xref: /netbsd-src/sys/kern/subr_pool.c (revision deb6f0161a9109e7de9b519dc8dfb9478668dcdd)
1 /*	$NetBSD: subr_pool.c,v 1.228 2018/12/02 21:00:13 maxv Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015
5  *     The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11  * Maxime Villard.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.228 2018/12/02 21:00:13 maxv Exp $");
37 
38 #ifdef _KERNEL_OPT
39 #include "opt_ddb.h"
40 #include "opt_lockdebug.h"
41 #include "opt_kleak.h"
42 #endif
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/bitops.h>
48 #include <sys/proc.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/vmem.h>
52 #include <sys/pool.h>
53 #include <sys/syslog.h>
54 #include <sys/debug.h>
55 #include <sys/lockdebug.h>
56 #include <sys/xcall.h>
57 #include <sys/cpu.h>
58 #include <sys/atomic.h>
59 #include <sys/asan.h>
60 
61 #include <uvm/uvm_extern.h>
62 
63 /*
64  * Pool resource management utility.
65  *
66  * Memory is allocated in pages which are split into pieces according to
67  * the pool item size. Each page is kept on one of three lists in the
68  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
69  * for empty, full and partially-full pages respectively. The individual
70  * pool items are on a linked list headed by `ph_itemlist' in each page
71  * header. The memory for building the page list is either taken from
72  * the allocated pages themselves (for small pool items) or taken from
73  * an internal pool of page headers (`phpool').
74  */
75 
76 /* List of all pools. Non static as needed by 'vmstat -m' */
77 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
78 
79 /* Private pool for page header structures */
80 #define	PHPOOL_MAX	8
81 static struct pool phpool[PHPOOL_MAX];
82 #define	PHPOOL_FREELIST_NELEM(idx) \
83 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
84 
85 #ifdef POOL_SUBPAGE
86 /* Pool of subpages for use by normal pools. */
87 static struct pool psppool;
88 #endif
89 
90 #if defined(KASAN)
91 #define POOL_REDZONE
92 #endif
93 
94 #ifdef POOL_REDZONE
95 # ifdef KASAN
96 #  define POOL_REDZONE_SIZE 8
97 # else
98 #  define POOL_REDZONE_SIZE 2
99 # endif
100 static void pool_redzone_init(struct pool *, size_t);
101 static void pool_redzone_fill(struct pool *, void *);
102 static void pool_redzone_check(struct pool *, void *);
103 #else
104 # define pool_redzone_init(pp, sz)	/* NOTHING */
105 # define pool_redzone_fill(pp, ptr)	/* NOTHING */
106 # define pool_redzone_check(pp, ptr)	/* NOTHING */
107 #endif
108 
109 #ifdef KLEAK
110 static void pool_kleak_fill(struct pool *, void *);
111 static void pool_cache_kleak_fill(pool_cache_t, void *);
112 #else
113 #define pool_kleak_fill(pp, ptr)	__nothing
114 #define pool_cache_kleak_fill(pc, ptr)	__nothing
115 #endif
116 
117 static void *pool_page_alloc_meta(struct pool *, int);
118 static void pool_page_free_meta(struct pool *, void *);
119 
120 /* allocator for pool metadata */
121 struct pool_allocator pool_allocator_meta = {
122 	.pa_alloc = pool_page_alloc_meta,
123 	.pa_free = pool_page_free_meta,
124 	.pa_pagesz = 0
125 };
126 
127 #define POOL_ALLOCATOR_BIG_BASE 13
128 extern struct pool_allocator pool_allocator_big[];
129 static int pool_bigidx(size_t);
130 
131 /* # of seconds to retain page after last use */
132 int pool_inactive_time = 10;
133 
134 /* Next candidate for drainage (see pool_drain()) */
135 static struct pool	*drainpp;
136 
137 /* This lock protects both pool_head and drainpp. */
138 static kmutex_t pool_head_lock;
139 static kcondvar_t pool_busy;
140 
141 /* This lock protects initialization of a potentially shared pool allocator */
142 static kmutex_t pool_allocator_lock;
143 
144 typedef uint32_t pool_item_bitmap_t;
145 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
146 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
147 
148 struct pool_item_header {
149 	/* Page headers */
150 	LIST_ENTRY(pool_item_header)
151 				ph_pagelist;	/* pool page list */
152 	SPLAY_ENTRY(pool_item_header)
153 				ph_node;	/* Off-page page headers */
154 	void *			ph_page;	/* this page's address */
155 	uint32_t		ph_time;	/* last referenced */
156 	uint16_t		ph_nmissing;	/* # of chunks in use */
157 	uint16_t		ph_off;		/* start offset in page */
158 	union {
159 		/* !PR_NOTOUCH */
160 		struct {
161 			LIST_HEAD(, pool_item)
162 				phu_itemlist;	/* chunk list for this page */
163 		} phu_normal;
164 		/* PR_NOTOUCH */
165 		struct {
166 			pool_item_bitmap_t phu_bitmap[1];
167 		} phu_notouch;
168 	} ph_u;
169 };
170 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
171 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
172 
173 struct pool_item {
174 #ifdef DIAGNOSTIC
175 	u_int pi_magic;
176 #endif
177 #define	PI_MAGIC 0xdeaddeadU
178 	/* Other entries use only this list entry */
179 	LIST_ENTRY(pool_item)	pi_list;
180 };
181 
182 #define	POOL_NEEDS_CATCHUP(pp)						\
183 	((pp)->pr_nitems < (pp)->pr_minitems)
184 
185 /*
186  * Pool cache management.
187  *
188  * Pool caches provide a way for constructed objects to be cached by the
189  * pool subsystem.  This can lead to performance improvements by avoiding
190  * needless object construction/destruction; it is deferred until absolutely
191  * necessary.
192  *
193  * Caches are grouped into cache groups.  Each cache group references up
194  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
195  * object from the pool, it calls the object's constructor and places it
196  * into a cache group.  When a cache group frees an object back to the
197  * pool, it first calls the object's destructor.  This allows the object
198  * to persist in constructed form while freed to the cache.
199  *
200  * The pool references each cache, so that when a pool is drained by the
201  * pagedaemon, it can drain each individual cache as well.  Each time a
202  * cache is drained, the most idle cache group is freed to the pool in
203  * its entirety.
204  *
205  * Pool caches are layed on top of pools.  By layering them, we can avoid
206  * the complexity of cache management for pools which would not benefit
207  * from it.
208  */
209 
210 static struct pool pcg_normal_pool;
211 static struct pool pcg_large_pool;
212 static struct pool cache_pool;
213 static struct pool cache_cpu_pool;
214 
215 pool_cache_t pnbuf_cache;	/* pathname buffer cache */
216 
217 /* List of all caches. */
218 TAILQ_HEAD(,pool_cache) pool_cache_head =
219     TAILQ_HEAD_INITIALIZER(pool_cache_head);
220 
221 int pool_cache_disable;		/* global disable for caching */
222 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
223 
224 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
225 				    void *);
226 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
227 				    void **, paddr_t *, int);
228 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
229 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
230 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
231 static void	pool_cache_transfer(pool_cache_t);
232 
233 static int	pool_catchup(struct pool *);
234 static void	pool_prime_page(struct pool *, void *,
235 		    struct pool_item_header *);
236 static void	pool_update_curpage(struct pool *);
237 
238 static int	pool_grow(struct pool *, int);
239 static void	*pool_allocator_alloc(struct pool *, int);
240 static void	pool_allocator_free(struct pool *, void *);
241 
242 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
243 	void (*)(const char *, ...) __printflike(1, 2));
244 static void pool_print1(struct pool *, const char *,
245 	void (*)(const char *, ...) __printflike(1, 2));
246 
247 static int pool_chk_page(struct pool *, const char *,
248 			 struct pool_item_header *);
249 
250 static inline unsigned int
251 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
252     const void *v)
253 {
254 	const char *cp = v;
255 	unsigned int idx;
256 
257 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
258 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
259 	KASSERT(idx < pp->pr_itemsperpage);
260 	return idx;
261 }
262 
263 static inline void
264 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
265     void *obj)
266 {
267 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
268 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
269 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
270 
271 	KASSERT((*bitmap & mask) == 0);
272 	*bitmap |= mask;
273 }
274 
275 static inline void *
276 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
277 {
278 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
279 	unsigned int idx;
280 	int i;
281 
282 	for (i = 0; ; i++) {
283 		int bit;
284 
285 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
286 		bit = ffs32(bitmap[i]);
287 		if (bit) {
288 			pool_item_bitmap_t mask;
289 
290 			bit--;
291 			idx = (i * BITMAP_SIZE) + bit;
292 			mask = 1U << bit;
293 			KASSERT((bitmap[i] & mask) != 0);
294 			bitmap[i] &= ~mask;
295 			break;
296 		}
297 	}
298 	KASSERT(idx < pp->pr_itemsperpage);
299 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
300 }
301 
302 static inline void
303 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
304 {
305 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
306 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
307 	int i;
308 
309 	for (i = 0; i < n; i++) {
310 		bitmap[i] = (pool_item_bitmap_t)-1;
311 	}
312 }
313 
314 static inline int
315 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
316 {
317 
318 	/*
319 	 * we consider pool_item_header with smaller ph_page bigger.
320 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
321 	 */
322 
323 	if (a->ph_page < b->ph_page)
324 		return (1);
325 	else if (a->ph_page > b->ph_page)
326 		return (-1);
327 	else
328 		return (0);
329 }
330 
331 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
332 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
333 
334 static inline struct pool_item_header *
335 pr_find_pagehead_noalign(struct pool *pp, void *v)
336 {
337 	struct pool_item_header *ph, tmp;
338 
339 	tmp.ph_page = (void *)(uintptr_t)v;
340 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
341 	if (ph == NULL) {
342 		ph = SPLAY_ROOT(&pp->pr_phtree);
343 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
344 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
345 		}
346 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
347 	}
348 
349 	return ph;
350 }
351 
352 /*
353  * Return the pool page header based on item address.
354  */
355 static inline struct pool_item_header *
356 pr_find_pagehead(struct pool *pp, void *v)
357 {
358 	struct pool_item_header *ph, tmp;
359 
360 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
361 		ph = pr_find_pagehead_noalign(pp, v);
362 	} else {
363 		void *page =
364 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
365 
366 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
367 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
368 		} else {
369 			tmp.ph_page = page;
370 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
371 		}
372 	}
373 
374 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
375 	    ((char *)ph->ph_page <= (char *)v &&
376 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
377 	return ph;
378 }
379 
380 static void
381 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
382 {
383 	struct pool_item_header *ph;
384 
385 	while ((ph = LIST_FIRST(pq)) != NULL) {
386 		LIST_REMOVE(ph, ph_pagelist);
387 		pool_allocator_free(pp, ph->ph_page);
388 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
389 			pool_put(pp->pr_phpool, ph);
390 	}
391 }
392 
393 /*
394  * Remove a page from the pool.
395  */
396 static inline void
397 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
398      struct pool_pagelist *pq)
399 {
400 
401 	KASSERT(mutex_owned(&pp->pr_lock));
402 
403 	/*
404 	 * If the page was idle, decrement the idle page count.
405 	 */
406 	if (ph->ph_nmissing == 0) {
407 		KASSERT(pp->pr_nidle != 0);
408 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
409 		    "nitems=%u < itemsperpage=%u",
410 		    pp->pr_nitems, pp->pr_itemsperpage);
411 		pp->pr_nidle--;
412 	}
413 
414 	pp->pr_nitems -= pp->pr_itemsperpage;
415 
416 	/*
417 	 * Unlink the page from the pool and queue it for release.
418 	 */
419 	LIST_REMOVE(ph, ph_pagelist);
420 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
421 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
422 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
423 
424 	pp->pr_npages--;
425 	pp->pr_npagefree++;
426 
427 	pool_update_curpage(pp);
428 }
429 
430 /*
431  * Initialize all the pools listed in the "pools" link set.
432  */
433 void
434 pool_subsystem_init(void)
435 {
436 	size_t size;
437 	int idx;
438 
439 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
440 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
441 	cv_init(&pool_busy, "poolbusy");
442 
443 	/*
444 	 * Initialize private page header pool and cache magazine pool if we
445 	 * haven't done so yet.
446 	 */
447 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
448 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
449 		int nelem;
450 		size_t sz;
451 
452 		nelem = PHPOOL_FREELIST_NELEM(idx);
453 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
454 		    "phpool-%d", nelem);
455 		sz = sizeof(struct pool_item_header);
456 		if (nelem) {
457 			sz = offsetof(struct pool_item_header,
458 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
459 		}
460 		pool_init(&phpool[idx], sz, 0, 0, 0,
461 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
462 	}
463 #ifdef POOL_SUBPAGE
464 	pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
465 	    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
466 #endif
467 
468 	size = sizeof(pcg_t) +
469 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
470 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
471 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
472 
473 	size = sizeof(pcg_t) +
474 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
475 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
476 	    "pcglarge", &pool_allocator_meta, IPL_VM);
477 
478 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
479 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
480 
481 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
482 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
483 }
484 
485 /*
486  * Initialize the given pool resource structure.
487  *
488  * We export this routine to allow other kernel parts to declare
489  * static pools that must be initialized before kmem(9) is available.
490  */
491 void
492 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
493     const char *wchan, struct pool_allocator *palloc, int ipl)
494 {
495 	struct pool *pp1;
496 	size_t trysize, phsize, prsize;
497 	int off, slack;
498 
499 #ifdef DEBUG
500 	if (__predict_true(!cold))
501 		mutex_enter(&pool_head_lock);
502 	/*
503 	 * Check that the pool hasn't already been initialised and
504 	 * added to the list of all pools.
505 	 */
506 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
507 		if (pp == pp1)
508 			panic("%s: [%s] already initialised", __func__,
509 			    wchan);
510 	}
511 	if (__predict_true(!cold))
512 		mutex_exit(&pool_head_lock);
513 #endif
514 
515 	if (palloc == NULL)
516 		palloc = &pool_allocator_kmem;
517 #ifdef POOL_SUBPAGE
518 	if (size > palloc->pa_pagesz) {
519 		if (palloc == &pool_allocator_kmem)
520 			palloc = &pool_allocator_kmem_fullpage;
521 		else if (palloc == &pool_allocator_nointr)
522 			palloc = &pool_allocator_nointr_fullpage;
523 	}
524 #endif /* POOL_SUBPAGE */
525 	if (!cold)
526 		mutex_enter(&pool_allocator_lock);
527 	if (palloc->pa_refcnt++ == 0) {
528 		if (palloc->pa_pagesz == 0)
529 			palloc->pa_pagesz = PAGE_SIZE;
530 
531 		TAILQ_INIT(&palloc->pa_list);
532 
533 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
534 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
535 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
536 	}
537 	if (!cold)
538 		mutex_exit(&pool_allocator_lock);
539 
540 	if (align == 0)
541 		align = ALIGN(1);
542 
543 	prsize = size;
544 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
545 		prsize = sizeof(struct pool_item);
546 
547 	prsize = roundup(prsize, align);
548 	KASSERTMSG((prsize <= palloc->pa_pagesz),
549 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
550 	    __func__, wchan, prsize, palloc->pa_pagesz);
551 
552 	/*
553 	 * Initialize the pool structure.
554 	 */
555 	LIST_INIT(&pp->pr_emptypages);
556 	LIST_INIT(&pp->pr_fullpages);
557 	LIST_INIT(&pp->pr_partpages);
558 	pp->pr_cache = NULL;
559 	pp->pr_curpage = NULL;
560 	pp->pr_npages = 0;
561 	pp->pr_minitems = 0;
562 	pp->pr_minpages = 0;
563 	pp->pr_maxpages = UINT_MAX;
564 	pp->pr_roflags = flags;
565 	pp->pr_flags = 0;
566 	pp->pr_size = prsize;
567 	pp->pr_align = align;
568 	pp->pr_wchan = wchan;
569 	pp->pr_alloc = palloc;
570 	pp->pr_nitems = 0;
571 	pp->pr_nout = 0;
572 	pp->pr_hardlimit = UINT_MAX;
573 	pp->pr_hardlimit_warning = NULL;
574 	pp->pr_hardlimit_ratecap.tv_sec = 0;
575 	pp->pr_hardlimit_ratecap.tv_usec = 0;
576 	pp->pr_hardlimit_warning_last.tv_sec = 0;
577 	pp->pr_hardlimit_warning_last.tv_usec = 0;
578 	pp->pr_drain_hook = NULL;
579 	pp->pr_drain_hook_arg = NULL;
580 	pp->pr_freecheck = NULL;
581 	pool_redzone_init(pp, size);
582 
583 	/*
584 	 * Decide whether to put the page header off page to avoid
585 	 * wasting too large a part of the page or too big item.
586 	 * Off-page page headers go on a hash table, so we can match
587 	 * a returned item with its header based on the page address.
588 	 * We use 1/16 of the page size and about 8 times of the item
589 	 * size as the threshold (XXX: tune)
590 	 *
591 	 * However, we'll put the header into the page if we can put
592 	 * it without wasting any items.
593 	 *
594 	 * Silently enforce `0 <= ioff < align'.
595 	 */
596 	pp->pr_itemoffset = ioff %= align;
597 	/* See the comment below about reserved bytes. */
598 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
599 	phsize = ALIGN(sizeof(struct pool_item_header));
600 	if (pp->pr_roflags & PR_PHINPAGE ||
601 	    ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
602 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
603 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
604 		/* Use the end of the page for the page header */
605 		pp->pr_roflags |= PR_PHINPAGE;
606 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
607 	} else {
608 		/* The page header will be taken from our page header pool */
609 		pp->pr_phoffset = 0;
610 		off = palloc->pa_pagesz;
611 		SPLAY_INIT(&pp->pr_phtree);
612 	}
613 
614 	/*
615 	 * Alignment is to take place at `ioff' within the item. This means
616 	 * we must reserve up to `align - 1' bytes on the page to allow
617 	 * appropriate positioning of each item.
618 	 */
619 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
620 	KASSERT(pp->pr_itemsperpage != 0);
621 	if ((pp->pr_roflags & PR_NOTOUCH)) {
622 		int idx;
623 
624 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
625 		    idx++) {
626 			/* nothing */
627 		}
628 		if (idx >= PHPOOL_MAX) {
629 			/*
630 			 * if you see this panic, consider to tweak
631 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
632 			 */
633 			panic("%s: [%s] too large itemsperpage(%d) for "
634 			    "PR_NOTOUCH", __func__,
635 			    pp->pr_wchan, pp->pr_itemsperpage);
636 		}
637 		pp->pr_phpool = &phpool[idx];
638 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
639 		pp->pr_phpool = &phpool[0];
640 	}
641 #if defined(DIAGNOSTIC)
642 	else {
643 		pp->pr_phpool = NULL;
644 	}
645 #endif
646 
647 	/*
648 	 * Use the slack between the chunks and the page header
649 	 * for "cache coloring".
650 	 */
651 	slack = off - pp->pr_itemsperpage * pp->pr_size;
652 	pp->pr_maxcolor = (slack / align) * align;
653 	pp->pr_curcolor = 0;
654 
655 	pp->pr_nget = 0;
656 	pp->pr_nfail = 0;
657 	pp->pr_nput = 0;
658 	pp->pr_npagealloc = 0;
659 	pp->pr_npagefree = 0;
660 	pp->pr_hiwat = 0;
661 	pp->pr_nidle = 0;
662 	pp->pr_refcnt = 0;
663 
664 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
665 	cv_init(&pp->pr_cv, wchan);
666 	pp->pr_ipl = ipl;
667 
668 	/* Insert into the list of all pools. */
669 	if (!cold)
670 		mutex_enter(&pool_head_lock);
671 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
672 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
673 			break;
674 	}
675 	if (pp1 == NULL)
676 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
677 	else
678 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
679 	if (!cold)
680 		mutex_exit(&pool_head_lock);
681 
682 	/* Insert this into the list of pools using this allocator. */
683 	if (!cold)
684 		mutex_enter(&palloc->pa_lock);
685 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
686 	if (!cold)
687 		mutex_exit(&palloc->pa_lock);
688 }
689 
690 /*
691  * De-commision a pool resource.
692  */
693 void
694 pool_destroy(struct pool *pp)
695 {
696 	struct pool_pagelist pq;
697 	struct pool_item_header *ph;
698 
699 	/* Remove from global pool list */
700 	mutex_enter(&pool_head_lock);
701 	while (pp->pr_refcnt != 0)
702 		cv_wait(&pool_busy, &pool_head_lock);
703 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
704 	if (drainpp == pp)
705 		drainpp = NULL;
706 	mutex_exit(&pool_head_lock);
707 
708 	/* Remove this pool from its allocator's list of pools. */
709 	mutex_enter(&pp->pr_alloc->pa_lock);
710 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
711 	mutex_exit(&pp->pr_alloc->pa_lock);
712 
713 	mutex_enter(&pool_allocator_lock);
714 	if (--pp->pr_alloc->pa_refcnt == 0)
715 		mutex_destroy(&pp->pr_alloc->pa_lock);
716 	mutex_exit(&pool_allocator_lock);
717 
718 	mutex_enter(&pp->pr_lock);
719 
720 	KASSERT(pp->pr_cache == NULL);
721 	KASSERTMSG((pp->pr_nout == 0),
722 	    "%s: pool busy: still out: %u", __func__, pp->pr_nout);
723 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
724 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
725 
726 	/* Remove all pages */
727 	LIST_INIT(&pq);
728 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
729 		pr_rmpage(pp, ph, &pq);
730 
731 	mutex_exit(&pp->pr_lock);
732 
733 	pr_pagelist_free(pp, &pq);
734 	cv_destroy(&pp->pr_cv);
735 	mutex_destroy(&pp->pr_lock);
736 }
737 
738 void
739 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
740 {
741 
742 	/* XXX no locking -- must be used just after pool_init() */
743 	KASSERTMSG((pp->pr_drain_hook == NULL),
744 	    "%s: [%s] already set", __func__, pp->pr_wchan);
745 	pp->pr_drain_hook = fn;
746 	pp->pr_drain_hook_arg = arg;
747 }
748 
749 static struct pool_item_header *
750 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
751 {
752 	struct pool_item_header *ph;
753 
754 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
755 		ph = (void *)((char *)storage + pp->pr_phoffset);
756 	else
757 		ph = pool_get(pp->pr_phpool, flags);
758 
759 	return (ph);
760 }
761 
762 /*
763  * Grab an item from the pool.
764  */
765 void *
766 pool_get(struct pool *pp, int flags)
767 {
768 	struct pool_item *pi;
769 	struct pool_item_header *ph;
770 	void *v;
771 
772 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
773 	KASSERTMSG((pp->pr_itemsperpage != 0),
774 	    "%s: [%s] pr_itemsperpage is zero, "
775 	    "pool not initialized?", __func__, pp->pr_wchan);
776 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
777 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
778 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
779 	    __func__, pp->pr_wchan);
780 	if (flags & PR_WAITOK) {
781 		ASSERT_SLEEPABLE();
782 	}
783 
784 	mutex_enter(&pp->pr_lock);
785  startover:
786 	/*
787 	 * Check to see if we've reached the hard limit.  If we have,
788 	 * and we can wait, then wait until an item has been returned to
789 	 * the pool.
790 	 */
791 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
792 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
793 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
794 		if (pp->pr_drain_hook != NULL) {
795 			/*
796 			 * Since the drain hook is going to free things
797 			 * back to the pool, unlock, call the hook, re-lock,
798 			 * and check the hardlimit condition again.
799 			 */
800 			mutex_exit(&pp->pr_lock);
801 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
802 			mutex_enter(&pp->pr_lock);
803 			if (pp->pr_nout < pp->pr_hardlimit)
804 				goto startover;
805 		}
806 
807 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
808 			/*
809 			 * XXX: A warning isn't logged in this case.  Should
810 			 * it be?
811 			 */
812 			pp->pr_flags |= PR_WANTED;
813 			do {
814 				cv_wait(&pp->pr_cv, &pp->pr_lock);
815 			} while (pp->pr_flags & PR_WANTED);
816 			goto startover;
817 		}
818 
819 		/*
820 		 * Log a message that the hard limit has been hit.
821 		 */
822 		if (pp->pr_hardlimit_warning != NULL &&
823 		    ratecheck(&pp->pr_hardlimit_warning_last,
824 			      &pp->pr_hardlimit_ratecap))
825 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
826 
827 		pp->pr_nfail++;
828 
829 		mutex_exit(&pp->pr_lock);
830 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
831 		return (NULL);
832 	}
833 
834 	/*
835 	 * The convention we use is that if `curpage' is not NULL, then
836 	 * it points at a non-empty bucket. In particular, `curpage'
837 	 * never points at a page header which has PR_PHINPAGE set and
838 	 * has no items in its bucket.
839 	 */
840 	if ((ph = pp->pr_curpage) == NULL) {
841 		int error;
842 
843 		KASSERTMSG((pp->pr_nitems == 0),
844 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
845 		    __func__, pp->pr_wchan, pp->pr_nitems);
846 
847 		/*
848 		 * Call the back-end page allocator for more memory.
849 		 * Release the pool lock, as the back-end page allocator
850 		 * may block.
851 		 */
852 		error = pool_grow(pp, flags);
853 		if (error != 0) {
854 			/*
855 			 * pool_grow aborts when another thread
856 			 * is allocating a new page. Retry if it
857 			 * waited for it.
858 			 */
859 			if (error == ERESTART)
860 				goto startover;
861 
862 			/*
863 			 * We were unable to allocate a page or item
864 			 * header, but we released the lock during
865 			 * allocation, so perhaps items were freed
866 			 * back to the pool.  Check for this case.
867 			 */
868 			if (pp->pr_curpage != NULL)
869 				goto startover;
870 
871 			pp->pr_nfail++;
872 			mutex_exit(&pp->pr_lock);
873 			KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
874 			return (NULL);
875 		}
876 
877 		/* Start the allocation process over. */
878 		goto startover;
879 	}
880 	if (pp->pr_roflags & PR_NOTOUCH) {
881 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
882 		    "%s: %s: page empty", __func__, pp->pr_wchan);
883 		v = pr_item_notouch_get(pp, ph);
884 	} else {
885 		v = pi = LIST_FIRST(&ph->ph_itemlist);
886 		if (__predict_false(v == NULL)) {
887 			mutex_exit(&pp->pr_lock);
888 			panic("%s: [%s] page empty", __func__, pp->pr_wchan);
889 		}
890 		KASSERTMSG((pp->pr_nitems > 0),
891 		    "%s: [%s] nitems %u inconsistent on itemlist",
892 		    __func__, pp->pr_wchan, pp->pr_nitems);
893 		KASSERTMSG((pi->pi_magic == PI_MAGIC),
894 		    "%s: [%s] free list modified: "
895 		    "magic=%x; page %p; item addr %p", __func__,
896 		    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
897 
898 		/*
899 		 * Remove from item list.
900 		 */
901 		LIST_REMOVE(pi, pi_list);
902 	}
903 	pp->pr_nitems--;
904 	pp->pr_nout++;
905 	if (ph->ph_nmissing == 0) {
906 		KASSERT(pp->pr_nidle > 0);
907 		pp->pr_nidle--;
908 
909 		/*
910 		 * This page was previously empty.  Move it to the list of
911 		 * partially-full pages.  This page is already curpage.
912 		 */
913 		LIST_REMOVE(ph, ph_pagelist);
914 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
915 	}
916 	ph->ph_nmissing++;
917 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
918 		KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) ||
919 			LIST_EMPTY(&ph->ph_itemlist)),
920 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
921 			pp->pr_wchan, ph->ph_nmissing);
922 		/*
923 		 * This page is now full.  Move it to the full list
924 		 * and select a new current page.
925 		 */
926 		LIST_REMOVE(ph, ph_pagelist);
927 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
928 		pool_update_curpage(pp);
929 	}
930 
931 	pp->pr_nget++;
932 
933 	/*
934 	 * If we have a low water mark and we are now below that low
935 	 * water mark, add more items to the pool.
936 	 */
937 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
938 		/*
939 		 * XXX: Should we log a warning?  Should we set up a timeout
940 		 * to try again in a second or so?  The latter could break
941 		 * a caller's assumptions about interrupt protection, etc.
942 		 */
943 	}
944 
945 	mutex_exit(&pp->pr_lock);
946 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
947 	FREECHECK_OUT(&pp->pr_freecheck, v);
948 	pool_redzone_fill(pp, v);
949 	pool_kleak_fill(pp, v);
950 	return (v);
951 }
952 
953 /*
954  * Internal version of pool_put().  Pool is already locked/entered.
955  */
956 static void
957 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
958 {
959 	struct pool_item *pi = v;
960 	struct pool_item_header *ph;
961 
962 	KASSERT(mutex_owned(&pp->pr_lock));
963 	pool_redzone_check(pp, v);
964 	FREECHECK_IN(&pp->pr_freecheck, v);
965 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
966 
967 	KASSERTMSG((pp->pr_nout > 0),
968 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
969 
970 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
971 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
972 	}
973 
974 	/*
975 	 * Return to item list.
976 	 */
977 	if (pp->pr_roflags & PR_NOTOUCH) {
978 		pr_item_notouch_put(pp, ph, v);
979 	} else {
980 #ifdef DIAGNOSTIC
981 		pi->pi_magic = PI_MAGIC;
982 #endif
983 #ifdef DEBUG
984 		{
985 			int i, *ip = v;
986 
987 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
988 				*ip++ = PI_MAGIC;
989 			}
990 		}
991 #endif
992 
993 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
994 	}
995 	KDASSERT(ph->ph_nmissing != 0);
996 	ph->ph_nmissing--;
997 	pp->pr_nput++;
998 	pp->pr_nitems++;
999 	pp->pr_nout--;
1000 
1001 	/* Cancel "pool empty" condition if it exists */
1002 	if (pp->pr_curpage == NULL)
1003 		pp->pr_curpage = ph;
1004 
1005 	if (pp->pr_flags & PR_WANTED) {
1006 		pp->pr_flags &= ~PR_WANTED;
1007 		cv_broadcast(&pp->pr_cv);
1008 	}
1009 
1010 	/*
1011 	 * If this page is now empty, do one of two things:
1012 	 *
1013 	 *	(1) If we have more pages than the page high water mark,
1014 	 *	    free the page back to the system.  ONLY CONSIDER
1015 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1016 	 *	    CLAIM.
1017 	 *
1018 	 *	(2) Otherwise, move the page to the empty page list.
1019 	 *
1020 	 * Either way, select a new current page (so we use a partially-full
1021 	 * page if one is available).
1022 	 */
1023 	if (ph->ph_nmissing == 0) {
1024 		pp->pr_nidle++;
1025 		if (pp->pr_npages > pp->pr_minpages &&
1026 		    pp->pr_npages > pp->pr_maxpages) {
1027 			pr_rmpage(pp, ph, pq);
1028 		} else {
1029 			LIST_REMOVE(ph, ph_pagelist);
1030 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1031 
1032 			/*
1033 			 * Update the timestamp on the page.  A page must
1034 			 * be idle for some period of time before it can
1035 			 * be reclaimed by the pagedaemon.  This minimizes
1036 			 * ping-pong'ing for memory.
1037 			 *
1038 			 * note for 64-bit time_t: truncating to 32-bit is not
1039 			 * a problem for our usage.
1040 			 */
1041 			ph->ph_time = time_uptime;
1042 		}
1043 		pool_update_curpage(pp);
1044 	}
1045 
1046 	/*
1047 	 * If the page was previously completely full, move it to the
1048 	 * partially-full list and make it the current page.  The next
1049 	 * allocation will get the item from this page, instead of
1050 	 * further fragmenting the pool.
1051 	 */
1052 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1053 		LIST_REMOVE(ph, ph_pagelist);
1054 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1055 		pp->pr_curpage = ph;
1056 	}
1057 }
1058 
1059 void
1060 pool_put(struct pool *pp, void *v)
1061 {
1062 	struct pool_pagelist pq;
1063 
1064 	LIST_INIT(&pq);
1065 
1066 	mutex_enter(&pp->pr_lock);
1067 	pool_do_put(pp, v, &pq);
1068 	mutex_exit(&pp->pr_lock);
1069 
1070 	pr_pagelist_free(pp, &pq);
1071 }
1072 
1073 /*
1074  * pool_grow: grow a pool by a page.
1075  *
1076  * => called with pool locked.
1077  * => unlock and relock the pool.
1078  * => return with pool locked.
1079  */
1080 
1081 static int
1082 pool_grow(struct pool *pp, int flags)
1083 {
1084 	/*
1085 	 * If there's a pool_grow in progress, wait for it to complete
1086 	 * and try again from the top.
1087 	 */
1088 	if (pp->pr_flags & PR_GROWING) {
1089 		if (flags & PR_WAITOK) {
1090 			do {
1091 				cv_wait(&pp->pr_cv, &pp->pr_lock);
1092 			} while (pp->pr_flags & PR_GROWING);
1093 			return ERESTART;
1094 		} else {
1095 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
1096 				/*
1097 				 * This needs an unlock/relock dance so
1098 				 * that the other caller has a chance to
1099 				 * run and actually do the thing.  Note
1100 				 * that this is effectively a busy-wait.
1101 				 */
1102 				mutex_exit(&pp->pr_lock);
1103 				mutex_enter(&pp->pr_lock);
1104 				return ERESTART;
1105 			}
1106 			return EWOULDBLOCK;
1107 		}
1108 	}
1109 	pp->pr_flags |= PR_GROWING;
1110 	if (flags & PR_WAITOK)
1111 		mutex_exit(&pp->pr_lock);
1112 	else
1113 		pp->pr_flags |= PR_GROWINGNOWAIT;
1114 
1115 	char *cp = pool_allocator_alloc(pp, flags);
1116 	if (__predict_false(cp == NULL))
1117 		goto out;
1118 
1119 	struct pool_item_header *ph = pool_alloc_item_header(pp, cp, flags);
1120 	if (__predict_false(ph == NULL)) {
1121 		pool_allocator_free(pp, cp);
1122 		goto out;
1123 	}
1124 
1125 	if (flags & PR_WAITOK)
1126 		mutex_enter(&pp->pr_lock);
1127 	pool_prime_page(pp, cp, ph);
1128 	pp->pr_npagealloc++;
1129 	KASSERT(pp->pr_flags & PR_GROWING);
1130 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1131 	/*
1132 	 * If anyone was waiting for pool_grow, notify them that we
1133 	 * may have just done it.
1134 	 */
1135 	cv_broadcast(&pp->pr_cv);
1136 	return 0;
1137 out:
1138 	if (flags & PR_WAITOK)
1139 		mutex_enter(&pp->pr_lock);
1140 	KASSERT(pp->pr_flags & PR_GROWING);
1141 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1142 	return ENOMEM;
1143 }
1144 
1145 /*
1146  * Add N items to the pool.
1147  */
1148 int
1149 pool_prime(struct pool *pp, int n)
1150 {
1151 	int newpages;
1152 	int error = 0;
1153 
1154 	mutex_enter(&pp->pr_lock);
1155 
1156 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1157 
1158 	while (newpages > 0) {
1159 		error = pool_grow(pp, PR_NOWAIT);
1160 		if (error) {
1161 			if (error == ERESTART)
1162 				continue;
1163 			break;
1164 		}
1165 		pp->pr_minpages++;
1166 		newpages--;
1167 	}
1168 
1169 	if (pp->pr_minpages >= pp->pr_maxpages)
1170 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1171 
1172 	mutex_exit(&pp->pr_lock);
1173 	return error;
1174 }
1175 
1176 /*
1177  * Add a page worth of items to the pool.
1178  *
1179  * Note, we must be called with the pool descriptor LOCKED.
1180  */
1181 static void
1182 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1183 {
1184 	struct pool_item *pi;
1185 	void *cp = storage;
1186 	const unsigned int align = pp->pr_align;
1187 	const unsigned int ioff = pp->pr_itemoffset;
1188 	int n;
1189 
1190 	KASSERT(mutex_owned(&pp->pr_lock));
1191 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1192 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1193 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1194 
1195 	/*
1196 	 * Insert page header.
1197 	 */
1198 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1199 	LIST_INIT(&ph->ph_itemlist);
1200 	ph->ph_page = storage;
1201 	ph->ph_nmissing = 0;
1202 	ph->ph_time = time_uptime;
1203 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1204 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1205 
1206 	pp->pr_nidle++;
1207 
1208 	/*
1209 	 * Color this page.
1210 	 */
1211 	ph->ph_off = pp->pr_curcolor;
1212 	cp = (char *)cp + ph->ph_off;
1213 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1214 		pp->pr_curcolor = 0;
1215 
1216 	/*
1217 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1218 	 */
1219 	if (ioff != 0)
1220 		cp = (char *)cp + align - ioff;
1221 
1222 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1223 
1224 	/*
1225 	 * Insert remaining chunks on the bucket list.
1226 	 */
1227 	n = pp->pr_itemsperpage;
1228 	pp->pr_nitems += n;
1229 
1230 	if (pp->pr_roflags & PR_NOTOUCH) {
1231 		pr_item_notouch_init(pp, ph);
1232 	} else {
1233 		while (n--) {
1234 			pi = (struct pool_item *)cp;
1235 
1236 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1237 
1238 			/* Insert on page list */
1239 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1240 #ifdef DIAGNOSTIC
1241 			pi->pi_magic = PI_MAGIC;
1242 #endif
1243 			cp = (char *)cp + pp->pr_size;
1244 
1245 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1246 		}
1247 	}
1248 
1249 	/*
1250 	 * If the pool was depleted, point at the new page.
1251 	 */
1252 	if (pp->pr_curpage == NULL)
1253 		pp->pr_curpage = ph;
1254 
1255 	if (++pp->pr_npages > pp->pr_hiwat)
1256 		pp->pr_hiwat = pp->pr_npages;
1257 }
1258 
1259 /*
1260  * Used by pool_get() when nitems drops below the low water mark.  This
1261  * is used to catch up pr_nitems with the low water mark.
1262  *
1263  * Note 1, we never wait for memory here, we let the caller decide what to do.
1264  *
1265  * Note 2, we must be called with the pool already locked, and we return
1266  * with it locked.
1267  */
1268 static int
1269 pool_catchup(struct pool *pp)
1270 {
1271 	int error = 0;
1272 
1273 	while (POOL_NEEDS_CATCHUP(pp)) {
1274 		error = pool_grow(pp, PR_NOWAIT);
1275 		if (error) {
1276 			if (error == ERESTART)
1277 				continue;
1278 			break;
1279 		}
1280 	}
1281 	return error;
1282 }
1283 
1284 static void
1285 pool_update_curpage(struct pool *pp)
1286 {
1287 
1288 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1289 	if (pp->pr_curpage == NULL) {
1290 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1291 	}
1292 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1293 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1294 }
1295 
1296 void
1297 pool_setlowat(struct pool *pp, int n)
1298 {
1299 
1300 	mutex_enter(&pp->pr_lock);
1301 
1302 	pp->pr_minitems = n;
1303 	pp->pr_minpages = (n == 0)
1304 		? 0
1305 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1306 
1307 	/* Make sure we're caught up with the newly-set low water mark. */
1308 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1309 		/*
1310 		 * XXX: Should we log a warning?  Should we set up a timeout
1311 		 * to try again in a second or so?  The latter could break
1312 		 * a caller's assumptions about interrupt protection, etc.
1313 		 */
1314 	}
1315 
1316 	mutex_exit(&pp->pr_lock);
1317 }
1318 
1319 void
1320 pool_sethiwat(struct pool *pp, int n)
1321 {
1322 
1323 	mutex_enter(&pp->pr_lock);
1324 
1325 	pp->pr_maxpages = (n == 0)
1326 		? 0
1327 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1328 
1329 	mutex_exit(&pp->pr_lock);
1330 }
1331 
1332 void
1333 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1334 {
1335 
1336 	mutex_enter(&pp->pr_lock);
1337 
1338 	pp->pr_hardlimit = n;
1339 	pp->pr_hardlimit_warning = warnmess;
1340 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1341 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1342 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1343 
1344 	/*
1345 	 * In-line version of pool_sethiwat(), because we don't want to
1346 	 * release the lock.
1347 	 */
1348 	pp->pr_maxpages = (n == 0)
1349 		? 0
1350 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1351 
1352 	mutex_exit(&pp->pr_lock);
1353 }
1354 
1355 /*
1356  * Release all complete pages that have not been used recently.
1357  *
1358  * Must not be called from interrupt context.
1359  */
1360 int
1361 pool_reclaim(struct pool *pp)
1362 {
1363 	struct pool_item_header *ph, *phnext;
1364 	struct pool_pagelist pq;
1365 	uint32_t curtime;
1366 	bool klock;
1367 	int rv;
1368 
1369 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1370 
1371 	if (pp->pr_drain_hook != NULL) {
1372 		/*
1373 		 * The drain hook must be called with the pool unlocked.
1374 		 */
1375 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1376 	}
1377 
1378 	/*
1379 	 * XXXSMP Because we do not want to cause non-MPSAFE code
1380 	 * to block.
1381 	 */
1382 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1383 	    pp->pr_ipl == IPL_SOFTSERIAL) {
1384 		KERNEL_LOCK(1, NULL);
1385 		klock = true;
1386 	} else
1387 		klock = false;
1388 
1389 	/* Reclaim items from the pool's cache (if any). */
1390 	if (pp->pr_cache != NULL)
1391 		pool_cache_invalidate(pp->pr_cache);
1392 
1393 	if (mutex_tryenter(&pp->pr_lock) == 0) {
1394 		if (klock) {
1395 			KERNEL_UNLOCK_ONE(NULL);
1396 		}
1397 		return (0);
1398 	}
1399 
1400 	LIST_INIT(&pq);
1401 
1402 	curtime = time_uptime;
1403 
1404 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1405 		phnext = LIST_NEXT(ph, ph_pagelist);
1406 
1407 		/* Check our minimum page claim */
1408 		if (pp->pr_npages <= pp->pr_minpages)
1409 			break;
1410 
1411 		KASSERT(ph->ph_nmissing == 0);
1412 		if (curtime - ph->ph_time < pool_inactive_time)
1413 			continue;
1414 
1415 		/*
1416 		 * If freeing this page would put us below
1417 		 * the low water mark, stop now.
1418 		 */
1419 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
1420 		    pp->pr_minitems)
1421 			break;
1422 
1423 		pr_rmpage(pp, ph, &pq);
1424 	}
1425 
1426 	mutex_exit(&pp->pr_lock);
1427 
1428 	if (LIST_EMPTY(&pq))
1429 		rv = 0;
1430 	else {
1431 		pr_pagelist_free(pp, &pq);
1432 		rv = 1;
1433 	}
1434 
1435 	if (klock) {
1436 		KERNEL_UNLOCK_ONE(NULL);
1437 	}
1438 
1439 	return (rv);
1440 }
1441 
1442 /*
1443  * Drain pools, one at a time. The drained pool is returned within ppp.
1444  *
1445  * Note, must never be called from interrupt context.
1446  */
1447 bool
1448 pool_drain(struct pool **ppp)
1449 {
1450 	bool reclaimed;
1451 	struct pool *pp;
1452 
1453 	KASSERT(!TAILQ_EMPTY(&pool_head));
1454 
1455 	pp = NULL;
1456 
1457 	/* Find next pool to drain, and add a reference. */
1458 	mutex_enter(&pool_head_lock);
1459 	do {
1460 		if (drainpp == NULL) {
1461 			drainpp = TAILQ_FIRST(&pool_head);
1462 		}
1463 		if (drainpp != NULL) {
1464 			pp = drainpp;
1465 			drainpp = TAILQ_NEXT(pp, pr_poollist);
1466 		}
1467 		/*
1468 		 * Skip completely idle pools.  We depend on at least
1469 		 * one pool in the system being active.
1470 		 */
1471 	} while (pp == NULL || pp->pr_npages == 0);
1472 	pp->pr_refcnt++;
1473 	mutex_exit(&pool_head_lock);
1474 
1475 	/* Drain the cache (if any) and pool.. */
1476 	reclaimed = pool_reclaim(pp);
1477 
1478 	/* Finally, unlock the pool. */
1479 	mutex_enter(&pool_head_lock);
1480 	pp->pr_refcnt--;
1481 	cv_broadcast(&pool_busy);
1482 	mutex_exit(&pool_head_lock);
1483 
1484 	if (ppp != NULL)
1485 		*ppp = pp;
1486 
1487 	return reclaimed;
1488 }
1489 
1490 /*
1491  * Calculate the total number of pages consumed by pools.
1492  */
1493 int
1494 pool_totalpages(void)
1495 {
1496 	struct pool *pp;
1497 	uint64_t total = 0;
1498 
1499 	mutex_enter(&pool_head_lock);
1500 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1501 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
1502 
1503 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1504 			bytes -= (pp->pr_nout * pp->pr_size);
1505 		total += bytes;
1506 	}
1507 	mutex_exit(&pool_head_lock);
1508 
1509 	return atop(total);
1510 }
1511 
1512 /*
1513  * Diagnostic helpers.
1514  */
1515 
1516 void
1517 pool_printall(const char *modif, void (*pr)(const char *, ...))
1518 {
1519 	struct pool *pp;
1520 
1521 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1522 		pool_printit(pp, modif, pr);
1523 	}
1524 }
1525 
1526 void
1527 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1528 {
1529 
1530 	if (pp == NULL) {
1531 		(*pr)("Must specify a pool to print.\n");
1532 		return;
1533 	}
1534 
1535 	pool_print1(pp, modif, pr);
1536 }
1537 
1538 static void
1539 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1540     void (*pr)(const char *, ...))
1541 {
1542 	struct pool_item_header *ph;
1543 	struct pool_item *pi __diagused;
1544 
1545 	LIST_FOREACH(ph, pl, ph_pagelist) {
1546 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1547 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
1548 #ifdef DIAGNOSTIC
1549 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
1550 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1551 				if (pi->pi_magic != PI_MAGIC) {
1552 					(*pr)("\t\t\titem %p, magic 0x%x\n",
1553 					    pi, pi->pi_magic);
1554 				}
1555 			}
1556 		}
1557 #endif
1558 	}
1559 }
1560 
1561 static void
1562 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1563 {
1564 	struct pool_item_header *ph;
1565 	pool_cache_t pc;
1566 	pcg_t *pcg;
1567 	pool_cache_cpu_t *cc;
1568 	uint64_t cpuhit, cpumiss;
1569 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1570 	char c;
1571 
1572 	while ((c = *modif++) != '\0') {
1573 		if (c == 'l')
1574 			print_log = 1;
1575 		if (c == 'p')
1576 			print_pagelist = 1;
1577 		if (c == 'c')
1578 			print_cache = 1;
1579 	}
1580 
1581 	if ((pc = pp->pr_cache) != NULL) {
1582 		(*pr)("POOL CACHE");
1583 	} else {
1584 		(*pr)("POOL");
1585 	}
1586 
1587 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1588 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1589 	    pp->pr_roflags);
1590 	(*pr)("\talloc %p\n", pp->pr_alloc);
1591 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1592 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1593 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1594 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1595 
1596 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1597 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1598 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1599 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1600 
1601 	if (print_pagelist == 0)
1602 		goto skip_pagelist;
1603 
1604 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1605 		(*pr)("\n\tempty page list:\n");
1606 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1607 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1608 		(*pr)("\n\tfull page list:\n");
1609 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1610 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1611 		(*pr)("\n\tpartial-page list:\n");
1612 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
1613 
1614 	if (pp->pr_curpage == NULL)
1615 		(*pr)("\tno current page\n");
1616 	else
1617 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1618 
1619  skip_pagelist:
1620 	if (print_log == 0)
1621 		goto skip_log;
1622 
1623 	(*pr)("\n");
1624 
1625  skip_log:
1626 
1627 #define PR_GROUPLIST(pcg)						\
1628 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
1629 	for (i = 0; i < pcg->pcg_size; i++) {				\
1630 		if (pcg->pcg_objects[i].pcgo_pa !=			\
1631 		    POOL_PADDR_INVALID) {				\
1632 			(*pr)("\t\t\t%p, 0x%llx\n",			\
1633 			    pcg->pcg_objects[i].pcgo_va,		\
1634 			    (unsigned long long)			\
1635 			    pcg->pcg_objects[i].pcgo_pa);		\
1636 		} else {						\
1637 			(*pr)("\t\t\t%p\n",				\
1638 			    pcg->pcg_objects[i].pcgo_va);		\
1639 		}							\
1640 	}
1641 
1642 	if (pc != NULL) {
1643 		cpuhit = 0;
1644 		cpumiss = 0;
1645 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1646 			if ((cc = pc->pc_cpus[i]) == NULL)
1647 				continue;
1648 			cpuhit += cc->cc_hits;
1649 			cpumiss += cc->cc_misses;
1650 		}
1651 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1652 		(*pr)("\tcache layer hits %llu misses %llu\n",
1653 		    pc->pc_hits, pc->pc_misses);
1654 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1655 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
1656 		    pc->pc_contended);
1657 		(*pr)("\tcache layer empty groups %u full groups %u\n",
1658 		    pc->pc_nempty, pc->pc_nfull);
1659 		if (print_cache) {
1660 			(*pr)("\tfull cache groups:\n");
1661 			for (pcg = pc->pc_fullgroups; pcg != NULL;
1662 			    pcg = pcg->pcg_next) {
1663 				PR_GROUPLIST(pcg);
1664 			}
1665 			(*pr)("\tempty cache groups:\n");
1666 			for (pcg = pc->pc_emptygroups; pcg != NULL;
1667 			    pcg = pcg->pcg_next) {
1668 				PR_GROUPLIST(pcg);
1669 			}
1670 		}
1671 	}
1672 #undef PR_GROUPLIST
1673 }
1674 
1675 static int
1676 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1677 {
1678 	struct pool_item *pi;
1679 	void *page;
1680 	int n;
1681 
1682 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1683 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1684 		if (page != ph->ph_page &&
1685 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1686 			if (label != NULL)
1687 				printf("%s: ", label);
1688 			printf("pool(%p:%s): page inconsistency: page %p;"
1689 			       " at page head addr %p (p %p)\n", pp,
1690 				pp->pr_wchan, ph->ph_page,
1691 				ph, page);
1692 			return 1;
1693 		}
1694 	}
1695 
1696 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1697 		return 0;
1698 
1699 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1700 	     pi != NULL;
1701 	     pi = LIST_NEXT(pi,pi_list), n++) {
1702 
1703 #ifdef DIAGNOSTIC
1704 		if (pi->pi_magic != PI_MAGIC) {
1705 			if (label != NULL)
1706 				printf("%s: ", label);
1707 			printf("pool(%s): free list modified: magic=%x;"
1708 			       " page %p; item ordinal %d; addr %p\n",
1709 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
1710 				n, pi);
1711 			panic("pool");
1712 		}
1713 #endif
1714 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1715 			continue;
1716 		}
1717 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1718 		if (page == ph->ph_page)
1719 			continue;
1720 
1721 		if (label != NULL)
1722 			printf("%s: ", label);
1723 		printf("pool(%p:%s): page inconsistency: page %p;"
1724 		       " item ordinal %d; addr %p (p %p)\n", pp,
1725 			pp->pr_wchan, ph->ph_page,
1726 			n, pi, page);
1727 		return 1;
1728 	}
1729 	return 0;
1730 }
1731 
1732 
1733 int
1734 pool_chk(struct pool *pp, const char *label)
1735 {
1736 	struct pool_item_header *ph;
1737 	int r = 0;
1738 
1739 	mutex_enter(&pp->pr_lock);
1740 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1741 		r = pool_chk_page(pp, label, ph);
1742 		if (r) {
1743 			goto out;
1744 		}
1745 	}
1746 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1747 		r = pool_chk_page(pp, label, ph);
1748 		if (r) {
1749 			goto out;
1750 		}
1751 	}
1752 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1753 		r = pool_chk_page(pp, label, ph);
1754 		if (r) {
1755 			goto out;
1756 		}
1757 	}
1758 
1759 out:
1760 	mutex_exit(&pp->pr_lock);
1761 	return (r);
1762 }
1763 
1764 /*
1765  * pool_cache_init:
1766  *
1767  *	Initialize a pool cache.
1768  */
1769 pool_cache_t
1770 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1771     const char *wchan, struct pool_allocator *palloc, int ipl,
1772     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
1773 {
1774 	pool_cache_t pc;
1775 
1776 	pc = pool_get(&cache_pool, PR_WAITOK);
1777 	if (pc == NULL)
1778 		return NULL;
1779 
1780 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
1781 	   palloc, ipl, ctor, dtor, arg);
1782 
1783 	return pc;
1784 }
1785 
1786 /*
1787  * pool_cache_bootstrap:
1788  *
1789  *	Kernel-private version of pool_cache_init().  The caller
1790  *	provides initial storage.
1791  */
1792 void
1793 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
1794     u_int align_offset, u_int flags, const char *wchan,
1795     struct pool_allocator *palloc, int ipl,
1796     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
1797     void *arg)
1798 {
1799 	CPU_INFO_ITERATOR cii;
1800 	pool_cache_t pc1;
1801 	struct cpu_info *ci;
1802 	struct pool *pp;
1803 
1804 	pp = &pc->pc_pool;
1805 	if (palloc == NULL && ipl == IPL_NONE) {
1806 		if (size > PAGE_SIZE) {
1807 			int bigidx = pool_bigidx(size);
1808 
1809 			palloc = &pool_allocator_big[bigidx];
1810 		} else
1811 			palloc = &pool_allocator_nointr;
1812 	}
1813 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
1814 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
1815 
1816 	if (ctor == NULL) {
1817 		ctor = (int (*)(void *, void *, int))nullop;
1818 	}
1819 	if (dtor == NULL) {
1820 		dtor = (void (*)(void *, void *))nullop;
1821 	}
1822 
1823 	pc->pc_emptygroups = NULL;
1824 	pc->pc_fullgroups = NULL;
1825 	pc->pc_partgroups = NULL;
1826 	pc->pc_ctor = ctor;
1827 	pc->pc_dtor = dtor;
1828 	pc->pc_arg  = arg;
1829 	pc->pc_hits  = 0;
1830 	pc->pc_misses = 0;
1831 	pc->pc_nempty = 0;
1832 	pc->pc_npart = 0;
1833 	pc->pc_nfull = 0;
1834 	pc->pc_contended = 0;
1835 	pc->pc_refcnt = 0;
1836 	pc->pc_freecheck = NULL;
1837 
1838 	if ((flags & PR_LARGECACHE) != 0) {
1839 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
1840 		pc->pc_pcgpool = &pcg_large_pool;
1841 	} else {
1842 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
1843 		pc->pc_pcgpool = &pcg_normal_pool;
1844 	}
1845 
1846 	/* Allocate per-CPU caches. */
1847 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
1848 	pc->pc_ncpu = 0;
1849 	if (ncpu < 2) {
1850 		/* XXX For sparc: boot CPU is not attached yet. */
1851 		pool_cache_cpu_init1(curcpu(), pc);
1852 	} else {
1853 		for (CPU_INFO_FOREACH(cii, ci)) {
1854 			pool_cache_cpu_init1(ci, pc);
1855 		}
1856 	}
1857 
1858 	/* Add to list of all pools. */
1859 	if (__predict_true(!cold))
1860 		mutex_enter(&pool_head_lock);
1861 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
1862 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
1863 			break;
1864 	}
1865 	if (pc1 == NULL)
1866 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
1867 	else
1868 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
1869 	if (__predict_true(!cold))
1870 		mutex_exit(&pool_head_lock);
1871 
1872 	membar_sync();
1873 	pp->pr_cache = pc;
1874 }
1875 
1876 /*
1877  * pool_cache_destroy:
1878  *
1879  *	Destroy a pool cache.
1880  */
1881 void
1882 pool_cache_destroy(pool_cache_t pc)
1883 {
1884 
1885 	pool_cache_bootstrap_destroy(pc);
1886 	pool_put(&cache_pool, pc);
1887 }
1888 
1889 /*
1890  * pool_cache_bootstrap_destroy:
1891  *
1892  *	Destroy a pool cache.
1893  */
1894 void
1895 pool_cache_bootstrap_destroy(pool_cache_t pc)
1896 {
1897 	struct pool *pp = &pc->pc_pool;
1898 	u_int i;
1899 
1900 	/* Remove it from the global list. */
1901 	mutex_enter(&pool_head_lock);
1902 	while (pc->pc_refcnt != 0)
1903 		cv_wait(&pool_busy, &pool_head_lock);
1904 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
1905 	mutex_exit(&pool_head_lock);
1906 
1907 	/* First, invalidate the entire cache. */
1908 	pool_cache_invalidate(pc);
1909 
1910 	/* Disassociate it from the pool. */
1911 	mutex_enter(&pp->pr_lock);
1912 	pp->pr_cache = NULL;
1913 	mutex_exit(&pp->pr_lock);
1914 
1915 	/* Destroy per-CPU data */
1916 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
1917 		pool_cache_invalidate_cpu(pc, i);
1918 
1919 	/* Finally, destroy it. */
1920 	mutex_destroy(&pc->pc_lock);
1921 	pool_destroy(pp);
1922 }
1923 
1924 /*
1925  * pool_cache_cpu_init1:
1926  *
1927  *	Called for each pool_cache whenever a new CPU is attached.
1928  */
1929 static void
1930 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
1931 {
1932 	pool_cache_cpu_t *cc;
1933 	int index;
1934 
1935 	index = ci->ci_index;
1936 
1937 	KASSERT(index < __arraycount(pc->pc_cpus));
1938 
1939 	if ((cc = pc->pc_cpus[index]) != NULL) {
1940 		KASSERT(cc->cc_cpuindex == index);
1941 		return;
1942 	}
1943 
1944 	/*
1945 	 * The first CPU is 'free'.  This needs to be the case for
1946 	 * bootstrap - we may not be able to allocate yet.
1947 	 */
1948 	if (pc->pc_ncpu == 0) {
1949 		cc = &pc->pc_cpu0;
1950 		pc->pc_ncpu = 1;
1951 	} else {
1952 		mutex_enter(&pc->pc_lock);
1953 		pc->pc_ncpu++;
1954 		mutex_exit(&pc->pc_lock);
1955 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
1956 	}
1957 
1958 	cc->cc_ipl = pc->pc_pool.pr_ipl;
1959 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
1960 	cc->cc_cache = pc;
1961 	cc->cc_cpuindex = index;
1962 	cc->cc_hits = 0;
1963 	cc->cc_misses = 0;
1964 	cc->cc_current = __UNCONST(&pcg_dummy);
1965 	cc->cc_previous = __UNCONST(&pcg_dummy);
1966 
1967 	pc->pc_cpus[index] = cc;
1968 }
1969 
1970 /*
1971  * pool_cache_cpu_init:
1972  *
1973  *	Called whenever a new CPU is attached.
1974  */
1975 void
1976 pool_cache_cpu_init(struct cpu_info *ci)
1977 {
1978 	pool_cache_t pc;
1979 
1980 	mutex_enter(&pool_head_lock);
1981 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
1982 		pc->pc_refcnt++;
1983 		mutex_exit(&pool_head_lock);
1984 
1985 		pool_cache_cpu_init1(ci, pc);
1986 
1987 		mutex_enter(&pool_head_lock);
1988 		pc->pc_refcnt--;
1989 		cv_broadcast(&pool_busy);
1990 	}
1991 	mutex_exit(&pool_head_lock);
1992 }
1993 
1994 /*
1995  * pool_cache_reclaim:
1996  *
1997  *	Reclaim memory from a pool cache.
1998  */
1999 bool
2000 pool_cache_reclaim(pool_cache_t pc)
2001 {
2002 
2003 	return pool_reclaim(&pc->pc_pool);
2004 }
2005 
2006 static void
2007 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2008 {
2009 
2010 	(*pc->pc_dtor)(pc->pc_arg, object);
2011 	pool_put(&pc->pc_pool, object);
2012 }
2013 
2014 /*
2015  * pool_cache_destruct_object:
2016  *
2017  *	Force destruction of an object and its release back into
2018  *	the pool.
2019  */
2020 void
2021 pool_cache_destruct_object(pool_cache_t pc, void *object)
2022 {
2023 
2024 	FREECHECK_IN(&pc->pc_freecheck, object);
2025 
2026 	pool_cache_destruct_object1(pc, object);
2027 }
2028 
2029 /*
2030  * pool_cache_invalidate_groups:
2031  *
2032  *	Invalidate a chain of groups and destruct all objects.
2033  */
2034 static void
2035 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2036 {
2037 	void *object;
2038 	pcg_t *next;
2039 	int i;
2040 
2041 	for (; pcg != NULL; pcg = next) {
2042 		next = pcg->pcg_next;
2043 
2044 		for (i = 0; i < pcg->pcg_avail; i++) {
2045 			object = pcg->pcg_objects[i].pcgo_va;
2046 			pool_cache_destruct_object1(pc, object);
2047 		}
2048 
2049 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2050 			pool_put(&pcg_large_pool, pcg);
2051 		} else {
2052 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2053 			pool_put(&pcg_normal_pool, pcg);
2054 		}
2055 	}
2056 }
2057 
2058 /*
2059  * pool_cache_invalidate:
2060  *
2061  *	Invalidate a pool cache (destruct and release all of the
2062  *	cached objects).  Does not reclaim objects from the pool.
2063  *
2064  *	Note: For pool caches that provide constructed objects, there
2065  *	is an assumption that another level of synchronization is occurring
2066  *	between the input to the constructor and the cache invalidation.
2067  *
2068  *	Invalidation is a costly process and should not be called from
2069  *	interrupt context.
2070  */
2071 void
2072 pool_cache_invalidate(pool_cache_t pc)
2073 {
2074 	uint64_t where;
2075 	pcg_t *full, *empty, *part;
2076 
2077 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2078 
2079 	if (ncpu < 2 || !mp_online) {
2080 		/*
2081 		 * We might be called early enough in the boot process
2082 		 * for the CPU data structures to not be fully initialized.
2083 		 * In this case, transfer the content of the local CPU's
2084 		 * cache back into global cache as only this CPU is currently
2085 		 * running.
2086 		 */
2087 		pool_cache_transfer(pc);
2088 	} else {
2089 		/*
2090 		 * Signal all CPUs that they must transfer their local
2091 		 * cache back to the global pool then wait for the xcall to
2092 		 * complete.
2093 		 */
2094 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
2095 		    pc, NULL);
2096 		xc_wait(where);
2097 	}
2098 
2099 	/* Empty pool caches, then invalidate objects */
2100 	mutex_enter(&pc->pc_lock);
2101 	full = pc->pc_fullgroups;
2102 	empty = pc->pc_emptygroups;
2103 	part = pc->pc_partgroups;
2104 	pc->pc_fullgroups = NULL;
2105 	pc->pc_emptygroups = NULL;
2106 	pc->pc_partgroups = NULL;
2107 	pc->pc_nfull = 0;
2108 	pc->pc_nempty = 0;
2109 	pc->pc_npart = 0;
2110 	mutex_exit(&pc->pc_lock);
2111 
2112 	pool_cache_invalidate_groups(pc, full);
2113 	pool_cache_invalidate_groups(pc, empty);
2114 	pool_cache_invalidate_groups(pc, part);
2115 }
2116 
2117 /*
2118  * pool_cache_invalidate_cpu:
2119  *
2120  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
2121  *	identified by its associated index.
2122  *	It is caller's responsibility to ensure that no operation is
2123  *	taking place on this pool cache while doing this invalidation.
2124  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
2125  *	pool cached objects from a CPU different from the one currently running
2126  *	may result in an undefined behaviour.
2127  */
2128 static void
2129 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2130 {
2131 	pool_cache_cpu_t *cc;
2132 	pcg_t *pcg;
2133 
2134 	if ((cc = pc->pc_cpus[index]) == NULL)
2135 		return;
2136 
2137 	if ((pcg = cc->cc_current) != &pcg_dummy) {
2138 		pcg->pcg_next = NULL;
2139 		pool_cache_invalidate_groups(pc, pcg);
2140 	}
2141 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
2142 		pcg->pcg_next = NULL;
2143 		pool_cache_invalidate_groups(pc, pcg);
2144 	}
2145 	if (cc != &pc->pc_cpu0)
2146 		pool_put(&cache_cpu_pool, cc);
2147 
2148 }
2149 
2150 void
2151 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2152 {
2153 
2154 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
2155 }
2156 
2157 void
2158 pool_cache_setlowat(pool_cache_t pc, int n)
2159 {
2160 
2161 	pool_setlowat(&pc->pc_pool, n);
2162 }
2163 
2164 void
2165 pool_cache_sethiwat(pool_cache_t pc, int n)
2166 {
2167 
2168 	pool_sethiwat(&pc->pc_pool, n);
2169 }
2170 
2171 void
2172 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2173 {
2174 
2175 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2176 }
2177 
2178 static bool __noinline
2179 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2180 		    paddr_t *pap, int flags)
2181 {
2182 	pcg_t *pcg, *cur;
2183 	uint64_t ncsw;
2184 	pool_cache_t pc;
2185 	void *object;
2186 
2187 	KASSERT(cc->cc_current->pcg_avail == 0);
2188 	KASSERT(cc->cc_previous->pcg_avail == 0);
2189 
2190 	pc = cc->cc_cache;
2191 	cc->cc_misses++;
2192 
2193 	/*
2194 	 * Nothing was available locally.  Try and grab a group
2195 	 * from the cache.
2196 	 */
2197 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2198 		ncsw = curlwp->l_ncsw;
2199 		mutex_enter(&pc->pc_lock);
2200 		pc->pc_contended++;
2201 
2202 		/*
2203 		 * If we context switched while locking, then
2204 		 * our view of the per-CPU data is invalid:
2205 		 * retry.
2206 		 */
2207 		if (curlwp->l_ncsw != ncsw) {
2208 			mutex_exit(&pc->pc_lock);
2209 			return true;
2210 		}
2211 	}
2212 
2213 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2214 		/*
2215 		 * If there's a full group, release our empty
2216 		 * group back to the cache.  Install the full
2217 		 * group as cc_current and return.
2218 		 */
2219 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2220 			KASSERT(cur->pcg_avail == 0);
2221 			cur->pcg_next = pc->pc_emptygroups;
2222 			pc->pc_emptygroups = cur;
2223 			pc->pc_nempty++;
2224 		}
2225 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
2226 		cc->cc_current = pcg;
2227 		pc->pc_fullgroups = pcg->pcg_next;
2228 		pc->pc_hits++;
2229 		pc->pc_nfull--;
2230 		mutex_exit(&pc->pc_lock);
2231 		return true;
2232 	}
2233 
2234 	/*
2235 	 * Nothing available locally or in cache.  Take the slow
2236 	 * path: fetch a new object from the pool and construct
2237 	 * it.
2238 	 */
2239 	pc->pc_misses++;
2240 	mutex_exit(&pc->pc_lock);
2241 	splx(s);
2242 
2243 	object = pool_get(&pc->pc_pool, flags);
2244 	*objectp = object;
2245 	if (__predict_false(object == NULL)) {
2246 		KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
2247 		return false;
2248 	}
2249 
2250 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2251 		pool_put(&pc->pc_pool, object);
2252 		*objectp = NULL;
2253 		return false;
2254 	}
2255 
2256 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2257 	    (pc->pc_pool.pr_align - 1)) == 0);
2258 
2259 	if (pap != NULL) {
2260 #ifdef POOL_VTOPHYS
2261 		*pap = POOL_VTOPHYS(object);
2262 #else
2263 		*pap = POOL_PADDR_INVALID;
2264 #endif
2265 	}
2266 
2267 	FREECHECK_OUT(&pc->pc_freecheck, object);
2268 	pool_redzone_fill(&pc->pc_pool, object);
2269 	pool_cache_kleak_fill(pc, object);
2270 	return false;
2271 }
2272 
2273 /*
2274  * pool_cache_get{,_paddr}:
2275  *
2276  *	Get an object from a pool cache (optionally returning
2277  *	the physical address of the object).
2278  */
2279 void *
2280 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2281 {
2282 	pool_cache_cpu_t *cc;
2283 	pcg_t *pcg;
2284 	void *object;
2285 	int s;
2286 
2287 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2288 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2289 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2290 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
2291 	    __func__, pc->pc_pool.pr_wchan);
2292 
2293 	if (flags & PR_WAITOK) {
2294 		ASSERT_SLEEPABLE();
2295 	}
2296 
2297 	/* Lock out interrupts and disable preemption. */
2298 	s = splvm();
2299 	while (/* CONSTCOND */ true) {
2300 		/* Try and allocate an object from the current group. */
2301 		cc = pc->pc_cpus[curcpu()->ci_index];
2302 		KASSERT(cc->cc_cache == pc);
2303 	 	pcg = cc->cc_current;
2304 		if (__predict_true(pcg->pcg_avail > 0)) {
2305 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2306 			if (__predict_false(pap != NULL))
2307 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2308 #if defined(DIAGNOSTIC)
2309 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2310 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
2311 			KASSERT(object != NULL);
2312 #endif
2313 			cc->cc_hits++;
2314 			splx(s);
2315 			FREECHECK_OUT(&pc->pc_freecheck, object);
2316 			pool_redzone_fill(&pc->pc_pool, object);
2317 			pool_cache_kleak_fill(pc, object);
2318 			return object;
2319 		}
2320 
2321 		/*
2322 		 * That failed.  If the previous group isn't empty, swap
2323 		 * it with the current group and allocate from there.
2324 		 */
2325 		pcg = cc->cc_previous;
2326 		if (__predict_true(pcg->pcg_avail > 0)) {
2327 			cc->cc_previous = cc->cc_current;
2328 			cc->cc_current = pcg;
2329 			continue;
2330 		}
2331 
2332 		/*
2333 		 * Can't allocate from either group: try the slow path.
2334 		 * If get_slow() allocated an object for us, or if
2335 		 * no more objects are available, it will return false.
2336 		 * Otherwise, we need to retry.
2337 		 */
2338 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2339 			break;
2340 	}
2341 
2342 	/*
2343 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2344 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
2345 	 * constructor fails.
2346 	 */
2347 	return object;
2348 }
2349 
2350 static bool __noinline
2351 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2352 {
2353 	struct lwp *l = curlwp;
2354 	pcg_t *pcg, *cur;
2355 	uint64_t ncsw;
2356 	pool_cache_t pc;
2357 
2358 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2359 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2360 
2361 	pc = cc->cc_cache;
2362 	pcg = NULL;
2363 	cc->cc_misses++;
2364 	ncsw = l->l_ncsw;
2365 
2366 	/*
2367 	 * If there are no empty groups in the cache then allocate one
2368 	 * while still unlocked.
2369 	 */
2370 	if (__predict_false(pc->pc_emptygroups == NULL)) {
2371 		if (__predict_true(!pool_cache_disable)) {
2372 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2373 		}
2374 		/*
2375 		 * If pool_get() blocked, then our view of
2376 		 * the per-CPU data is invalid: retry.
2377 		 */
2378 		if (__predict_false(l->l_ncsw != ncsw)) {
2379 			if (pcg != NULL) {
2380 				pool_put(pc->pc_pcgpool, pcg);
2381 			}
2382 			return true;
2383 		}
2384 		if (__predict_true(pcg != NULL)) {
2385 			pcg->pcg_avail = 0;
2386 			pcg->pcg_size = pc->pc_pcgsize;
2387 		}
2388 	}
2389 
2390 	/* Lock the cache. */
2391 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2392 		mutex_enter(&pc->pc_lock);
2393 		pc->pc_contended++;
2394 
2395 		/*
2396 		 * If we context switched while locking, then our view of
2397 		 * the per-CPU data is invalid: retry.
2398 		 */
2399 		if (__predict_false(l->l_ncsw != ncsw)) {
2400 			mutex_exit(&pc->pc_lock);
2401 			if (pcg != NULL) {
2402 				pool_put(pc->pc_pcgpool, pcg);
2403 			}
2404 			return true;
2405 		}
2406 	}
2407 
2408 	/* If there are no empty groups in the cache then allocate one. */
2409 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
2410 		pcg = pc->pc_emptygroups;
2411 		pc->pc_emptygroups = pcg->pcg_next;
2412 		pc->pc_nempty--;
2413 	}
2414 
2415 	/*
2416 	 * If there's a empty group, release our full group back
2417 	 * to the cache.  Install the empty group to the local CPU
2418 	 * and return.
2419 	 */
2420 	if (pcg != NULL) {
2421 		KASSERT(pcg->pcg_avail == 0);
2422 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2423 			cc->cc_previous = pcg;
2424 		} else {
2425 			cur = cc->cc_current;
2426 			if (__predict_true(cur != &pcg_dummy)) {
2427 				KASSERT(cur->pcg_avail == cur->pcg_size);
2428 				cur->pcg_next = pc->pc_fullgroups;
2429 				pc->pc_fullgroups = cur;
2430 				pc->pc_nfull++;
2431 			}
2432 			cc->cc_current = pcg;
2433 		}
2434 		pc->pc_hits++;
2435 		mutex_exit(&pc->pc_lock);
2436 		return true;
2437 	}
2438 
2439 	/*
2440 	 * Nothing available locally or in cache, and we didn't
2441 	 * allocate an empty group.  Take the slow path and destroy
2442 	 * the object here and now.
2443 	 */
2444 	pc->pc_misses++;
2445 	mutex_exit(&pc->pc_lock);
2446 	splx(s);
2447 	pool_cache_destruct_object(pc, object);
2448 
2449 	return false;
2450 }
2451 
2452 /*
2453  * pool_cache_put{,_paddr}:
2454  *
2455  *	Put an object back to the pool cache (optionally caching the
2456  *	physical address of the object).
2457  */
2458 void
2459 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2460 {
2461 	pool_cache_cpu_t *cc;
2462 	pcg_t *pcg;
2463 	int s;
2464 
2465 	KASSERT(object != NULL);
2466 	pool_redzone_check(&pc->pc_pool, object);
2467 	FREECHECK_IN(&pc->pc_freecheck, object);
2468 
2469 	/* Lock out interrupts and disable preemption. */
2470 	s = splvm();
2471 	while (/* CONSTCOND */ true) {
2472 		/* If the current group isn't full, release it there. */
2473 		cc = pc->pc_cpus[curcpu()->ci_index];
2474 		KASSERT(cc->cc_cache == pc);
2475 	 	pcg = cc->cc_current;
2476 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2477 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2478 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2479 			pcg->pcg_avail++;
2480 			cc->cc_hits++;
2481 			splx(s);
2482 			return;
2483 		}
2484 
2485 		/*
2486 		 * That failed.  If the previous group isn't full, swap
2487 		 * it with the current group and try again.
2488 		 */
2489 		pcg = cc->cc_previous;
2490 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2491 			cc->cc_previous = cc->cc_current;
2492 			cc->cc_current = pcg;
2493 			continue;
2494 		}
2495 
2496 		/*
2497 		 * Can't free to either group: try the slow path.
2498 		 * If put_slow() releases the object for us, it
2499 		 * will return false.  Otherwise we need to retry.
2500 		 */
2501 		if (!pool_cache_put_slow(cc, s, object))
2502 			break;
2503 	}
2504 }
2505 
2506 /*
2507  * pool_cache_transfer:
2508  *
2509  *	Transfer objects from the per-CPU cache to the global cache.
2510  *	Run within a cross-call thread.
2511  */
2512 static void
2513 pool_cache_transfer(pool_cache_t pc)
2514 {
2515 	pool_cache_cpu_t *cc;
2516 	pcg_t *prev, *cur, **list;
2517 	int s;
2518 
2519 	s = splvm();
2520 	mutex_enter(&pc->pc_lock);
2521 	cc = pc->pc_cpus[curcpu()->ci_index];
2522 	cur = cc->cc_current;
2523 	cc->cc_current = __UNCONST(&pcg_dummy);
2524 	prev = cc->cc_previous;
2525 	cc->cc_previous = __UNCONST(&pcg_dummy);
2526 	if (cur != &pcg_dummy) {
2527 		if (cur->pcg_avail == cur->pcg_size) {
2528 			list = &pc->pc_fullgroups;
2529 			pc->pc_nfull++;
2530 		} else if (cur->pcg_avail == 0) {
2531 			list = &pc->pc_emptygroups;
2532 			pc->pc_nempty++;
2533 		} else {
2534 			list = &pc->pc_partgroups;
2535 			pc->pc_npart++;
2536 		}
2537 		cur->pcg_next = *list;
2538 		*list = cur;
2539 	}
2540 	if (prev != &pcg_dummy) {
2541 		if (prev->pcg_avail == prev->pcg_size) {
2542 			list = &pc->pc_fullgroups;
2543 			pc->pc_nfull++;
2544 		} else if (prev->pcg_avail == 0) {
2545 			list = &pc->pc_emptygroups;
2546 			pc->pc_nempty++;
2547 		} else {
2548 			list = &pc->pc_partgroups;
2549 			pc->pc_npart++;
2550 		}
2551 		prev->pcg_next = *list;
2552 		*list = prev;
2553 	}
2554 	mutex_exit(&pc->pc_lock);
2555 	splx(s);
2556 }
2557 
2558 /*
2559  * Pool backend allocators.
2560  *
2561  * Each pool has a backend allocator that handles allocation, deallocation,
2562  * and any additional draining that might be needed.
2563  *
2564  * We provide two standard allocators:
2565  *
2566  *	pool_allocator_kmem - the default when no allocator is specified
2567  *
2568  *	pool_allocator_nointr - used for pools that will not be accessed
2569  *	in interrupt context.
2570  */
2571 void	*pool_page_alloc(struct pool *, int);
2572 void	pool_page_free(struct pool *, void *);
2573 
2574 #ifdef POOL_SUBPAGE
2575 struct pool_allocator pool_allocator_kmem_fullpage = {
2576 	.pa_alloc = pool_page_alloc,
2577 	.pa_free = pool_page_free,
2578 	.pa_pagesz = 0
2579 };
2580 #else
2581 struct pool_allocator pool_allocator_kmem = {
2582 	.pa_alloc = pool_page_alloc,
2583 	.pa_free = pool_page_free,
2584 	.pa_pagesz = 0
2585 };
2586 #endif
2587 
2588 #ifdef POOL_SUBPAGE
2589 struct pool_allocator pool_allocator_nointr_fullpage = {
2590 	.pa_alloc = pool_page_alloc,
2591 	.pa_free = pool_page_free,
2592 	.pa_pagesz = 0
2593 };
2594 #else
2595 struct pool_allocator pool_allocator_nointr = {
2596 	.pa_alloc = pool_page_alloc,
2597 	.pa_free = pool_page_free,
2598 	.pa_pagesz = 0
2599 };
2600 #endif
2601 
2602 #ifdef POOL_SUBPAGE
2603 void	*pool_subpage_alloc(struct pool *, int);
2604 void	pool_subpage_free(struct pool *, void *);
2605 
2606 struct pool_allocator pool_allocator_kmem = {
2607 	.pa_alloc = pool_subpage_alloc,
2608 	.pa_free = pool_subpage_free,
2609 	.pa_pagesz = POOL_SUBPAGE
2610 };
2611 
2612 struct pool_allocator pool_allocator_nointr = {
2613 	.pa_alloc = pool_subpage_alloc,
2614 	.pa_free = pool_subpage_free,
2615 	.pa_pagesz = POOL_SUBPAGE
2616 };
2617 #endif /* POOL_SUBPAGE */
2618 
2619 struct pool_allocator pool_allocator_big[] = {
2620 	{
2621 		.pa_alloc = pool_page_alloc,
2622 		.pa_free = pool_page_free,
2623 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
2624 	},
2625 	{
2626 		.pa_alloc = pool_page_alloc,
2627 		.pa_free = pool_page_free,
2628 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
2629 	},
2630 	{
2631 		.pa_alloc = pool_page_alloc,
2632 		.pa_free = pool_page_free,
2633 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
2634 	},
2635 	{
2636 		.pa_alloc = pool_page_alloc,
2637 		.pa_free = pool_page_free,
2638 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
2639 	},
2640 	{
2641 		.pa_alloc = pool_page_alloc,
2642 		.pa_free = pool_page_free,
2643 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
2644 	},
2645 	{
2646 		.pa_alloc = pool_page_alloc,
2647 		.pa_free = pool_page_free,
2648 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
2649 	},
2650 	{
2651 		.pa_alloc = pool_page_alloc,
2652 		.pa_free = pool_page_free,
2653 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
2654 	},
2655 	{
2656 		.pa_alloc = pool_page_alloc,
2657 		.pa_free = pool_page_free,
2658 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
2659 	}
2660 };
2661 
2662 static int
2663 pool_bigidx(size_t size)
2664 {
2665 	int i;
2666 
2667 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2668 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2669 			return i;
2670 	}
2671 	panic("pool item size %zu too large, use a custom allocator", size);
2672 }
2673 
2674 static void *
2675 pool_allocator_alloc(struct pool *pp, int flags)
2676 {
2677 	struct pool_allocator *pa = pp->pr_alloc;
2678 	void *res;
2679 
2680 	res = (*pa->pa_alloc)(pp, flags);
2681 	if (res == NULL && (flags & PR_WAITOK) == 0) {
2682 		/*
2683 		 * We only run the drain hook here if PR_NOWAIT.
2684 		 * In other cases, the hook will be run in
2685 		 * pool_reclaim().
2686 		 */
2687 		if (pp->pr_drain_hook != NULL) {
2688 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2689 			res = (*pa->pa_alloc)(pp, flags);
2690 		}
2691 	}
2692 	return res;
2693 }
2694 
2695 static void
2696 pool_allocator_free(struct pool *pp, void *v)
2697 {
2698 	struct pool_allocator *pa = pp->pr_alloc;
2699 
2700 	(*pa->pa_free)(pp, v);
2701 }
2702 
2703 void *
2704 pool_page_alloc(struct pool *pp, int flags)
2705 {
2706 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2707 	vmem_addr_t va;
2708 	int ret;
2709 
2710 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2711 	    vflags | VM_INSTANTFIT, &va);
2712 
2713 	return ret ? NULL : (void *)va;
2714 }
2715 
2716 void
2717 pool_page_free(struct pool *pp, void *v)
2718 {
2719 
2720 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2721 }
2722 
2723 static void *
2724 pool_page_alloc_meta(struct pool *pp, int flags)
2725 {
2726 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2727 	vmem_addr_t va;
2728 	int ret;
2729 
2730 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2731 	    vflags | VM_INSTANTFIT, &va);
2732 
2733 	return ret ? NULL : (void *)va;
2734 }
2735 
2736 static void
2737 pool_page_free_meta(struct pool *pp, void *v)
2738 {
2739 
2740 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2741 }
2742 
2743 #ifdef KLEAK
2744 static void
2745 pool_kleak_fill(struct pool *pp, void *p)
2746 {
2747 	if (__predict_false(pp->pr_roflags & PR_NOTOUCH)) {
2748 		return;
2749 	}
2750 	kleak_fill_area(p, pp->pr_size);
2751 }
2752 
2753 static void
2754 pool_cache_kleak_fill(pool_cache_t pc, void *p)
2755 {
2756 	if (__predict_false(pc->pc_ctor != NULL || pc->pc_dtor != NULL)) {
2757 		return;
2758 	}
2759 	pool_kleak_fill(&pc->pc_pool, p);
2760 }
2761 #endif
2762 
2763 #ifdef POOL_REDZONE
2764 #if defined(_LP64)
2765 # define PRIME 0x9e37fffffffc0000UL
2766 #else /* defined(_LP64) */
2767 # define PRIME 0x9e3779b1
2768 #endif /* defined(_LP64) */
2769 #define STATIC_BYTE	0xFE
2770 CTASSERT(POOL_REDZONE_SIZE > 1);
2771 
2772 #ifndef KASAN
2773 static inline uint8_t
2774 pool_pattern_generate(const void *p)
2775 {
2776 	return (uint8_t)(((uintptr_t)p) * PRIME
2777 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
2778 }
2779 #endif
2780 
2781 static void
2782 pool_redzone_init(struct pool *pp, size_t requested_size)
2783 {
2784 	size_t redzsz;
2785 	size_t nsz;
2786 
2787 #ifdef KASAN
2788 	redzsz = requested_size;
2789 	kasan_add_redzone(&redzsz);
2790 	redzsz -= requested_size;
2791 #else
2792 	redzsz = POOL_REDZONE_SIZE;
2793 #endif
2794 
2795 	if (pp->pr_roflags & PR_NOTOUCH) {
2796 		pp->pr_reqsize = 0;
2797 		pp->pr_redzone = false;
2798 		return;
2799 	}
2800 
2801 	/*
2802 	 * We may have extended the requested size earlier; check if
2803 	 * there's naturally space in the padding for a red zone.
2804 	 */
2805 	if (pp->pr_size - requested_size >= redzsz) {
2806 		pp->pr_reqsize = requested_size;
2807 		pp->pr_redzone = true;
2808 		return;
2809 	}
2810 
2811 	/*
2812 	 * No space in the natural padding; check if we can extend a
2813 	 * bit the size of the pool.
2814 	 */
2815 	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
2816 	if (nsz <= pp->pr_alloc->pa_pagesz) {
2817 		/* Ok, we can */
2818 		pp->pr_size = nsz;
2819 		pp->pr_reqsize = requested_size;
2820 		pp->pr_redzone = true;
2821 	} else {
2822 		/* No space for a red zone... snif :'( */
2823 		pp->pr_reqsize = 0;
2824 		pp->pr_redzone = false;
2825 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
2826 	}
2827 }
2828 
2829 static void
2830 pool_redzone_fill(struct pool *pp, void *p)
2831 {
2832 	if (!pp->pr_redzone)
2833 		return;
2834 #ifdef KASAN
2835 	size_t size_with_redzone = pp->pr_reqsize;
2836 	kasan_add_redzone(&size_with_redzone);
2837 	kasan_alloc(p, pp->pr_reqsize, size_with_redzone);
2838 #else
2839 	uint8_t *cp, pat;
2840 	const uint8_t *ep;
2841 
2842 	cp = (uint8_t *)p + pp->pr_reqsize;
2843 	ep = cp + POOL_REDZONE_SIZE;
2844 
2845 	/*
2846 	 * We really don't want the first byte of the red zone to be '\0';
2847 	 * an off-by-one in a string may not be properly detected.
2848 	 */
2849 	pat = pool_pattern_generate(cp);
2850 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
2851 	cp++;
2852 
2853 	while (cp < ep) {
2854 		*cp = pool_pattern_generate(cp);
2855 		cp++;
2856 	}
2857 #endif
2858 }
2859 
2860 static void
2861 pool_redzone_check(struct pool *pp, void *p)
2862 {
2863 	if (!pp->pr_redzone)
2864 		return;
2865 #ifdef KASAN
2866 	size_t size_with_redzone = pp->pr_reqsize;
2867 	kasan_add_redzone(&size_with_redzone);
2868 	kasan_free(p, size_with_redzone);
2869 #else
2870 	uint8_t *cp, pat, expected;
2871 	const uint8_t *ep;
2872 
2873 	cp = (uint8_t *)p + pp->pr_reqsize;
2874 	ep = cp + POOL_REDZONE_SIZE;
2875 
2876 	pat = pool_pattern_generate(cp);
2877 	expected = (pat == '\0') ? STATIC_BYTE: pat;
2878 	if (__predict_false(expected != *cp)) {
2879 		printf("%s: %p: 0x%02x != 0x%02x\n",
2880 		   __func__, cp, *cp, expected);
2881 	}
2882 	cp++;
2883 
2884 	while (cp < ep) {
2885 		expected = pool_pattern_generate(cp);
2886 		if (__predict_false(*cp != expected)) {
2887 			printf("%s: %p: 0x%02x != 0x%02x\n",
2888 			   __func__, cp, *cp, expected);
2889 		}
2890 		cp++;
2891 	}
2892 #endif
2893 }
2894 
2895 #endif /* POOL_REDZONE */
2896 
2897 
2898 #ifdef POOL_SUBPAGE
2899 /* Sub-page allocator, for machines with large hardware pages. */
2900 void *
2901 pool_subpage_alloc(struct pool *pp, int flags)
2902 {
2903 	return pool_get(&psppool, flags);
2904 }
2905 
2906 void
2907 pool_subpage_free(struct pool *pp, void *v)
2908 {
2909 	pool_put(&psppool, v);
2910 }
2911 
2912 #endif /* POOL_SUBPAGE */
2913 
2914 #if defined(DDB)
2915 static bool
2916 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2917 {
2918 
2919 	return (uintptr_t)ph->ph_page <= addr &&
2920 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2921 }
2922 
2923 static bool
2924 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2925 {
2926 
2927 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2928 }
2929 
2930 static bool
2931 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2932 {
2933 	int i;
2934 
2935 	if (pcg == NULL) {
2936 		return false;
2937 	}
2938 	for (i = 0; i < pcg->pcg_avail; i++) {
2939 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2940 			return true;
2941 		}
2942 	}
2943 	return false;
2944 }
2945 
2946 static bool
2947 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2948 {
2949 
2950 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2951 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2952 		pool_item_bitmap_t *bitmap =
2953 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
2954 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2955 
2956 		return (*bitmap & mask) == 0;
2957 	} else {
2958 		struct pool_item *pi;
2959 
2960 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2961 			if (pool_in_item(pp, pi, addr)) {
2962 				return false;
2963 			}
2964 		}
2965 		return true;
2966 	}
2967 }
2968 
2969 void
2970 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2971 {
2972 	struct pool *pp;
2973 
2974 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
2975 		struct pool_item_header *ph;
2976 		uintptr_t item;
2977 		bool allocated = true;
2978 		bool incache = false;
2979 		bool incpucache = false;
2980 		char cpucachestr[32];
2981 
2982 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
2983 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2984 				if (pool_in_page(pp, ph, addr)) {
2985 					goto found;
2986 				}
2987 			}
2988 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2989 				if (pool_in_page(pp, ph, addr)) {
2990 					allocated =
2991 					    pool_allocated(pp, ph, addr);
2992 					goto found;
2993 				}
2994 			}
2995 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2996 				if (pool_in_page(pp, ph, addr)) {
2997 					allocated = false;
2998 					goto found;
2999 				}
3000 			}
3001 			continue;
3002 		} else {
3003 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
3004 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3005 				continue;
3006 			}
3007 			allocated = pool_allocated(pp, ph, addr);
3008 		}
3009 found:
3010 		if (allocated && pp->pr_cache) {
3011 			pool_cache_t pc = pp->pr_cache;
3012 			struct pool_cache_group *pcg;
3013 			int i;
3014 
3015 			for (pcg = pc->pc_fullgroups; pcg != NULL;
3016 			    pcg = pcg->pcg_next) {
3017 				if (pool_in_cg(pp, pcg, addr)) {
3018 					incache = true;
3019 					goto print;
3020 				}
3021 			}
3022 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3023 				pool_cache_cpu_t *cc;
3024 
3025 				if ((cc = pc->pc_cpus[i]) == NULL) {
3026 					continue;
3027 				}
3028 				if (pool_in_cg(pp, cc->cc_current, addr) ||
3029 				    pool_in_cg(pp, cc->cc_previous, addr)) {
3030 					struct cpu_info *ci =
3031 					    cpu_lookup(i);
3032 
3033 					incpucache = true;
3034 					snprintf(cpucachestr,
3035 					    sizeof(cpucachestr),
3036 					    "cached by CPU %u",
3037 					    ci->ci_index);
3038 					goto print;
3039 				}
3040 			}
3041 		}
3042 print:
3043 		item = (uintptr_t)ph->ph_page + ph->ph_off;
3044 		item = item + rounddown(addr - item, pp->pr_size);
3045 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3046 		    (void *)addr, item, (size_t)(addr - item),
3047 		    pp->pr_wchan,
3048 		    incpucache ? cpucachestr :
3049 		    incache ? "cached" : allocated ? "allocated" : "free");
3050 	}
3051 }
3052 #endif /* defined(DDB) */
3053 
3054 static int
3055 pool_sysctl(SYSCTLFN_ARGS)
3056 {
3057 	struct pool_sysctl data;
3058 	struct pool *pp;
3059 	struct pool_cache *pc;
3060 	pool_cache_cpu_t *cc;
3061 	int error;
3062 	size_t i, written;
3063 
3064 	if (oldp == NULL) {
3065 		*oldlenp = 0;
3066 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3067 			*oldlenp += sizeof(data);
3068 		return 0;
3069 	}
3070 
3071 	memset(&data, 0, sizeof(data));
3072 	error = 0;
3073 	written = 0;
3074 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3075 		if (written + sizeof(data) > *oldlenp)
3076 			break;
3077 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3078 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3079 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
3080 #define COPY(field) data.field = pp->field
3081 		COPY(pr_size);
3082 
3083 		COPY(pr_itemsperpage);
3084 		COPY(pr_nitems);
3085 		COPY(pr_nout);
3086 		COPY(pr_hardlimit);
3087 		COPY(pr_npages);
3088 		COPY(pr_minpages);
3089 		COPY(pr_maxpages);
3090 
3091 		COPY(pr_nget);
3092 		COPY(pr_nfail);
3093 		COPY(pr_nput);
3094 		COPY(pr_npagealloc);
3095 		COPY(pr_npagefree);
3096 		COPY(pr_hiwat);
3097 		COPY(pr_nidle);
3098 #undef COPY
3099 
3100 		data.pr_cache_nmiss_pcpu = 0;
3101 		data.pr_cache_nhit_pcpu = 0;
3102 		if (pp->pr_cache) {
3103 			pc = pp->pr_cache;
3104 			data.pr_cache_meta_size = pc->pc_pcgsize;
3105 			data.pr_cache_nfull = pc->pc_nfull;
3106 			data.pr_cache_npartial = pc->pc_npart;
3107 			data.pr_cache_nempty = pc->pc_nempty;
3108 			data.pr_cache_ncontended = pc->pc_contended;
3109 			data.pr_cache_nmiss_global = pc->pc_misses;
3110 			data.pr_cache_nhit_global = pc->pc_hits;
3111 			for (i = 0; i < pc->pc_ncpu; ++i) {
3112 				cc = pc->pc_cpus[i];
3113 				if (cc == NULL)
3114 					continue;
3115 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
3116 				data.pr_cache_nhit_pcpu += cc->cc_hits;
3117 			}
3118 		} else {
3119 			data.pr_cache_meta_size = 0;
3120 			data.pr_cache_nfull = 0;
3121 			data.pr_cache_npartial = 0;
3122 			data.pr_cache_nempty = 0;
3123 			data.pr_cache_ncontended = 0;
3124 			data.pr_cache_nmiss_global = 0;
3125 			data.pr_cache_nhit_global = 0;
3126 		}
3127 
3128 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
3129 		if (error)
3130 			break;
3131 		written += sizeof(data);
3132 		oldp = (char *)oldp + sizeof(data);
3133 	}
3134 
3135 	*oldlenp = written;
3136 	return error;
3137 }
3138 
3139 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3140 {
3141 	const struct sysctlnode *rnode = NULL;
3142 
3143 	sysctl_createv(clog, 0, NULL, &rnode,
3144 		       CTLFLAG_PERMANENT,
3145 		       CTLTYPE_STRUCT, "pool",
3146 		       SYSCTL_DESCR("Get pool statistics"),
3147 		       pool_sysctl, 0, NULL, 0,
3148 		       CTL_KERN, CTL_CREATE, CTL_EOL);
3149 }
3150