xref: /netbsd-src/sys/kern/subr_pool.c (revision c71562d660be5e4ad22016bce45e96f08af190cc)
1 /*	$NetBSD: subr_pool.c,v 1.116 2006/04/15 14:23:11 simonb Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9  * Simulation Facility, NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.116 2006/04/15 14:23:11 simonb Exp $");
42 
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56 
57 #include <uvm/uvm.h>
58 
59 /*
60  * Pool resource management utility.
61  *
62  * Memory is allocated in pages which are split into pieces according to
63  * the pool item size. Each page is kept on one of three lists in the
64  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
65  * for empty, full and partially-full pages respectively. The individual
66  * pool items are on a linked list headed by `ph_itemlist' in each page
67  * header. The memory for building the page list is either taken from
68  * the allocated pages themselves (for small pool items) or taken from
69  * an internal pool of page headers (`phpool').
70  */
71 
72 /* List of all pools */
73 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
74 
75 /* Private pool for page header structures */
76 #define	PHPOOL_MAX	8
77 static struct pool phpool[PHPOOL_MAX];
78 #define	PHPOOL_FREELIST_NELEM(idx)	(((idx) == 0) ? 0 : (1 << (idx)))
79 
80 #ifdef POOL_SUBPAGE
81 /* Pool of subpages for use by normal pools. */
82 static struct pool psppool;
83 #endif
84 
85 static void *pool_page_alloc_meta(struct pool *, int);
86 static void pool_page_free_meta(struct pool *, void *);
87 
88 /* allocator for pool metadata */
89 static struct pool_allocator pool_allocator_meta = {
90 	pool_page_alloc_meta, pool_page_free_meta
91 };
92 
93 /* # of seconds to retain page after last use */
94 int pool_inactive_time = 10;
95 
96 /* Next candidate for drainage (see pool_drain()) */
97 static struct pool	*drainpp;
98 
99 /* This spin lock protects both pool_head and drainpp. */
100 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
101 
102 typedef uint8_t pool_item_freelist_t;
103 
104 struct pool_item_header {
105 	/* Page headers */
106 	LIST_ENTRY(pool_item_header)
107 				ph_pagelist;	/* pool page list */
108 	SPLAY_ENTRY(pool_item_header)
109 				ph_node;	/* Off-page page headers */
110 	caddr_t			ph_page;	/* this page's address */
111 	struct timeval		ph_time;	/* last referenced */
112 	union {
113 		/* !PR_NOTOUCH */
114 		struct {
115 			LIST_HEAD(, pool_item)
116 				phu_itemlist;	/* chunk list for this page */
117 		} phu_normal;
118 		/* PR_NOTOUCH */
119 		struct {
120 			uint16_t
121 				phu_off;	/* start offset in page */
122 			pool_item_freelist_t
123 				phu_firstfree;	/* first free item */
124 			/*
125 			 * XXX it might be better to use
126 			 * a simple bitmap and ffs(3)
127 			 */
128 		} phu_notouch;
129 	} ph_u;
130 	uint16_t		ph_nmissing;	/* # of chunks in use */
131 };
132 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
133 #define	ph_off		ph_u.phu_notouch.phu_off
134 #define	ph_firstfree	ph_u.phu_notouch.phu_firstfree
135 
136 struct pool_item {
137 #ifdef DIAGNOSTIC
138 	u_int pi_magic;
139 #endif
140 #define	PI_MAGIC 0xdeadbeefU
141 	/* Other entries use only this list entry */
142 	LIST_ENTRY(pool_item)	pi_list;
143 };
144 
145 #define	POOL_NEEDS_CATCHUP(pp)						\
146 	((pp)->pr_nitems < (pp)->pr_minitems)
147 
148 /*
149  * Pool cache management.
150  *
151  * Pool caches provide a way for constructed objects to be cached by the
152  * pool subsystem.  This can lead to performance improvements by avoiding
153  * needless object construction/destruction; it is deferred until absolutely
154  * necessary.
155  *
156  * Caches are grouped into cache groups.  Each cache group references
157  * up to 16 constructed objects.  When a cache allocates an object
158  * from the pool, it calls the object's constructor and places it into
159  * a cache group.  When a cache group frees an object back to the pool,
160  * it first calls the object's destructor.  This allows the object to
161  * persist in constructed form while freed to the cache.
162  *
163  * Multiple caches may exist for each pool.  This allows a single
164  * object type to have multiple constructed forms.  The pool references
165  * each cache, so that when a pool is drained by the pagedaemon, it can
166  * drain each individual cache as well.  Each time a cache is drained,
167  * the most idle cache group is freed to the pool in its entirety.
168  *
169  * Pool caches are layed on top of pools.  By layering them, we can avoid
170  * the complexity of cache management for pools which would not benefit
171  * from it.
172  */
173 
174 /* The cache group pool. */
175 static struct pool pcgpool;
176 
177 static void	pool_cache_reclaim(struct pool_cache *, struct pool_pagelist *,
178 				   struct pool_cache_grouplist *);
179 static void	pcg_grouplist_free(struct pool_cache_grouplist *);
180 
181 static int	pool_catchup(struct pool *);
182 static void	pool_prime_page(struct pool *, caddr_t,
183 		    struct pool_item_header *);
184 static void	pool_update_curpage(struct pool *);
185 
186 static int	pool_grow(struct pool *, int);
187 void		*pool_allocator_alloc(struct pool *, int);
188 void		pool_allocator_free(struct pool *, void *);
189 
190 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
191 	void (*)(const char *, ...));
192 static void pool_print1(struct pool *, const char *,
193 	void (*)(const char *, ...));
194 
195 static int pool_chk_page(struct pool *, const char *,
196 			 struct pool_item_header *);
197 
198 /*
199  * Pool log entry. An array of these is allocated in pool_init().
200  */
201 struct pool_log {
202 	const char	*pl_file;
203 	long		pl_line;
204 	int		pl_action;
205 #define	PRLOG_GET	1
206 #define	PRLOG_PUT	2
207 	void		*pl_addr;
208 };
209 
210 #ifdef POOL_DIAGNOSTIC
211 /* Number of entries in pool log buffers */
212 #ifndef POOL_LOGSIZE
213 #define	POOL_LOGSIZE	10
214 #endif
215 
216 int pool_logsize = POOL_LOGSIZE;
217 
218 static inline void
219 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
220 {
221 	int n = pp->pr_curlogentry;
222 	struct pool_log *pl;
223 
224 	if ((pp->pr_roflags & PR_LOGGING) == 0)
225 		return;
226 
227 	/*
228 	 * Fill in the current entry. Wrap around and overwrite
229 	 * the oldest entry if necessary.
230 	 */
231 	pl = &pp->pr_log[n];
232 	pl->pl_file = file;
233 	pl->pl_line = line;
234 	pl->pl_action = action;
235 	pl->pl_addr = v;
236 	if (++n >= pp->pr_logsize)
237 		n = 0;
238 	pp->pr_curlogentry = n;
239 }
240 
241 static void
242 pr_printlog(struct pool *pp, struct pool_item *pi,
243     void (*pr)(const char *, ...))
244 {
245 	int i = pp->pr_logsize;
246 	int n = pp->pr_curlogentry;
247 
248 	if ((pp->pr_roflags & PR_LOGGING) == 0)
249 		return;
250 
251 	/*
252 	 * Print all entries in this pool's log.
253 	 */
254 	while (i-- > 0) {
255 		struct pool_log *pl = &pp->pr_log[n];
256 		if (pl->pl_action != 0) {
257 			if (pi == NULL || pi == pl->pl_addr) {
258 				(*pr)("\tlog entry %d:\n", i);
259 				(*pr)("\t\taction = %s, addr = %p\n",
260 				    pl->pl_action == PRLOG_GET ? "get" : "put",
261 				    pl->pl_addr);
262 				(*pr)("\t\tfile: %s at line %lu\n",
263 				    pl->pl_file, pl->pl_line);
264 			}
265 		}
266 		if (++n >= pp->pr_logsize)
267 			n = 0;
268 	}
269 }
270 
271 static inline void
272 pr_enter(struct pool *pp, const char *file, long line)
273 {
274 
275 	if (__predict_false(pp->pr_entered_file != NULL)) {
276 		printf("pool %s: reentrancy at file %s line %ld\n",
277 		    pp->pr_wchan, file, line);
278 		printf("         previous entry at file %s line %ld\n",
279 		    pp->pr_entered_file, pp->pr_entered_line);
280 		panic("pr_enter");
281 	}
282 
283 	pp->pr_entered_file = file;
284 	pp->pr_entered_line = line;
285 }
286 
287 static inline void
288 pr_leave(struct pool *pp)
289 {
290 
291 	if (__predict_false(pp->pr_entered_file == NULL)) {
292 		printf("pool %s not entered?\n", pp->pr_wchan);
293 		panic("pr_leave");
294 	}
295 
296 	pp->pr_entered_file = NULL;
297 	pp->pr_entered_line = 0;
298 }
299 
300 static inline void
301 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
302 {
303 
304 	if (pp->pr_entered_file != NULL)
305 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
306 		    pp->pr_entered_file, pp->pr_entered_line);
307 }
308 #else
309 #define	pr_log(pp, v, action, file, line)
310 #define	pr_printlog(pp, pi, pr)
311 #define	pr_enter(pp, file, line)
312 #define	pr_leave(pp)
313 #define	pr_enter_check(pp, pr)
314 #endif /* POOL_DIAGNOSTIC */
315 
316 static inline int
317 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
318     const void *v)
319 {
320 	const char *cp = v;
321 	int idx;
322 
323 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
324 	idx = (cp - ph->ph_page - ph->ph_off) / pp->pr_size;
325 	KASSERT(idx < pp->pr_itemsperpage);
326 	return idx;
327 }
328 
329 #define	PR_FREELIST_ALIGN(p) \
330 	roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
331 #define	PR_FREELIST(ph)	((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
332 #define	PR_INDEX_USED	((pool_item_freelist_t)-1)
333 #define	PR_INDEX_EOL	((pool_item_freelist_t)-2)
334 
335 static inline void
336 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
337     void *obj)
338 {
339 	int idx = pr_item_notouch_index(pp, ph, obj);
340 	pool_item_freelist_t *freelist = PR_FREELIST(ph);
341 
342 	KASSERT(freelist[idx] == PR_INDEX_USED);
343 	freelist[idx] = ph->ph_firstfree;
344 	ph->ph_firstfree = idx;
345 }
346 
347 static inline void *
348 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
349 {
350 	int idx = ph->ph_firstfree;
351 	pool_item_freelist_t *freelist = PR_FREELIST(ph);
352 
353 	KASSERT(freelist[idx] != PR_INDEX_USED);
354 	ph->ph_firstfree = freelist[idx];
355 	freelist[idx] = PR_INDEX_USED;
356 
357 	return ph->ph_page + ph->ph_off + idx * pp->pr_size;
358 }
359 
360 static inline int
361 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
362 {
363 	if (a->ph_page < b->ph_page)
364 		return (-1);
365 	else if (a->ph_page > b->ph_page)
366 		return (1);
367 	else
368 		return (0);
369 }
370 
371 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
372 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
373 
374 /*
375  * Return the pool page header based on page address.
376  */
377 static inline struct pool_item_header *
378 pr_find_pagehead(struct pool *pp, caddr_t page)
379 {
380 	struct pool_item_header *ph, tmp;
381 
382 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
383 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
384 
385 	tmp.ph_page = page;
386 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
387 	return ph;
388 }
389 
390 static void
391 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
392 {
393 	struct pool_item_header *ph;
394 	int s;
395 
396 	while ((ph = LIST_FIRST(pq)) != NULL) {
397 		LIST_REMOVE(ph, ph_pagelist);
398 		pool_allocator_free(pp, ph->ph_page);
399 		if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
400 			s = splvm();
401 			pool_put(pp->pr_phpool, ph);
402 			splx(s);
403 		}
404 	}
405 }
406 
407 /*
408  * Remove a page from the pool.
409  */
410 static inline void
411 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
412      struct pool_pagelist *pq)
413 {
414 
415 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
416 
417 	/*
418 	 * If the page was idle, decrement the idle page count.
419 	 */
420 	if (ph->ph_nmissing == 0) {
421 #ifdef DIAGNOSTIC
422 		if (pp->pr_nidle == 0)
423 			panic("pr_rmpage: nidle inconsistent");
424 		if (pp->pr_nitems < pp->pr_itemsperpage)
425 			panic("pr_rmpage: nitems inconsistent");
426 #endif
427 		pp->pr_nidle--;
428 	}
429 
430 	pp->pr_nitems -= pp->pr_itemsperpage;
431 
432 	/*
433 	 * Unlink the page from the pool and queue it for release.
434 	 */
435 	LIST_REMOVE(ph, ph_pagelist);
436 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
437 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
438 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
439 
440 	pp->pr_npages--;
441 	pp->pr_npagefree++;
442 
443 	pool_update_curpage(pp);
444 }
445 
446 /*
447  * Initialize all the pools listed in the "pools" link set.
448  */
449 void
450 link_pool_init(void)
451 {
452 	__link_set_decl(pools, struct link_pool_init);
453 	struct link_pool_init * const *pi;
454 
455 	__link_set_foreach(pi, pools)
456 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
457 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
458 		    (*pi)->palloc);
459 }
460 
461 /*
462  * Initialize the given pool resource structure.
463  *
464  * We export this routine to allow other kernel parts to declare
465  * static pools that must be initialized before malloc() is available.
466  */
467 void
468 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
469     const char *wchan, struct pool_allocator *palloc)
470 {
471 #ifdef DEBUG
472 	struct pool *pp1;
473 #endif
474 	size_t trysize, phsize;
475 	int off, slack, s;
476 
477 	KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
478 	    PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
479 
480 #ifdef DEBUG
481 	/*
482 	 * Check that the pool hasn't already been initialised and
483 	 * added to the list of all pools.
484 	 */
485 	LIST_FOREACH(pp1, &pool_head, pr_poollist) {
486 		if (pp == pp1)
487 			panic("pool_init: pool %s already initialised",
488 			    wchan);
489 	}
490 #endif
491 
492 #ifdef POOL_DIAGNOSTIC
493 	/*
494 	 * Always log if POOL_DIAGNOSTIC is defined.
495 	 */
496 	if (pool_logsize != 0)
497 		flags |= PR_LOGGING;
498 #endif
499 
500 	if (palloc == NULL)
501 		palloc = &pool_allocator_kmem;
502 #ifdef POOL_SUBPAGE
503 	if (size > palloc->pa_pagesz) {
504 		if (palloc == &pool_allocator_kmem)
505 			palloc = &pool_allocator_kmem_fullpage;
506 		else if (palloc == &pool_allocator_nointr)
507 			palloc = &pool_allocator_nointr_fullpage;
508 	}
509 #endif /* POOL_SUBPAGE */
510 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
511 		if (palloc->pa_pagesz == 0)
512 			palloc->pa_pagesz = PAGE_SIZE;
513 
514 		TAILQ_INIT(&palloc->pa_list);
515 
516 		simple_lock_init(&palloc->pa_slock);
517 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
518 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
519 		palloc->pa_flags |= PA_INITIALIZED;
520 	}
521 
522 	if (align == 0)
523 		align = ALIGN(1);
524 
525 	if (size < sizeof(struct pool_item))
526 		size = sizeof(struct pool_item);
527 
528 	size = roundup(size, align);
529 #ifdef DIAGNOSTIC
530 	if (size > palloc->pa_pagesz)
531 		panic("pool_init: pool item size (%lu) too large",
532 		      (u_long)size);
533 #endif
534 
535 	/*
536 	 * Initialize the pool structure.
537 	 */
538 	LIST_INIT(&pp->pr_emptypages);
539 	LIST_INIT(&pp->pr_fullpages);
540 	LIST_INIT(&pp->pr_partpages);
541 	LIST_INIT(&pp->pr_cachelist);
542 	pp->pr_curpage = NULL;
543 	pp->pr_npages = 0;
544 	pp->pr_minitems = 0;
545 	pp->pr_minpages = 0;
546 	pp->pr_maxpages = UINT_MAX;
547 	pp->pr_roflags = flags;
548 	pp->pr_flags = 0;
549 	pp->pr_size = size;
550 	pp->pr_align = align;
551 	pp->pr_wchan = wchan;
552 	pp->pr_alloc = palloc;
553 	pp->pr_nitems = 0;
554 	pp->pr_nout = 0;
555 	pp->pr_hardlimit = UINT_MAX;
556 	pp->pr_hardlimit_warning = NULL;
557 	pp->pr_hardlimit_ratecap.tv_sec = 0;
558 	pp->pr_hardlimit_ratecap.tv_usec = 0;
559 	pp->pr_hardlimit_warning_last.tv_sec = 0;
560 	pp->pr_hardlimit_warning_last.tv_usec = 0;
561 	pp->pr_drain_hook = NULL;
562 	pp->pr_drain_hook_arg = NULL;
563 
564 	/*
565 	 * Decide whether to put the page header off page to avoid
566 	 * wasting too large a part of the page or too big item.
567 	 * Off-page page headers go on a hash table, so we can match
568 	 * a returned item with its header based on the page address.
569 	 * We use 1/16 of the page size and about 8 times of the item
570 	 * size as the threshold (XXX: tune)
571 	 *
572 	 * However, we'll put the header into the page if we can put
573 	 * it without wasting any items.
574 	 *
575 	 * Silently enforce `0 <= ioff < align'.
576 	 */
577 	pp->pr_itemoffset = ioff %= align;
578 	/* See the comment below about reserved bytes. */
579 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
580 	phsize = ALIGN(sizeof(struct pool_item_header));
581 	if ((pp->pr_roflags & PR_NOTOUCH) == 0 &&
582 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
583 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
584 		/* Use the end of the page for the page header */
585 		pp->pr_roflags |= PR_PHINPAGE;
586 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
587 	} else {
588 		/* The page header will be taken from our page header pool */
589 		pp->pr_phoffset = 0;
590 		off = palloc->pa_pagesz;
591 		SPLAY_INIT(&pp->pr_phtree);
592 	}
593 
594 	/*
595 	 * Alignment is to take place at `ioff' within the item. This means
596 	 * we must reserve up to `align - 1' bytes on the page to allow
597 	 * appropriate positioning of each item.
598 	 */
599 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
600 	KASSERT(pp->pr_itemsperpage != 0);
601 	if ((pp->pr_roflags & PR_NOTOUCH)) {
602 		int idx;
603 
604 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
605 		    idx++) {
606 			/* nothing */
607 		}
608 		if (idx >= PHPOOL_MAX) {
609 			/*
610 			 * if you see this panic, consider to tweak
611 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
612 			 */
613 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
614 			    pp->pr_wchan, pp->pr_itemsperpage);
615 		}
616 		pp->pr_phpool = &phpool[idx];
617 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
618 		pp->pr_phpool = &phpool[0];
619 	}
620 #if defined(DIAGNOSTIC)
621 	else {
622 		pp->pr_phpool = NULL;
623 	}
624 #endif
625 
626 	/*
627 	 * Use the slack between the chunks and the page header
628 	 * for "cache coloring".
629 	 */
630 	slack = off - pp->pr_itemsperpage * pp->pr_size;
631 	pp->pr_maxcolor = (slack / align) * align;
632 	pp->pr_curcolor = 0;
633 
634 	pp->pr_nget = 0;
635 	pp->pr_nfail = 0;
636 	pp->pr_nput = 0;
637 	pp->pr_npagealloc = 0;
638 	pp->pr_npagefree = 0;
639 	pp->pr_hiwat = 0;
640 	pp->pr_nidle = 0;
641 
642 #ifdef POOL_DIAGNOSTIC
643 	if (flags & PR_LOGGING) {
644 		if (kmem_map == NULL ||
645 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
646 		     M_TEMP, M_NOWAIT)) == NULL)
647 			pp->pr_roflags &= ~PR_LOGGING;
648 		pp->pr_curlogentry = 0;
649 		pp->pr_logsize = pool_logsize;
650 	}
651 #endif
652 
653 	pp->pr_entered_file = NULL;
654 	pp->pr_entered_line = 0;
655 
656 	simple_lock_init(&pp->pr_slock);
657 
658 	/*
659 	 * Initialize private page header pool and cache magazine pool if we
660 	 * haven't done so yet.
661 	 * XXX LOCKING.
662 	 */
663 	if (phpool[0].pr_size == 0) {
664 		int idx;
665 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
666 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
667 			int nelem;
668 			size_t sz;
669 
670 			nelem = PHPOOL_FREELIST_NELEM(idx);
671 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
672 			    "phpool-%d", nelem);
673 			sz = sizeof(struct pool_item_header);
674 			if (nelem) {
675 				sz = PR_FREELIST_ALIGN(sz)
676 				    + nelem * sizeof(pool_item_freelist_t);
677 			}
678 			pool_init(&phpool[idx], sz, 0, 0, 0,
679 			    phpool_names[idx], &pool_allocator_meta);
680 		}
681 #ifdef POOL_SUBPAGE
682 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
683 		    PR_RECURSIVE, "psppool", &pool_allocator_meta);
684 #endif
685 		pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
686 		    0, "pcgpool", &pool_allocator_meta);
687 	}
688 
689 	/* Insert into the list of all pools. */
690 	simple_lock(&pool_head_slock);
691 	LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
692 	simple_unlock(&pool_head_slock);
693 
694 	/* Insert this into the list of pools using this allocator. */
695 	s = splvm();
696 	simple_lock(&palloc->pa_slock);
697 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
698 	simple_unlock(&palloc->pa_slock);
699 	splx(s);
700 }
701 
702 /*
703  * De-commision a pool resource.
704  */
705 void
706 pool_destroy(struct pool *pp)
707 {
708 	struct pool_pagelist pq;
709 	struct pool_item_header *ph;
710 	int s;
711 
712 	/* Remove from global pool list */
713 	simple_lock(&pool_head_slock);
714 	LIST_REMOVE(pp, pr_poollist);
715 	if (drainpp == pp)
716 		drainpp = NULL;
717 	simple_unlock(&pool_head_slock);
718 
719 	/* Remove this pool from its allocator's list of pools. */
720 	s = splvm();
721 	simple_lock(&pp->pr_alloc->pa_slock);
722 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
723 	simple_unlock(&pp->pr_alloc->pa_slock);
724 	splx(s);
725 
726 	s = splvm();
727 	simple_lock(&pp->pr_slock);
728 
729 	KASSERT(LIST_EMPTY(&pp->pr_cachelist));
730 
731 #ifdef DIAGNOSTIC
732 	if (pp->pr_nout != 0) {
733 		pr_printlog(pp, NULL, printf);
734 		panic("pool_destroy: pool busy: still out: %u",
735 		    pp->pr_nout);
736 	}
737 #endif
738 
739 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
740 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
741 
742 	/* Remove all pages */
743 	LIST_INIT(&pq);
744 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
745 		pr_rmpage(pp, ph, &pq);
746 
747 	simple_unlock(&pp->pr_slock);
748 	splx(s);
749 
750 	pr_pagelist_free(pp, &pq);
751 
752 #ifdef POOL_DIAGNOSTIC
753 	if ((pp->pr_roflags & PR_LOGGING) != 0)
754 		free(pp->pr_log, M_TEMP);
755 #endif
756 }
757 
758 void
759 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
760 {
761 
762 	/* XXX no locking -- must be used just after pool_init() */
763 #ifdef DIAGNOSTIC
764 	if (pp->pr_drain_hook != NULL)
765 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
766 #endif
767 	pp->pr_drain_hook = fn;
768 	pp->pr_drain_hook_arg = arg;
769 }
770 
771 static struct pool_item_header *
772 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
773 {
774 	struct pool_item_header *ph;
775 	int s;
776 
777 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
778 
779 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
780 		ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
781 	else {
782 		s = splvm();
783 		ph = pool_get(pp->pr_phpool, flags);
784 		splx(s);
785 	}
786 
787 	return (ph);
788 }
789 
790 /*
791  * Grab an item from the pool; must be called at appropriate spl level
792  */
793 void *
794 #ifdef POOL_DIAGNOSTIC
795 _pool_get(struct pool *pp, int flags, const char *file, long line)
796 #else
797 pool_get(struct pool *pp, int flags)
798 #endif
799 {
800 	struct pool_item *pi;
801 	struct pool_item_header *ph;
802 	void *v;
803 
804 #ifdef DIAGNOSTIC
805 	if (__predict_false(pp->pr_itemsperpage == 0))
806 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
807 		    "pool not initialized?", pp);
808 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
809 			    (flags & PR_WAITOK) != 0))
810 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
811 
812 #endif /* DIAGNOSTIC */
813 #ifdef LOCKDEBUG
814 	if (flags & PR_WAITOK)
815 		simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
816 	SCHED_ASSERT_UNLOCKED();
817 #endif
818 
819 	simple_lock(&pp->pr_slock);
820 	pr_enter(pp, file, line);
821 
822  startover:
823 	/*
824 	 * Check to see if we've reached the hard limit.  If we have,
825 	 * and we can wait, then wait until an item has been returned to
826 	 * the pool.
827 	 */
828 #ifdef DIAGNOSTIC
829 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
830 		pr_leave(pp);
831 		simple_unlock(&pp->pr_slock);
832 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
833 	}
834 #endif
835 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
836 		if (pp->pr_drain_hook != NULL) {
837 			/*
838 			 * Since the drain hook is going to free things
839 			 * back to the pool, unlock, call the hook, re-lock,
840 			 * and check the hardlimit condition again.
841 			 */
842 			pr_leave(pp);
843 			simple_unlock(&pp->pr_slock);
844 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
845 			simple_lock(&pp->pr_slock);
846 			pr_enter(pp, file, line);
847 			if (pp->pr_nout < pp->pr_hardlimit)
848 				goto startover;
849 		}
850 
851 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
852 			/*
853 			 * XXX: A warning isn't logged in this case.  Should
854 			 * it be?
855 			 */
856 			pp->pr_flags |= PR_WANTED;
857 			pr_leave(pp);
858 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
859 			pr_enter(pp, file, line);
860 			goto startover;
861 		}
862 
863 		/*
864 		 * Log a message that the hard limit has been hit.
865 		 */
866 		if (pp->pr_hardlimit_warning != NULL &&
867 		    ratecheck(&pp->pr_hardlimit_warning_last,
868 			      &pp->pr_hardlimit_ratecap))
869 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
870 
871 		pp->pr_nfail++;
872 
873 		pr_leave(pp);
874 		simple_unlock(&pp->pr_slock);
875 		return (NULL);
876 	}
877 
878 	/*
879 	 * The convention we use is that if `curpage' is not NULL, then
880 	 * it points at a non-empty bucket. In particular, `curpage'
881 	 * never points at a page header which has PR_PHINPAGE set and
882 	 * has no items in its bucket.
883 	 */
884 	if ((ph = pp->pr_curpage) == NULL) {
885 		int error;
886 
887 #ifdef DIAGNOSTIC
888 		if (pp->pr_nitems != 0) {
889 			simple_unlock(&pp->pr_slock);
890 			printf("pool_get: %s: curpage NULL, nitems %u\n",
891 			    pp->pr_wchan, pp->pr_nitems);
892 			panic("pool_get: nitems inconsistent");
893 		}
894 #endif
895 
896 		/*
897 		 * Call the back-end page allocator for more memory.
898 		 * Release the pool lock, as the back-end page allocator
899 		 * may block.
900 		 */
901 		pr_leave(pp);
902 		error = pool_grow(pp, flags);
903 		pr_enter(pp, file, line);
904 		if (error != 0) {
905 			/*
906 			 * We were unable to allocate a page or item
907 			 * header, but we released the lock during
908 			 * allocation, so perhaps items were freed
909 			 * back to the pool.  Check for this case.
910 			 */
911 			if (pp->pr_curpage != NULL)
912 				goto startover;
913 
914 			if ((flags & PR_WAITOK) == 0) {
915 				pp->pr_nfail++;
916 				pr_leave(pp);
917 				simple_unlock(&pp->pr_slock);
918 				return (NULL);
919 			}
920 
921 			/*
922 			 * Wait for items to be returned to this pool.
923 			 *
924 			 * wake up once a second and try again,
925 			 * as the check in pool_cache_put_paddr() is racy.
926 			 */
927 			pp->pr_flags |= PR_WANTED;
928 			/* PA_WANTED is already set on the allocator. */
929 			pr_leave(pp);
930 			ltsleep(pp, PSWP, pp->pr_wchan, hz, &pp->pr_slock);
931 			pr_enter(pp, file, line);
932 		}
933 
934 		/* Start the allocation process over. */
935 		goto startover;
936 	}
937 	if (pp->pr_roflags & PR_NOTOUCH) {
938 #ifdef DIAGNOSTIC
939 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
940 			pr_leave(pp);
941 			simple_unlock(&pp->pr_slock);
942 			panic("pool_get: %s: page empty", pp->pr_wchan);
943 		}
944 #endif
945 		v = pr_item_notouch_get(pp, ph);
946 #ifdef POOL_DIAGNOSTIC
947 		pr_log(pp, v, PRLOG_GET, file, line);
948 #endif
949 	} else {
950 		v = pi = LIST_FIRST(&ph->ph_itemlist);
951 		if (__predict_false(v == NULL)) {
952 			pr_leave(pp);
953 			simple_unlock(&pp->pr_slock);
954 			panic("pool_get: %s: page empty", pp->pr_wchan);
955 		}
956 #ifdef DIAGNOSTIC
957 		if (__predict_false(pp->pr_nitems == 0)) {
958 			pr_leave(pp);
959 			simple_unlock(&pp->pr_slock);
960 			printf("pool_get: %s: items on itemlist, nitems %u\n",
961 			    pp->pr_wchan, pp->pr_nitems);
962 			panic("pool_get: nitems inconsistent");
963 		}
964 #endif
965 
966 #ifdef POOL_DIAGNOSTIC
967 		pr_log(pp, v, PRLOG_GET, file, line);
968 #endif
969 
970 #ifdef DIAGNOSTIC
971 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
972 			pr_printlog(pp, pi, printf);
973 			panic("pool_get(%s): free list modified: "
974 			    "magic=%x; page %p; item addr %p\n",
975 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
976 		}
977 #endif
978 
979 		/*
980 		 * Remove from item list.
981 		 */
982 		LIST_REMOVE(pi, pi_list);
983 	}
984 	pp->pr_nitems--;
985 	pp->pr_nout++;
986 	if (ph->ph_nmissing == 0) {
987 #ifdef DIAGNOSTIC
988 		if (__predict_false(pp->pr_nidle == 0))
989 			panic("pool_get: nidle inconsistent");
990 #endif
991 		pp->pr_nidle--;
992 
993 		/*
994 		 * This page was previously empty.  Move it to the list of
995 		 * partially-full pages.  This page is already curpage.
996 		 */
997 		LIST_REMOVE(ph, ph_pagelist);
998 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
999 	}
1000 	ph->ph_nmissing++;
1001 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
1002 #ifdef DIAGNOSTIC
1003 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1004 		    !LIST_EMPTY(&ph->ph_itemlist))) {
1005 			pr_leave(pp);
1006 			simple_unlock(&pp->pr_slock);
1007 			panic("pool_get: %s: nmissing inconsistent",
1008 			    pp->pr_wchan);
1009 		}
1010 #endif
1011 		/*
1012 		 * This page is now full.  Move it to the full list
1013 		 * and select a new current page.
1014 		 */
1015 		LIST_REMOVE(ph, ph_pagelist);
1016 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1017 		pool_update_curpage(pp);
1018 	}
1019 
1020 	pp->pr_nget++;
1021 	pr_leave(pp);
1022 
1023 	/*
1024 	 * If we have a low water mark and we are now below that low
1025 	 * water mark, add more items to the pool.
1026 	 */
1027 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1028 		/*
1029 		 * XXX: Should we log a warning?  Should we set up a timeout
1030 		 * to try again in a second or so?  The latter could break
1031 		 * a caller's assumptions about interrupt protection, etc.
1032 		 */
1033 	}
1034 
1035 	simple_unlock(&pp->pr_slock);
1036 	return (v);
1037 }
1038 
1039 /*
1040  * Internal version of pool_put().  Pool is already locked/entered.
1041  */
1042 static void
1043 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1044 {
1045 	struct pool_item *pi = v;
1046 	struct pool_item_header *ph;
1047 	caddr_t page;
1048 	int s;
1049 
1050 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1051 	SCHED_ASSERT_UNLOCKED();
1052 
1053 	page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask);
1054 
1055 #ifdef DIAGNOSTIC
1056 	if (__predict_false(pp->pr_nout == 0)) {
1057 		printf("pool %s: putting with none out\n",
1058 		    pp->pr_wchan);
1059 		panic("pool_put");
1060 	}
1061 #endif
1062 
1063 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
1064 		pr_printlog(pp, NULL, printf);
1065 		panic("pool_put: %s: page header missing", pp->pr_wchan);
1066 	}
1067 
1068 #ifdef LOCKDEBUG
1069 	/*
1070 	 * Check if we're freeing a locked simple lock.
1071 	 */
1072 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
1073 #endif
1074 
1075 	/*
1076 	 * Return to item list.
1077 	 */
1078 	if (pp->pr_roflags & PR_NOTOUCH) {
1079 		pr_item_notouch_put(pp, ph, v);
1080 	} else {
1081 #ifdef DIAGNOSTIC
1082 		pi->pi_magic = PI_MAGIC;
1083 #endif
1084 #ifdef DEBUG
1085 		{
1086 			int i, *ip = v;
1087 
1088 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1089 				*ip++ = PI_MAGIC;
1090 			}
1091 		}
1092 #endif
1093 
1094 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1095 	}
1096 	KDASSERT(ph->ph_nmissing != 0);
1097 	ph->ph_nmissing--;
1098 	pp->pr_nput++;
1099 	pp->pr_nitems++;
1100 	pp->pr_nout--;
1101 
1102 	/* Cancel "pool empty" condition if it exists */
1103 	if (pp->pr_curpage == NULL)
1104 		pp->pr_curpage = ph;
1105 
1106 	if (pp->pr_flags & PR_WANTED) {
1107 		pp->pr_flags &= ~PR_WANTED;
1108 		if (ph->ph_nmissing == 0)
1109 			pp->pr_nidle++;
1110 		wakeup((caddr_t)pp);
1111 		return;
1112 	}
1113 
1114 	/*
1115 	 * If this page is now empty, do one of two things:
1116 	 *
1117 	 *	(1) If we have more pages than the page high water mark,
1118 	 *	    free the page back to the system.  ONLY CONSIDER
1119 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1120 	 *	    CLAIM.
1121 	 *
1122 	 *	(2) Otherwise, move the page to the empty page list.
1123 	 *
1124 	 * Either way, select a new current page (so we use a partially-full
1125 	 * page if one is available).
1126 	 */
1127 	if (ph->ph_nmissing == 0) {
1128 		pp->pr_nidle++;
1129 		if (pp->pr_npages > pp->pr_minpages &&
1130 		    (pp->pr_npages > pp->pr_maxpages ||
1131 		     (pp->pr_alloc->pa_flags & PA_WANT) != 0)) {
1132 			pr_rmpage(pp, ph, pq);
1133 		} else {
1134 			LIST_REMOVE(ph, ph_pagelist);
1135 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1136 
1137 			/*
1138 			 * Update the timestamp on the page.  A page must
1139 			 * be idle for some period of time before it can
1140 			 * be reclaimed by the pagedaemon.  This minimizes
1141 			 * ping-pong'ing for memory.
1142 			 */
1143 			s = splclock();
1144 			ph->ph_time = mono_time;
1145 			splx(s);
1146 		}
1147 		pool_update_curpage(pp);
1148 	}
1149 
1150 	/*
1151 	 * If the page was previously completely full, move it to the
1152 	 * partially-full list and make it the current page.  The next
1153 	 * allocation will get the item from this page, instead of
1154 	 * further fragmenting the pool.
1155 	 */
1156 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1157 		LIST_REMOVE(ph, ph_pagelist);
1158 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1159 		pp->pr_curpage = ph;
1160 	}
1161 }
1162 
1163 /*
1164  * Return resource to the pool; must be called at appropriate spl level
1165  */
1166 #ifdef POOL_DIAGNOSTIC
1167 void
1168 _pool_put(struct pool *pp, void *v, const char *file, long line)
1169 {
1170 	struct pool_pagelist pq;
1171 
1172 	LIST_INIT(&pq);
1173 
1174 	simple_lock(&pp->pr_slock);
1175 	pr_enter(pp, file, line);
1176 
1177 	pr_log(pp, v, PRLOG_PUT, file, line);
1178 
1179 	pool_do_put(pp, v, &pq);
1180 
1181 	pr_leave(pp);
1182 	simple_unlock(&pp->pr_slock);
1183 
1184 	pr_pagelist_free(pp, &pq);
1185 }
1186 #undef pool_put
1187 #endif /* POOL_DIAGNOSTIC */
1188 
1189 void
1190 pool_put(struct pool *pp, void *v)
1191 {
1192 	struct pool_pagelist pq;
1193 
1194 	LIST_INIT(&pq);
1195 
1196 	simple_lock(&pp->pr_slock);
1197 	pool_do_put(pp, v, &pq);
1198 	simple_unlock(&pp->pr_slock);
1199 
1200 	pr_pagelist_free(pp, &pq);
1201 }
1202 
1203 #ifdef POOL_DIAGNOSTIC
1204 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
1205 #endif
1206 
1207 /*
1208  * pool_grow: grow a pool by a page.
1209  *
1210  * => called with pool locked.
1211  * => unlock and relock the pool.
1212  * => return with pool locked.
1213  */
1214 
1215 static int
1216 pool_grow(struct pool *pp, int flags)
1217 {
1218 	struct pool_item_header *ph = NULL;
1219 	char *cp;
1220 
1221 	simple_unlock(&pp->pr_slock);
1222 	cp = pool_allocator_alloc(pp, flags);
1223 	if (__predict_true(cp != NULL)) {
1224 		ph = pool_alloc_item_header(pp, cp, flags);
1225 	}
1226 	if (__predict_false(cp == NULL || ph == NULL)) {
1227 		if (cp != NULL) {
1228 			pool_allocator_free(pp, cp);
1229 		}
1230 		simple_lock(&pp->pr_slock);
1231 		return ENOMEM;
1232 	}
1233 
1234 	simple_lock(&pp->pr_slock);
1235 	pool_prime_page(pp, cp, ph);
1236 	pp->pr_npagealloc++;
1237 	return 0;
1238 }
1239 
1240 /*
1241  * Add N items to the pool.
1242  */
1243 int
1244 pool_prime(struct pool *pp, int n)
1245 {
1246 	int newpages;
1247 	int error = 0;
1248 
1249 	simple_lock(&pp->pr_slock);
1250 
1251 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1252 
1253 	while (newpages-- > 0) {
1254 		error = pool_grow(pp, PR_NOWAIT);
1255 		if (error) {
1256 			break;
1257 		}
1258 		pp->pr_minpages++;
1259 	}
1260 
1261 	if (pp->pr_minpages >= pp->pr_maxpages)
1262 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1263 
1264 	simple_unlock(&pp->pr_slock);
1265 	return error;
1266 }
1267 
1268 /*
1269  * Add a page worth of items to the pool.
1270  *
1271  * Note, we must be called with the pool descriptor LOCKED.
1272  */
1273 static void
1274 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1275 {
1276 	struct pool_item *pi;
1277 	caddr_t cp = storage;
1278 	unsigned int align = pp->pr_align;
1279 	unsigned int ioff = pp->pr_itemoffset;
1280 	int n;
1281 	int s;
1282 
1283 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1284 
1285 #ifdef DIAGNOSTIC
1286 	if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1287 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1288 #endif
1289 
1290 	/*
1291 	 * Insert page header.
1292 	 */
1293 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1294 	LIST_INIT(&ph->ph_itemlist);
1295 	ph->ph_page = storage;
1296 	ph->ph_nmissing = 0;
1297 	s = splclock();
1298 	ph->ph_time = mono_time;
1299 	splx(s);
1300 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1301 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1302 
1303 	pp->pr_nidle++;
1304 
1305 	/*
1306 	 * Color this page.
1307 	 */
1308 	cp = (caddr_t)(cp + pp->pr_curcolor);
1309 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1310 		pp->pr_curcolor = 0;
1311 
1312 	/*
1313 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1314 	 */
1315 	if (ioff != 0)
1316 		cp = (caddr_t)(cp + (align - ioff));
1317 
1318 	/*
1319 	 * Insert remaining chunks on the bucket list.
1320 	 */
1321 	n = pp->pr_itemsperpage;
1322 	pp->pr_nitems += n;
1323 
1324 	if (pp->pr_roflags & PR_NOTOUCH) {
1325 		pool_item_freelist_t *freelist = PR_FREELIST(ph);
1326 		int i;
1327 
1328 		ph->ph_off = cp - storage;
1329 		ph->ph_firstfree = 0;
1330 		for (i = 0; i < n - 1; i++)
1331 			freelist[i] = i + 1;
1332 		freelist[n - 1] = PR_INDEX_EOL;
1333 	} else {
1334 		while (n--) {
1335 			pi = (struct pool_item *)cp;
1336 
1337 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1338 
1339 			/* Insert on page list */
1340 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1341 #ifdef DIAGNOSTIC
1342 			pi->pi_magic = PI_MAGIC;
1343 #endif
1344 			cp = (caddr_t)(cp + pp->pr_size);
1345 		}
1346 	}
1347 
1348 	/*
1349 	 * If the pool was depleted, point at the new page.
1350 	 */
1351 	if (pp->pr_curpage == NULL)
1352 		pp->pr_curpage = ph;
1353 
1354 	if (++pp->pr_npages > pp->pr_hiwat)
1355 		pp->pr_hiwat = pp->pr_npages;
1356 }
1357 
1358 /*
1359  * Used by pool_get() when nitems drops below the low water mark.  This
1360  * is used to catch up pr_nitems with the low water mark.
1361  *
1362  * Note 1, we never wait for memory here, we let the caller decide what to do.
1363  *
1364  * Note 2, we must be called with the pool already locked, and we return
1365  * with it locked.
1366  */
1367 static int
1368 pool_catchup(struct pool *pp)
1369 {
1370 	int error = 0;
1371 
1372 	while (POOL_NEEDS_CATCHUP(pp)) {
1373 		error = pool_grow(pp, PR_NOWAIT);
1374 		if (error) {
1375 			break;
1376 		}
1377 	}
1378 	return error;
1379 }
1380 
1381 static void
1382 pool_update_curpage(struct pool *pp)
1383 {
1384 
1385 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1386 	if (pp->pr_curpage == NULL) {
1387 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1388 	}
1389 }
1390 
1391 void
1392 pool_setlowat(struct pool *pp, int n)
1393 {
1394 
1395 	simple_lock(&pp->pr_slock);
1396 
1397 	pp->pr_minitems = n;
1398 	pp->pr_minpages = (n == 0)
1399 		? 0
1400 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1401 
1402 	/* Make sure we're caught up with the newly-set low water mark. */
1403 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1404 		/*
1405 		 * XXX: Should we log a warning?  Should we set up a timeout
1406 		 * to try again in a second or so?  The latter could break
1407 		 * a caller's assumptions about interrupt protection, etc.
1408 		 */
1409 	}
1410 
1411 	simple_unlock(&pp->pr_slock);
1412 }
1413 
1414 void
1415 pool_sethiwat(struct pool *pp, int n)
1416 {
1417 
1418 	simple_lock(&pp->pr_slock);
1419 
1420 	pp->pr_maxpages = (n == 0)
1421 		? 0
1422 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1423 
1424 	simple_unlock(&pp->pr_slock);
1425 }
1426 
1427 void
1428 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1429 {
1430 
1431 	simple_lock(&pp->pr_slock);
1432 
1433 	pp->pr_hardlimit = n;
1434 	pp->pr_hardlimit_warning = warnmess;
1435 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1436 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1437 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1438 
1439 	/*
1440 	 * In-line version of pool_sethiwat(), because we don't want to
1441 	 * release the lock.
1442 	 */
1443 	pp->pr_maxpages = (n == 0)
1444 		? 0
1445 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1446 
1447 	simple_unlock(&pp->pr_slock);
1448 }
1449 
1450 /*
1451  * Release all complete pages that have not been used recently.
1452  */
1453 int
1454 #ifdef POOL_DIAGNOSTIC
1455 _pool_reclaim(struct pool *pp, const char *file, long line)
1456 #else
1457 pool_reclaim(struct pool *pp)
1458 #endif
1459 {
1460 	struct pool_item_header *ph, *phnext;
1461 	struct pool_cache *pc;
1462 	struct pool_pagelist pq;
1463 	struct pool_cache_grouplist pcgl;
1464 	struct timeval curtime, diff;
1465 	int s;
1466 
1467 	if (pp->pr_drain_hook != NULL) {
1468 		/*
1469 		 * The drain hook must be called with the pool unlocked.
1470 		 */
1471 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1472 	}
1473 
1474 	if (simple_lock_try(&pp->pr_slock) == 0)
1475 		return (0);
1476 	pr_enter(pp, file, line);
1477 
1478 	LIST_INIT(&pq);
1479 	LIST_INIT(&pcgl);
1480 
1481 	/*
1482 	 * Reclaim items from the pool's caches.
1483 	 */
1484 	LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1485 		pool_cache_reclaim(pc, &pq, &pcgl);
1486 
1487 	s = splclock();
1488 	curtime = mono_time;
1489 	splx(s);
1490 
1491 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1492 		phnext = LIST_NEXT(ph, ph_pagelist);
1493 
1494 		/* Check our minimum page claim */
1495 		if (pp->pr_npages <= pp->pr_minpages)
1496 			break;
1497 
1498 		KASSERT(ph->ph_nmissing == 0);
1499 		timersub(&curtime, &ph->ph_time, &diff);
1500 		if (diff.tv_sec < pool_inactive_time)
1501 			continue;
1502 
1503 		/*
1504 		 * If freeing this page would put us below
1505 		 * the low water mark, stop now.
1506 		 */
1507 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
1508 		    pp->pr_minitems)
1509 			break;
1510 
1511 		pr_rmpage(pp, ph, &pq);
1512 	}
1513 
1514 	pr_leave(pp);
1515 	simple_unlock(&pp->pr_slock);
1516 	if (LIST_EMPTY(&pq) && LIST_EMPTY(&pcgl))
1517 		return 0;
1518 
1519 	pr_pagelist_free(pp, &pq);
1520 	pcg_grouplist_free(&pcgl);
1521 	return (1);
1522 }
1523 
1524 /*
1525  * Drain pools, one at a time.
1526  *
1527  * Note, we must never be called from an interrupt context.
1528  */
1529 void
1530 pool_drain(void *arg)
1531 {
1532 	struct pool *pp;
1533 	int s;
1534 
1535 	pp = NULL;
1536 	s = splvm();
1537 	simple_lock(&pool_head_slock);
1538 	if (drainpp == NULL) {
1539 		drainpp = LIST_FIRST(&pool_head);
1540 	}
1541 	if (drainpp) {
1542 		pp = drainpp;
1543 		drainpp = LIST_NEXT(pp, pr_poollist);
1544 	}
1545 	simple_unlock(&pool_head_slock);
1546 	if (pp)
1547 		pool_reclaim(pp);
1548 	splx(s);
1549 }
1550 
1551 /*
1552  * Diagnostic helpers.
1553  */
1554 void
1555 pool_print(struct pool *pp, const char *modif)
1556 {
1557 	int s;
1558 
1559 	s = splvm();
1560 	if (simple_lock_try(&pp->pr_slock) == 0) {
1561 		printf("pool %s is locked; try again later\n",
1562 		    pp->pr_wchan);
1563 		splx(s);
1564 		return;
1565 	}
1566 	pool_print1(pp, modif, printf);
1567 	simple_unlock(&pp->pr_slock);
1568 	splx(s);
1569 }
1570 
1571 void
1572 pool_printall(const char *modif, void (*pr)(const char *, ...))
1573 {
1574 	struct pool *pp;
1575 
1576 	if (simple_lock_try(&pool_head_slock) == 0) {
1577 		(*pr)("WARNING: pool_head_slock is locked\n");
1578 	} else {
1579 		simple_unlock(&pool_head_slock);
1580 	}
1581 
1582 	LIST_FOREACH(pp, &pool_head, pr_poollist) {
1583 		pool_printit(pp, modif, pr);
1584 	}
1585 }
1586 
1587 void
1588 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1589 {
1590 
1591 	if (pp == NULL) {
1592 		(*pr)("Must specify a pool to print.\n");
1593 		return;
1594 	}
1595 
1596 	/*
1597 	 * Called from DDB; interrupts should be blocked, and all
1598 	 * other processors should be paused.  We can skip locking
1599 	 * the pool in this case.
1600 	 *
1601 	 * We do a simple_lock_try() just to print the lock
1602 	 * status, however.
1603 	 */
1604 
1605 	if (simple_lock_try(&pp->pr_slock) == 0)
1606 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1607 	else
1608 		simple_unlock(&pp->pr_slock);
1609 
1610 	pool_print1(pp, modif, pr);
1611 }
1612 
1613 static void
1614 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1615     void (*pr)(const char *, ...))
1616 {
1617 	struct pool_item_header *ph;
1618 #ifdef DIAGNOSTIC
1619 	struct pool_item *pi;
1620 #endif
1621 
1622 	LIST_FOREACH(ph, pl, ph_pagelist) {
1623 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1624 		    ph->ph_page, ph->ph_nmissing,
1625 		    (u_long)ph->ph_time.tv_sec,
1626 		    (u_long)ph->ph_time.tv_usec);
1627 #ifdef DIAGNOSTIC
1628 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
1629 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1630 				if (pi->pi_magic != PI_MAGIC) {
1631 					(*pr)("\t\t\titem %p, magic 0x%x\n",
1632 					    pi, pi->pi_magic);
1633 				}
1634 			}
1635 		}
1636 #endif
1637 	}
1638 }
1639 
1640 static void
1641 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1642 {
1643 	struct pool_item_header *ph;
1644 	struct pool_cache *pc;
1645 	struct pool_cache_group *pcg;
1646 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1647 	char c;
1648 
1649 	while ((c = *modif++) != '\0') {
1650 		if (c == 'l')
1651 			print_log = 1;
1652 		if (c == 'p')
1653 			print_pagelist = 1;
1654 		if (c == 'c')
1655 			print_cache = 1;
1656 	}
1657 
1658 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1659 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1660 	    pp->pr_roflags);
1661 	(*pr)("\talloc %p\n", pp->pr_alloc);
1662 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1663 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1664 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1665 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1666 
1667 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1668 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1669 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1670 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1671 
1672 	if (print_pagelist == 0)
1673 		goto skip_pagelist;
1674 
1675 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1676 		(*pr)("\n\tempty page list:\n");
1677 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1678 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1679 		(*pr)("\n\tfull page list:\n");
1680 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1681 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1682 		(*pr)("\n\tpartial-page list:\n");
1683 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
1684 
1685 	if (pp->pr_curpage == NULL)
1686 		(*pr)("\tno current page\n");
1687 	else
1688 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1689 
1690  skip_pagelist:
1691 	if (print_log == 0)
1692 		goto skip_log;
1693 
1694 	(*pr)("\n");
1695 	if ((pp->pr_roflags & PR_LOGGING) == 0)
1696 		(*pr)("\tno log\n");
1697 	else
1698 		pr_printlog(pp, NULL, pr);
1699 
1700  skip_log:
1701 	if (print_cache == 0)
1702 		goto skip_cache;
1703 
1704 #define PR_GROUPLIST(pcg)						\
1705 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
1706 	for (i = 0; i < PCG_NOBJECTS; i++) {				\
1707 		if (pcg->pcg_objects[i].pcgo_pa !=			\
1708 		    POOL_PADDR_INVALID) {				\
1709 			(*pr)("\t\t\t%p, 0x%llx\n",			\
1710 			    pcg->pcg_objects[i].pcgo_va,		\
1711 			    (unsigned long long)			\
1712 			    pcg->pcg_objects[i].pcgo_pa);		\
1713 		} else {						\
1714 			(*pr)("\t\t\t%p\n",				\
1715 			    pcg->pcg_objects[i].pcgo_va);		\
1716 		}							\
1717 	}
1718 
1719 	LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1720 		(*pr)("\tcache %p\n", pc);
1721 		(*pr)("\t    hits %lu misses %lu ngroups %lu nitems %lu\n",
1722 		    pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1723 		(*pr)("\t    full groups:\n");
1724 		LIST_FOREACH(pcg, &pc->pc_fullgroups, pcg_list) {
1725 			PR_GROUPLIST(pcg);
1726 		}
1727 		(*pr)("\t    partial groups:\n");
1728 		LIST_FOREACH(pcg, &pc->pc_partgroups, pcg_list) {
1729 			PR_GROUPLIST(pcg);
1730 		}
1731 		(*pr)("\t    empty groups:\n");
1732 		LIST_FOREACH(pcg, &pc->pc_emptygroups, pcg_list) {
1733 			PR_GROUPLIST(pcg);
1734 		}
1735 	}
1736 #undef PR_GROUPLIST
1737 
1738  skip_cache:
1739 	pr_enter_check(pp, pr);
1740 }
1741 
1742 static int
1743 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1744 {
1745 	struct pool_item *pi;
1746 	caddr_t page;
1747 	int n;
1748 
1749 	page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
1750 	if (page != ph->ph_page &&
1751 	    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1752 		if (label != NULL)
1753 			printf("%s: ", label);
1754 		printf("pool(%p:%s): page inconsistency: page %p;"
1755 		       " at page head addr %p (p %p)\n", pp,
1756 			pp->pr_wchan, ph->ph_page,
1757 			ph, page);
1758 		return 1;
1759 	}
1760 
1761 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1762 		return 0;
1763 
1764 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1765 	     pi != NULL;
1766 	     pi = LIST_NEXT(pi,pi_list), n++) {
1767 
1768 #ifdef DIAGNOSTIC
1769 		if (pi->pi_magic != PI_MAGIC) {
1770 			if (label != NULL)
1771 				printf("%s: ", label);
1772 			printf("pool(%s): free list modified: magic=%x;"
1773 			       " page %p; item ordinal %d;"
1774 			       " addr %p (p %p)\n",
1775 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
1776 				n, pi, page);
1777 			panic("pool");
1778 		}
1779 #endif
1780 		page =
1781 		    (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
1782 		if (page == ph->ph_page)
1783 			continue;
1784 
1785 		if (label != NULL)
1786 			printf("%s: ", label);
1787 		printf("pool(%p:%s): page inconsistency: page %p;"
1788 		       " item ordinal %d; addr %p (p %p)\n", pp,
1789 			pp->pr_wchan, ph->ph_page,
1790 			n, pi, page);
1791 		return 1;
1792 	}
1793 	return 0;
1794 }
1795 
1796 
1797 int
1798 pool_chk(struct pool *pp, const char *label)
1799 {
1800 	struct pool_item_header *ph;
1801 	int r = 0;
1802 
1803 	simple_lock(&pp->pr_slock);
1804 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1805 		r = pool_chk_page(pp, label, ph);
1806 		if (r) {
1807 			goto out;
1808 		}
1809 	}
1810 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1811 		r = pool_chk_page(pp, label, ph);
1812 		if (r) {
1813 			goto out;
1814 		}
1815 	}
1816 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1817 		r = pool_chk_page(pp, label, ph);
1818 		if (r) {
1819 			goto out;
1820 		}
1821 	}
1822 
1823 out:
1824 	simple_unlock(&pp->pr_slock);
1825 	return (r);
1826 }
1827 
1828 /*
1829  * pool_cache_init:
1830  *
1831  *	Initialize a pool cache.
1832  *
1833  *	NOTE: If the pool must be protected from interrupts, we expect
1834  *	to be called at the appropriate interrupt priority level.
1835  */
1836 void
1837 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1838     int (*ctor)(void *, void *, int),
1839     void (*dtor)(void *, void *),
1840     void *arg)
1841 {
1842 
1843 	LIST_INIT(&pc->pc_emptygroups);
1844 	LIST_INIT(&pc->pc_fullgroups);
1845 	LIST_INIT(&pc->pc_partgroups);
1846 	simple_lock_init(&pc->pc_slock);
1847 
1848 	pc->pc_pool = pp;
1849 
1850 	pc->pc_ctor = ctor;
1851 	pc->pc_dtor = dtor;
1852 	pc->pc_arg  = arg;
1853 
1854 	pc->pc_hits   = 0;
1855 	pc->pc_misses = 0;
1856 
1857 	pc->pc_ngroups = 0;
1858 
1859 	pc->pc_nitems = 0;
1860 
1861 	simple_lock(&pp->pr_slock);
1862 	LIST_INSERT_HEAD(&pp->pr_cachelist, pc, pc_poollist);
1863 	simple_unlock(&pp->pr_slock);
1864 }
1865 
1866 /*
1867  * pool_cache_destroy:
1868  *
1869  *	Destroy a pool cache.
1870  */
1871 void
1872 pool_cache_destroy(struct pool_cache *pc)
1873 {
1874 	struct pool *pp = pc->pc_pool;
1875 
1876 	/* First, invalidate the entire cache. */
1877 	pool_cache_invalidate(pc);
1878 
1879 	/* ...and remove it from the pool's cache list. */
1880 	simple_lock(&pp->pr_slock);
1881 	LIST_REMOVE(pc, pc_poollist);
1882 	simple_unlock(&pp->pr_slock);
1883 }
1884 
1885 static inline void *
1886 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
1887 {
1888 	void *object;
1889 	u_int idx;
1890 
1891 	KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1892 	KASSERT(pcg->pcg_avail != 0);
1893 	idx = --pcg->pcg_avail;
1894 
1895 	KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
1896 	object = pcg->pcg_objects[idx].pcgo_va;
1897 	if (pap != NULL)
1898 		*pap = pcg->pcg_objects[idx].pcgo_pa;
1899 	pcg->pcg_objects[idx].pcgo_va = NULL;
1900 
1901 	return (object);
1902 }
1903 
1904 static inline void
1905 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
1906 {
1907 	u_int idx;
1908 
1909 	KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1910 	idx = pcg->pcg_avail++;
1911 
1912 	KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
1913 	pcg->pcg_objects[idx].pcgo_va = object;
1914 	pcg->pcg_objects[idx].pcgo_pa = pa;
1915 }
1916 
1917 static void
1918 pcg_grouplist_free(struct pool_cache_grouplist *pcgl)
1919 {
1920 	struct pool_cache_group *pcg;
1921 	int s;
1922 
1923 	s = splvm();
1924 	while ((pcg = LIST_FIRST(pcgl)) != NULL) {
1925 		LIST_REMOVE(pcg, pcg_list);
1926 		pool_put(&pcgpool, pcg);
1927 	}
1928 	splx(s);
1929 }
1930 
1931 /*
1932  * pool_cache_get{,_paddr}:
1933  *
1934  *	Get an object from a pool cache (optionally returning
1935  *	the physical address of the object).
1936  */
1937 void *
1938 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
1939 {
1940 	struct pool_cache_group *pcg;
1941 	void *object;
1942 
1943 #ifdef LOCKDEBUG
1944 	if (flags & PR_WAITOK)
1945 		simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
1946 #endif
1947 
1948 	simple_lock(&pc->pc_slock);
1949 
1950 	pcg = LIST_FIRST(&pc->pc_partgroups);
1951 	if (pcg == NULL) {
1952 		pcg = LIST_FIRST(&pc->pc_fullgroups);
1953 		if (pcg != NULL) {
1954 			LIST_REMOVE(pcg, pcg_list);
1955 			LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
1956 		}
1957 	}
1958 	if (pcg == NULL) {
1959 
1960 		/*
1961 		 * No groups with any available objects.  Allocate
1962 		 * a new object, construct it, and return it to
1963 		 * the caller.  We will allocate a group, if necessary,
1964 		 * when the object is freed back to the cache.
1965 		 */
1966 		pc->pc_misses++;
1967 		simple_unlock(&pc->pc_slock);
1968 		object = pool_get(pc->pc_pool, flags);
1969 		if (object != NULL && pc->pc_ctor != NULL) {
1970 			if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
1971 				pool_put(pc->pc_pool, object);
1972 				return (NULL);
1973 			}
1974 		}
1975 		if (object != NULL && pap != NULL) {
1976 #ifdef POOL_VTOPHYS
1977 			*pap = POOL_VTOPHYS(object);
1978 #else
1979 			*pap = POOL_PADDR_INVALID;
1980 #endif
1981 		}
1982 		return (object);
1983 	}
1984 
1985 	pc->pc_hits++;
1986 	pc->pc_nitems--;
1987 	object = pcg_get(pcg, pap);
1988 
1989 	if (pcg->pcg_avail == 0) {
1990 		LIST_REMOVE(pcg, pcg_list);
1991 		LIST_INSERT_HEAD(&pc->pc_emptygroups, pcg, pcg_list);
1992 	}
1993 	simple_unlock(&pc->pc_slock);
1994 
1995 	return (object);
1996 }
1997 
1998 /*
1999  * pool_cache_put{,_paddr}:
2000  *
2001  *	Put an object back to the pool cache (optionally caching the
2002  *	physical address of the object).
2003  */
2004 void
2005 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
2006 {
2007 	struct pool_cache_group *pcg;
2008 	int s;
2009 
2010 	if (__predict_false((pc->pc_pool->pr_flags & PR_WANTED) != 0)) {
2011 		goto destruct;
2012 	}
2013 
2014 	simple_lock(&pc->pc_slock);
2015 
2016 	pcg = LIST_FIRST(&pc->pc_partgroups);
2017 	if (pcg == NULL) {
2018 		pcg = LIST_FIRST(&pc->pc_emptygroups);
2019 		if (pcg != NULL) {
2020 			LIST_REMOVE(pcg, pcg_list);
2021 			LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2022 		}
2023 	}
2024 	if (pcg == NULL) {
2025 
2026 		/*
2027 		 * No empty groups to free the object to.  Attempt to
2028 		 * allocate one.
2029 		 */
2030 		simple_unlock(&pc->pc_slock);
2031 		s = splvm();
2032 		pcg = pool_get(&pcgpool, PR_NOWAIT);
2033 		splx(s);
2034 		if (pcg == NULL) {
2035 destruct:
2036 
2037 			/*
2038 			 * Unable to allocate a cache group; destruct the object
2039 			 * and free it back to the pool.
2040 			 */
2041 			pool_cache_destruct_object(pc, object);
2042 			return;
2043 		}
2044 		memset(pcg, 0, sizeof(*pcg));
2045 		simple_lock(&pc->pc_slock);
2046 		pc->pc_ngroups++;
2047 		LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2048 	}
2049 
2050 	pc->pc_nitems++;
2051 	pcg_put(pcg, object, pa);
2052 
2053 	if (pcg->pcg_avail == PCG_NOBJECTS) {
2054 		LIST_REMOVE(pcg, pcg_list);
2055 		LIST_INSERT_HEAD(&pc->pc_fullgroups, pcg, pcg_list);
2056 	}
2057 	simple_unlock(&pc->pc_slock);
2058 }
2059 
2060 /*
2061  * pool_cache_destruct_object:
2062  *
2063  *	Force destruction of an object and its release back into
2064  *	the pool.
2065  */
2066 void
2067 pool_cache_destruct_object(struct pool_cache *pc, void *object)
2068 {
2069 
2070 	if (pc->pc_dtor != NULL)
2071 		(*pc->pc_dtor)(pc->pc_arg, object);
2072 	pool_put(pc->pc_pool, object);
2073 }
2074 
2075 static void
2076 pool_do_cache_invalidate_grouplist(struct pool_cache_grouplist *pcgsl,
2077     struct pool_cache *pc, struct pool_pagelist *pq,
2078     struct pool_cache_grouplist *pcgdl)
2079 {
2080 	struct pool_cache_group *pcg, *npcg;
2081 	void *object;
2082 
2083 	for (pcg = LIST_FIRST(pcgsl); pcg != NULL; pcg = npcg) {
2084 		npcg = LIST_NEXT(pcg, pcg_list);
2085 		while (pcg->pcg_avail != 0) {
2086 			pc->pc_nitems--;
2087 			object = pcg_get(pcg, NULL);
2088 			if (pc->pc_dtor != NULL)
2089 				(*pc->pc_dtor)(pc->pc_arg, object);
2090 			pool_do_put(pc->pc_pool, object, pq);
2091 		}
2092 		pc->pc_ngroups--;
2093 		LIST_REMOVE(pcg, pcg_list);
2094 		LIST_INSERT_HEAD(pcgdl, pcg, pcg_list);
2095 	}
2096 }
2097 
2098 static void
2099 pool_do_cache_invalidate(struct pool_cache *pc, struct pool_pagelist *pq,
2100     struct pool_cache_grouplist *pcgl)
2101 {
2102 
2103 	LOCK_ASSERT(simple_lock_held(&pc->pc_slock));
2104 	LOCK_ASSERT(simple_lock_held(&pc->pc_pool->pr_slock));
2105 
2106 	pool_do_cache_invalidate_grouplist(&pc->pc_fullgroups, pc, pq, pcgl);
2107 	pool_do_cache_invalidate_grouplist(&pc->pc_partgroups, pc, pq, pcgl);
2108 
2109 	KASSERT(LIST_EMPTY(&pc->pc_partgroups));
2110 	KASSERT(LIST_EMPTY(&pc->pc_fullgroups));
2111 	KASSERT(pc->pc_nitems == 0);
2112 }
2113 
2114 /*
2115  * pool_cache_invalidate:
2116  *
2117  *	Invalidate a pool cache (destruct and release all of the
2118  *	cached objects).
2119  */
2120 void
2121 pool_cache_invalidate(struct pool_cache *pc)
2122 {
2123 	struct pool_pagelist pq;
2124 	struct pool_cache_grouplist pcgl;
2125 
2126 	LIST_INIT(&pq);
2127 	LIST_INIT(&pcgl);
2128 
2129 	simple_lock(&pc->pc_slock);
2130 	simple_lock(&pc->pc_pool->pr_slock);
2131 
2132 	pool_do_cache_invalidate(pc, &pq, &pcgl);
2133 
2134 	simple_unlock(&pc->pc_pool->pr_slock);
2135 	simple_unlock(&pc->pc_slock);
2136 
2137 	pr_pagelist_free(pc->pc_pool, &pq);
2138 	pcg_grouplist_free(&pcgl);
2139 }
2140 
2141 /*
2142  * pool_cache_reclaim:
2143  *
2144  *	Reclaim a pool cache for pool_reclaim().
2145  */
2146 static void
2147 pool_cache_reclaim(struct pool_cache *pc, struct pool_pagelist *pq,
2148     struct pool_cache_grouplist *pcgl)
2149 {
2150 
2151 	/*
2152 	 * We're locking in the wrong order (normally pool_cache -> pool,
2153 	 * but the pool is already locked when we get here), so we have
2154 	 * to use trylock.  If we can't lock the pool_cache, it's not really
2155 	 * a big deal here.
2156 	 */
2157 	if (simple_lock_try(&pc->pc_slock) == 0)
2158 		return;
2159 
2160 	pool_do_cache_invalidate(pc, pq, pcgl);
2161 
2162 	simple_unlock(&pc->pc_slock);
2163 }
2164 
2165 /*
2166  * Pool backend allocators.
2167  *
2168  * Each pool has a backend allocator that handles allocation, deallocation,
2169  * and any additional draining that might be needed.
2170  *
2171  * We provide two standard allocators:
2172  *
2173  *	pool_allocator_kmem - the default when no allocator is specified
2174  *
2175  *	pool_allocator_nointr - used for pools that will not be accessed
2176  *	in interrupt context.
2177  */
2178 void	*pool_page_alloc(struct pool *, int);
2179 void	pool_page_free(struct pool *, void *);
2180 
2181 #ifdef POOL_SUBPAGE
2182 struct pool_allocator pool_allocator_kmem_fullpage = {
2183 	pool_page_alloc, pool_page_free, 0,
2184 };
2185 #else
2186 struct pool_allocator pool_allocator_kmem = {
2187 	pool_page_alloc, pool_page_free, 0,
2188 };
2189 #endif
2190 
2191 void	*pool_page_alloc_nointr(struct pool *, int);
2192 void	pool_page_free_nointr(struct pool *, void *);
2193 
2194 #ifdef POOL_SUBPAGE
2195 struct pool_allocator pool_allocator_nointr_fullpage = {
2196 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
2197 };
2198 #else
2199 struct pool_allocator pool_allocator_nointr = {
2200 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
2201 };
2202 #endif
2203 
2204 #ifdef POOL_SUBPAGE
2205 void	*pool_subpage_alloc(struct pool *, int);
2206 void	pool_subpage_free(struct pool *, void *);
2207 
2208 struct pool_allocator pool_allocator_kmem = {
2209 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2210 };
2211 
2212 void	*pool_subpage_alloc_nointr(struct pool *, int);
2213 void	pool_subpage_free_nointr(struct pool *, void *);
2214 
2215 struct pool_allocator pool_allocator_nointr = {
2216 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2217 };
2218 #endif /* POOL_SUBPAGE */
2219 
2220 /*
2221  * We have at least three different resources for the same allocation and
2222  * each resource can be depleted.  First, we have the ready elements in the
2223  * pool.  Then we have the resource (typically a vm_map) for this allocator.
2224  * Finally, we have physical memory.  Waiting for any of these can be
2225  * unnecessary when any other is freed, but the kernel doesn't support
2226  * sleeping on multiple wait channels, so we have to employ another strategy.
2227  *
2228  * The caller sleeps on the pool (so that it can be awakened when an item
2229  * is returned to the pool), but we set PA_WANT on the allocator.  When a
2230  * page is returned to the allocator and PA_WANT is set, pool_allocator_free
2231  * will wake up all sleeping pools belonging to this allocator.
2232  *
2233  * XXX Thundering herd.
2234  */
2235 void *
2236 pool_allocator_alloc(struct pool *org, int flags)
2237 {
2238 	struct pool_allocator *pa = org->pr_alloc;
2239 	struct pool *pp, *start;
2240 	int s, freed;
2241 	void *res;
2242 
2243 	LOCK_ASSERT(!simple_lock_held(&org->pr_slock));
2244 
2245 	do {
2246 		if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
2247 			return (res);
2248 		if ((flags & PR_WAITOK) == 0) {
2249 			/*
2250 			 * We only run the drain hookhere if PR_NOWAIT.
2251 			 * In other cases, the hook will be run in
2252 			 * pool_reclaim().
2253 			 */
2254 			if (org->pr_drain_hook != NULL) {
2255 				(*org->pr_drain_hook)(org->pr_drain_hook_arg,
2256 				    flags);
2257 				if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
2258 					return (res);
2259 			}
2260 			break;
2261 		}
2262 
2263 		/*
2264 		 * Drain all pools, that use this allocator.
2265 		 * We do this to reclaim VA space.
2266 		 * pa_alloc is responsible for waiting for
2267 		 * physical memory.
2268 		 *
2269 		 * XXX We risk looping forever if start if someone
2270 		 * calls pool_destroy on "start".  But there is no
2271 		 * other way to have potentially sleeping pool_reclaim,
2272 		 * non-sleeping locks on pool_allocator, and some
2273 		 * stirring of drained pools in the allocator.
2274 		 *
2275 		 * XXX Maybe we should use pool_head_slock for locking
2276 		 * the allocators?
2277 		 */
2278 		freed = 0;
2279 
2280 		s = splvm();
2281 		simple_lock(&pa->pa_slock);
2282 		pp = start = TAILQ_FIRST(&pa->pa_list);
2283 		do {
2284 			TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list);
2285 			TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list);
2286 			simple_unlock(&pa->pa_slock);
2287 			freed = pool_reclaim(pp);
2288 			simple_lock(&pa->pa_slock);
2289 		} while ((pp = TAILQ_FIRST(&pa->pa_list)) != start &&
2290 			 freed == 0);
2291 
2292 		if (freed == 0) {
2293 			/*
2294 			 * We set PA_WANT here, the caller will most likely
2295 			 * sleep waiting for pages (if not, this won't hurt
2296 			 * that much), and there is no way to set this in
2297 			 * the caller without violating locking order.
2298 			 */
2299 			pa->pa_flags |= PA_WANT;
2300 		}
2301 		simple_unlock(&pa->pa_slock);
2302 		splx(s);
2303 	} while (freed);
2304 	return (NULL);
2305 }
2306 
2307 void
2308 pool_allocator_free(struct pool *pp, void *v)
2309 {
2310 	struct pool_allocator *pa = pp->pr_alloc;
2311 	int s;
2312 
2313 	LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
2314 
2315 	(*pa->pa_free)(pp, v);
2316 
2317 	s = splvm();
2318 	simple_lock(&pa->pa_slock);
2319 	if ((pa->pa_flags & PA_WANT) == 0) {
2320 		simple_unlock(&pa->pa_slock);
2321 		splx(s);
2322 		return;
2323 	}
2324 
2325 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
2326 		simple_lock(&pp->pr_slock);
2327 		if ((pp->pr_flags & PR_WANTED) != 0) {
2328 			pp->pr_flags &= ~PR_WANTED;
2329 			wakeup(pp);
2330 		}
2331 		simple_unlock(&pp->pr_slock);
2332 	}
2333 	pa->pa_flags &= ~PA_WANT;
2334 	simple_unlock(&pa->pa_slock);
2335 	splx(s);
2336 }
2337 
2338 void *
2339 pool_page_alloc(struct pool *pp, int flags)
2340 {
2341 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2342 
2343 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2344 }
2345 
2346 void
2347 pool_page_free(struct pool *pp, void *v)
2348 {
2349 
2350 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2351 }
2352 
2353 static void *
2354 pool_page_alloc_meta(struct pool *pp, int flags)
2355 {
2356 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2357 
2358 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2359 }
2360 
2361 static void
2362 pool_page_free_meta(struct pool *pp, void *v)
2363 {
2364 
2365 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2366 }
2367 
2368 #ifdef POOL_SUBPAGE
2369 /* Sub-page allocator, for machines with large hardware pages. */
2370 void *
2371 pool_subpage_alloc(struct pool *pp, int flags)
2372 {
2373 	void *v;
2374 	int s;
2375 	s = splvm();
2376 	v = pool_get(&psppool, flags);
2377 	splx(s);
2378 	return v;
2379 }
2380 
2381 void
2382 pool_subpage_free(struct pool *pp, void *v)
2383 {
2384 	int s;
2385 	s = splvm();
2386 	pool_put(&psppool, v);
2387 	splx(s);
2388 }
2389 
2390 /* We don't provide a real nointr allocator.  Maybe later. */
2391 void *
2392 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2393 {
2394 
2395 	return (pool_subpage_alloc(pp, flags));
2396 }
2397 
2398 void
2399 pool_subpage_free_nointr(struct pool *pp, void *v)
2400 {
2401 
2402 	pool_subpage_free(pp, v);
2403 }
2404 #endif /* POOL_SUBPAGE */
2405 void *
2406 pool_page_alloc_nointr(struct pool *pp, int flags)
2407 {
2408 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2409 
2410 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2411 }
2412 
2413 void
2414 pool_page_free_nointr(struct pool *pp, void *v)
2415 {
2416 
2417 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2418 }
2419