lock); 2785 cc = pc->pc_cpus[curcpu()->ci_index]; 2786 cur = cc->cc_current; 2787 cc->cc_current = __UNCONST(&pcg_dummy); 2788 prev = cc->cc_previous; 2789 cc->cc_previous = __UNCONST(&pcg_dummy); 2790 if (cur != &pcg_dummy) { 2791 if (cur->pcg_avail == cur->pcg_size) { 2792 list = &pc->pc_fullgroups; 2793 pc->pc_nfull++; 2794 } else if (cur->pcg_avail == 0) { 2795 list = &pc->pc_emptygroups; 2796 pc->pc_nempty++; 2797 } else { 2798 list = &pc->pc_partgroups; 2799 pc->pc_npart++; 2800 } 2801 cur->pcg_next = *list; 2802 *list = cur; 2803 } 2804 if (prev != &pcg_dummy) { 2805 if (prev->pcg_avail == prev->pcg_size) { 2806 list = &pc->pc_fullgroups; 2807 pc->pc_nfull++; 2808 } else if (prev->pcg_avail == 0) { 2809 list = &pc->pc_emptygroups; 2810 pc->pc_nempty++; 2811 } else { 2812 list = &pc->pc_partgroups; 2813 pc->pc_npart++; 2814 } 2815 prev->pcg_next = *list; 2816 *list = prev; 2817 } 2818 mutex_exit(&pc->pc_lock); 2819 splx(s); 2820 } 2821 2822 static int 2823 pool_bigidx(size_t size) 2824 { 2825 int i; 2826 2827 for (i = 0; i < __arraycount(pool_allocator_big); i++) { 2828 if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size) 2829 return i; 2830 } 2831 panic("pool item size %zu too large, use a custom allocator", size); 2832 } 2833 2834 static void * 2835 pool_allocator_alloc(struct pool *pp, int flags) 2836 { 2837 struct pool_allocator *pa = pp->pr_alloc; 2838 void *res; 2839 2840 res = (*pa->pa_alloc)(pp, flags); 2841 if (res == NULL && (flags & PR_WAITOK) == 0) { 2842 /* 2843 * We only run the drain hook here if PR_NOWAIT. 2844 * In other cases, the hook will be run in 2845 * pool_reclaim(). 2846 */ 2847 if (pp->pr_drain_hook != NULL) { 2848 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 2849 res = (*pa->pa_alloc)(pp, flags); 2850 } 2851 } 2852 return res; 2853 } 2854 2855 static void 2856 pool_allocator_free(struct pool *pp, void *v) 2857 { 2858 struct pool_allocator *pa = pp->pr_alloc; 2859 2860 if (pp->pr_redzone) { 2861 kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0); 2862 } 2863 (*pa->pa_free)(pp, v); 2864 } 2865 2866 void * 2867 pool_page_alloc(struct pool *pp, int flags) 2868 { 2869 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP; 2870 vmem_addr_t va; 2871 int ret; 2872 2873 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz, 2874 vflags | VM_INSTANTFIT, &va); 2875 2876 return ret ? NULL : (void *)va; 2877 } 2878 2879 void 2880 pool_page_free(struct pool *pp, void *v) 2881 { 2882 2883 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz); 2884 } 2885 2886 static void * 2887 pool_page_alloc_meta(struct pool *pp, int flags) 2888 { 2889 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP; 2890 vmem_addr_t va; 2891 int ret; 2892 2893 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz, 2894 vflags | VM_INSTANTFIT, &va); 2895 2896 return ret ? NULL : (void *)va; 2897 } 2898 2899 static void 2900 pool_page_free_meta(struct pool *pp, void *v) 2901 { 2902 2903 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz); 2904 } 2905 2906 #ifdef KMSAN 2907 static inline void 2908 pool_get_kmsan(struct pool *pp, void *p) 2909 { 2910 kmsan_orig(p, pp->pr_size, KMSAN_TYPE_POOL, __RET_ADDR); 2911 kmsan_mark(p, pp->pr_size, KMSAN_STATE_UNINIT); 2912 } 2913 2914 static inline void 2915 pool_put_kmsan(struct pool *pp, void *p) 2916 { 2917 kmsan_mark(p, pp->pr_size, KMSAN_STATE_INITED); 2918 } 2919 2920 static inline void 2921 pool_cache_get_kmsan(pool_cache_t pc, void *p) 2922 { 2923 if (__predict_false(pc_has_ctor(pc))) { 2924 return; 2925 } 2926 pool_get_kmsan(&pc->pc_pool, p); 2927 } 2928 2929 static inline void 2930 pool_cache_put_kmsan(pool_cache_t pc, void *p) 2931 { 2932 pool_put_kmsan(&pc->pc_pool, p); 2933 } 2934 #endif 2935 2936 #ifdef POOL_QUARANTINE 2937 static void 2938 pool_quarantine_init(struct pool *pp) 2939 { 2940 pp->pr_quar.rotor = 0; 2941 memset(&pp->pr_quar, 0, sizeof(pp->pr_quar)); 2942 } 2943 2944 static void 2945 pool_quarantine_flush(struct pool *pp) 2946 { 2947 pool_quar_t *quar = &pp->pr_quar; 2948 struct pool_pagelist pq; 2949 size_t i; 2950 2951 LIST_INIT(&pq); 2952 2953 mutex_enter(&pp->pr_lock); 2954 for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) { 2955 if (quar->list[i] == 0) 2956 continue; 2957 pool_do_put(pp, (void *)quar->list[i], &pq); 2958 } 2959 mutex_exit(&pp->pr_lock); 2960 2961 pr_pagelist_free(pp, &pq); 2962 } 2963 2964 static bool 2965 pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq) 2966 { 2967 pool_quar_t *quar = &pp->pr_quar; 2968 uintptr_t old; 2969 2970 if (pp->pr_roflags & PR_NOTOUCH) { 2971 return false; 2972 } 2973 2974 pool_redzone_check(pp, v); 2975 2976 old = quar->list[quar->rotor]; 2977 quar->list[quar->rotor] = (uintptr_t)v; 2978 quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH; 2979 if (old != 0) { 2980 pool_do_put(pp, (void *)old, pq); 2981 } 2982 2983 return true; 2984 } 2985 2986 static bool 2987 pool_cache_put_quarantine(pool_cache_t pc, void *p, paddr_t pa) 2988 { 2989 pool_cache_destruct_object(pc, p); 2990 return true; 2991 } 2992 #endif 2993 2994 #ifdef POOL_REDZONE 2995 #if defined(_LP64) 2996 # define PRIME 0x9e37fffffffc0000UL 2997 #else /* defined(_LP64) */ 2998 # define PRIME 0x9e3779b1 2999 #endif /* defined(_LP64) */ 3000 #define STATIC_BYTE 0xFE 3001 CTASSERT(POOL_REDZONE_SIZE > 1); 3002 3003 #ifndef KASAN 3004 static inline uint8_t 3005 pool_pattern_generate(const void *p) 3006 { 3007 return (uint8_t)(((uintptr_t)p) * PRIME 3008 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT); 3009 } 3010 #endif 3011 3012 static void 3013 pool_redzone_init(struct pool *pp, size_t requested_size) 3014 { 3015 size_t redzsz; 3016 size_t nsz; 3017 3018 #ifdef KASAN 3019 redzsz = requested_size; 3020 kasan_add_redzone(&redzsz); 3021 redzsz -= requested_size; 3022 #else 3023 redzsz = POOL_REDZONE_SIZE; 3024 #endif 3025 3026 if (pp->pr_roflags & PR_NOTOUCH) { 3027 pp->pr_redzone = false; 3028 return; 3029 } 3030 3031 /* 3032 * We may have extended the requested size earlier; check if 3033 * there's naturally space in the padding for a red zone. 3034 */ 3035 if (pp->pr_size - requested_size >= redzsz) { 3036 pp->pr_reqsize_with_redzone = requested_size + redzsz; 3037 pp->pr_redzone = true; 3038 return; 3039 } 3040 3041 /* 3042 * No space in the natural padding; check if we can extend a 3043 * bit the size of the pool. 3044 */ 3045 nsz = roundup(pp->pr_size + redzsz, pp->pr_align); 3046 if (nsz <= pp->pr_alloc->pa_pagesz) { 3047 /* Ok, we can */ 3048 pp->pr_size = nsz; 3049 pp->pr_reqsize_with_redzone = requested_size + redzsz; 3050 pp->pr_redzone = true; 3051 } else { 3052 /* No space for a red zone... snif :'( */ 3053 pp->pr_redzone = false; 3054 printf("pool redzone disabled for '%s'\n", pp->pr_wchan); 3055 } 3056 } 3057 3058 static void 3059 pool_redzone_fill(struct pool *pp, void *p) 3060 { 3061 if (!pp->pr_redzone) 3062 return; 3063 #ifdef KASAN 3064 kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone, 3065 KASAN_POOL_REDZONE); 3066 #else 3067 uint8_t *cp, pat; 3068 const uint8_t *ep; 3069 3070 cp = (uint8_t *)p + pp->pr_reqsize; 3071 ep = cp + POOL_REDZONE_SIZE; 3072 3073 /* 3074 * We really don't want the first byte of the red zone to be '\0'; 3075 * an off-by-one in a string may not be properly detected. 3076 */ 3077 pat = pool_pattern_generate(cp); 3078 *cp = (pat == '\0') ? STATIC_BYTE: pat; 3079 cp++; 3080 3081 while (cp < ep) { 3082 *cp = pool_pattern_generate(cp); 3083 cp++; 3084 } 3085 #endif 3086 } 3087 3088 static void 3089 pool_redzone_check(struct pool *pp, void *p) 3090 { 3091 if (!pp->pr_redzone) 3092 return; 3093 #ifdef KASAN 3094 kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED); 3095 #else 3096 uint8_t *cp, pat, expected; 3097 const uint8_t *ep; 3098 3099 cp = (uint8_t *)p + pp->pr_reqsize; 3100 ep = cp + POOL_REDZONE_SIZE; 3101 3102 pat = pool_pattern_generate(cp); 3103 expected = (pat == '\0') ? STATIC_BYTE: pat; 3104 if (__predict_false(*cp != expected)) { 3105 panic("%s: [%s] 0x%02x != 0x%02x", __func__, 3106 pp->pr_wchan, *cp, expected); 3107 } 3108 cp++; 3109 3110 while (cp < ep) { 3111 expected = pool_pattern_generate(cp); 3112 if (__predict_false(*cp != expected)) { 3113 panic("%s: [%s] 0x%02x != 0x%02x", __func__, 3114 pp->pr_wchan, *cp, expected); 3115 } 3116 cp++; 3117 } 3118 #endif 3119 } 3120 3121 static void 3122 pool_cache_redzone_check(pool_cache_t pc, void *p) 3123 { 3124 #ifdef KASAN 3125 /* If there is a ctor/dtor, leave the data as valid. */ 3126 if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) { 3127 return; 3128 } 3129 #endif 3130 pool_redzone_check(&pc->pc_pool, p); 3131 } 3132 3133 #endif /* POOL_REDZONE */ 3134 3135 #if defined(DDB) 3136 static bool 3137 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 3138 { 3139 3140 return (uintptr_t)ph->ph_page <= addr && 3141 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz; 3142 } 3143 3144 static bool 3145 pool_in_item(struct pool *pp, void *item, uintptr_t addr) 3146 { 3147 3148 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size; 3149 } 3150 3151 static bool 3152 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr) 3153 { 3154 int i; 3155 3156 if (pcg == NULL) { 3157 return false; 3158 } 3159 for (i = 0; i < pcg->pcg_avail; i++) { 3160 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) { 3161 return true; 3162 } 3163 } 3164 return false; 3165 } 3166 3167 static bool 3168 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 3169 { 3170 3171 if ((pp->pr_roflags & PR_USEBMAP) != 0) { 3172 unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr); 3173 pool_item_bitmap_t *bitmap = 3174 ph->ph_bitmap + (idx / BITMAP_SIZE); 3175 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 3176 3177 return (*bitmap & mask) == 0; 3178 } else { 3179 struct pool_item *pi; 3180 3181 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 3182 if (pool_in_item(pp, pi, addr)) { 3183 return false; 3184 } 3185 } 3186 return true; 3187 } 3188 } 3189 3190 void 3191 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 3192 { 3193 struct pool *pp; 3194 3195 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 3196 struct pool_item_header *ph; 3197 uintptr_t item; 3198 bool allocated = true; 3199 bool incache = false; 3200 bool incpucache = false; 3201 char cpucachestr[32]; 3202 3203 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 3204 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 3205 if (pool_in_page(pp, ph, addr)) { 3206 goto found; 3207 } 3208 } 3209 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 3210 if (pool_in_page(pp, ph, addr)) { 3211 allocated = 3212 pool_allocated(pp, ph, addr); 3213 goto found; 3214 } 3215 } 3216 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 3217 if (pool_in_page(pp, ph, addr)) { 3218 allocated = false; 3219 goto found; 3220 } 3221 } 3222 continue; 3223 } else { 3224 ph = pr_find_pagehead_noalign(pp, (void *)addr); 3225 if (ph == NULL || !pool_in_page(pp, ph, addr)) { 3226 continue; 3227 } 3228 allocated = pool_allocated(pp, ph, addr); 3229 } 3230 found: 3231 if (allocated && pp->pr_cache) { 3232 pool_cache_t pc = pp->pr_cache; 3233 struct pool_cache_group *pcg; 3234 int i; 3235 3236 for (pcg = pc->pc_fullgroups; pcg != NULL; 3237 pcg = pcg->pcg_next) { 3238 if (pool_in_cg(pp, pcg, addr)) { 3239 incache = true; 3240 goto print; 3241 } 3242 } 3243 for (i = 0; i < __arraycount(pc->pc_cpus); i++) { 3244 pool_cache_cpu_t *cc; 3245 3246 if ((cc = pc->pc_cpus[i]) == NULL) { 3247 continue; 3248 } 3249 if (pool_in_cg(pp, cc->cc_current, addr) || 3250 pool_in_cg(pp, cc->cc_previous, addr)) { 3251 struct cpu_info *ci = 3252 cpu_lookup(i); 3253 3254 incpucache = true; 3255 snprintf(cpucachestr, 3256 sizeof(cpucachestr), 3257 "cached by CPU %u", 3258 ci->ci_index); 3259 goto print; 3260 } 3261 } 3262 } 3263 print: 3264 item = (uintptr_t)ph->ph_page + ph->ph_off; 3265 item = item + rounddown(addr - item, pp->pr_size); 3266 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n", 3267 (void *)addr, item, (size_t)(addr - item), 3268 pp->pr_wchan, 3269 incpucache ? cpucachestr : 3270 incache ? "cached" : allocated ? "allocated" : "free"); 3271 } 3272 } 3273 #endif /* defined(DDB) */ 3274 3275 static int 3276 pool_sysctl(SYSCTLFN_ARGS) 3277 { 3278 struct pool_sysctl data; 3279 struct pool *pp; 3280 struct pool_cache *pc; 3281 pool_cache_cpu_t *cc; 3282 int error; 3283 size_t i, written; 3284 3285 if (oldp == NULL) { 3286 *oldlenp = 0; 3287 TAILQ_FOREACH(pp, &pool_head, pr_poollist) 3288 *oldlenp += sizeof(data); 3289 return 0; 3290 } 3291 3292 memset(&data, 0, sizeof(data)); 3293 error = 0; 3294 written = 0; 3295 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 3296 if (written + sizeof(data) > *oldlenp) 3297 break; 3298 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan)); 3299 data.pr_pagesize = pp->pr_alloc->pa_pagesz; 3300 data.pr_flags = pp->pr_roflags | pp->pr_flags; 3301 #define COPY(field) data.field = pp->field 3302 COPY(pr_size); 3303 3304 COPY(pr_itemsperpage); 3305 COPY(pr_nitems); 3306 COPY(pr_nout); 3307 COPY(pr_hardlimit); 3308 COPY(pr_npages); 3309 COPY(pr_minpages); 3310 COPY(pr_maxpages); 3311 3312 COPY(pr_nget); 3313 COPY(pr_nfail); 3314 COPY(pr_nput); 3315 COPY(pr_npagealloc); 3316 COPY(pr_npagefree); 3317 COPY(pr_hiwat); 3318 COPY(pr_nidle); 3319 #undef COPY 3320 3321 data.pr_cache_nmiss_pcpu = 0; 3322 data.pr_cache_nhit_pcpu = 0; 3323 if (pp->pr_cache) { 3324 pc = pp->pr_cache; 3325 data.pr_cache_meta_size = pc->pc_pcgsize; 3326 data.pr_cache_nfull = pc->pc_nfull; 3327 data.pr_cache_npartial = pc->pc_npart; 3328 data.pr_cache_nempty = pc->pc_nempty; 3329 data.pr_cache_ncontended = pc->pc_contended; 3330 data.pr_cache_nmiss_global = pc->pc_misses; 3331 data.pr_cache_nhit_global = pc->pc_hits; 3332 for (i = 0; i < pc->pc_ncpu; ++i) { 3333 cc = pc->pc_cpus[i]; 3334 if (cc == NULL) 3335 continue; 3336 data.pr_cache_nmiss_pcpu += cc->cc_misses; 3337 data.pr_cache_nhit_pcpu += cc->cc_hits; 3338 } 3339 } else { 3340 data.pr_cache_meta_size = 0; 3341 data.pr_cache_nfull = 0; 3342 data.pr_cache_npartial = 0; 3343 data.pr_cache_nempty = 0; 3344 data.pr_cache_ncontended = 0; 3345 data.pr_cache_nmiss_global = 0; 3346 data.pr_cache_nhit_global = 0; 3347 } 3348 3349 error = sysctl_copyout(l, &data, oldp, sizeof(data)); 3350 if (error) 3351 break; 3352 written += sizeof(data); 3353 oldp = (char *)oldp + sizeof(data); 3354 } 3355 3356 *oldlenp = written; 3357 return error; 3358 } 3359 3360 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup") 3361 { 3362 const struct sysctlnode *rnode = NULL; 3363 3364 sysctl_createv(clog, 0, NULL, &rnode, 3365 CTLFLAG_PERMANENT, 3366 CTLTYPE_STRUCT, "pool", 3367 SYSCTL_DESCR("Get pool statistics"), 3368 pool_sysctl, 0, NULL, 0, 3369 CTL_KERN, CTL_CREATE, CTL_EOL); 3370 } 3371