1 /* $NetBSD: subr_pool.c,v 1.152 2008/03/02 12:19:58 yamt Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 9 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 #include <sys/cdefs.h> 41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.152 2008/03/02 12:19:58 yamt Exp $"); 42 43 #include "opt_ddb.h" 44 #include "opt_pool.h" 45 #include "opt_poollog.h" 46 #include "opt_lockdebug.h" 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/bitops.h> 51 #include <sys/proc.h> 52 #include <sys/errno.h> 53 #include <sys/kernel.h> 54 #include <sys/malloc.h> 55 #include <sys/pool.h> 56 #include <sys/syslog.h> 57 #include <sys/debug.h> 58 #include <sys/lockdebug.h> 59 #include <sys/xcall.h> 60 #include <sys/cpu.h> 61 #include <sys/atomic.h> 62 63 #include <uvm/uvm.h> 64 65 /* 66 * Pool resource management utility. 67 * 68 * Memory is allocated in pages which are split into pieces according to 69 * the pool item size. Each page is kept on one of three lists in the 70 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', 71 * for empty, full and partially-full pages respectively. The individual 72 * pool items are on a linked list headed by `ph_itemlist' in each page 73 * header. The memory for building the page list is either taken from 74 * the allocated pages themselves (for small pool items) or taken from 75 * an internal pool of page headers (`phpool'). 76 */ 77 78 /* List of all pools */ 79 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 80 81 /* Private pool for page header structures */ 82 #define PHPOOL_MAX 8 83 static struct pool phpool[PHPOOL_MAX]; 84 #define PHPOOL_FREELIST_NELEM(idx) \ 85 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx))) 86 87 #ifdef POOL_SUBPAGE 88 /* Pool of subpages for use by normal pools. */ 89 static struct pool psppool; 90 #endif 91 92 static SLIST_HEAD(, pool_allocator) pa_deferinitq = 93 SLIST_HEAD_INITIALIZER(pa_deferinitq); 94 95 static void *pool_page_alloc_meta(struct pool *, int); 96 static void pool_page_free_meta(struct pool *, void *); 97 98 /* allocator for pool metadata */ 99 struct pool_allocator pool_allocator_meta = { 100 pool_page_alloc_meta, pool_page_free_meta, 101 .pa_backingmapptr = &kmem_map, 102 }; 103 104 /* # of seconds to retain page after last use */ 105 int pool_inactive_time = 10; 106 107 /* Next candidate for drainage (see pool_drain()) */ 108 static struct pool *drainpp; 109 110 /* This lock protects both pool_head and drainpp. */ 111 static kmutex_t pool_head_lock; 112 static kcondvar_t pool_busy; 113 114 typedef uint32_t pool_item_bitmap_t; 115 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t)) 116 #define BITMAP_MASK (BITMAP_SIZE - 1) 117 118 struct pool_item_header { 119 /* Page headers */ 120 LIST_ENTRY(pool_item_header) 121 ph_pagelist; /* pool page list */ 122 SPLAY_ENTRY(pool_item_header) 123 ph_node; /* Off-page page headers */ 124 void * ph_page; /* this page's address */ 125 uint32_t ph_time; /* last referenced */ 126 uint16_t ph_nmissing; /* # of chunks in use */ 127 uint16_t ph_off; /* start offset in page */ 128 union { 129 /* !PR_NOTOUCH */ 130 struct { 131 LIST_HEAD(, pool_item) 132 phu_itemlist; /* chunk list for this page */ 133 } phu_normal; 134 /* PR_NOTOUCH */ 135 struct { 136 pool_item_bitmap_t phu_bitmap[1]; 137 } phu_notouch; 138 } ph_u; 139 }; 140 #define ph_itemlist ph_u.phu_normal.phu_itemlist 141 #define ph_bitmap ph_u.phu_notouch.phu_bitmap 142 143 struct pool_item { 144 #ifdef DIAGNOSTIC 145 u_int pi_magic; 146 #endif 147 #define PI_MAGIC 0xdeaddeadU 148 /* Other entries use only this list entry */ 149 LIST_ENTRY(pool_item) pi_list; 150 }; 151 152 #define POOL_NEEDS_CATCHUP(pp) \ 153 ((pp)->pr_nitems < (pp)->pr_minitems) 154 155 /* 156 * Pool cache management. 157 * 158 * Pool caches provide a way for constructed objects to be cached by the 159 * pool subsystem. This can lead to performance improvements by avoiding 160 * needless object construction/destruction; it is deferred until absolutely 161 * necessary. 162 * 163 * Caches are grouped into cache groups. Each cache group references up 164 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an 165 * object from the pool, it calls the object's constructor and places it 166 * into a cache group. When a cache group frees an object back to the 167 * pool, it first calls the object's destructor. This allows the object 168 * to persist in constructed form while freed to the cache. 169 * 170 * The pool references each cache, so that when a pool is drained by the 171 * pagedaemon, it can drain each individual cache as well. Each time a 172 * cache is drained, the most idle cache group is freed to the pool in 173 * its entirety. 174 * 175 * Pool caches are layed on top of pools. By layering them, we can avoid 176 * the complexity of cache management for pools which would not benefit 177 * from it. 178 */ 179 180 static struct pool pcg_normal_pool; 181 static struct pool pcg_large_pool; 182 static struct pool cache_pool; 183 static struct pool cache_cpu_pool; 184 185 /* List of all caches. */ 186 TAILQ_HEAD(,pool_cache) pool_cache_head = 187 TAILQ_HEAD_INITIALIZER(pool_cache_head); 188 189 int pool_cache_disable; 190 191 192 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *, 193 void *, paddr_t); 194 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *, 195 void **, paddr_t *, int); 196 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t); 197 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *); 198 static void pool_cache_xcall(pool_cache_t); 199 200 static int pool_catchup(struct pool *); 201 static void pool_prime_page(struct pool *, void *, 202 struct pool_item_header *); 203 static void pool_update_curpage(struct pool *); 204 205 static int pool_grow(struct pool *, int); 206 static void *pool_allocator_alloc(struct pool *, int); 207 static void pool_allocator_free(struct pool *, void *); 208 209 static void pool_print_pagelist(struct pool *, struct pool_pagelist *, 210 void (*)(const char *, ...)); 211 static void pool_print1(struct pool *, const char *, 212 void (*)(const char *, ...)); 213 214 static int pool_chk_page(struct pool *, const char *, 215 struct pool_item_header *); 216 217 /* 218 * Pool log entry. An array of these is allocated in pool_init(). 219 */ 220 struct pool_log { 221 const char *pl_file; 222 long pl_line; 223 int pl_action; 224 #define PRLOG_GET 1 225 #define PRLOG_PUT 2 226 void *pl_addr; 227 }; 228 229 #ifdef POOL_DIAGNOSTIC 230 /* Number of entries in pool log buffers */ 231 #ifndef POOL_LOGSIZE 232 #define POOL_LOGSIZE 10 233 #endif 234 235 int pool_logsize = POOL_LOGSIZE; 236 237 static inline void 238 pr_log(struct pool *pp, void *v, int action, const char *file, long line) 239 { 240 int n = pp->pr_curlogentry; 241 struct pool_log *pl; 242 243 if ((pp->pr_roflags & PR_LOGGING) == 0) 244 return; 245 246 /* 247 * Fill in the current entry. Wrap around and overwrite 248 * the oldest entry if necessary. 249 */ 250 pl = &pp->pr_log[n]; 251 pl->pl_file = file; 252 pl->pl_line = line; 253 pl->pl_action = action; 254 pl->pl_addr = v; 255 if (++n >= pp->pr_logsize) 256 n = 0; 257 pp->pr_curlogentry = n; 258 } 259 260 static void 261 pr_printlog(struct pool *pp, struct pool_item *pi, 262 void (*pr)(const char *, ...)) 263 { 264 int i = pp->pr_logsize; 265 int n = pp->pr_curlogentry; 266 267 if ((pp->pr_roflags & PR_LOGGING) == 0) 268 return; 269 270 /* 271 * Print all entries in this pool's log. 272 */ 273 while (i-- > 0) { 274 struct pool_log *pl = &pp->pr_log[n]; 275 if (pl->pl_action != 0) { 276 if (pi == NULL || pi == pl->pl_addr) { 277 (*pr)("\tlog entry %d:\n", i); 278 (*pr)("\t\taction = %s, addr = %p\n", 279 pl->pl_action == PRLOG_GET ? "get" : "put", 280 pl->pl_addr); 281 (*pr)("\t\tfile: %s at line %lu\n", 282 pl->pl_file, pl->pl_line); 283 } 284 } 285 if (++n >= pp->pr_logsize) 286 n = 0; 287 } 288 } 289 290 static inline void 291 pr_enter(struct pool *pp, const char *file, long line) 292 { 293 294 if (__predict_false(pp->pr_entered_file != NULL)) { 295 printf("pool %s: reentrancy at file %s line %ld\n", 296 pp->pr_wchan, file, line); 297 printf(" previous entry at file %s line %ld\n", 298 pp->pr_entered_file, pp->pr_entered_line); 299 panic("pr_enter"); 300 } 301 302 pp->pr_entered_file = file; 303 pp->pr_entered_line = line; 304 } 305 306 static inline void 307 pr_leave(struct pool *pp) 308 { 309 310 if (__predict_false(pp->pr_entered_file == NULL)) { 311 printf("pool %s not entered?\n", pp->pr_wchan); 312 panic("pr_leave"); 313 } 314 315 pp->pr_entered_file = NULL; 316 pp->pr_entered_line = 0; 317 } 318 319 static inline void 320 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...)) 321 { 322 323 if (pp->pr_entered_file != NULL) 324 (*pr)("\n\tcurrently entered from file %s line %ld\n", 325 pp->pr_entered_file, pp->pr_entered_line); 326 } 327 #else 328 #define pr_log(pp, v, action, file, line) 329 #define pr_printlog(pp, pi, pr) 330 #define pr_enter(pp, file, line) 331 #define pr_leave(pp) 332 #define pr_enter_check(pp, pr) 333 #endif /* POOL_DIAGNOSTIC */ 334 335 static inline unsigned int 336 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph, 337 const void *v) 338 { 339 const char *cp = v; 340 unsigned int idx; 341 342 KASSERT(pp->pr_roflags & PR_NOTOUCH); 343 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size; 344 KASSERT(idx < pp->pr_itemsperpage); 345 return idx; 346 } 347 348 static inline void 349 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph, 350 void *obj) 351 { 352 unsigned int idx = pr_item_notouch_index(pp, ph, obj); 353 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE); 354 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 355 356 KASSERT((*bitmap & mask) == 0); 357 *bitmap |= mask; 358 } 359 360 static inline void * 361 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph) 362 { 363 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 364 unsigned int idx; 365 int i; 366 367 for (i = 0; ; i++) { 368 int bit; 369 370 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage); 371 bit = ffs32(bitmap[i]); 372 if (bit) { 373 pool_item_bitmap_t mask; 374 375 bit--; 376 idx = (i * BITMAP_SIZE) + bit; 377 mask = 1 << bit; 378 KASSERT((bitmap[i] & mask) != 0); 379 bitmap[i] &= ~mask; 380 break; 381 } 382 } 383 KASSERT(idx < pp->pr_itemsperpage); 384 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size; 385 } 386 387 static inline void 388 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph) 389 { 390 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 391 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE); 392 int i; 393 394 for (i = 0; i < n; i++) { 395 bitmap[i] = (pool_item_bitmap_t)-1; 396 } 397 } 398 399 static inline int 400 phtree_compare(struct pool_item_header *a, struct pool_item_header *b) 401 { 402 403 /* 404 * we consider pool_item_header with smaller ph_page bigger. 405 * (this unnatural ordering is for the benefit of pr_find_pagehead.) 406 */ 407 408 if (a->ph_page < b->ph_page) 409 return (1); 410 else if (a->ph_page > b->ph_page) 411 return (-1); 412 else 413 return (0); 414 } 415 416 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare); 417 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare); 418 419 static inline struct pool_item_header * 420 pr_find_pagehead_noalign(struct pool *pp, void *v) 421 { 422 struct pool_item_header *ph, tmp; 423 424 tmp.ph_page = (void *)(uintptr_t)v; 425 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 426 if (ph == NULL) { 427 ph = SPLAY_ROOT(&pp->pr_phtree); 428 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) { 429 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph); 430 } 431 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0); 432 } 433 434 return ph; 435 } 436 437 /* 438 * Return the pool page header based on item address. 439 */ 440 static inline struct pool_item_header * 441 pr_find_pagehead(struct pool *pp, void *v) 442 { 443 struct pool_item_header *ph, tmp; 444 445 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 446 ph = pr_find_pagehead_noalign(pp, v); 447 } else { 448 void *page = 449 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask); 450 451 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 452 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset); 453 } else { 454 tmp.ph_page = page; 455 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 456 } 457 } 458 459 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) || 460 ((char *)ph->ph_page <= (char *)v && 461 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz)); 462 return ph; 463 } 464 465 static void 466 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq) 467 { 468 struct pool_item_header *ph; 469 470 while ((ph = LIST_FIRST(pq)) != NULL) { 471 LIST_REMOVE(ph, ph_pagelist); 472 pool_allocator_free(pp, ph->ph_page); 473 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 474 pool_put(pp->pr_phpool, ph); 475 } 476 } 477 478 /* 479 * Remove a page from the pool. 480 */ 481 static inline void 482 pr_rmpage(struct pool *pp, struct pool_item_header *ph, 483 struct pool_pagelist *pq) 484 { 485 486 KASSERT(mutex_owned(&pp->pr_lock)); 487 488 /* 489 * If the page was idle, decrement the idle page count. 490 */ 491 if (ph->ph_nmissing == 0) { 492 #ifdef DIAGNOSTIC 493 if (pp->pr_nidle == 0) 494 panic("pr_rmpage: nidle inconsistent"); 495 if (pp->pr_nitems < pp->pr_itemsperpage) 496 panic("pr_rmpage: nitems inconsistent"); 497 #endif 498 pp->pr_nidle--; 499 } 500 501 pp->pr_nitems -= pp->pr_itemsperpage; 502 503 /* 504 * Unlink the page from the pool and queue it for release. 505 */ 506 LIST_REMOVE(ph, ph_pagelist); 507 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 508 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph); 509 LIST_INSERT_HEAD(pq, ph, ph_pagelist); 510 511 pp->pr_npages--; 512 pp->pr_npagefree++; 513 514 pool_update_curpage(pp); 515 } 516 517 static bool 518 pa_starved_p(struct pool_allocator *pa) 519 { 520 521 if (pa->pa_backingmap != NULL) { 522 return vm_map_starved_p(pa->pa_backingmap); 523 } 524 return false; 525 } 526 527 static int 528 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg) 529 { 530 struct pool *pp = obj; 531 struct pool_allocator *pa = pp->pr_alloc; 532 533 KASSERT(&pp->pr_reclaimerentry == ce); 534 pool_reclaim(pp); 535 if (!pa_starved_p(pa)) { 536 return CALLBACK_CHAIN_ABORT; 537 } 538 return CALLBACK_CHAIN_CONTINUE; 539 } 540 541 static void 542 pool_reclaim_register(struct pool *pp) 543 { 544 struct vm_map *map = pp->pr_alloc->pa_backingmap; 545 int s; 546 547 if (map == NULL) { 548 return; 549 } 550 551 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */ 552 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback, 553 &pp->pr_reclaimerentry, pp, pool_reclaim_callback); 554 splx(s); 555 } 556 557 static void 558 pool_reclaim_unregister(struct pool *pp) 559 { 560 struct vm_map *map = pp->pr_alloc->pa_backingmap; 561 int s; 562 563 if (map == NULL) { 564 return; 565 } 566 567 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */ 568 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback, 569 &pp->pr_reclaimerentry); 570 splx(s); 571 } 572 573 static void 574 pa_reclaim_register(struct pool_allocator *pa) 575 { 576 struct vm_map *map = *pa->pa_backingmapptr; 577 struct pool *pp; 578 579 KASSERT(pa->pa_backingmap == NULL); 580 if (map == NULL) { 581 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q); 582 return; 583 } 584 pa->pa_backingmap = map; 585 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) { 586 pool_reclaim_register(pp); 587 } 588 } 589 590 /* 591 * Initialize all the pools listed in the "pools" link set. 592 */ 593 void 594 pool_subsystem_init(void) 595 { 596 struct pool_allocator *pa; 597 __link_set_decl(pools, struct link_pool_init); 598 struct link_pool_init * const *pi; 599 600 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE); 601 cv_init(&pool_busy, "poolbusy"); 602 603 __link_set_foreach(pi, pools) 604 pool_init((*pi)->pp, (*pi)->size, (*pi)->align, 605 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan, 606 (*pi)->palloc, (*pi)->ipl); 607 608 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) { 609 KASSERT(pa->pa_backingmapptr != NULL); 610 KASSERT(*pa->pa_backingmapptr != NULL); 611 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q); 612 pa_reclaim_register(pa); 613 } 614 615 pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE, 616 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE); 617 618 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE, 619 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE); 620 } 621 622 /* 623 * Initialize the given pool resource structure. 624 * 625 * We export this routine to allow other kernel parts to declare 626 * static pools that must be initialized before malloc() is available. 627 */ 628 void 629 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 630 const char *wchan, struct pool_allocator *palloc, int ipl) 631 { 632 struct pool *pp1; 633 size_t trysize, phsize; 634 int off, slack; 635 636 #ifdef DEBUG 637 /* 638 * Check that the pool hasn't already been initialised and 639 * added to the list of all pools. 640 */ 641 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 642 if (pp == pp1) 643 panic("pool_init: pool %s already initialised", 644 wchan); 645 } 646 #endif 647 648 #ifdef POOL_DIAGNOSTIC 649 /* 650 * Always log if POOL_DIAGNOSTIC is defined. 651 */ 652 if (pool_logsize != 0) 653 flags |= PR_LOGGING; 654 #endif 655 656 if (palloc == NULL) 657 palloc = &pool_allocator_kmem; 658 #ifdef POOL_SUBPAGE 659 if (size > palloc->pa_pagesz) { 660 if (palloc == &pool_allocator_kmem) 661 palloc = &pool_allocator_kmem_fullpage; 662 else if (palloc == &pool_allocator_nointr) 663 palloc = &pool_allocator_nointr_fullpage; 664 } 665 #endif /* POOL_SUBPAGE */ 666 if ((palloc->pa_flags & PA_INITIALIZED) == 0) { 667 if (palloc->pa_pagesz == 0) 668 palloc->pa_pagesz = PAGE_SIZE; 669 670 TAILQ_INIT(&palloc->pa_list); 671 672 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM); 673 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1); 674 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1; 675 676 if (palloc->pa_backingmapptr != NULL) { 677 pa_reclaim_register(palloc); 678 } 679 palloc->pa_flags |= PA_INITIALIZED; 680 } 681 682 if (align == 0) 683 align = ALIGN(1); 684 685 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item)) 686 size = sizeof(struct pool_item); 687 688 size = roundup(size, align); 689 #ifdef DIAGNOSTIC 690 if (size > palloc->pa_pagesz) 691 panic("pool_init: pool item size (%zu) too large", size); 692 #endif 693 694 /* 695 * Initialize the pool structure. 696 */ 697 LIST_INIT(&pp->pr_emptypages); 698 LIST_INIT(&pp->pr_fullpages); 699 LIST_INIT(&pp->pr_partpages); 700 pp->pr_cache = NULL; 701 pp->pr_curpage = NULL; 702 pp->pr_npages = 0; 703 pp->pr_minitems = 0; 704 pp->pr_minpages = 0; 705 pp->pr_maxpages = UINT_MAX; 706 pp->pr_roflags = flags; 707 pp->pr_flags = 0; 708 pp->pr_size = size; 709 pp->pr_align = align; 710 pp->pr_wchan = wchan; 711 pp->pr_alloc = palloc; 712 pp->pr_nitems = 0; 713 pp->pr_nout = 0; 714 pp->pr_hardlimit = UINT_MAX; 715 pp->pr_hardlimit_warning = NULL; 716 pp->pr_hardlimit_ratecap.tv_sec = 0; 717 pp->pr_hardlimit_ratecap.tv_usec = 0; 718 pp->pr_hardlimit_warning_last.tv_sec = 0; 719 pp->pr_hardlimit_warning_last.tv_usec = 0; 720 pp->pr_drain_hook = NULL; 721 pp->pr_drain_hook_arg = NULL; 722 pp->pr_freecheck = NULL; 723 724 /* 725 * Decide whether to put the page header off page to avoid 726 * wasting too large a part of the page or too big item. 727 * Off-page page headers go on a hash table, so we can match 728 * a returned item with its header based on the page address. 729 * We use 1/16 of the page size and about 8 times of the item 730 * size as the threshold (XXX: tune) 731 * 732 * However, we'll put the header into the page if we can put 733 * it without wasting any items. 734 * 735 * Silently enforce `0 <= ioff < align'. 736 */ 737 pp->pr_itemoffset = ioff %= align; 738 /* See the comment below about reserved bytes. */ 739 trysize = palloc->pa_pagesz - ((align - ioff) % align); 740 phsize = ALIGN(sizeof(struct pool_item_header)); 741 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 && 742 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) || 743 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) { 744 /* Use the end of the page for the page header */ 745 pp->pr_roflags |= PR_PHINPAGE; 746 pp->pr_phoffset = off = palloc->pa_pagesz - phsize; 747 } else { 748 /* The page header will be taken from our page header pool */ 749 pp->pr_phoffset = 0; 750 off = palloc->pa_pagesz; 751 SPLAY_INIT(&pp->pr_phtree); 752 } 753 754 /* 755 * Alignment is to take place at `ioff' within the item. This means 756 * we must reserve up to `align - 1' bytes on the page to allow 757 * appropriate positioning of each item. 758 */ 759 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; 760 KASSERT(pp->pr_itemsperpage != 0); 761 if ((pp->pr_roflags & PR_NOTOUCH)) { 762 int idx; 763 764 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx); 765 idx++) { 766 /* nothing */ 767 } 768 if (idx >= PHPOOL_MAX) { 769 /* 770 * if you see this panic, consider to tweak 771 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM. 772 */ 773 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH", 774 pp->pr_wchan, pp->pr_itemsperpage); 775 } 776 pp->pr_phpool = &phpool[idx]; 777 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) { 778 pp->pr_phpool = &phpool[0]; 779 } 780 #if defined(DIAGNOSTIC) 781 else { 782 pp->pr_phpool = NULL; 783 } 784 #endif 785 786 /* 787 * Use the slack between the chunks and the page header 788 * for "cache coloring". 789 */ 790 slack = off - pp->pr_itemsperpage * pp->pr_size; 791 pp->pr_maxcolor = (slack / align) * align; 792 pp->pr_curcolor = 0; 793 794 pp->pr_nget = 0; 795 pp->pr_nfail = 0; 796 pp->pr_nput = 0; 797 pp->pr_npagealloc = 0; 798 pp->pr_npagefree = 0; 799 pp->pr_hiwat = 0; 800 pp->pr_nidle = 0; 801 pp->pr_refcnt = 0; 802 803 #ifdef POOL_DIAGNOSTIC 804 if (flags & PR_LOGGING) { 805 if (kmem_map == NULL || 806 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log), 807 M_TEMP, M_NOWAIT)) == NULL) 808 pp->pr_roflags &= ~PR_LOGGING; 809 pp->pr_curlogentry = 0; 810 pp->pr_logsize = pool_logsize; 811 } 812 #endif 813 814 pp->pr_entered_file = NULL; 815 pp->pr_entered_line = 0; 816 817 /* 818 * XXXAD hack to prevent IP input processing from blocking. 819 */ 820 if (ipl == IPL_SOFTNET) { 821 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, IPL_VM); 822 } else { 823 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl); 824 } 825 cv_init(&pp->pr_cv, wchan); 826 pp->pr_ipl = ipl; 827 828 /* 829 * Initialize private page header pool and cache magazine pool if we 830 * haven't done so yet. 831 * XXX LOCKING. 832 */ 833 if (phpool[0].pr_size == 0) { 834 int idx; 835 for (idx = 0; idx < PHPOOL_MAX; idx++) { 836 static char phpool_names[PHPOOL_MAX][6+1+6+1]; 837 int nelem; 838 size_t sz; 839 840 nelem = PHPOOL_FREELIST_NELEM(idx); 841 snprintf(phpool_names[idx], sizeof(phpool_names[idx]), 842 "phpool-%d", nelem); 843 sz = sizeof(struct pool_item_header); 844 if (nelem) { 845 sz = offsetof(struct pool_item_header, 846 ph_bitmap[howmany(nelem, BITMAP_SIZE)]); 847 } 848 pool_init(&phpool[idx], sz, 0, 0, 0, 849 phpool_names[idx], &pool_allocator_meta, IPL_VM); 850 } 851 #ifdef POOL_SUBPAGE 852 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0, 853 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM); 854 #endif 855 856 size = sizeof(pcg_t) + 857 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t); 858 pool_init(&pcg_normal_pool, size, CACHE_LINE_SIZE, 0, 0, 859 "pcgnormal", &pool_allocator_meta, IPL_VM); 860 861 size = sizeof(pcg_t) + 862 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t); 863 pool_init(&pcg_large_pool, size, CACHE_LINE_SIZE, 0, 0, 864 "pcglarge", &pool_allocator_meta, IPL_VM); 865 } 866 867 /* Insert into the list of all pools. */ 868 if (__predict_true(!cold)) 869 mutex_enter(&pool_head_lock); 870 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 871 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0) 872 break; 873 } 874 if (pp1 == NULL) 875 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 876 else 877 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist); 878 if (__predict_true(!cold)) 879 mutex_exit(&pool_head_lock); 880 881 /* Insert this into the list of pools using this allocator. */ 882 if (__predict_true(!cold)) 883 mutex_enter(&palloc->pa_lock); 884 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list); 885 if (__predict_true(!cold)) 886 mutex_exit(&palloc->pa_lock); 887 888 pool_reclaim_register(pp); 889 } 890 891 /* 892 * De-commision a pool resource. 893 */ 894 void 895 pool_destroy(struct pool *pp) 896 { 897 struct pool_pagelist pq; 898 struct pool_item_header *ph; 899 900 /* Remove from global pool list */ 901 mutex_enter(&pool_head_lock); 902 while (pp->pr_refcnt != 0) 903 cv_wait(&pool_busy, &pool_head_lock); 904 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 905 if (drainpp == pp) 906 drainpp = NULL; 907 mutex_exit(&pool_head_lock); 908 909 /* Remove this pool from its allocator's list of pools. */ 910 pool_reclaim_unregister(pp); 911 mutex_enter(&pp->pr_alloc->pa_lock); 912 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list); 913 mutex_exit(&pp->pr_alloc->pa_lock); 914 915 mutex_enter(&pp->pr_lock); 916 917 KASSERT(pp->pr_cache == NULL); 918 919 #ifdef DIAGNOSTIC 920 if (pp->pr_nout != 0) { 921 pr_printlog(pp, NULL, printf); 922 panic("pool_destroy: pool busy: still out: %u", 923 pp->pr_nout); 924 } 925 #endif 926 927 KASSERT(LIST_EMPTY(&pp->pr_fullpages)); 928 KASSERT(LIST_EMPTY(&pp->pr_partpages)); 929 930 /* Remove all pages */ 931 LIST_INIT(&pq); 932 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 933 pr_rmpage(pp, ph, &pq); 934 935 mutex_exit(&pp->pr_lock); 936 937 pr_pagelist_free(pp, &pq); 938 939 #ifdef POOL_DIAGNOSTIC 940 if ((pp->pr_roflags & PR_LOGGING) != 0) 941 free(pp->pr_log, M_TEMP); 942 #endif 943 944 cv_destroy(&pp->pr_cv); 945 mutex_destroy(&pp->pr_lock); 946 } 947 948 void 949 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg) 950 { 951 952 /* XXX no locking -- must be used just after pool_init() */ 953 #ifdef DIAGNOSTIC 954 if (pp->pr_drain_hook != NULL) 955 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan); 956 #endif 957 pp->pr_drain_hook = fn; 958 pp->pr_drain_hook_arg = arg; 959 } 960 961 static struct pool_item_header * 962 pool_alloc_item_header(struct pool *pp, void *storage, int flags) 963 { 964 struct pool_item_header *ph; 965 966 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 967 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset); 968 else 969 ph = pool_get(pp->pr_phpool, flags); 970 971 return (ph); 972 } 973 974 /* 975 * Grab an item from the pool. 976 */ 977 void * 978 #ifdef POOL_DIAGNOSTIC 979 _pool_get(struct pool *pp, int flags, const char *file, long line) 980 #else 981 pool_get(struct pool *pp, int flags) 982 #endif 983 { 984 struct pool_item *pi; 985 struct pool_item_header *ph; 986 void *v; 987 988 #ifdef DIAGNOSTIC 989 if (__predict_false(pp->pr_itemsperpage == 0)) 990 panic("pool_get: pool %p: pr_itemsperpage is zero, " 991 "pool not initialized?", pp); 992 if (__predict_false(curlwp == NULL && doing_shutdown == 0 && 993 (flags & PR_WAITOK) != 0)) 994 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan); 995 996 #endif /* DIAGNOSTIC */ 997 #ifdef LOCKDEBUG 998 if (flags & PR_WAITOK) 999 ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)"); 1000 #endif 1001 1002 mutex_enter(&pp->pr_lock); 1003 pr_enter(pp, file, line); 1004 1005 startover: 1006 /* 1007 * Check to see if we've reached the hard limit. If we have, 1008 * and we can wait, then wait until an item has been returned to 1009 * the pool. 1010 */ 1011 #ifdef DIAGNOSTIC 1012 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) { 1013 pr_leave(pp); 1014 mutex_exit(&pp->pr_lock); 1015 panic("pool_get: %s: crossed hard limit", pp->pr_wchan); 1016 } 1017 #endif 1018 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 1019 if (pp->pr_drain_hook != NULL) { 1020 /* 1021 * Since the drain hook is going to free things 1022 * back to the pool, unlock, call the hook, re-lock, 1023 * and check the hardlimit condition again. 1024 */ 1025 pr_leave(pp); 1026 mutex_exit(&pp->pr_lock); 1027 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 1028 mutex_enter(&pp->pr_lock); 1029 pr_enter(pp, file, line); 1030 if (pp->pr_nout < pp->pr_hardlimit) 1031 goto startover; 1032 } 1033 1034 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 1035 /* 1036 * XXX: A warning isn't logged in this case. Should 1037 * it be? 1038 */ 1039 pp->pr_flags |= PR_WANTED; 1040 pr_leave(pp); 1041 cv_wait(&pp->pr_cv, &pp->pr_lock); 1042 pr_enter(pp, file, line); 1043 goto startover; 1044 } 1045 1046 /* 1047 * Log a message that the hard limit has been hit. 1048 */ 1049 if (pp->pr_hardlimit_warning != NULL && 1050 ratecheck(&pp->pr_hardlimit_warning_last, 1051 &pp->pr_hardlimit_ratecap)) 1052 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 1053 1054 pp->pr_nfail++; 1055 1056 pr_leave(pp); 1057 mutex_exit(&pp->pr_lock); 1058 return (NULL); 1059 } 1060 1061 /* 1062 * The convention we use is that if `curpage' is not NULL, then 1063 * it points at a non-empty bucket. In particular, `curpage' 1064 * never points at a page header which has PR_PHINPAGE set and 1065 * has no items in its bucket. 1066 */ 1067 if ((ph = pp->pr_curpage) == NULL) { 1068 int error; 1069 1070 #ifdef DIAGNOSTIC 1071 if (pp->pr_nitems != 0) { 1072 mutex_exit(&pp->pr_lock); 1073 printf("pool_get: %s: curpage NULL, nitems %u\n", 1074 pp->pr_wchan, pp->pr_nitems); 1075 panic("pool_get: nitems inconsistent"); 1076 } 1077 #endif 1078 1079 /* 1080 * Call the back-end page allocator for more memory. 1081 * Release the pool lock, as the back-end page allocator 1082 * may block. 1083 */ 1084 pr_leave(pp); 1085 error = pool_grow(pp, flags); 1086 pr_enter(pp, file, line); 1087 if (error != 0) { 1088 /* 1089 * We were unable to allocate a page or item 1090 * header, but we released the lock during 1091 * allocation, so perhaps items were freed 1092 * back to the pool. Check for this case. 1093 */ 1094 if (pp->pr_curpage != NULL) 1095 goto startover; 1096 1097 pp->pr_nfail++; 1098 pr_leave(pp); 1099 mutex_exit(&pp->pr_lock); 1100 return (NULL); 1101 } 1102 1103 /* Start the allocation process over. */ 1104 goto startover; 1105 } 1106 if (pp->pr_roflags & PR_NOTOUCH) { 1107 #ifdef DIAGNOSTIC 1108 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) { 1109 pr_leave(pp); 1110 mutex_exit(&pp->pr_lock); 1111 panic("pool_get: %s: page empty", pp->pr_wchan); 1112 } 1113 #endif 1114 v = pr_item_notouch_get(pp, ph); 1115 #ifdef POOL_DIAGNOSTIC 1116 pr_log(pp, v, PRLOG_GET, file, line); 1117 #endif 1118 } else { 1119 v = pi = LIST_FIRST(&ph->ph_itemlist); 1120 if (__predict_false(v == NULL)) { 1121 pr_leave(pp); 1122 mutex_exit(&pp->pr_lock); 1123 panic("pool_get: %s: page empty", pp->pr_wchan); 1124 } 1125 #ifdef DIAGNOSTIC 1126 if (__predict_false(pp->pr_nitems == 0)) { 1127 pr_leave(pp); 1128 mutex_exit(&pp->pr_lock); 1129 printf("pool_get: %s: items on itemlist, nitems %u\n", 1130 pp->pr_wchan, pp->pr_nitems); 1131 panic("pool_get: nitems inconsistent"); 1132 } 1133 #endif 1134 1135 #ifdef POOL_DIAGNOSTIC 1136 pr_log(pp, v, PRLOG_GET, file, line); 1137 #endif 1138 1139 #ifdef DIAGNOSTIC 1140 if (__predict_false(pi->pi_magic != PI_MAGIC)) { 1141 pr_printlog(pp, pi, printf); 1142 panic("pool_get(%s): free list modified: " 1143 "magic=%x; page %p; item addr %p\n", 1144 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 1145 } 1146 #endif 1147 1148 /* 1149 * Remove from item list. 1150 */ 1151 LIST_REMOVE(pi, pi_list); 1152 } 1153 pp->pr_nitems--; 1154 pp->pr_nout++; 1155 if (ph->ph_nmissing == 0) { 1156 #ifdef DIAGNOSTIC 1157 if (__predict_false(pp->pr_nidle == 0)) 1158 panic("pool_get: nidle inconsistent"); 1159 #endif 1160 pp->pr_nidle--; 1161 1162 /* 1163 * This page was previously empty. Move it to the list of 1164 * partially-full pages. This page is already curpage. 1165 */ 1166 LIST_REMOVE(ph, ph_pagelist); 1167 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1168 } 1169 ph->ph_nmissing++; 1170 if (ph->ph_nmissing == pp->pr_itemsperpage) { 1171 #ifdef DIAGNOSTIC 1172 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 && 1173 !LIST_EMPTY(&ph->ph_itemlist))) { 1174 pr_leave(pp); 1175 mutex_exit(&pp->pr_lock); 1176 panic("pool_get: %s: nmissing inconsistent", 1177 pp->pr_wchan); 1178 } 1179 #endif 1180 /* 1181 * This page is now full. Move it to the full list 1182 * and select a new current page. 1183 */ 1184 LIST_REMOVE(ph, ph_pagelist); 1185 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist); 1186 pool_update_curpage(pp); 1187 } 1188 1189 pp->pr_nget++; 1190 pr_leave(pp); 1191 1192 /* 1193 * If we have a low water mark and we are now below that low 1194 * water mark, add more items to the pool. 1195 */ 1196 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1197 /* 1198 * XXX: Should we log a warning? Should we set up a timeout 1199 * to try again in a second or so? The latter could break 1200 * a caller's assumptions about interrupt protection, etc. 1201 */ 1202 } 1203 1204 mutex_exit(&pp->pr_lock); 1205 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0); 1206 FREECHECK_OUT(&pp->pr_freecheck, v); 1207 return (v); 1208 } 1209 1210 /* 1211 * Internal version of pool_put(). Pool is already locked/entered. 1212 */ 1213 static void 1214 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq) 1215 { 1216 struct pool_item *pi = v; 1217 struct pool_item_header *ph; 1218 1219 KASSERT(mutex_owned(&pp->pr_lock)); 1220 FREECHECK_IN(&pp->pr_freecheck, v); 1221 LOCKDEBUG_MEM_CHECK(v, pp->pr_size); 1222 1223 #ifdef DIAGNOSTIC 1224 if (__predict_false(pp->pr_nout == 0)) { 1225 printf("pool %s: putting with none out\n", 1226 pp->pr_wchan); 1227 panic("pool_put"); 1228 } 1229 #endif 1230 1231 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) { 1232 pr_printlog(pp, NULL, printf); 1233 panic("pool_put: %s: page header missing", pp->pr_wchan); 1234 } 1235 1236 /* 1237 * Return to item list. 1238 */ 1239 if (pp->pr_roflags & PR_NOTOUCH) { 1240 pr_item_notouch_put(pp, ph, v); 1241 } else { 1242 #ifdef DIAGNOSTIC 1243 pi->pi_magic = PI_MAGIC; 1244 #endif 1245 #ifdef DEBUG 1246 { 1247 int i, *ip = v; 1248 1249 for (i = 0; i < pp->pr_size / sizeof(int); i++) { 1250 *ip++ = PI_MAGIC; 1251 } 1252 } 1253 #endif 1254 1255 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1256 } 1257 KDASSERT(ph->ph_nmissing != 0); 1258 ph->ph_nmissing--; 1259 pp->pr_nput++; 1260 pp->pr_nitems++; 1261 pp->pr_nout--; 1262 1263 /* Cancel "pool empty" condition if it exists */ 1264 if (pp->pr_curpage == NULL) 1265 pp->pr_curpage = ph; 1266 1267 if (pp->pr_flags & PR_WANTED) { 1268 pp->pr_flags &= ~PR_WANTED; 1269 if (ph->ph_nmissing == 0) 1270 pp->pr_nidle++; 1271 cv_broadcast(&pp->pr_cv); 1272 return; 1273 } 1274 1275 /* 1276 * If this page is now empty, do one of two things: 1277 * 1278 * (1) If we have more pages than the page high water mark, 1279 * free the page back to the system. ONLY CONSIDER 1280 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE 1281 * CLAIM. 1282 * 1283 * (2) Otherwise, move the page to the empty page list. 1284 * 1285 * Either way, select a new current page (so we use a partially-full 1286 * page if one is available). 1287 */ 1288 if (ph->ph_nmissing == 0) { 1289 pp->pr_nidle++; 1290 if (pp->pr_npages > pp->pr_minpages && 1291 pp->pr_npages > pp->pr_maxpages) { 1292 pr_rmpage(pp, ph, pq); 1293 } else { 1294 LIST_REMOVE(ph, ph_pagelist); 1295 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1296 1297 /* 1298 * Update the timestamp on the page. A page must 1299 * be idle for some period of time before it can 1300 * be reclaimed by the pagedaemon. This minimizes 1301 * ping-pong'ing for memory. 1302 * 1303 * note for 64-bit time_t: truncating to 32-bit is not 1304 * a problem for our usage. 1305 */ 1306 ph->ph_time = time_uptime; 1307 } 1308 pool_update_curpage(pp); 1309 } 1310 1311 /* 1312 * If the page was previously completely full, move it to the 1313 * partially-full list and make it the current page. The next 1314 * allocation will get the item from this page, instead of 1315 * further fragmenting the pool. 1316 */ 1317 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 1318 LIST_REMOVE(ph, ph_pagelist); 1319 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1320 pp->pr_curpage = ph; 1321 } 1322 } 1323 1324 /* 1325 * Return resource to the pool. 1326 */ 1327 #ifdef POOL_DIAGNOSTIC 1328 void 1329 _pool_put(struct pool *pp, void *v, const char *file, long line) 1330 { 1331 struct pool_pagelist pq; 1332 1333 LIST_INIT(&pq); 1334 1335 mutex_enter(&pp->pr_lock); 1336 pr_enter(pp, file, line); 1337 1338 pr_log(pp, v, PRLOG_PUT, file, line); 1339 1340 pool_do_put(pp, v, &pq); 1341 1342 pr_leave(pp); 1343 mutex_exit(&pp->pr_lock); 1344 1345 pr_pagelist_free(pp, &pq); 1346 } 1347 #undef pool_put 1348 #endif /* POOL_DIAGNOSTIC */ 1349 1350 void 1351 pool_put(struct pool *pp, void *v) 1352 { 1353 struct pool_pagelist pq; 1354 1355 LIST_INIT(&pq); 1356 1357 mutex_enter(&pp->pr_lock); 1358 pool_do_put(pp, v, &pq); 1359 mutex_exit(&pp->pr_lock); 1360 1361 pr_pagelist_free(pp, &pq); 1362 } 1363 1364 #ifdef POOL_DIAGNOSTIC 1365 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__) 1366 #endif 1367 1368 /* 1369 * pool_grow: grow a pool by a page. 1370 * 1371 * => called with pool locked. 1372 * => unlock and relock the pool. 1373 * => return with pool locked. 1374 */ 1375 1376 static int 1377 pool_grow(struct pool *pp, int flags) 1378 { 1379 struct pool_item_header *ph = NULL; 1380 char *cp; 1381 1382 mutex_exit(&pp->pr_lock); 1383 cp = pool_allocator_alloc(pp, flags); 1384 if (__predict_true(cp != NULL)) { 1385 ph = pool_alloc_item_header(pp, cp, flags); 1386 } 1387 if (__predict_false(cp == NULL || ph == NULL)) { 1388 if (cp != NULL) { 1389 pool_allocator_free(pp, cp); 1390 } 1391 mutex_enter(&pp->pr_lock); 1392 return ENOMEM; 1393 } 1394 1395 mutex_enter(&pp->pr_lock); 1396 pool_prime_page(pp, cp, ph); 1397 pp->pr_npagealloc++; 1398 return 0; 1399 } 1400 1401 /* 1402 * Add N items to the pool. 1403 */ 1404 int 1405 pool_prime(struct pool *pp, int n) 1406 { 1407 int newpages; 1408 int error = 0; 1409 1410 mutex_enter(&pp->pr_lock); 1411 1412 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1413 1414 while (newpages-- > 0) { 1415 error = pool_grow(pp, PR_NOWAIT); 1416 if (error) { 1417 break; 1418 } 1419 pp->pr_minpages++; 1420 } 1421 1422 if (pp->pr_minpages >= pp->pr_maxpages) 1423 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1424 1425 mutex_exit(&pp->pr_lock); 1426 return error; 1427 } 1428 1429 /* 1430 * Add a page worth of items to the pool. 1431 * 1432 * Note, we must be called with the pool descriptor LOCKED. 1433 */ 1434 static void 1435 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph) 1436 { 1437 struct pool_item *pi; 1438 void *cp = storage; 1439 const unsigned int align = pp->pr_align; 1440 const unsigned int ioff = pp->pr_itemoffset; 1441 int n; 1442 1443 KASSERT(mutex_owned(&pp->pr_lock)); 1444 1445 #ifdef DIAGNOSTIC 1446 if ((pp->pr_roflags & PR_NOALIGN) == 0 && 1447 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0) 1448 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan); 1449 #endif 1450 1451 /* 1452 * Insert page header. 1453 */ 1454 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1455 LIST_INIT(&ph->ph_itemlist); 1456 ph->ph_page = storage; 1457 ph->ph_nmissing = 0; 1458 ph->ph_time = time_uptime; 1459 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 1460 SPLAY_INSERT(phtree, &pp->pr_phtree, ph); 1461 1462 pp->pr_nidle++; 1463 1464 /* 1465 * Color this page. 1466 */ 1467 ph->ph_off = pp->pr_curcolor; 1468 cp = (char *)cp + ph->ph_off; 1469 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1470 pp->pr_curcolor = 0; 1471 1472 /* 1473 * Adjust storage to apply aligment to `pr_itemoffset' in each item. 1474 */ 1475 if (ioff != 0) 1476 cp = (char *)cp + align - ioff; 1477 1478 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); 1479 1480 /* 1481 * Insert remaining chunks on the bucket list. 1482 */ 1483 n = pp->pr_itemsperpage; 1484 pp->pr_nitems += n; 1485 1486 if (pp->pr_roflags & PR_NOTOUCH) { 1487 pr_item_notouch_init(pp, ph); 1488 } else { 1489 while (n--) { 1490 pi = (struct pool_item *)cp; 1491 1492 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0); 1493 1494 /* Insert on page list */ 1495 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1496 #ifdef DIAGNOSTIC 1497 pi->pi_magic = PI_MAGIC; 1498 #endif 1499 cp = (char *)cp + pp->pr_size; 1500 1501 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); 1502 } 1503 } 1504 1505 /* 1506 * If the pool was depleted, point at the new page. 1507 */ 1508 if (pp->pr_curpage == NULL) 1509 pp->pr_curpage = ph; 1510 1511 if (++pp->pr_npages > pp->pr_hiwat) 1512 pp->pr_hiwat = pp->pr_npages; 1513 } 1514 1515 /* 1516 * Used by pool_get() when nitems drops below the low water mark. This 1517 * is used to catch up pr_nitems with the low water mark. 1518 * 1519 * Note 1, we never wait for memory here, we let the caller decide what to do. 1520 * 1521 * Note 2, we must be called with the pool already locked, and we return 1522 * with it locked. 1523 */ 1524 static int 1525 pool_catchup(struct pool *pp) 1526 { 1527 int error = 0; 1528 1529 while (POOL_NEEDS_CATCHUP(pp)) { 1530 error = pool_grow(pp, PR_NOWAIT); 1531 if (error) { 1532 break; 1533 } 1534 } 1535 return error; 1536 } 1537 1538 static void 1539 pool_update_curpage(struct pool *pp) 1540 { 1541 1542 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages); 1543 if (pp->pr_curpage == NULL) { 1544 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages); 1545 } 1546 } 1547 1548 void 1549 pool_setlowat(struct pool *pp, int n) 1550 { 1551 1552 mutex_enter(&pp->pr_lock); 1553 1554 pp->pr_minitems = n; 1555 pp->pr_minpages = (n == 0) 1556 ? 0 1557 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1558 1559 /* Make sure we're caught up with the newly-set low water mark. */ 1560 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1561 /* 1562 * XXX: Should we log a warning? Should we set up a timeout 1563 * to try again in a second or so? The latter could break 1564 * a caller's assumptions about interrupt protection, etc. 1565 */ 1566 } 1567 1568 mutex_exit(&pp->pr_lock); 1569 } 1570 1571 void 1572 pool_sethiwat(struct pool *pp, int n) 1573 { 1574 1575 mutex_enter(&pp->pr_lock); 1576 1577 pp->pr_maxpages = (n == 0) 1578 ? 0 1579 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1580 1581 mutex_exit(&pp->pr_lock); 1582 } 1583 1584 void 1585 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) 1586 { 1587 1588 mutex_enter(&pp->pr_lock); 1589 1590 pp->pr_hardlimit = n; 1591 pp->pr_hardlimit_warning = warnmess; 1592 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1593 pp->pr_hardlimit_warning_last.tv_sec = 0; 1594 pp->pr_hardlimit_warning_last.tv_usec = 0; 1595 1596 /* 1597 * In-line version of pool_sethiwat(), because we don't want to 1598 * release the lock. 1599 */ 1600 pp->pr_maxpages = (n == 0) 1601 ? 0 1602 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1603 1604 mutex_exit(&pp->pr_lock); 1605 } 1606 1607 /* 1608 * Release all complete pages that have not been used recently. 1609 */ 1610 int 1611 #ifdef POOL_DIAGNOSTIC 1612 _pool_reclaim(struct pool *pp, const char *file, long line) 1613 #else 1614 pool_reclaim(struct pool *pp) 1615 #endif 1616 { 1617 struct pool_item_header *ph, *phnext; 1618 struct pool_pagelist pq; 1619 uint32_t curtime; 1620 bool klock; 1621 int rv; 1622 1623 if (pp->pr_drain_hook != NULL) { 1624 /* 1625 * The drain hook must be called with the pool unlocked. 1626 */ 1627 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT); 1628 } 1629 1630 /* 1631 * XXXSMP Because mutexes at IPL_SOFTXXX are still spinlocks, 1632 * and we are called from the pagedaemon without kernel_lock. 1633 * Does not apply to IPL_SOFTBIO. 1634 */ 1635 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK || 1636 pp->pr_ipl == IPL_SOFTSERIAL) { 1637 KERNEL_LOCK(1, NULL); 1638 klock = true; 1639 } else 1640 klock = false; 1641 1642 /* Reclaim items from the pool's cache (if any). */ 1643 if (pp->pr_cache != NULL) 1644 pool_cache_invalidate(pp->pr_cache); 1645 1646 if (mutex_tryenter(&pp->pr_lock) == 0) { 1647 if (klock) { 1648 KERNEL_UNLOCK_ONE(NULL); 1649 } 1650 return (0); 1651 } 1652 pr_enter(pp, file, line); 1653 1654 LIST_INIT(&pq); 1655 1656 curtime = time_uptime; 1657 1658 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { 1659 phnext = LIST_NEXT(ph, ph_pagelist); 1660 1661 /* Check our minimum page claim */ 1662 if (pp->pr_npages <= pp->pr_minpages) 1663 break; 1664 1665 KASSERT(ph->ph_nmissing == 0); 1666 if (curtime - ph->ph_time < pool_inactive_time 1667 && !pa_starved_p(pp->pr_alloc)) 1668 continue; 1669 1670 /* 1671 * If freeing this page would put us below 1672 * the low water mark, stop now. 1673 */ 1674 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1675 pp->pr_minitems) 1676 break; 1677 1678 pr_rmpage(pp, ph, &pq); 1679 } 1680 1681 pr_leave(pp); 1682 mutex_exit(&pp->pr_lock); 1683 1684 if (LIST_EMPTY(&pq)) 1685 rv = 0; 1686 else { 1687 pr_pagelist_free(pp, &pq); 1688 rv = 1; 1689 } 1690 1691 if (klock) { 1692 KERNEL_UNLOCK_ONE(NULL); 1693 } 1694 1695 return (rv); 1696 } 1697 1698 /* 1699 * Drain pools, one at a time. This is a two stage process; 1700 * drain_start kicks off a cross call to drain CPU-level caches 1701 * if the pool has an associated pool_cache. drain_end waits 1702 * for those cross calls to finish, and then drains the cache 1703 * (if any) and pool. 1704 * 1705 * Note, must never be called from interrupt context. 1706 */ 1707 void 1708 pool_drain_start(struct pool **ppp, uint64_t *wp) 1709 { 1710 struct pool *pp; 1711 1712 KASSERT(!TAILQ_EMPTY(&pool_head)); 1713 1714 pp = NULL; 1715 1716 /* Find next pool to drain, and add a reference. */ 1717 mutex_enter(&pool_head_lock); 1718 do { 1719 if (drainpp == NULL) { 1720 drainpp = TAILQ_FIRST(&pool_head); 1721 } 1722 if (drainpp != NULL) { 1723 pp = drainpp; 1724 drainpp = TAILQ_NEXT(pp, pr_poollist); 1725 } 1726 /* 1727 * Skip completely idle pools. We depend on at least 1728 * one pool in the system being active. 1729 */ 1730 } while (pp == NULL || pp->pr_npages == 0); 1731 pp->pr_refcnt++; 1732 mutex_exit(&pool_head_lock); 1733 1734 /* If there is a pool_cache, drain CPU level caches. */ 1735 *ppp = pp; 1736 if (pp->pr_cache != NULL) { 1737 *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, 1738 pp->pr_cache, NULL); 1739 } 1740 } 1741 1742 void 1743 pool_drain_end(struct pool *pp, uint64_t where) 1744 { 1745 1746 if (pp == NULL) 1747 return; 1748 1749 KASSERT(pp->pr_refcnt > 0); 1750 1751 /* Wait for remote draining to complete. */ 1752 if (pp->pr_cache != NULL) 1753 xc_wait(where); 1754 1755 /* Drain the cache (if any) and pool.. */ 1756 pool_reclaim(pp); 1757 1758 /* Finally, unlock the pool. */ 1759 mutex_enter(&pool_head_lock); 1760 pp->pr_refcnt--; 1761 cv_broadcast(&pool_busy); 1762 mutex_exit(&pool_head_lock); 1763 } 1764 1765 /* 1766 * Diagnostic helpers. 1767 */ 1768 void 1769 pool_print(struct pool *pp, const char *modif) 1770 { 1771 1772 pool_print1(pp, modif, printf); 1773 } 1774 1775 void 1776 pool_printall(const char *modif, void (*pr)(const char *, ...)) 1777 { 1778 struct pool *pp; 1779 1780 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1781 pool_printit(pp, modif, pr); 1782 } 1783 } 1784 1785 void 1786 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1787 { 1788 1789 if (pp == NULL) { 1790 (*pr)("Must specify a pool to print.\n"); 1791 return; 1792 } 1793 1794 pool_print1(pp, modif, pr); 1795 } 1796 1797 static void 1798 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl, 1799 void (*pr)(const char *, ...)) 1800 { 1801 struct pool_item_header *ph; 1802 #ifdef DIAGNOSTIC 1803 struct pool_item *pi; 1804 #endif 1805 1806 LIST_FOREACH(ph, pl, ph_pagelist) { 1807 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n", 1808 ph->ph_page, ph->ph_nmissing, ph->ph_time); 1809 #ifdef DIAGNOSTIC 1810 if (!(pp->pr_roflags & PR_NOTOUCH)) { 1811 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1812 if (pi->pi_magic != PI_MAGIC) { 1813 (*pr)("\t\t\titem %p, magic 0x%x\n", 1814 pi, pi->pi_magic); 1815 } 1816 } 1817 } 1818 #endif 1819 } 1820 } 1821 1822 static void 1823 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1824 { 1825 struct pool_item_header *ph; 1826 pool_cache_t pc; 1827 pcg_t *pcg; 1828 pool_cache_cpu_t *cc; 1829 uint64_t cpuhit, cpumiss; 1830 int i, print_log = 0, print_pagelist = 0, print_cache = 0; 1831 char c; 1832 1833 while ((c = *modif++) != '\0') { 1834 if (c == 'l') 1835 print_log = 1; 1836 if (c == 'p') 1837 print_pagelist = 1; 1838 if (c == 'c') 1839 print_cache = 1; 1840 } 1841 1842 if ((pc = pp->pr_cache) != NULL) { 1843 (*pr)("POOL CACHE"); 1844 } else { 1845 (*pr)("POOL"); 1846 } 1847 1848 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1849 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1850 pp->pr_roflags); 1851 (*pr)("\talloc %p\n", pp->pr_alloc); 1852 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1853 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1854 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1855 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1856 1857 (*pr)("\tnget %lu, nfail %lu, nput %lu\n", 1858 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1859 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1860 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1861 1862 if (print_pagelist == 0) 1863 goto skip_pagelist; 1864 1865 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1866 (*pr)("\n\tempty page list:\n"); 1867 pool_print_pagelist(pp, &pp->pr_emptypages, pr); 1868 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL) 1869 (*pr)("\n\tfull page list:\n"); 1870 pool_print_pagelist(pp, &pp->pr_fullpages, pr); 1871 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL) 1872 (*pr)("\n\tpartial-page list:\n"); 1873 pool_print_pagelist(pp, &pp->pr_partpages, pr); 1874 1875 if (pp->pr_curpage == NULL) 1876 (*pr)("\tno current page\n"); 1877 else 1878 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1879 1880 skip_pagelist: 1881 if (print_log == 0) 1882 goto skip_log; 1883 1884 (*pr)("\n"); 1885 if ((pp->pr_roflags & PR_LOGGING) == 0) 1886 (*pr)("\tno log\n"); 1887 else { 1888 pr_printlog(pp, NULL, pr); 1889 } 1890 1891 skip_log: 1892 1893 #define PR_GROUPLIST(pcg) \ 1894 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \ 1895 for (i = 0; i < pcg->pcg_size; i++) { \ 1896 if (pcg->pcg_objects[i].pcgo_pa != \ 1897 POOL_PADDR_INVALID) { \ 1898 (*pr)("\t\t\t%p, 0x%llx\n", \ 1899 pcg->pcg_objects[i].pcgo_va, \ 1900 (unsigned long long) \ 1901 pcg->pcg_objects[i].pcgo_pa); \ 1902 } else { \ 1903 (*pr)("\t\t\t%p\n", \ 1904 pcg->pcg_objects[i].pcgo_va); \ 1905 } \ 1906 } 1907 1908 if (pc != NULL) { 1909 cpuhit = 0; 1910 cpumiss = 0; 1911 for (i = 0; i < MAXCPUS; i++) { 1912 if ((cc = pc->pc_cpus[i]) == NULL) 1913 continue; 1914 cpuhit += cc->cc_hits; 1915 cpumiss += cc->cc_misses; 1916 } 1917 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss); 1918 (*pr)("\tcache layer hits %llu misses %llu\n", 1919 pc->pc_hits, pc->pc_misses); 1920 (*pr)("\tcache layer entry uncontended %llu contended %llu\n", 1921 pc->pc_hits + pc->pc_misses - pc->pc_contended, 1922 pc->pc_contended); 1923 (*pr)("\tcache layer empty groups %u full groups %u\n", 1924 pc->pc_nempty, pc->pc_nfull); 1925 if (print_cache) { 1926 (*pr)("\tfull cache groups:\n"); 1927 for (pcg = pc->pc_fullgroups; pcg != NULL; 1928 pcg = pcg->pcg_next) { 1929 PR_GROUPLIST(pcg); 1930 } 1931 (*pr)("\tempty cache groups:\n"); 1932 for (pcg = pc->pc_emptygroups; pcg != NULL; 1933 pcg = pcg->pcg_next) { 1934 PR_GROUPLIST(pcg); 1935 } 1936 } 1937 } 1938 #undef PR_GROUPLIST 1939 1940 pr_enter_check(pp, pr); 1941 } 1942 1943 static int 1944 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph) 1945 { 1946 struct pool_item *pi; 1947 void *page; 1948 int n; 1949 1950 if ((pp->pr_roflags & PR_NOALIGN) == 0) { 1951 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask); 1952 if (page != ph->ph_page && 1953 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1954 if (label != NULL) 1955 printf("%s: ", label); 1956 printf("pool(%p:%s): page inconsistency: page %p;" 1957 " at page head addr %p (p %p)\n", pp, 1958 pp->pr_wchan, ph->ph_page, 1959 ph, page); 1960 return 1; 1961 } 1962 } 1963 1964 if ((pp->pr_roflags & PR_NOTOUCH) != 0) 1965 return 0; 1966 1967 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0; 1968 pi != NULL; 1969 pi = LIST_NEXT(pi,pi_list), n++) { 1970 1971 #ifdef DIAGNOSTIC 1972 if (pi->pi_magic != PI_MAGIC) { 1973 if (label != NULL) 1974 printf("%s: ", label); 1975 printf("pool(%s): free list modified: magic=%x;" 1976 " page %p; item ordinal %d; addr %p\n", 1977 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1978 n, pi); 1979 panic("pool"); 1980 } 1981 #endif 1982 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 1983 continue; 1984 } 1985 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask); 1986 if (page == ph->ph_page) 1987 continue; 1988 1989 if (label != NULL) 1990 printf("%s: ", label); 1991 printf("pool(%p:%s): page inconsistency: page %p;" 1992 " item ordinal %d; addr %p (p %p)\n", pp, 1993 pp->pr_wchan, ph->ph_page, 1994 n, pi, page); 1995 return 1; 1996 } 1997 return 0; 1998 } 1999 2000 2001 int 2002 pool_chk(struct pool *pp, const char *label) 2003 { 2004 struct pool_item_header *ph; 2005 int r = 0; 2006 2007 mutex_enter(&pp->pr_lock); 2008 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 2009 r = pool_chk_page(pp, label, ph); 2010 if (r) { 2011 goto out; 2012 } 2013 } 2014 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 2015 r = pool_chk_page(pp, label, ph); 2016 if (r) { 2017 goto out; 2018 } 2019 } 2020 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 2021 r = pool_chk_page(pp, label, ph); 2022 if (r) { 2023 goto out; 2024 } 2025 } 2026 2027 out: 2028 mutex_exit(&pp->pr_lock); 2029 return (r); 2030 } 2031 2032 /* 2033 * pool_cache_init: 2034 * 2035 * Initialize a pool cache. 2036 */ 2037 pool_cache_t 2038 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags, 2039 const char *wchan, struct pool_allocator *palloc, int ipl, 2040 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg) 2041 { 2042 pool_cache_t pc; 2043 2044 pc = pool_get(&cache_pool, PR_WAITOK); 2045 if (pc == NULL) 2046 return NULL; 2047 2048 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan, 2049 palloc, ipl, ctor, dtor, arg); 2050 2051 return pc; 2052 } 2053 2054 /* 2055 * pool_cache_bootstrap: 2056 * 2057 * Kernel-private version of pool_cache_init(). The caller 2058 * provides initial storage. 2059 */ 2060 void 2061 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align, 2062 u_int align_offset, u_int flags, const char *wchan, 2063 struct pool_allocator *palloc, int ipl, 2064 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), 2065 void *arg) 2066 { 2067 CPU_INFO_ITERATOR cii; 2068 pool_cache_t pc1; 2069 struct cpu_info *ci; 2070 struct pool *pp; 2071 2072 pp = &pc->pc_pool; 2073 if (palloc == NULL && ipl == IPL_NONE) 2074 palloc = &pool_allocator_nointr; 2075 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl); 2076 2077 /* 2078 * XXXAD hack to prevent IP input processing from blocking. 2079 */ 2080 if (ipl == IPL_SOFTNET) { 2081 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, IPL_VM); 2082 } else { 2083 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl); 2084 } 2085 2086 if (ctor == NULL) { 2087 ctor = (int (*)(void *, void *, int))nullop; 2088 } 2089 if (dtor == NULL) { 2090 dtor = (void (*)(void *, void *))nullop; 2091 } 2092 2093 pc->pc_emptygroups = NULL; 2094 pc->pc_fullgroups = NULL; 2095 pc->pc_partgroups = NULL; 2096 pc->pc_ctor = ctor; 2097 pc->pc_dtor = dtor; 2098 pc->pc_arg = arg; 2099 pc->pc_hits = 0; 2100 pc->pc_misses = 0; 2101 pc->pc_nempty = 0; 2102 pc->pc_npart = 0; 2103 pc->pc_nfull = 0; 2104 pc->pc_contended = 0; 2105 pc->pc_refcnt = 0; 2106 pc->pc_freecheck = NULL; 2107 2108 if ((flags & PR_LARGECACHE) != 0) { 2109 pc->pc_pcgsize = PCG_NOBJECTS_LARGE; 2110 } else { 2111 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL; 2112 } 2113 2114 /* Allocate per-CPU caches. */ 2115 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus)); 2116 pc->pc_ncpu = 0; 2117 if (ncpu < 2) { 2118 /* XXX For sparc: boot CPU is not attached yet. */ 2119 pool_cache_cpu_init1(curcpu(), pc); 2120 } else { 2121 for (CPU_INFO_FOREACH(cii, ci)) { 2122 pool_cache_cpu_init1(ci, pc); 2123 } 2124 } 2125 2126 /* Add to list of all pools. */ 2127 if (__predict_true(!cold)) 2128 mutex_enter(&pool_head_lock); 2129 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) { 2130 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0) 2131 break; 2132 } 2133 if (pc1 == NULL) 2134 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist); 2135 else 2136 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist); 2137 if (__predict_true(!cold)) 2138 mutex_exit(&pool_head_lock); 2139 2140 membar_sync(); 2141 pp->pr_cache = pc; 2142 } 2143 2144 /* 2145 * pool_cache_destroy: 2146 * 2147 * Destroy a pool cache. 2148 */ 2149 void 2150 pool_cache_destroy(pool_cache_t pc) 2151 { 2152 struct pool *pp = &pc->pc_pool; 2153 pool_cache_cpu_t *cc; 2154 pcg_t *pcg; 2155 int i; 2156 2157 /* Remove it from the global list. */ 2158 mutex_enter(&pool_head_lock); 2159 while (pc->pc_refcnt != 0) 2160 cv_wait(&pool_busy, &pool_head_lock); 2161 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist); 2162 mutex_exit(&pool_head_lock); 2163 2164 /* First, invalidate the entire cache. */ 2165 pool_cache_invalidate(pc); 2166 2167 /* Disassociate it from the pool. */ 2168 mutex_enter(&pp->pr_lock); 2169 pp->pr_cache = NULL; 2170 mutex_exit(&pp->pr_lock); 2171 2172 /* Destroy per-CPU data */ 2173 for (i = 0; i < MAXCPUS; i++) { 2174 if ((cc = pc->pc_cpus[i]) == NULL) 2175 continue; 2176 if ((pcg = cc->cc_current) != NULL) { 2177 pcg->pcg_next = NULL; 2178 pool_cache_invalidate_groups(pc, pcg); 2179 } 2180 if ((pcg = cc->cc_previous) != NULL) { 2181 pcg->pcg_next = NULL; 2182 pool_cache_invalidate_groups(pc, pcg); 2183 } 2184 if (cc != &pc->pc_cpu0) 2185 pool_put(&cache_cpu_pool, cc); 2186 } 2187 2188 /* Finally, destroy it. */ 2189 mutex_destroy(&pc->pc_lock); 2190 pool_destroy(pp); 2191 pool_put(&cache_pool, pc); 2192 } 2193 2194 /* 2195 * pool_cache_cpu_init1: 2196 * 2197 * Called for each pool_cache whenever a new CPU is attached. 2198 */ 2199 static void 2200 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc) 2201 { 2202 pool_cache_cpu_t *cc; 2203 int index; 2204 2205 index = ci->ci_index; 2206 2207 KASSERT(index < MAXCPUS); 2208 KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0); 2209 2210 if ((cc = pc->pc_cpus[index]) != NULL) { 2211 KASSERT(cc->cc_cpuindex == index); 2212 return; 2213 } 2214 2215 /* 2216 * The first CPU is 'free'. This needs to be the case for 2217 * bootstrap - we may not be able to allocate yet. 2218 */ 2219 if (pc->pc_ncpu == 0) { 2220 cc = &pc->pc_cpu0; 2221 pc->pc_ncpu = 1; 2222 } else { 2223 mutex_enter(&pc->pc_lock); 2224 pc->pc_ncpu++; 2225 mutex_exit(&pc->pc_lock); 2226 cc = pool_get(&cache_cpu_pool, PR_WAITOK); 2227 } 2228 2229 cc->cc_ipl = pc->pc_pool.pr_ipl; 2230 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl); 2231 cc->cc_cache = pc; 2232 cc->cc_cpuindex = index; 2233 cc->cc_hits = 0; 2234 cc->cc_misses = 0; 2235 cc->cc_current = NULL; 2236 cc->cc_previous = NULL; 2237 2238 pc->pc_cpus[index] = cc; 2239 } 2240 2241 /* 2242 * pool_cache_cpu_init: 2243 * 2244 * Called whenever a new CPU is attached. 2245 */ 2246 void 2247 pool_cache_cpu_init(struct cpu_info *ci) 2248 { 2249 pool_cache_t pc; 2250 2251 mutex_enter(&pool_head_lock); 2252 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) { 2253 pc->pc_refcnt++; 2254 mutex_exit(&pool_head_lock); 2255 2256 pool_cache_cpu_init1(ci, pc); 2257 2258 mutex_enter(&pool_head_lock); 2259 pc->pc_refcnt--; 2260 cv_broadcast(&pool_busy); 2261 } 2262 mutex_exit(&pool_head_lock); 2263 } 2264 2265 /* 2266 * pool_cache_reclaim: 2267 * 2268 * Reclaim memory from a pool cache. 2269 */ 2270 bool 2271 pool_cache_reclaim(pool_cache_t pc) 2272 { 2273 2274 return pool_reclaim(&pc->pc_pool); 2275 } 2276 2277 static void 2278 pool_cache_destruct_object1(pool_cache_t pc, void *object) 2279 { 2280 2281 (*pc->pc_dtor)(pc->pc_arg, object); 2282 pool_put(&pc->pc_pool, object); 2283 } 2284 2285 /* 2286 * pool_cache_destruct_object: 2287 * 2288 * Force destruction of an object and its release back into 2289 * the pool. 2290 */ 2291 void 2292 pool_cache_destruct_object(pool_cache_t pc, void *object) 2293 { 2294 2295 FREECHECK_IN(&pc->pc_freecheck, object); 2296 2297 pool_cache_destruct_object1(pc, object); 2298 } 2299 2300 /* 2301 * pool_cache_invalidate_groups: 2302 * 2303 * Invalidate a chain of groups and destruct all objects. 2304 */ 2305 static void 2306 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg) 2307 { 2308 void *object; 2309 pcg_t *next; 2310 int i; 2311 2312 for (; pcg != NULL; pcg = next) { 2313 next = pcg->pcg_next; 2314 2315 for (i = 0; i < pcg->pcg_avail; i++) { 2316 object = pcg->pcg_objects[i].pcgo_va; 2317 pool_cache_destruct_object1(pc, object); 2318 } 2319 2320 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) { 2321 pool_put(&pcg_large_pool, pcg); 2322 } else { 2323 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL); 2324 pool_put(&pcg_normal_pool, pcg); 2325 } 2326 } 2327 } 2328 2329 /* 2330 * pool_cache_invalidate: 2331 * 2332 * Invalidate a pool cache (destruct and release all of the 2333 * cached objects). Does not reclaim objects from the pool. 2334 */ 2335 void 2336 pool_cache_invalidate(pool_cache_t pc) 2337 { 2338 pcg_t *full, *empty, *part; 2339 2340 mutex_enter(&pc->pc_lock); 2341 full = pc->pc_fullgroups; 2342 empty = pc->pc_emptygroups; 2343 part = pc->pc_partgroups; 2344 pc->pc_fullgroups = NULL; 2345 pc->pc_emptygroups = NULL; 2346 pc->pc_partgroups = NULL; 2347 pc->pc_nfull = 0; 2348 pc->pc_nempty = 0; 2349 pc->pc_npart = 0; 2350 mutex_exit(&pc->pc_lock); 2351 2352 pool_cache_invalidate_groups(pc, full); 2353 pool_cache_invalidate_groups(pc, empty); 2354 pool_cache_invalidate_groups(pc, part); 2355 } 2356 2357 void 2358 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg) 2359 { 2360 2361 pool_set_drain_hook(&pc->pc_pool, fn, arg); 2362 } 2363 2364 void 2365 pool_cache_setlowat(pool_cache_t pc, int n) 2366 { 2367 2368 pool_setlowat(&pc->pc_pool, n); 2369 } 2370 2371 void 2372 pool_cache_sethiwat(pool_cache_t pc, int n) 2373 { 2374 2375 pool_sethiwat(&pc->pc_pool, n); 2376 } 2377 2378 void 2379 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap) 2380 { 2381 2382 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap); 2383 } 2384 2385 static inline pool_cache_cpu_t * 2386 pool_cache_cpu_enter(pool_cache_t pc, int *s) 2387 { 2388 pool_cache_cpu_t *cc; 2389 2390 /* 2391 * Prevent other users of the cache from accessing our 2392 * CPU-local data. To avoid touching shared state, we 2393 * pull the neccessary information from CPU local data. 2394 */ 2395 crit_enter(); 2396 cc = pc->pc_cpus[curcpu()->ci_index]; 2397 KASSERT(cc->cc_cache == pc); 2398 if (cc->cc_ipl != IPL_NONE) { 2399 *s = splraiseipl(cc->cc_iplcookie); 2400 } 2401 KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0); 2402 2403 return cc; 2404 } 2405 2406 static inline void 2407 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s) 2408 { 2409 2410 /* No longer need exclusive access to the per-CPU data. */ 2411 if (cc->cc_ipl != IPL_NONE) { 2412 splx(*s); 2413 } 2414 crit_exit(); 2415 } 2416 2417 #if __GNUC_PREREQ__(3, 0) 2418 __attribute ((noinline)) 2419 #endif 2420 pool_cache_cpu_t * 2421 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp, 2422 paddr_t *pap, int flags) 2423 { 2424 pcg_t *pcg, *cur; 2425 uint64_t ncsw; 2426 pool_cache_t pc; 2427 void *object; 2428 2429 pc = cc->cc_cache; 2430 cc->cc_misses++; 2431 2432 /* 2433 * Nothing was available locally. Try and grab a group 2434 * from the cache. 2435 */ 2436 if (!mutex_tryenter(&pc->pc_lock)) { 2437 ncsw = curlwp->l_ncsw; 2438 mutex_enter(&pc->pc_lock); 2439 pc->pc_contended++; 2440 2441 /* 2442 * If we context switched while locking, then 2443 * our view of the per-CPU data is invalid: 2444 * retry. 2445 */ 2446 if (curlwp->l_ncsw != ncsw) { 2447 mutex_exit(&pc->pc_lock); 2448 pool_cache_cpu_exit(cc, s); 2449 return pool_cache_cpu_enter(pc, s); 2450 } 2451 } 2452 2453 if ((pcg = pc->pc_fullgroups) != NULL) { 2454 /* 2455 * If there's a full group, release our empty 2456 * group back to the cache. Install the full 2457 * group as cc_current and return. 2458 */ 2459 if ((cur = cc->cc_current) != NULL) { 2460 KASSERT(cur->pcg_avail == 0); 2461 cur->pcg_next = pc->pc_emptygroups; 2462 pc->pc_emptygroups = cur; 2463 pc->pc_nempty++; 2464 } 2465 KASSERT(pcg->pcg_avail == pcg->pcg_size); 2466 cc->cc_current = pcg; 2467 pc->pc_fullgroups = pcg->pcg_next; 2468 pc->pc_hits++; 2469 pc->pc_nfull--; 2470 mutex_exit(&pc->pc_lock); 2471 return cc; 2472 } 2473 2474 /* 2475 * Nothing available locally or in cache. Take the slow 2476 * path: fetch a new object from the pool and construct 2477 * it. 2478 */ 2479 pc->pc_misses++; 2480 mutex_exit(&pc->pc_lock); 2481 pool_cache_cpu_exit(cc, s); 2482 2483 object = pool_get(&pc->pc_pool, flags); 2484 *objectp = object; 2485 if (object == NULL) 2486 return NULL; 2487 2488 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) { 2489 pool_put(&pc->pc_pool, object); 2490 *objectp = NULL; 2491 return NULL; 2492 } 2493 2494 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) & 2495 (pc->pc_pool.pr_align - 1)) == 0); 2496 2497 if (pap != NULL) { 2498 #ifdef POOL_VTOPHYS 2499 *pap = POOL_VTOPHYS(object); 2500 #else 2501 *pap = POOL_PADDR_INVALID; 2502 #endif 2503 } 2504 2505 FREECHECK_OUT(&pc->pc_freecheck, object); 2506 return NULL; 2507 } 2508 2509 /* 2510 * pool_cache_get{,_paddr}: 2511 * 2512 * Get an object from a pool cache (optionally returning 2513 * the physical address of the object). 2514 */ 2515 void * 2516 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap) 2517 { 2518 pool_cache_cpu_t *cc; 2519 pcg_t *pcg; 2520 void *object; 2521 int s; 2522 2523 #ifdef LOCKDEBUG 2524 if (flags & PR_WAITOK) 2525 ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)"); 2526 #endif 2527 2528 cc = pool_cache_cpu_enter(pc, &s); 2529 do { 2530 /* Try and allocate an object from the current group. */ 2531 pcg = cc->cc_current; 2532 if (pcg != NULL && pcg->pcg_avail > 0) { 2533 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va; 2534 if (pap != NULL) 2535 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa; 2536 #if defined(DIAGNOSTIC) 2537 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL; 2538 #endif /* defined(DIAGNOSTIC) */ 2539 KASSERT(pcg->pcg_avail <= pcg->pcg_size); 2540 KASSERT(object != NULL); 2541 cc->cc_hits++; 2542 pool_cache_cpu_exit(cc, &s); 2543 FREECHECK_OUT(&pc->pc_freecheck, object); 2544 return object; 2545 } 2546 2547 /* 2548 * That failed. If the previous group isn't empty, swap 2549 * it with the current group and allocate from there. 2550 */ 2551 pcg = cc->cc_previous; 2552 if (pcg != NULL && pcg->pcg_avail > 0) { 2553 cc->cc_previous = cc->cc_current; 2554 cc->cc_current = pcg; 2555 continue; 2556 } 2557 2558 /* 2559 * Can't allocate from either group: try the slow path. 2560 * If get_slow() allocated an object for us, or if 2561 * no more objects are available, it will return NULL. 2562 * Otherwise, we need to retry. 2563 */ 2564 cc = pool_cache_get_slow(cc, &s, &object, pap, flags); 2565 } while (cc != NULL); 2566 2567 return object; 2568 } 2569 2570 #if __GNUC_PREREQ__(3, 0) 2571 __attribute ((noinline)) 2572 #endif 2573 pool_cache_cpu_t * 2574 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa) 2575 { 2576 pcg_t *pcg, *cur; 2577 uint64_t ncsw; 2578 pool_cache_t pc; 2579 u_int nobj; 2580 2581 pc = cc->cc_cache; 2582 cc->cc_misses++; 2583 2584 /* 2585 * No free slots locally. Try to grab an empty, unused 2586 * group from the cache. 2587 */ 2588 if (!mutex_tryenter(&pc->pc_lock)) { 2589 ncsw = curlwp->l_ncsw; 2590 mutex_enter(&pc->pc_lock); 2591 pc->pc_contended++; 2592 2593 /* 2594 * If we context switched while locking, then 2595 * our view of the per-CPU data is invalid: 2596 * retry. 2597 */ 2598 if (curlwp->l_ncsw != ncsw) { 2599 mutex_exit(&pc->pc_lock); 2600 pool_cache_cpu_exit(cc, s); 2601 return pool_cache_cpu_enter(pc, s); 2602 } 2603 } 2604 2605 if ((pcg = pc->pc_emptygroups) != NULL) { 2606 /* 2607 * If there's a empty group, release our full 2608 * group back to the cache. Install the empty 2609 * group and return. 2610 */ 2611 KASSERT(pcg->pcg_avail == 0); 2612 pc->pc_emptygroups = pcg->pcg_next; 2613 if (cc->cc_previous == NULL) { 2614 cc->cc_previous = pcg; 2615 } else { 2616 if ((cur = cc->cc_current) != NULL) { 2617 KASSERT(cur->pcg_avail == pcg->pcg_size); 2618 cur->pcg_next = pc->pc_fullgroups; 2619 pc->pc_fullgroups = cur; 2620 pc->pc_nfull++; 2621 } 2622 cc->cc_current = pcg; 2623 } 2624 pc->pc_hits++; 2625 pc->pc_nempty--; 2626 mutex_exit(&pc->pc_lock); 2627 return cc; 2628 } 2629 2630 /* 2631 * Nothing available locally or in cache. Take the 2632 * slow path and try to allocate a new group that we 2633 * can release to. 2634 */ 2635 pc->pc_misses++; 2636 mutex_exit(&pc->pc_lock); 2637 pool_cache_cpu_exit(cc, s); 2638 2639 /* 2640 * If we can't allocate a new group, just throw the 2641 * object away. 2642 */ 2643 nobj = pc->pc_pcgsize; 2644 if (pool_cache_disable) { 2645 pcg = NULL; 2646 } else if (nobj == PCG_NOBJECTS_LARGE) { 2647 pcg = pool_get(&pcg_large_pool, PR_NOWAIT); 2648 } else { 2649 pcg = pool_get(&pcg_normal_pool, PR_NOWAIT); 2650 } 2651 if (pcg == NULL) { 2652 pool_cache_destruct_object(pc, object); 2653 return NULL; 2654 } 2655 pcg->pcg_avail = 0; 2656 pcg->pcg_size = nobj; 2657 2658 /* 2659 * Add the empty group to the cache and try again. 2660 */ 2661 mutex_enter(&pc->pc_lock); 2662 pcg->pcg_next = pc->pc_emptygroups; 2663 pc->pc_emptygroups = pcg; 2664 pc->pc_nempty++; 2665 mutex_exit(&pc->pc_lock); 2666 2667 return pool_cache_cpu_enter(pc, s); 2668 } 2669 2670 /* 2671 * pool_cache_put{,_paddr}: 2672 * 2673 * Put an object back to the pool cache (optionally caching the 2674 * physical address of the object). 2675 */ 2676 void 2677 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa) 2678 { 2679 pool_cache_cpu_t *cc; 2680 pcg_t *pcg; 2681 int s; 2682 2683 FREECHECK_IN(&pc->pc_freecheck, object); 2684 2685 cc = pool_cache_cpu_enter(pc, &s); 2686 do { 2687 /* If the current group isn't full, release it there. */ 2688 pcg = cc->cc_current; 2689 if (pcg != NULL && pcg->pcg_avail < pcg->pcg_size) { 2690 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object; 2691 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa; 2692 pcg->pcg_avail++; 2693 cc->cc_hits++; 2694 pool_cache_cpu_exit(cc, &s); 2695 return; 2696 } 2697 2698 /* 2699 * That failed. If the previous group is empty, swap 2700 * it with the current group and try again. 2701 */ 2702 pcg = cc->cc_previous; 2703 if (pcg != NULL && pcg->pcg_avail == 0) { 2704 cc->cc_previous = cc->cc_current; 2705 cc->cc_current = pcg; 2706 continue; 2707 } 2708 2709 /* 2710 * Can't free to either group: try the slow path. 2711 * If put_slow() releases the object for us, it 2712 * will return NULL. Otherwise we need to retry. 2713 */ 2714 cc = pool_cache_put_slow(cc, &s, object, pa); 2715 } while (cc != NULL); 2716 } 2717 2718 /* 2719 * pool_cache_xcall: 2720 * 2721 * Transfer objects from the per-CPU cache to the global cache. 2722 * Run within a cross-call thread. 2723 */ 2724 static void 2725 pool_cache_xcall(pool_cache_t pc) 2726 { 2727 pool_cache_cpu_t *cc; 2728 pcg_t *prev, *cur, **list; 2729 int s = 0; /* XXXgcc */ 2730 2731 cc = pool_cache_cpu_enter(pc, &s); 2732 cur = cc->cc_current; 2733 cc->cc_current = NULL; 2734 prev = cc->cc_previous; 2735 cc->cc_previous = NULL; 2736 pool_cache_cpu_exit(cc, &s); 2737 2738 /* 2739 * XXXSMP Go to splvm to prevent kernel_lock from being taken, 2740 * because locks at IPL_SOFTXXX are still spinlocks. Does not 2741 * apply to IPL_SOFTBIO. Cross-call threads do not take the 2742 * kernel_lock. 2743 */ 2744 s = splvm(); 2745 mutex_enter(&pc->pc_lock); 2746 if (cur != NULL) { 2747 if (cur->pcg_avail == cur->pcg_size) { 2748 list = &pc->pc_fullgroups; 2749 pc->pc_nfull++; 2750 } else if (cur->pcg_avail == 0) { 2751 list = &pc->pc_emptygroups; 2752 pc->pc_nempty++; 2753 } else { 2754 list = &pc->pc_partgroups; 2755 pc->pc_npart++; 2756 } 2757 cur->pcg_next = *list; 2758 *list = cur; 2759 } 2760 if (prev != NULL) { 2761 if (prev->pcg_avail == prev->pcg_size) { 2762 list = &pc->pc_fullgroups; 2763 pc->pc_nfull++; 2764 } else if (prev->pcg_avail == 0) { 2765 list = &pc->pc_emptygroups; 2766 pc->pc_nempty++; 2767 } else { 2768 list = &pc->pc_partgroups; 2769 pc->pc_npart++; 2770 } 2771 prev->pcg_next = *list; 2772 *list = prev; 2773 } 2774 mutex_exit(&pc->pc_lock); 2775 splx(s); 2776 } 2777 2778 /* 2779 * Pool backend allocators. 2780 * 2781 * Each pool has a backend allocator that handles allocation, deallocation, 2782 * and any additional draining that might be needed. 2783 * 2784 * We provide two standard allocators: 2785 * 2786 * pool_allocator_kmem - the default when no allocator is specified 2787 * 2788 * pool_allocator_nointr - used for pools that will not be accessed 2789 * in interrupt context. 2790 */ 2791 void *pool_page_alloc(struct pool *, int); 2792 void pool_page_free(struct pool *, void *); 2793 2794 #ifdef POOL_SUBPAGE 2795 struct pool_allocator pool_allocator_kmem_fullpage = { 2796 pool_page_alloc, pool_page_free, 0, 2797 .pa_backingmapptr = &kmem_map, 2798 }; 2799 #else 2800 struct pool_allocator pool_allocator_kmem = { 2801 pool_page_alloc, pool_page_free, 0, 2802 .pa_backingmapptr = &kmem_map, 2803 }; 2804 #endif 2805 2806 void *pool_page_alloc_nointr(struct pool *, int); 2807 void pool_page_free_nointr(struct pool *, void *); 2808 2809 #ifdef POOL_SUBPAGE 2810 struct pool_allocator pool_allocator_nointr_fullpage = { 2811 pool_page_alloc_nointr, pool_page_free_nointr, 0, 2812 .pa_backingmapptr = &kernel_map, 2813 }; 2814 #else 2815 struct pool_allocator pool_allocator_nointr = { 2816 pool_page_alloc_nointr, pool_page_free_nointr, 0, 2817 .pa_backingmapptr = &kernel_map, 2818 }; 2819 #endif 2820 2821 #ifdef POOL_SUBPAGE 2822 void *pool_subpage_alloc(struct pool *, int); 2823 void pool_subpage_free(struct pool *, void *); 2824 2825 struct pool_allocator pool_allocator_kmem = { 2826 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE, 2827 .pa_backingmapptr = &kmem_map, 2828 }; 2829 2830 void *pool_subpage_alloc_nointr(struct pool *, int); 2831 void pool_subpage_free_nointr(struct pool *, void *); 2832 2833 struct pool_allocator pool_allocator_nointr = { 2834 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE, 2835 .pa_backingmapptr = &kmem_map, 2836 }; 2837 #endif /* POOL_SUBPAGE */ 2838 2839 static void * 2840 pool_allocator_alloc(struct pool *pp, int flags) 2841 { 2842 struct pool_allocator *pa = pp->pr_alloc; 2843 void *res; 2844 2845 res = (*pa->pa_alloc)(pp, flags); 2846 if (res == NULL && (flags & PR_WAITOK) == 0) { 2847 /* 2848 * We only run the drain hook here if PR_NOWAIT. 2849 * In other cases, the hook will be run in 2850 * pool_reclaim(). 2851 */ 2852 if (pp->pr_drain_hook != NULL) { 2853 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 2854 res = (*pa->pa_alloc)(pp, flags); 2855 } 2856 } 2857 return res; 2858 } 2859 2860 static void 2861 pool_allocator_free(struct pool *pp, void *v) 2862 { 2863 struct pool_allocator *pa = pp->pr_alloc; 2864 2865 (*pa->pa_free)(pp, v); 2866 } 2867 2868 void * 2869 pool_page_alloc(struct pool *pp, int flags) 2870 { 2871 bool waitok = (flags & PR_WAITOK) ? true : false; 2872 2873 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok)); 2874 } 2875 2876 void 2877 pool_page_free(struct pool *pp, void *v) 2878 { 2879 2880 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v); 2881 } 2882 2883 static void * 2884 pool_page_alloc_meta(struct pool *pp, int flags) 2885 { 2886 bool waitok = (flags & PR_WAITOK) ? true : false; 2887 2888 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok)); 2889 } 2890 2891 static void 2892 pool_page_free_meta(struct pool *pp, void *v) 2893 { 2894 2895 uvm_km_free_poolpage(kmem_map, (vaddr_t) v); 2896 } 2897 2898 #ifdef POOL_SUBPAGE 2899 /* Sub-page allocator, for machines with large hardware pages. */ 2900 void * 2901 pool_subpage_alloc(struct pool *pp, int flags) 2902 { 2903 return pool_get(&psppool, flags); 2904 } 2905 2906 void 2907 pool_subpage_free(struct pool *pp, void *v) 2908 { 2909 pool_put(&psppool, v); 2910 } 2911 2912 /* We don't provide a real nointr allocator. Maybe later. */ 2913 void * 2914 pool_subpage_alloc_nointr(struct pool *pp, int flags) 2915 { 2916 2917 return (pool_subpage_alloc(pp, flags)); 2918 } 2919 2920 void 2921 pool_subpage_free_nointr(struct pool *pp, void *v) 2922 { 2923 2924 pool_subpage_free(pp, v); 2925 } 2926 #endif /* POOL_SUBPAGE */ 2927 void * 2928 pool_page_alloc_nointr(struct pool *pp, int flags) 2929 { 2930 bool waitok = (flags & PR_WAITOK) ? true : false; 2931 2932 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok)); 2933 } 2934 2935 void 2936 pool_page_free_nointr(struct pool *pp, void *v) 2937 { 2938 2939 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v); 2940 } 2941 2942 #if defined(DDB) 2943 static bool 2944 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 2945 { 2946 2947 return (uintptr_t)ph->ph_page <= addr && 2948 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz; 2949 } 2950 2951 static bool 2952 pool_in_item(struct pool *pp, void *item, uintptr_t addr) 2953 { 2954 2955 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size; 2956 } 2957 2958 static bool 2959 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr) 2960 { 2961 int i; 2962 2963 if (pcg == NULL) { 2964 return false; 2965 } 2966 for (i = 0; i < pcg->pcg_avail; i++) { 2967 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) { 2968 return true; 2969 } 2970 } 2971 return false; 2972 } 2973 2974 static bool 2975 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 2976 { 2977 2978 if ((pp->pr_roflags & PR_NOTOUCH) != 0) { 2979 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr); 2980 pool_item_bitmap_t *bitmap = 2981 ph->ph_bitmap + (idx / BITMAP_SIZE); 2982 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 2983 2984 return (*bitmap & mask) == 0; 2985 } else { 2986 struct pool_item *pi; 2987 2988 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 2989 if (pool_in_item(pp, pi, addr)) { 2990 return false; 2991 } 2992 } 2993 return true; 2994 } 2995 } 2996 2997 void 2998 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 2999 { 3000 struct pool *pp; 3001 3002 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 3003 struct pool_item_header *ph; 3004 uintptr_t item; 3005 bool allocated = true; 3006 bool incache = false; 3007 bool incpucache = false; 3008 char cpucachestr[32]; 3009 3010 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 3011 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 3012 if (pool_in_page(pp, ph, addr)) { 3013 goto found; 3014 } 3015 } 3016 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 3017 if (pool_in_page(pp, ph, addr)) { 3018 allocated = 3019 pool_allocated(pp, ph, addr); 3020 goto found; 3021 } 3022 } 3023 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 3024 if (pool_in_page(pp, ph, addr)) { 3025 allocated = false; 3026 goto found; 3027 } 3028 } 3029 continue; 3030 } else { 3031 ph = pr_find_pagehead_noalign(pp, (void *)addr); 3032 if (ph == NULL || !pool_in_page(pp, ph, addr)) { 3033 continue; 3034 } 3035 allocated = pool_allocated(pp, ph, addr); 3036 } 3037 found: 3038 if (allocated && pp->pr_cache) { 3039 pool_cache_t pc = pp->pr_cache; 3040 struct pool_cache_group *pcg; 3041 int i; 3042 3043 for (pcg = pc->pc_fullgroups; pcg != NULL; 3044 pcg = pcg->pcg_next) { 3045 if (pool_in_cg(pp, pcg, addr)) { 3046 incache = true; 3047 goto print; 3048 } 3049 } 3050 for (i = 0; i < MAXCPUS; i++) { 3051 pool_cache_cpu_t *cc; 3052 3053 if ((cc = pc->pc_cpus[i]) == NULL) { 3054 continue; 3055 } 3056 if (pool_in_cg(pp, cc->cc_current, addr) || 3057 pool_in_cg(pp, cc->cc_previous, addr)) { 3058 struct cpu_info *ci = 3059 cpu_lookup_byindex(i); 3060 3061 incpucache = true; 3062 snprintf(cpucachestr, 3063 sizeof(cpucachestr), 3064 "cached by CPU %u", 3065 (u_int)ci->ci_cpuid); 3066 goto print; 3067 } 3068 } 3069 } 3070 print: 3071 item = (uintptr_t)ph->ph_page + ph->ph_off; 3072 item = item + rounddown(addr - item, pp->pr_size); 3073 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n", 3074 (void *)addr, item, (size_t)(addr - item), 3075 pp->pr_wchan, 3076 incpucache ? cpucachestr : 3077 incache ? "cached" : allocated ? "allocated" : "free"); 3078 } 3079 } 3080 #endif /* defined(DDB) */ 3081