xref: /netbsd-src/sys/kern/subr_pool.c (revision be7d6d28fc2bc4242e902b8215a446332243c607)
1 /*	$NetBSD: subr_pool.c,v 1.252 2019/06/29 11:13:23 maxv Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
5  *     The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11  * Maxime Villard.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.252 2019/06/29 11:13:23 maxv Exp $");
37 
38 #ifdef _KERNEL_OPT
39 #include "opt_ddb.h"
40 #include "opt_lockdebug.h"
41 #include "opt_pool.h"
42 #include "opt_kleak.h"
43 #endif
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysctl.h>
48 #include <sys/bitops.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/vmem.h>
53 #include <sys/pool.h>
54 #include <sys/syslog.h>
55 #include <sys/debug.h>
56 #include <sys/lockdebug.h>
57 #include <sys/xcall.h>
58 #include <sys/cpu.h>
59 #include <sys/atomic.h>
60 #include <sys/asan.h>
61 
62 #include <uvm/uvm_extern.h>
63 
64 /*
65  * Pool resource management utility.
66  *
67  * Memory is allocated in pages which are split into pieces according to
68  * the pool item size. Each page is kept on one of three lists in the
69  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
70  * for empty, full and partially-full pages respectively. The individual
71  * pool items are on a linked list headed by `ph_itemlist' in each page
72  * header. The memory for building the page list is either taken from
73  * the allocated pages themselves (for small pool items) or taken from
74  * an internal pool of page headers (`phpool').
75  */
76 
77 /* List of all pools. Non static as needed by 'vmstat -m' */
78 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
79 
80 /* Private pool for page header structures */
81 #define	PHPOOL_MAX	8
82 static struct pool phpool[PHPOOL_MAX];
83 #define	PHPOOL_FREELIST_NELEM(idx) \
84 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
85 
86 #if defined(KASAN)
87 #define POOL_REDZONE
88 #endif
89 
90 #ifdef POOL_REDZONE
91 # ifdef KASAN
92 #  define POOL_REDZONE_SIZE 8
93 # else
94 #  define POOL_REDZONE_SIZE 2
95 # endif
96 static void pool_redzone_init(struct pool *, size_t);
97 static void pool_redzone_fill(struct pool *, void *);
98 static void pool_redzone_check(struct pool *, void *);
99 static void pool_cache_redzone_check(pool_cache_t, void *);
100 #else
101 # define pool_redzone_init(pp, sz)		__nothing
102 # define pool_redzone_fill(pp, ptr)		__nothing
103 # define pool_redzone_check(pp, ptr)		__nothing
104 # define pool_cache_redzone_check(pc, ptr)	__nothing
105 #endif
106 
107 #ifdef KLEAK
108 static void pool_kleak_fill(struct pool *, void *);
109 static void pool_cache_kleak_fill(pool_cache_t, void *);
110 #else
111 #define pool_kleak_fill(pp, ptr)	__nothing
112 #define pool_cache_kleak_fill(pc, ptr)	__nothing
113 #endif
114 
115 #ifdef POOL_QUARANTINE
116 static void pool_quarantine_init(struct pool *);
117 static void pool_quarantine_flush(struct pool *);
118 static bool pool_put_quarantine(struct pool *, void *,
119     struct pool_pagelist *);
120 static bool pool_cache_put_quarantine(pool_cache_t, void *, paddr_t);
121 #else
122 #define pool_quarantine_init(a)			__nothing
123 #define pool_quarantine_flush(a)		__nothing
124 #define pool_put_quarantine(a, b, c)		false
125 #define pool_cache_put_quarantine(a, b, c)	false
126 #endif
127 
128 #define pc_has_ctor(pc) \
129 	(pc->pc_ctor != (int (*)(void *, void *, int))nullop)
130 #define pc_has_dtor(pc) \
131 	(pc->pc_dtor != (void (*)(void *, void *))nullop)
132 
133 static void *pool_page_alloc_meta(struct pool *, int);
134 static void pool_page_free_meta(struct pool *, void *);
135 
136 /* allocator for pool metadata */
137 struct pool_allocator pool_allocator_meta = {
138 	.pa_alloc = pool_page_alloc_meta,
139 	.pa_free = pool_page_free_meta,
140 	.pa_pagesz = 0
141 };
142 
143 #define POOL_ALLOCATOR_BIG_BASE 13
144 extern struct pool_allocator pool_allocator_big[];
145 static int pool_bigidx(size_t);
146 
147 /* # of seconds to retain page after last use */
148 int pool_inactive_time = 10;
149 
150 /* Next candidate for drainage (see pool_drain()) */
151 static struct pool *drainpp;
152 
153 /* This lock protects both pool_head and drainpp. */
154 static kmutex_t pool_head_lock;
155 static kcondvar_t pool_busy;
156 
157 /* This lock protects initialization of a potentially shared pool allocator */
158 static kmutex_t pool_allocator_lock;
159 
160 static unsigned int poolid_counter = 0;
161 
162 typedef uint32_t pool_item_bitmap_t;
163 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
164 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
165 
166 struct pool_item_header {
167 	/* Page headers */
168 	LIST_ENTRY(pool_item_header)
169 				ph_pagelist;	/* pool page list */
170 	union {
171 		/* !PR_PHINPAGE */
172 		struct {
173 			SPLAY_ENTRY(pool_item_header)
174 				phu_node;	/* off-page page headers */
175 		} phu_offpage;
176 		/* PR_PHINPAGE */
177 		struct {
178 			unsigned int phu_poolid;
179 		} phu_onpage;
180 	} ph_u1;
181 	void *			ph_page;	/* this page's address */
182 	uint32_t		ph_time;	/* last referenced */
183 	uint16_t		ph_nmissing;	/* # of chunks in use */
184 	uint16_t		ph_off;		/* start offset in page */
185 	union {
186 		/* !PR_USEBMAP */
187 		struct {
188 			LIST_HEAD(, pool_item)
189 				phu_itemlist;	/* chunk list for this page */
190 		} phu_normal;
191 		/* PR_USEBMAP */
192 		struct {
193 			pool_item_bitmap_t phu_bitmap[1];
194 		} phu_notouch;
195 	} ph_u2;
196 };
197 #define ph_node		ph_u1.phu_offpage.phu_node
198 #define ph_poolid	ph_u1.phu_onpage.phu_poolid
199 #define ph_itemlist	ph_u2.phu_normal.phu_itemlist
200 #define ph_bitmap	ph_u2.phu_notouch.phu_bitmap
201 
202 #define PHSIZE	ALIGN(sizeof(struct pool_item_header))
203 
204 #if defined(DIAGNOSTIC) && !defined(KASAN)
205 #define POOL_CHECK_MAGIC
206 #endif
207 
208 struct pool_item {
209 #ifdef POOL_CHECK_MAGIC
210 	u_int pi_magic;
211 #endif
212 #define	PI_MAGIC 0xdeaddeadU
213 	/* Other entries use only this list entry */
214 	LIST_ENTRY(pool_item)	pi_list;
215 };
216 
217 #define	POOL_NEEDS_CATCHUP(pp)						\
218 	((pp)->pr_nitems < (pp)->pr_minitems)
219 
220 /*
221  * Pool cache management.
222  *
223  * Pool caches provide a way for constructed objects to be cached by the
224  * pool subsystem.  This can lead to performance improvements by avoiding
225  * needless object construction/destruction; it is deferred until absolutely
226  * necessary.
227  *
228  * Caches are grouped into cache groups.  Each cache group references up
229  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
230  * object from the pool, it calls the object's constructor and places it
231  * into a cache group.  When a cache group frees an object back to the
232  * pool, it first calls the object's destructor.  This allows the object
233  * to persist in constructed form while freed to the cache.
234  *
235  * The pool references each cache, so that when a pool is drained by the
236  * pagedaemon, it can drain each individual cache as well.  Each time a
237  * cache is drained, the most idle cache group is freed to the pool in
238  * its entirety.
239  *
240  * Pool caches are layed on top of pools.  By layering them, we can avoid
241  * the complexity of cache management for pools which would not benefit
242  * from it.
243  */
244 
245 static struct pool pcg_normal_pool;
246 static struct pool pcg_large_pool;
247 static struct pool cache_pool;
248 static struct pool cache_cpu_pool;
249 
250 /* List of all caches. */
251 TAILQ_HEAD(,pool_cache) pool_cache_head =
252     TAILQ_HEAD_INITIALIZER(pool_cache_head);
253 
254 int pool_cache_disable;		/* global disable for caching */
255 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
256 
257 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
258 				    void *);
259 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
260 				    void **, paddr_t *, int);
261 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
262 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
263 static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
264 static void	pool_cache_transfer(pool_cache_t);
265 
266 static int	pool_catchup(struct pool *);
267 static void	pool_prime_page(struct pool *, void *,
268 		    struct pool_item_header *);
269 static void	pool_update_curpage(struct pool *);
270 
271 static int	pool_grow(struct pool *, int);
272 static void	*pool_allocator_alloc(struct pool *, int);
273 static void	pool_allocator_free(struct pool *, void *);
274 
275 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
276 	void (*)(const char *, ...) __printflike(1, 2));
277 static void pool_print1(struct pool *, const char *,
278 	void (*)(const char *, ...) __printflike(1, 2));
279 
280 static int pool_chk_page(struct pool *, const char *,
281 			 struct pool_item_header *);
282 
283 /* -------------------------------------------------------------------------- */
284 
285 static inline unsigned int
286 pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
287     const void *v)
288 {
289 	const char *cp = v;
290 	unsigned int idx;
291 
292 	KASSERT(pp->pr_roflags & PR_USEBMAP);
293 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
294 
295 	if (__predict_false(idx >= pp->pr_itemsperpage)) {
296 		panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
297 		    pp->pr_itemsperpage);
298 	}
299 
300 	return idx;
301 }
302 
303 static inline void
304 pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
305     void *obj)
306 {
307 	unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
308 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
309 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
310 
311 	if (__predict_false((*bitmap & mask) != 0)) {
312 		panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
313 	}
314 
315 	*bitmap |= mask;
316 }
317 
318 static inline void *
319 pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
320 {
321 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
322 	unsigned int idx;
323 	int i;
324 
325 	for (i = 0; ; i++) {
326 		int bit;
327 
328 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
329 		bit = ffs32(bitmap[i]);
330 		if (bit) {
331 			pool_item_bitmap_t mask;
332 
333 			bit--;
334 			idx = (i * BITMAP_SIZE) + bit;
335 			mask = 1U << bit;
336 			KASSERT((bitmap[i] & mask) != 0);
337 			bitmap[i] &= ~mask;
338 			break;
339 		}
340 	}
341 	KASSERT(idx < pp->pr_itemsperpage);
342 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
343 }
344 
345 static inline void
346 pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
347 {
348 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
349 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
350 	int i;
351 
352 	for (i = 0; i < n; i++) {
353 		bitmap[i] = (pool_item_bitmap_t)-1;
354 	}
355 }
356 
357 /* -------------------------------------------------------------------------- */
358 
359 static inline void
360 pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
361     void *obj)
362 {
363 	struct pool_item *pi = obj;
364 
365 #ifdef POOL_CHECK_MAGIC
366 	pi->pi_magic = PI_MAGIC;
367 #endif
368 
369 	if (pp->pr_redzone) {
370 		/*
371 		 * Mark the pool_item as valid. The rest is already
372 		 * invalid.
373 		 */
374 		kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
375 	}
376 
377 	LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
378 }
379 
380 static inline void *
381 pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
382 {
383 	struct pool_item *pi;
384 	void *v;
385 
386 	v = pi = LIST_FIRST(&ph->ph_itemlist);
387 	if (__predict_false(v == NULL)) {
388 		mutex_exit(&pp->pr_lock);
389 		panic("%s: [%s] page empty", __func__, pp->pr_wchan);
390 	}
391 	KASSERTMSG((pp->pr_nitems > 0),
392 	    "%s: [%s] nitems %u inconsistent on itemlist",
393 	    __func__, pp->pr_wchan, pp->pr_nitems);
394 #ifdef POOL_CHECK_MAGIC
395 	KASSERTMSG((pi->pi_magic == PI_MAGIC),
396 	    "%s: [%s] free list modified: "
397 	    "magic=%x; page %p; item addr %p", __func__,
398 	    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
399 #endif
400 
401 	/*
402 	 * Remove from item list.
403 	 */
404 	LIST_REMOVE(pi, pi_list);
405 
406 	return v;
407 }
408 
409 /* -------------------------------------------------------------------------- */
410 
411 static inline int
412 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
413 {
414 
415 	/*
416 	 * We consider pool_item_header with smaller ph_page bigger. This
417 	 * unnatural ordering is for the benefit of pr_find_pagehead.
418 	 */
419 	if (a->ph_page < b->ph_page)
420 		return 1;
421 	else if (a->ph_page > b->ph_page)
422 		return -1;
423 	else
424 		return 0;
425 }
426 
427 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
428 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
429 
430 static inline struct pool_item_header *
431 pr_find_pagehead_noalign(struct pool *pp, void *v)
432 {
433 	struct pool_item_header *ph, tmp;
434 
435 	tmp.ph_page = (void *)(uintptr_t)v;
436 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
437 	if (ph == NULL) {
438 		ph = SPLAY_ROOT(&pp->pr_phtree);
439 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
440 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
441 		}
442 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
443 	}
444 
445 	return ph;
446 }
447 
448 /*
449  * Return the pool page header based on item address.
450  */
451 static inline struct pool_item_header *
452 pr_find_pagehead(struct pool *pp, void *v)
453 {
454 	struct pool_item_header *ph, tmp;
455 
456 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
457 		ph = pr_find_pagehead_noalign(pp, v);
458 	} else {
459 		void *page =
460 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
461 
462 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
463 			ph = (struct pool_item_header *)page;
464 			if (__predict_false((void *)ph->ph_page != page)) {
465 				panic("%s: [%s] item %p not part of pool",
466 				    __func__, pp->pr_wchan, v);
467 			}
468 			if (__predict_false((char *)v < (char *)page +
469 			    ph->ph_off)) {
470 				panic("%s: [%s] item %p below item space",
471 				    __func__, pp->pr_wchan, v);
472 			}
473 			if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
474 				panic("%s: [%s] item %p poolid %u != %u",
475 				    __func__, pp->pr_wchan, v, ph->ph_poolid,
476 				    pp->pr_poolid);
477 			}
478 		} else {
479 			tmp.ph_page = page;
480 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
481 		}
482 	}
483 
484 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
485 	    ((char *)ph->ph_page <= (char *)v &&
486 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
487 	return ph;
488 }
489 
490 static void
491 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
492 {
493 	struct pool_item_header *ph;
494 
495 	while ((ph = LIST_FIRST(pq)) != NULL) {
496 		LIST_REMOVE(ph, ph_pagelist);
497 		pool_allocator_free(pp, ph->ph_page);
498 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
499 			pool_put(pp->pr_phpool, ph);
500 	}
501 }
502 
503 /*
504  * Remove a page from the pool.
505  */
506 static inline void
507 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
508      struct pool_pagelist *pq)
509 {
510 
511 	KASSERT(mutex_owned(&pp->pr_lock));
512 
513 	/*
514 	 * If the page was idle, decrement the idle page count.
515 	 */
516 	if (ph->ph_nmissing == 0) {
517 		KASSERT(pp->pr_nidle != 0);
518 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
519 		    "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
520 		    pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
521 		pp->pr_nidle--;
522 	}
523 
524 	pp->pr_nitems -= pp->pr_itemsperpage;
525 
526 	/*
527 	 * Unlink the page from the pool and queue it for release.
528 	 */
529 	LIST_REMOVE(ph, ph_pagelist);
530 	if (pp->pr_roflags & PR_PHINPAGE) {
531 		if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
532 			panic("%s: [%s] ph %p poolid %u != %u",
533 			    __func__, pp->pr_wchan, ph, ph->ph_poolid,
534 			    pp->pr_poolid);
535 		}
536 	} else {
537 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
538 	}
539 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
540 
541 	pp->pr_npages--;
542 	pp->pr_npagefree++;
543 
544 	pool_update_curpage(pp);
545 }
546 
547 /*
548  * Initialize all the pools listed in the "pools" link set.
549  */
550 void
551 pool_subsystem_init(void)
552 {
553 	size_t size;
554 	int idx;
555 
556 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
557 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
558 	cv_init(&pool_busy, "poolbusy");
559 
560 	/*
561 	 * Initialize private page header pool and cache magazine pool if we
562 	 * haven't done so yet.
563 	 */
564 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
565 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
566 		int nelem;
567 		size_t sz;
568 
569 		nelem = PHPOOL_FREELIST_NELEM(idx);
570 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
571 		    "phpool-%d", nelem);
572 		sz = sizeof(struct pool_item_header);
573 		if (nelem) {
574 			sz = offsetof(struct pool_item_header,
575 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
576 		}
577 		pool_init(&phpool[idx], sz, 0, 0, 0,
578 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
579 	}
580 
581 	size = sizeof(pcg_t) +
582 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
583 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
584 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
585 
586 	size = sizeof(pcg_t) +
587 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
588 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
589 	    "pcglarge", &pool_allocator_meta, IPL_VM);
590 
591 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
592 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
593 
594 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
595 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
596 }
597 
598 static inline bool
599 pool_init_is_phinpage(const struct pool *pp)
600 {
601 	size_t pagesize;
602 
603 	if (pp->pr_roflags & PR_PHINPAGE) {
604 		return true;
605 	}
606 	if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
607 		return false;
608 	}
609 
610 	pagesize = pp->pr_alloc->pa_pagesz;
611 
612 	/*
613 	 * Threshold: the item size is below 1/16 of a page size, and below
614 	 * 8 times the page header size. The latter ensures we go off-page
615 	 * if the page header would make us waste a rather big item.
616 	 */
617 	if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
618 		return true;
619 	}
620 
621 	/* Put the header into the page if it doesn't waste any items. */
622 	if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
623 		return true;
624 	}
625 
626 	return false;
627 }
628 
629 static inline bool
630 pool_init_is_usebmap(const struct pool *pp)
631 {
632 	size_t bmapsize;
633 
634 	if (pp->pr_roflags & PR_NOTOUCH) {
635 		return true;
636 	}
637 
638 	/*
639 	 * If we're on-page, and the page header can already contain a bitmap
640 	 * big enough to cover all the items of the page, go with a bitmap.
641 	 */
642 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
643 		return false;
644 	}
645 	bmapsize = roundup(PHSIZE, pp->pr_align) -
646 	    offsetof(struct pool_item_header, ph_bitmap[0]);
647 	KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
648 	if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
649 		return true;
650 	}
651 
652 	return false;
653 }
654 
655 /*
656  * Initialize the given pool resource structure.
657  *
658  * We export this routine to allow other kernel parts to declare
659  * static pools that must be initialized before kmem(9) is available.
660  */
661 void
662 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
663     const char *wchan, struct pool_allocator *palloc, int ipl)
664 {
665 	struct pool *pp1;
666 	size_t prsize;
667 	int itemspace, slack;
668 
669 	/* XXX ioff will be removed. */
670 	KASSERT(ioff == 0);
671 
672 #ifdef DEBUG
673 	if (__predict_true(!cold))
674 		mutex_enter(&pool_head_lock);
675 	/*
676 	 * Check that the pool hasn't already been initialised and
677 	 * added to the list of all pools.
678 	 */
679 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
680 		if (pp == pp1)
681 			panic("%s: [%s] already initialised", __func__,
682 			    wchan);
683 	}
684 	if (__predict_true(!cold))
685 		mutex_exit(&pool_head_lock);
686 #endif
687 
688 	if (palloc == NULL)
689 		palloc = &pool_allocator_kmem;
690 
691 	if (!cold)
692 		mutex_enter(&pool_allocator_lock);
693 	if (palloc->pa_refcnt++ == 0) {
694 		if (palloc->pa_pagesz == 0)
695 			palloc->pa_pagesz = PAGE_SIZE;
696 
697 		TAILQ_INIT(&palloc->pa_list);
698 
699 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
700 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
701 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
702 	}
703 	if (!cold)
704 		mutex_exit(&pool_allocator_lock);
705 
706 	if (align == 0)
707 		align = ALIGN(1);
708 
709 	prsize = size;
710 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
711 		prsize = sizeof(struct pool_item);
712 
713 	prsize = roundup(prsize, align);
714 	KASSERTMSG((prsize <= palloc->pa_pagesz),
715 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
716 	    __func__, wchan, prsize, palloc->pa_pagesz);
717 
718 	/*
719 	 * Initialize the pool structure.
720 	 */
721 	LIST_INIT(&pp->pr_emptypages);
722 	LIST_INIT(&pp->pr_fullpages);
723 	LIST_INIT(&pp->pr_partpages);
724 	pp->pr_cache = NULL;
725 	pp->pr_curpage = NULL;
726 	pp->pr_npages = 0;
727 	pp->pr_minitems = 0;
728 	pp->pr_minpages = 0;
729 	pp->pr_maxpages = UINT_MAX;
730 	pp->pr_roflags = flags;
731 	pp->pr_flags = 0;
732 	pp->pr_size = prsize;
733 	pp->pr_reqsize = size;
734 	pp->pr_align = align;
735 	pp->pr_wchan = wchan;
736 	pp->pr_alloc = palloc;
737 	pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
738 	pp->pr_nitems = 0;
739 	pp->pr_nout = 0;
740 	pp->pr_hardlimit = UINT_MAX;
741 	pp->pr_hardlimit_warning = NULL;
742 	pp->pr_hardlimit_ratecap.tv_sec = 0;
743 	pp->pr_hardlimit_ratecap.tv_usec = 0;
744 	pp->pr_hardlimit_warning_last.tv_sec = 0;
745 	pp->pr_hardlimit_warning_last.tv_usec = 0;
746 	pp->pr_drain_hook = NULL;
747 	pp->pr_drain_hook_arg = NULL;
748 	pp->pr_freecheck = NULL;
749 	pool_redzone_init(pp, size);
750 	pool_quarantine_init(pp);
751 
752 	/*
753 	 * Decide whether to put the page header off-page to avoid wasting too
754 	 * large a part of the page or too big an item. Off-page page headers
755 	 * go on a hash table, so we can match a returned item with its header
756 	 * based on the page address.
757 	 */
758 	if (pool_init_is_phinpage(pp)) {
759 		/* Use the beginning of the page for the page header */
760 		itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
761 		pp->pr_itemoffset = roundup(PHSIZE, align);
762 		pp->pr_roflags |= PR_PHINPAGE;
763 	} else {
764 		/* The page header will be taken from our page header pool */
765 		itemspace = palloc->pa_pagesz;
766 		pp->pr_itemoffset = 0;
767 		SPLAY_INIT(&pp->pr_phtree);
768 	}
769 
770 	pp->pr_itemsperpage = itemspace / pp->pr_size;
771 	KASSERT(pp->pr_itemsperpage != 0);
772 
773 	/*
774 	 * Decide whether to use a bitmap or a linked list to manage freed
775 	 * items.
776 	 */
777 	if (pool_init_is_usebmap(pp)) {
778 		pp->pr_roflags |= PR_USEBMAP;
779 	}
780 
781 	/*
782 	 * If we're off-page and use a bitmap, choose the appropriate pool to
783 	 * allocate page headers, whose size varies depending on the bitmap. If
784 	 * we're just off-page, take the first pool, no extra size. If we're
785 	 * on-page, nothing to do.
786 	 */
787 	if (!(pp->pr_roflags & PR_PHINPAGE) && (pp->pr_roflags & PR_USEBMAP)) {
788 		int idx;
789 
790 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
791 		    idx++) {
792 			/* nothing */
793 		}
794 		if (idx >= PHPOOL_MAX) {
795 			/*
796 			 * if you see this panic, consider to tweak
797 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
798 			 */
799 			panic("%s: [%s] too large itemsperpage(%d) for "
800 			    "PR_USEBMAP", __func__,
801 			    pp->pr_wchan, pp->pr_itemsperpage);
802 		}
803 		pp->pr_phpool = &phpool[idx];
804 	} else if (!(pp->pr_roflags & PR_PHINPAGE)) {
805 		pp->pr_phpool = &phpool[0];
806 	} else {
807 		pp->pr_phpool = NULL;
808 	}
809 
810 	/*
811 	 * Use the slack between the chunks and the page header
812 	 * for "cache coloring".
813 	 */
814 	slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
815 	pp->pr_maxcolor = rounddown(slack, align);
816 	pp->pr_curcolor = 0;
817 
818 	pp->pr_nget = 0;
819 	pp->pr_nfail = 0;
820 	pp->pr_nput = 0;
821 	pp->pr_npagealloc = 0;
822 	pp->pr_npagefree = 0;
823 	pp->pr_hiwat = 0;
824 	pp->pr_nidle = 0;
825 	pp->pr_refcnt = 0;
826 
827 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
828 	cv_init(&pp->pr_cv, wchan);
829 	pp->pr_ipl = ipl;
830 
831 	/* Insert into the list of all pools. */
832 	if (!cold)
833 		mutex_enter(&pool_head_lock);
834 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
835 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
836 			break;
837 	}
838 	if (pp1 == NULL)
839 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
840 	else
841 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
842 	if (!cold)
843 		mutex_exit(&pool_head_lock);
844 
845 	/* Insert this into the list of pools using this allocator. */
846 	if (!cold)
847 		mutex_enter(&palloc->pa_lock);
848 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
849 	if (!cold)
850 		mutex_exit(&palloc->pa_lock);
851 }
852 
853 /*
854  * De-commision a pool resource.
855  */
856 void
857 pool_destroy(struct pool *pp)
858 {
859 	struct pool_pagelist pq;
860 	struct pool_item_header *ph;
861 
862 	pool_quarantine_flush(pp);
863 
864 	/* Remove from global pool list */
865 	mutex_enter(&pool_head_lock);
866 	while (pp->pr_refcnt != 0)
867 		cv_wait(&pool_busy, &pool_head_lock);
868 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
869 	if (drainpp == pp)
870 		drainpp = NULL;
871 	mutex_exit(&pool_head_lock);
872 
873 	/* Remove this pool from its allocator's list of pools. */
874 	mutex_enter(&pp->pr_alloc->pa_lock);
875 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
876 	mutex_exit(&pp->pr_alloc->pa_lock);
877 
878 	mutex_enter(&pool_allocator_lock);
879 	if (--pp->pr_alloc->pa_refcnt == 0)
880 		mutex_destroy(&pp->pr_alloc->pa_lock);
881 	mutex_exit(&pool_allocator_lock);
882 
883 	mutex_enter(&pp->pr_lock);
884 
885 	KASSERT(pp->pr_cache == NULL);
886 	KASSERTMSG((pp->pr_nout == 0),
887 	    "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
888 	    pp->pr_nout);
889 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
890 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
891 
892 	/* Remove all pages */
893 	LIST_INIT(&pq);
894 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
895 		pr_rmpage(pp, ph, &pq);
896 
897 	mutex_exit(&pp->pr_lock);
898 
899 	pr_pagelist_free(pp, &pq);
900 	cv_destroy(&pp->pr_cv);
901 	mutex_destroy(&pp->pr_lock);
902 }
903 
904 void
905 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
906 {
907 
908 	/* XXX no locking -- must be used just after pool_init() */
909 	KASSERTMSG((pp->pr_drain_hook == NULL),
910 	    "%s: [%s] already set", __func__, pp->pr_wchan);
911 	pp->pr_drain_hook = fn;
912 	pp->pr_drain_hook_arg = arg;
913 }
914 
915 static struct pool_item_header *
916 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
917 {
918 	struct pool_item_header *ph;
919 
920 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
921 		ph = storage;
922 	else
923 		ph = pool_get(pp->pr_phpool, flags);
924 
925 	return ph;
926 }
927 
928 /*
929  * Grab an item from the pool.
930  */
931 void *
932 pool_get(struct pool *pp, int flags)
933 {
934 	struct pool_item_header *ph;
935 	void *v;
936 
937 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
938 	KASSERTMSG((pp->pr_itemsperpage != 0),
939 	    "%s: [%s] pr_itemsperpage is zero, "
940 	    "pool not initialized?", __func__, pp->pr_wchan);
941 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
942 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
943 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
944 	    __func__, pp->pr_wchan);
945 	if (flags & PR_WAITOK) {
946 		ASSERT_SLEEPABLE();
947 	}
948 
949 	mutex_enter(&pp->pr_lock);
950  startover:
951 	/*
952 	 * Check to see if we've reached the hard limit.  If we have,
953 	 * and we can wait, then wait until an item has been returned to
954 	 * the pool.
955 	 */
956 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
957 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
958 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
959 		if (pp->pr_drain_hook != NULL) {
960 			/*
961 			 * Since the drain hook is going to free things
962 			 * back to the pool, unlock, call the hook, re-lock,
963 			 * and check the hardlimit condition again.
964 			 */
965 			mutex_exit(&pp->pr_lock);
966 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
967 			mutex_enter(&pp->pr_lock);
968 			if (pp->pr_nout < pp->pr_hardlimit)
969 				goto startover;
970 		}
971 
972 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
973 			/*
974 			 * XXX: A warning isn't logged in this case.  Should
975 			 * it be?
976 			 */
977 			pp->pr_flags |= PR_WANTED;
978 			do {
979 				cv_wait(&pp->pr_cv, &pp->pr_lock);
980 			} while (pp->pr_flags & PR_WANTED);
981 			goto startover;
982 		}
983 
984 		/*
985 		 * Log a message that the hard limit has been hit.
986 		 */
987 		if (pp->pr_hardlimit_warning != NULL &&
988 		    ratecheck(&pp->pr_hardlimit_warning_last,
989 			      &pp->pr_hardlimit_ratecap))
990 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
991 
992 		pp->pr_nfail++;
993 
994 		mutex_exit(&pp->pr_lock);
995 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
996 		return NULL;
997 	}
998 
999 	/*
1000 	 * The convention we use is that if `curpage' is not NULL, then
1001 	 * it points at a non-empty bucket. In particular, `curpage'
1002 	 * never points at a page header which has PR_PHINPAGE set and
1003 	 * has no items in its bucket.
1004 	 */
1005 	if ((ph = pp->pr_curpage) == NULL) {
1006 		int error;
1007 
1008 		KASSERTMSG((pp->pr_nitems == 0),
1009 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
1010 		    __func__, pp->pr_wchan, pp->pr_nitems);
1011 
1012 		/*
1013 		 * Call the back-end page allocator for more memory.
1014 		 * Release the pool lock, as the back-end page allocator
1015 		 * may block.
1016 		 */
1017 		error = pool_grow(pp, flags);
1018 		if (error != 0) {
1019 			/*
1020 			 * pool_grow aborts when another thread
1021 			 * is allocating a new page. Retry if it
1022 			 * waited for it.
1023 			 */
1024 			if (error == ERESTART)
1025 				goto startover;
1026 
1027 			/*
1028 			 * We were unable to allocate a page or item
1029 			 * header, but we released the lock during
1030 			 * allocation, so perhaps items were freed
1031 			 * back to the pool.  Check for this case.
1032 			 */
1033 			if (pp->pr_curpage != NULL)
1034 				goto startover;
1035 
1036 			pp->pr_nfail++;
1037 			mutex_exit(&pp->pr_lock);
1038 			KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
1039 			return NULL;
1040 		}
1041 
1042 		/* Start the allocation process over. */
1043 		goto startover;
1044 	}
1045 	if (pp->pr_roflags & PR_USEBMAP) {
1046 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
1047 		    "%s: [%s] pool page empty", __func__, pp->pr_wchan);
1048 		v = pr_item_bitmap_get(pp, ph);
1049 	} else {
1050 		v = pr_item_linkedlist_get(pp, ph);
1051 	}
1052 	pp->pr_nitems--;
1053 	pp->pr_nout++;
1054 	if (ph->ph_nmissing == 0) {
1055 		KASSERT(pp->pr_nidle > 0);
1056 		pp->pr_nidle--;
1057 
1058 		/*
1059 		 * This page was previously empty.  Move it to the list of
1060 		 * partially-full pages.  This page is already curpage.
1061 		 */
1062 		LIST_REMOVE(ph, ph_pagelist);
1063 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1064 	}
1065 	ph->ph_nmissing++;
1066 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
1067 		KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
1068 			LIST_EMPTY(&ph->ph_itemlist)),
1069 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
1070 			pp->pr_wchan, ph->ph_nmissing);
1071 		/*
1072 		 * This page is now full.  Move it to the full list
1073 		 * and select a new current page.
1074 		 */
1075 		LIST_REMOVE(ph, ph_pagelist);
1076 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1077 		pool_update_curpage(pp);
1078 	}
1079 
1080 	pp->pr_nget++;
1081 
1082 	/*
1083 	 * If we have a low water mark and we are now below that low
1084 	 * water mark, add more items to the pool.
1085 	 */
1086 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1087 		/*
1088 		 * XXX: Should we log a warning?  Should we set up a timeout
1089 		 * to try again in a second or so?  The latter could break
1090 		 * a caller's assumptions about interrupt protection, etc.
1091 		 */
1092 	}
1093 
1094 	mutex_exit(&pp->pr_lock);
1095 	KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
1096 	FREECHECK_OUT(&pp->pr_freecheck, v);
1097 	pool_redzone_fill(pp, v);
1098 	if (flags & PR_ZERO)
1099 		memset(v, 0, pp->pr_reqsize);
1100 	else
1101 		pool_kleak_fill(pp, v);
1102 	return v;
1103 }
1104 
1105 /*
1106  * Internal version of pool_put().  Pool is already locked/entered.
1107  */
1108 static void
1109 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1110 {
1111 	struct pool_item_header *ph;
1112 
1113 	KASSERT(mutex_owned(&pp->pr_lock));
1114 	pool_redzone_check(pp, v);
1115 	FREECHECK_IN(&pp->pr_freecheck, v);
1116 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1117 
1118 	KASSERTMSG((pp->pr_nout > 0),
1119 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
1120 
1121 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1122 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
1123 	}
1124 
1125 	/*
1126 	 * Return to item list.
1127 	 */
1128 	if (pp->pr_roflags & PR_USEBMAP) {
1129 		pr_item_bitmap_put(pp, ph, v);
1130 	} else {
1131 		pr_item_linkedlist_put(pp, ph, v);
1132 	}
1133 	KDASSERT(ph->ph_nmissing != 0);
1134 	ph->ph_nmissing--;
1135 	pp->pr_nput++;
1136 	pp->pr_nitems++;
1137 	pp->pr_nout--;
1138 
1139 	/* Cancel "pool empty" condition if it exists */
1140 	if (pp->pr_curpage == NULL)
1141 		pp->pr_curpage = ph;
1142 
1143 	if (pp->pr_flags & PR_WANTED) {
1144 		pp->pr_flags &= ~PR_WANTED;
1145 		cv_broadcast(&pp->pr_cv);
1146 	}
1147 
1148 	/*
1149 	 * If this page is now empty, do one of two things:
1150 	 *
1151 	 *	(1) If we have more pages than the page high water mark,
1152 	 *	    free the page back to the system.  ONLY CONSIDER
1153 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1154 	 *	    CLAIM.
1155 	 *
1156 	 *	(2) Otherwise, move the page to the empty page list.
1157 	 *
1158 	 * Either way, select a new current page (so we use a partially-full
1159 	 * page if one is available).
1160 	 */
1161 	if (ph->ph_nmissing == 0) {
1162 		pp->pr_nidle++;
1163 		if (pp->pr_npages > pp->pr_minpages &&
1164 		    pp->pr_npages > pp->pr_maxpages) {
1165 			pr_rmpage(pp, ph, pq);
1166 		} else {
1167 			LIST_REMOVE(ph, ph_pagelist);
1168 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1169 
1170 			/*
1171 			 * Update the timestamp on the page.  A page must
1172 			 * be idle for some period of time before it can
1173 			 * be reclaimed by the pagedaemon.  This minimizes
1174 			 * ping-pong'ing for memory.
1175 			 *
1176 			 * note for 64-bit time_t: truncating to 32-bit is not
1177 			 * a problem for our usage.
1178 			 */
1179 			ph->ph_time = time_uptime;
1180 		}
1181 		pool_update_curpage(pp);
1182 	}
1183 
1184 	/*
1185 	 * If the page was previously completely full, move it to the
1186 	 * partially-full list and make it the current page.  The next
1187 	 * allocation will get the item from this page, instead of
1188 	 * further fragmenting the pool.
1189 	 */
1190 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1191 		LIST_REMOVE(ph, ph_pagelist);
1192 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1193 		pp->pr_curpage = ph;
1194 	}
1195 }
1196 
1197 void
1198 pool_put(struct pool *pp, void *v)
1199 {
1200 	struct pool_pagelist pq;
1201 
1202 	LIST_INIT(&pq);
1203 
1204 	mutex_enter(&pp->pr_lock);
1205 	if (!pool_put_quarantine(pp, v, &pq)) {
1206 		pool_do_put(pp, v, &pq);
1207 	}
1208 	mutex_exit(&pp->pr_lock);
1209 
1210 	pr_pagelist_free(pp, &pq);
1211 }
1212 
1213 /*
1214  * pool_grow: grow a pool by a page.
1215  *
1216  * => called with pool locked.
1217  * => unlock and relock the pool.
1218  * => return with pool locked.
1219  */
1220 
1221 static int
1222 pool_grow(struct pool *pp, int flags)
1223 {
1224 	struct pool_item_header *ph;
1225 	char *storage;
1226 
1227 	/*
1228 	 * If there's a pool_grow in progress, wait for it to complete
1229 	 * and try again from the top.
1230 	 */
1231 	if (pp->pr_flags & PR_GROWING) {
1232 		if (flags & PR_WAITOK) {
1233 			do {
1234 				cv_wait(&pp->pr_cv, &pp->pr_lock);
1235 			} while (pp->pr_flags & PR_GROWING);
1236 			return ERESTART;
1237 		} else {
1238 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
1239 				/*
1240 				 * This needs an unlock/relock dance so
1241 				 * that the other caller has a chance to
1242 				 * run and actually do the thing.  Note
1243 				 * that this is effectively a busy-wait.
1244 				 */
1245 				mutex_exit(&pp->pr_lock);
1246 				mutex_enter(&pp->pr_lock);
1247 				return ERESTART;
1248 			}
1249 			return EWOULDBLOCK;
1250 		}
1251 	}
1252 	pp->pr_flags |= PR_GROWING;
1253 	if (flags & PR_WAITOK)
1254 		mutex_exit(&pp->pr_lock);
1255 	else
1256 		pp->pr_flags |= PR_GROWINGNOWAIT;
1257 
1258 	storage = pool_allocator_alloc(pp, flags);
1259 	if (__predict_false(storage == NULL))
1260 		goto out;
1261 
1262 	ph = pool_alloc_item_header(pp, storage, flags);
1263 	if (__predict_false(ph == NULL)) {
1264 		pool_allocator_free(pp, storage);
1265 		goto out;
1266 	}
1267 
1268 	if (flags & PR_WAITOK)
1269 		mutex_enter(&pp->pr_lock);
1270 	pool_prime_page(pp, storage, ph);
1271 	pp->pr_npagealloc++;
1272 	KASSERT(pp->pr_flags & PR_GROWING);
1273 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1274 	/*
1275 	 * If anyone was waiting for pool_grow, notify them that we
1276 	 * may have just done it.
1277 	 */
1278 	cv_broadcast(&pp->pr_cv);
1279 	return 0;
1280 out:
1281 	if (flags & PR_WAITOK)
1282 		mutex_enter(&pp->pr_lock);
1283 	KASSERT(pp->pr_flags & PR_GROWING);
1284 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1285 	return ENOMEM;
1286 }
1287 
1288 /*
1289  * Add N items to the pool.
1290  */
1291 int
1292 pool_prime(struct pool *pp, int n)
1293 {
1294 	int newpages;
1295 	int error = 0;
1296 
1297 	mutex_enter(&pp->pr_lock);
1298 
1299 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1300 
1301 	while (newpages > 0) {
1302 		error = pool_grow(pp, PR_NOWAIT);
1303 		if (error) {
1304 			if (error == ERESTART)
1305 				continue;
1306 			break;
1307 		}
1308 		pp->pr_minpages++;
1309 		newpages--;
1310 	}
1311 
1312 	if (pp->pr_minpages >= pp->pr_maxpages)
1313 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1314 
1315 	mutex_exit(&pp->pr_lock);
1316 	return error;
1317 }
1318 
1319 /*
1320  * Add a page worth of items to the pool.
1321  *
1322  * Note, we must be called with the pool descriptor LOCKED.
1323  */
1324 static void
1325 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1326 {
1327 	const unsigned int align = pp->pr_align;
1328 	struct pool_item *pi;
1329 	void *cp = storage;
1330 	int n;
1331 
1332 	KASSERT(mutex_owned(&pp->pr_lock));
1333 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1334 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1335 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1336 
1337 	/*
1338 	 * Insert page header.
1339 	 */
1340 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1341 	LIST_INIT(&ph->ph_itemlist);
1342 	ph->ph_page = storage;
1343 	ph->ph_nmissing = 0;
1344 	ph->ph_time = time_uptime;
1345 	if (pp->pr_roflags & PR_PHINPAGE)
1346 		ph->ph_poolid = pp->pr_poolid;
1347 	else
1348 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1349 
1350 	pp->pr_nidle++;
1351 
1352 	/*
1353 	 * The item space starts after the on-page header, if any.
1354 	 */
1355 	ph->ph_off = pp->pr_itemoffset;
1356 
1357 	/*
1358 	 * Color this page.
1359 	 */
1360 	ph->ph_off += pp->pr_curcolor;
1361 	cp = (char *)cp + ph->ph_off;
1362 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1363 		pp->pr_curcolor = 0;
1364 
1365 	KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1366 
1367 	/*
1368 	 * Insert remaining chunks on the bucket list.
1369 	 */
1370 	n = pp->pr_itemsperpage;
1371 	pp->pr_nitems += n;
1372 
1373 	if (pp->pr_roflags & PR_USEBMAP) {
1374 		pr_item_bitmap_init(pp, ph);
1375 	} else {
1376 		while (n--) {
1377 			pi = (struct pool_item *)cp;
1378 
1379 			KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
1380 
1381 			/* Insert on page list */
1382 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1383 #ifdef POOL_CHECK_MAGIC
1384 			pi->pi_magic = PI_MAGIC;
1385 #endif
1386 			cp = (char *)cp + pp->pr_size;
1387 
1388 			KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1389 		}
1390 	}
1391 
1392 	/*
1393 	 * If the pool was depleted, point at the new page.
1394 	 */
1395 	if (pp->pr_curpage == NULL)
1396 		pp->pr_curpage = ph;
1397 
1398 	if (++pp->pr_npages > pp->pr_hiwat)
1399 		pp->pr_hiwat = pp->pr_npages;
1400 }
1401 
1402 /*
1403  * Used by pool_get() when nitems drops below the low water mark.  This
1404  * is used to catch up pr_nitems with the low water mark.
1405  *
1406  * Note 1, we never wait for memory here, we let the caller decide what to do.
1407  *
1408  * Note 2, we must be called with the pool already locked, and we return
1409  * with it locked.
1410  */
1411 static int
1412 pool_catchup(struct pool *pp)
1413 {
1414 	int error = 0;
1415 
1416 	while (POOL_NEEDS_CATCHUP(pp)) {
1417 		error = pool_grow(pp, PR_NOWAIT);
1418 		if (error) {
1419 			if (error == ERESTART)
1420 				continue;
1421 			break;
1422 		}
1423 	}
1424 	return error;
1425 }
1426 
1427 static void
1428 pool_update_curpage(struct pool *pp)
1429 {
1430 
1431 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1432 	if (pp->pr_curpage == NULL) {
1433 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1434 	}
1435 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1436 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1437 }
1438 
1439 void
1440 pool_setlowat(struct pool *pp, int n)
1441 {
1442 
1443 	mutex_enter(&pp->pr_lock);
1444 
1445 	pp->pr_minitems = n;
1446 	pp->pr_minpages = (n == 0)
1447 		? 0
1448 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1449 
1450 	/* Make sure we're caught up with the newly-set low water mark. */
1451 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1452 		/*
1453 		 * XXX: Should we log a warning?  Should we set up a timeout
1454 		 * to try again in a second or so?  The latter could break
1455 		 * a caller's assumptions about interrupt protection, etc.
1456 		 */
1457 	}
1458 
1459 	mutex_exit(&pp->pr_lock);
1460 }
1461 
1462 void
1463 pool_sethiwat(struct pool *pp, int n)
1464 {
1465 
1466 	mutex_enter(&pp->pr_lock);
1467 
1468 	pp->pr_maxpages = (n == 0)
1469 		? 0
1470 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1471 
1472 	mutex_exit(&pp->pr_lock);
1473 }
1474 
1475 void
1476 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1477 {
1478 
1479 	mutex_enter(&pp->pr_lock);
1480 
1481 	pp->pr_hardlimit = n;
1482 	pp->pr_hardlimit_warning = warnmess;
1483 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1484 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1485 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1486 
1487 	/*
1488 	 * In-line version of pool_sethiwat(), because we don't want to
1489 	 * release the lock.
1490 	 */
1491 	pp->pr_maxpages = (n == 0)
1492 		? 0
1493 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1494 
1495 	mutex_exit(&pp->pr_lock);
1496 }
1497 
1498 /*
1499  * Release all complete pages that have not been used recently.
1500  *
1501  * Must not be called from interrupt context.
1502  */
1503 int
1504 pool_reclaim(struct pool *pp)
1505 {
1506 	struct pool_item_header *ph, *phnext;
1507 	struct pool_pagelist pq;
1508 	uint32_t curtime;
1509 	bool klock;
1510 	int rv;
1511 
1512 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1513 
1514 	if (pp->pr_drain_hook != NULL) {
1515 		/*
1516 		 * The drain hook must be called with the pool unlocked.
1517 		 */
1518 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1519 	}
1520 
1521 	/*
1522 	 * XXXSMP Because we do not want to cause non-MPSAFE code
1523 	 * to block.
1524 	 */
1525 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1526 	    pp->pr_ipl == IPL_SOFTSERIAL) {
1527 		KERNEL_LOCK(1, NULL);
1528 		klock = true;
1529 	} else
1530 		klock = false;
1531 
1532 	/* Reclaim items from the pool's cache (if any). */
1533 	if (pp->pr_cache != NULL)
1534 		pool_cache_invalidate(pp->pr_cache);
1535 
1536 	if (mutex_tryenter(&pp->pr_lock) == 0) {
1537 		if (klock) {
1538 			KERNEL_UNLOCK_ONE(NULL);
1539 		}
1540 		return 0;
1541 	}
1542 
1543 	LIST_INIT(&pq);
1544 
1545 	curtime = time_uptime;
1546 
1547 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1548 		phnext = LIST_NEXT(ph, ph_pagelist);
1549 
1550 		/* Check our minimum page claim */
1551 		if (pp->pr_npages <= pp->pr_minpages)
1552 			break;
1553 
1554 		KASSERT(ph->ph_nmissing == 0);
1555 		if (curtime - ph->ph_time < pool_inactive_time)
1556 			continue;
1557 
1558 		/*
1559 		 * If freeing this page would put us below
1560 		 * the low water mark, stop now.
1561 		 */
1562 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
1563 		    pp->pr_minitems)
1564 			break;
1565 
1566 		pr_rmpage(pp, ph, &pq);
1567 	}
1568 
1569 	mutex_exit(&pp->pr_lock);
1570 
1571 	if (LIST_EMPTY(&pq))
1572 		rv = 0;
1573 	else {
1574 		pr_pagelist_free(pp, &pq);
1575 		rv = 1;
1576 	}
1577 
1578 	if (klock) {
1579 		KERNEL_UNLOCK_ONE(NULL);
1580 	}
1581 
1582 	return rv;
1583 }
1584 
1585 /*
1586  * Drain pools, one at a time. The drained pool is returned within ppp.
1587  *
1588  * Note, must never be called from interrupt context.
1589  */
1590 bool
1591 pool_drain(struct pool **ppp)
1592 {
1593 	bool reclaimed;
1594 	struct pool *pp;
1595 
1596 	KASSERT(!TAILQ_EMPTY(&pool_head));
1597 
1598 	pp = NULL;
1599 
1600 	/* Find next pool to drain, and add a reference. */
1601 	mutex_enter(&pool_head_lock);
1602 	do {
1603 		if (drainpp == NULL) {
1604 			drainpp = TAILQ_FIRST(&pool_head);
1605 		}
1606 		if (drainpp != NULL) {
1607 			pp = drainpp;
1608 			drainpp = TAILQ_NEXT(pp, pr_poollist);
1609 		}
1610 		/*
1611 		 * Skip completely idle pools.  We depend on at least
1612 		 * one pool in the system being active.
1613 		 */
1614 	} while (pp == NULL || pp->pr_npages == 0);
1615 	pp->pr_refcnt++;
1616 	mutex_exit(&pool_head_lock);
1617 
1618 	/* Drain the cache (if any) and pool.. */
1619 	reclaimed = pool_reclaim(pp);
1620 
1621 	/* Finally, unlock the pool. */
1622 	mutex_enter(&pool_head_lock);
1623 	pp->pr_refcnt--;
1624 	cv_broadcast(&pool_busy);
1625 	mutex_exit(&pool_head_lock);
1626 
1627 	if (ppp != NULL)
1628 		*ppp = pp;
1629 
1630 	return reclaimed;
1631 }
1632 
1633 /*
1634  * Calculate the total number of pages consumed by pools.
1635  */
1636 int
1637 pool_totalpages(void)
1638 {
1639 
1640 	mutex_enter(&pool_head_lock);
1641 	int pages = pool_totalpages_locked();
1642 	mutex_exit(&pool_head_lock);
1643 
1644 	return pages;
1645 }
1646 
1647 int
1648 pool_totalpages_locked(void)
1649 {
1650 	struct pool *pp;
1651 	uint64_t total = 0;
1652 
1653 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1654 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
1655 
1656 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1657 			bytes -= (pp->pr_nout * pp->pr_size);
1658 		total += bytes;
1659 	}
1660 
1661 	return atop(total);
1662 }
1663 
1664 /*
1665  * Diagnostic helpers.
1666  */
1667 
1668 void
1669 pool_printall(const char *modif, void (*pr)(const char *, ...))
1670 {
1671 	struct pool *pp;
1672 
1673 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1674 		pool_printit(pp, modif, pr);
1675 	}
1676 }
1677 
1678 void
1679 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1680 {
1681 
1682 	if (pp == NULL) {
1683 		(*pr)("Must specify a pool to print.\n");
1684 		return;
1685 	}
1686 
1687 	pool_print1(pp, modif, pr);
1688 }
1689 
1690 static void
1691 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1692     void (*pr)(const char *, ...))
1693 {
1694 	struct pool_item_header *ph;
1695 
1696 	LIST_FOREACH(ph, pl, ph_pagelist) {
1697 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1698 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
1699 #ifdef POOL_CHECK_MAGIC
1700 		struct pool_item *pi;
1701 		if (!(pp->pr_roflags & PR_USEBMAP)) {
1702 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1703 				if (pi->pi_magic != PI_MAGIC) {
1704 					(*pr)("\t\t\titem %p, magic 0x%x\n",
1705 					    pi, pi->pi_magic);
1706 				}
1707 			}
1708 		}
1709 #endif
1710 	}
1711 }
1712 
1713 static void
1714 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1715 {
1716 	struct pool_item_header *ph;
1717 	pool_cache_t pc;
1718 	pcg_t *pcg;
1719 	pool_cache_cpu_t *cc;
1720 	uint64_t cpuhit, cpumiss;
1721 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1722 	char c;
1723 
1724 	while ((c = *modif++) != '\0') {
1725 		if (c == 'l')
1726 			print_log = 1;
1727 		if (c == 'p')
1728 			print_pagelist = 1;
1729 		if (c == 'c')
1730 			print_cache = 1;
1731 	}
1732 
1733 	if ((pc = pp->pr_cache) != NULL) {
1734 		(*pr)("POOL CACHE");
1735 	} else {
1736 		(*pr)("POOL");
1737 	}
1738 
1739 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1740 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1741 	    pp->pr_roflags);
1742 	(*pr)("\talloc %p\n", pp->pr_alloc);
1743 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1744 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1745 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1746 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1747 
1748 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1749 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1750 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1751 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1752 
1753 	if (print_pagelist == 0)
1754 		goto skip_pagelist;
1755 
1756 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1757 		(*pr)("\n\tempty page list:\n");
1758 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1759 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1760 		(*pr)("\n\tfull page list:\n");
1761 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1762 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1763 		(*pr)("\n\tpartial-page list:\n");
1764 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
1765 
1766 	if (pp->pr_curpage == NULL)
1767 		(*pr)("\tno current page\n");
1768 	else
1769 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1770 
1771  skip_pagelist:
1772 	if (print_log == 0)
1773 		goto skip_log;
1774 
1775 	(*pr)("\n");
1776 
1777  skip_log:
1778 
1779 #define PR_GROUPLIST(pcg)						\
1780 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
1781 	for (i = 0; i < pcg->pcg_size; i++) {				\
1782 		if (pcg->pcg_objects[i].pcgo_pa !=			\
1783 		    POOL_PADDR_INVALID) {				\
1784 			(*pr)("\t\t\t%p, 0x%llx\n",			\
1785 			    pcg->pcg_objects[i].pcgo_va,		\
1786 			    (unsigned long long)			\
1787 			    pcg->pcg_objects[i].pcgo_pa);		\
1788 		} else {						\
1789 			(*pr)("\t\t\t%p\n",				\
1790 			    pcg->pcg_objects[i].pcgo_va);		\
1791 		}							\
1792 	}
1793 
1794 	if (pc != NULL) {
1795 		cpuhit = 0;
1796 		cpumiss = 0;
1797 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1798 			if ((cc = pc->pc_cpus[i]) == NULL)
1799 				continue;
1800 			cpuhit += cc->cc_hits;
1801 			cpumiss += cc->cc_misses;
1802 		}
1803 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1804 		(*pr)("\tcache layer hits %llu misses %llu\n",
1805 		    pc->pc_hits, pc->pc_misses);
1806 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1807 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
1808 		    pc->pc_contended);
1809 		(*pr)("\tcache layer empty groups %u full groups %u\n",
1810 		    pc->pc_nempty, pc->pc_nfull);
1811 		if (print_cache) {
1812 			(*pr)("\tfull cache groups:\n");
1813 			for (pcg = pc->pc_fullgroups; pcg != NULL;
1814 			    pcg = pcg->pcg_next) {
1815 				PR_GROUPLIST(pcg);
1816 			}
1817 			(*pr)("\tempty cache groups:\n");
1818 			for (pcg = pc->pc_emptygroups; pcg != NULL;
1819 			    pcg = pcg->pcg_next) {
1820 				PR_GROUPLIST(pcg);
1821 			}
1822 		}
1823 	}
1824 #undef PR_GROUPLIST
1825 }
1826 
1827 static int
1828 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1829 {
1830 	struct pool_item *pi;
1831 	void *page;
1832 	int n;
1833 
1834 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1835 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1836 		if (page != ph->ph_page &&
1837 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1838 			if (label != NULL)
1839 				printf("%s: ", label);
1840 			printf("pool(%p:%s): page inconsistency: page %p;"
1841 			       " at page head addr %p (p %p)\n", pp,
1842 				pp->pr_wchan, ph->ph_page,
1843 				ph, page);
1844 			return 1;
1845 		}
1846 	}
1847 
1848 	if ((pp->pr_roflags & PR_USEBMAP) != 0)
1849 		return 0;
1850 
1851 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1852 	     pi != NULL;
1853 	     pi = LIST_NEXT(pi,pi_list), n++) {
1854 
1855 #ifdef POOL_CHECK_MAGIC
1856 		if (pi->pi_magic != PI_MAGIC) {
1857 			if (label != NULL)
1858 				printf("%s: ", label);
1859 			printf("pool(%s): free list modified: magic=%x;"
1860 			       " page %p; item ordinal %d; addr %p\n",
1861 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
1862 				n, pi);
1863 			panic("pool");
1864 		}
1865 #endif
1866 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1867 			continue;
1868 		}
1869 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1870 		if (page == ph->ph_page)
1871 			continue;
1872 
1873 		if (label != NULL)
1874 			printf("%s: ", label);
1875 		printf("pool(%p:%s): page inconsistency: page %p;"
1876 		       " item ordinal %d; addr %p (p %p)\n", pp,
1877 			pp->pr_wchan, ph->ph_page,
1878 			n, pi, page);
1879 		return 1;
1880 	}
1881 	return 0;
1882 }
1883 
1884 
1885 int
1886 pool_chk(struct pool *pp, const char *label)
1887 {
1888 	struct pool_item_header *ph;
1889 	int r = 0;
1890 
1891 	mutex_enter(&pp->pr_lock);
1892 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1893 		r = pool_chk_page(pp, label, ph);
1894 		if (r) {
1895 			goto out;
1896 		}
1897 	}
1898 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1899 		r = pool_chk_page(pp, label, ph);
1900 		if (r) {
1901 			goto out;
1902 		}
1903 	}
1904 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1905 		r = pool_chk_page(pp, label, ph);
1906 		if (r) {
1907 			goto out;
1908 		}
1909 	}
1910 
1911 out:
1912 	mutex_exit(&pp->pr_lock);
1913 	return r;
1914 }
1915 
1916 /*
1917  * pool_cache_init:
1918  *
1919  *	Initialize a pool cache.
1920  */
1921 pool_cache_t
1922 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1923     const char *wchan, struct pool_allocator *palloc, int ipl,
1924     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
1925 {
1926 	pool_cache_t pc;
1927 
1928 	pc = pool_get(&cache_pool, PR_WAITOK);
1929 	if (pc == NULL)
1930 		return NULL;
1931 
1932 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
1933 	   palloc, ipl, ctor, dtor, arg);
1934 
1935 	return pc;
1936 }
1937 
1938 /*
1939  * pool_cache_bootstrap:
1940  *
1941  *	Kernel-private version of pool_cache_init().  The caller
1942  *	provides initial storage.
1943  */
1944 void
1945 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
1946     u_int align_offset, u_int flags, const char *wchan,
1947     struct pool_allocator *palloc, int ipl,
1948     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
1949     void *arg)
1950 {
1951 	CPU_INFO_ITERATOR cii;
1952 	pool_cache_t pc1;
1953 	struct cpu_info *ci;
1954 	struct pool *pp;
1955 
1956 	pp = &pc->pc_pool;
1957 	if (palloc == NULL && ipl == IPL_NONE) {
1958 		if (size > PAGE_SIZE) {
1959 			int bigidx = pool_bigidx(size);
1960 
1961 			palloc = &pool_allocator_big[bigidx];
1962 			flags |= PR_NOALIGN;
1963 		} else
1964 			palloc = &pool_allocator_nointr;
1965 	}
1966 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
1967 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
1968 
1969 	if (ctor == NULL) {
1970 		ctor = (int (*)(void *, void *, int))nullop;
1971 	}
1972 	if (dtor == NULL) {
1973 		dtor = (void (*)(void *, void *))nullop;
1974 	}
1975 
1976 	pc->pc_emptygroups = NULL;
1977 	pc->pc_fullgroups = NULL;
1978 	pc->pc_partgroups = NULL;
1979 	pc->pc_ctor = ctor;
1980 	pc->pc_dtor = dtor;
1981 	pc->pc_arg  = arg;
1982 	pc->pc_hits  = 0;
1983 	pc->pc_misses = 0;
1984 	pc->pc_nempty = 0;
1985 	pc->pc_npart = 0;
1986 	pc->pc_nfull = 0;
1987 	pc->pc_contended = 0;
1988 	pc->pc_refcnt = 0;
1989 	pc->pc_freecheck = NULL;
1990 
1991 	if ((flags & PR_LARGECACHE) != 0) {
1992 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
1993 		pc->pc_pcgpool = &pcg_large_pool;
1994 	} else {
1995 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
1996 		pc->pc_pcgpool = &pcg_normal_pool;
1997 	}
1998 
1999 	/* Allocate per-CPU caches. */
2000 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2001 	pc->pc_ncpu = 0;
2002 	if (ncpu < 2) {
2003 		/* XXX For sparc: boot CPU is not attached yet. */
2004 		pool_cache_cpu_init1(curcpu(), pc);
2005 	} else {
2006 		for (CPU_INFO_FOREACH(cii, ci)) {
2007 			pool_cache_cpu_init1(ci, pc);
2008 		}
2009 	}
2010 
2011 	/* Add to list of all pools. */
2012 	if (__predict_true(!cold))
2013 		mutex_enter(&pool_head_lock);
2014 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2015 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2016 			break;
2017 	}
2018 	if (pc1 == NULL)
2019 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2020 	else
2021 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2022 	if (__predict_true(!cold))
2023 		mutex_exit(&pool_head_lock);
2024 
2025 	membar_sync();
2026 	pp->pr_cache = pc;
2027 }
2028 
2029 /*
2030  * pool_cache_destroy:
2031  *
2032  *	Destroy a pool cache.
2033  */
2034 void
2035 pool_cache_destroy(pool_cache_t pc)
2036 {
2037 
2038 	pool_cache_bootstrap_destroy(pc);
2039 	pool_put(&cache_pool, pc);
2040 }
2041 
2042 /*
2043  * pool_cache_bootstrap_destroy:
2044  *
2045  *	Destroy a pool cache.
2046  */
2047 void
2048 pool_cache_bootstrap_destroy(pool_cache_t pc)
2049 {
2050 	struct pool *pp = &pc->pc_pool;
2051 	u_int i;
2052 
2053 	/* Remove it from the global list. */
2054 	mutex_enter(&pool_head_lock);
2055 	while (pc->pc_refcnt != 0)
2056 		cv_wait(&pool_busy, &pool_head_lock);
2057 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2058 	mutex_exit(&pool_head_lock);
2059 
2060 	/* First, invalidate the entire cache. */
2061 	pool_cache_invalidate(pc);
2062 
2063 	/* Disassociate it from the pool. */
2064 	mutex_enter(&pp->pr_lock);
2065 	pp->pr_cache = NULL;
2066 	mutex_exit(&pp->pr_lock);
2067 
2068 	/* Destroy per-CPU data */
2069 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2070 		pool_cache_invalidate_cpu(pc, i);
2071 
2072 	/* Finally, destroy it. */
2073 	mutex_destroy(&pc->pc_lock);
2074 	pool_destroy(pp);
2075 }
2076 
2077 /*
2078  * pool_cache_cpu_init1:
2079  *
2080  *	Called for each pool_cache whenever a new CPU is attached.
2081  */
2082 static void
2083 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2084 {
2085 	pool_cache_cpu_t *cc;
2086 	int index;
2087 
2088 	index = ci->ci_index;
2089 
2090 	KASSERT(index < __arraycount(pc->pc_cpus));
2091 
2092 	if ((cc = pc->pc_cpus[index]) != NULL) {
2093 		KASSERT(cc->cc_cpuindex == index);
2094 		return;
2095 	}
2096 
2097 	/*
2098 	 * The first CPU is 'free'.  This needs to be the case for
2099 	 * bootstrap - we may not be able to allocate yet.
2100 	 */
2101 	if (pc->pc_ncpu == 0) {
2102 		cc = &pc->pc_cpu0;
2103 		pc->pc_ncpu = 1;
2104 	} else {
2105 		mutex_enter(&pc->pc_lock);
2106 		pc->pc_ncpu++;
2107 		mutex_exit(&pc->pc_lock);
2108 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2109 	}
2110 
2111 	cc->cc_ipl = pc->pc_pool.pr_ipl;
2112 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2113 	cc->cc_cache = pc;
2114 	cc->cc_cpuindex = index;
2115 	cc->cc_hits = 0;
2116 	cc->cc_misses = 0;
2117 	cc->cc_current = __UNCONST(&pcg_dummy);
2118 	cc->cc_previous = __UNCONST(&pcg_dummy);
2119 
2120 	pc->pc_cpus[index] = cc;
2121 }
2122 
2123 /*
2124  * pool_cache_cpu_init:
2125  *
2126  *	Called whenever a new CPU is attached.
2127  */
2128 void
2129 pool_cache_cpu_init(struct cpu_info *ci)
2130 {
2131 	pool_cache_t pc;
2132 
2133 	mutex_enter(&pool_head_lock);
2134 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2135 		pc->pc_refcnt++;
2136 		mutex_exit(&pool_head_lock);
2137 
2138 		pool_cache_cpu_init1(ci, pc);
2139 
2140 		mutex_enter(&pool_head_lock);
2141 		pc->pc_refcnt--;
2142 		cv_broadcast(&pool_busy);
2143 	}
2144 	mutex_exit(&pool_head_lock);
2145 }
2146 
2147 /*
2148  * pool_cache_reclaim:
2149  *
2150  *	Reclaim memory from a pool cache.
2151  */
2152 bool
2153 pool_cache_reclaim(pool_cache_t pc)
2154 {
2155 
2156 	return pool_reclaim(&pc->pc_pool);
2157 }
2158 
2159 static void
2160 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2161 {
2162 	(*pc->pc_dtor)(pc->pc_arg, object);
2163 	pool_put(&pc->pc_pool, object);
2164 }
2165 
2166 /*
2167  * pool_cache_destruct_object:
2168  *
2169  *	Force destruction of an object and its release back into
2170  *	the pool.
2171  */
2172 void
2173 pool_cache_destruct_object(pool_cache_t pc, void *object)
2174 {
2175 
2176 	FREECHECK_IN(&pc->pc_freecheck, object);
2177 
2178 	pool_cache_destruct_object1(pc, object);
2179 }
2180 
2181 /*
2182  * pool_cache_invalidate_groups:
2183  *
2184  *	Invalidate a chain of groups and destruct all objects.
2185  */
2186 static void
2187 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2188 {
2189 	void *object;
2190 	pcg_t *next;
2191 	int i;
2192 
2193 	for (; pcg != NULL; pcg = next) {
2194 		next = pcg->pcg_next;
2195 
2196 		for (i = 0; i < pcg->pcg_avail; i++) {
2197 			object = pcg->pcg_objects[i].pcgo_va;
2198 			pool_cache_destruct_object1(pc, object);
2199 		}
2200 
2201 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2202 			pool_put(&pcg_large_pool, pcg);
2203 		} else {
2204 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2205 			pool_put(&pcg_normal_pool, pcg);
2206 		}
2207 	}
2208 }
2209 
2210 /*
2211  * pool_cache_invalidate:
2212  *
2213  *	Invalidate a pool cache (destruct and release all of the
2214  *	cached objects).  Does not reclaim objects from the pool.
2215  *
2216  *	Note: For pool caches that provide constructed objects, there
2217  *	is an assumption that another level of synchronization is occurring
2218  *	between the input to the constructor and the cache invalidation.
2219  *
2220  *	Invalidation is a costly process and should not be called from
2221  *	interrupt context.
2222  */
2223 void
2224 pool_cache_invalidate(pool_cache_t pc)
2225 {
2226 	uint64_t where;
2227 	pcg_t *full, *empty, *part;
2228 
2229 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2230 
2231 	if (ncpu < 2 || !mp_online) {
2232 		/*
2233 		 * We might be called early enough in the boot process
2234 		 * for the CPU data structures to not be fully initialized.
2235 		 * In this case, transfer the content of the local CPU's
2236 		 * cache back into global cache as only this CPU is currently
2237 		 * running.
2238 		 */
2239 		pool_cache_transfer(pc);
2240 	} else {
2241 		/*
2242 		 * Signal all CPUs that they must transfer their local
2243 		 * cache back to the global pool then wait for the xcall to
2244 		 * complete.
2245 		 */
2246 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
2247 		    pc, NULL);
2248 		xc_wait(where);
2249 	}
2250 
2251 	/* Empty pool caches, then invalidate objects */
2252 	mutex_enter(&pc->pc_lock);
2253 	full = pc->pc_fullgroups;
2254 	empty = pc->pc_emptygroups;
2255 	part = pc->pc_partgroups;
2256 	pc->pc_fullgroups = NULL;
2257 	pc->pc_emptygroups = NULL;
2258 	pc->pc_partgroups = NULL;
2259 	pc->pc_nfull = 0;
2260 	pc->pc_nempty = 0;
2261 	pc->pc_npart = 0;
2262 	mutex_exit(&pc->pc_lock);
2263 
2264 	pool_cache_invalidate_groups(pc, full);
2265 	pool_cache_invalidate_groups(pc, empty);
2266 	pool_cache_invalidate_groups(pc, part);
2267 }
2268 
2269 /*
2270  * pool_cache_invalidate_cpu:
2271  *
2272  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
2273  *	identified by its associated index.
2274  *	It is caller's responsibility to ensure that no operation is
2275  *	taking place on this pool cache while doing this invalidation.
2276  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
2277  *	pool cached objects from a CPU different from the one currently running
2278  *	may result in an undefined behaviour.
2279  */
2280 static void
2281 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2282 {
2283 	pool_cache_cpu_t *cc;
2284 	pcg_t *pcg;
2285 
2286 	if ((cc = pc->pc_cpus[index]) == NULL)
2287 		return;
2288 
2289 	if ((pcg = cc->cc_current) != &pcg_dummy) {
2290 		pcg->pcg_next = NULL;
2291 		pool_cache_invalidate_groups(pc, pcg);
2292 	}
2293 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
2294 		pcg->pcg_next = NULL;
2295 		pool_cache_invalidate_groups(pc, pcg);
2296 	}
2297 	if (cc != &pc->pc_cpu0)
2298 		pool_put(&cache_cpu_pool, cc);
2299 
2300 }
2301 
2302 void
2303 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2304 {
2305 
2306 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
2307 }
2308 
2309 void
2310 pool_cache_setlowat(pool_cache_t pc, int n)
2311 {
2312 
2313 	pool_setlowat(&pc->pc_pool, n);
2314 }
2315 
2316 void
2317 pool_cache_sethiwat(pool_cache_t pc, int n)
2318 {
2319 
2320 	pool_sethiwat(&pc->pc_pool, n);
2321 }
2322 
2323 void
2324 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2325 {
2326 
2327 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2328 }
2329 
2330 static bool __noinline
2331 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2332 		    paddr_t *pap, int flags)
2333 {
2334 	pcg_t *pcg, *cur;
2335 	uint64_t ncsw;
2336 	pool_cache_t pc;
2337 	void *object;
2338 
2339 	KASSERT(cc->cc_current->pcg_avail == 0);
2340 	KASSERT(cc->cc_previous->pcg_avail == 0);
2341 
2342 	pc = cc->cc_cache;
2343 	cc->cc_misses++;
2344 
2345 	/*
2346 	 * Nothing was available locally.  Try and grab a group
2347 	 * from the cache.
2348 	 */
2349 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2350 		ncsw = curlwp->l_ncsw;
2351 		mutex_enter(&pc->pc_lock);
2352 		pc->pc_contended++;
2353 
2354 		/*
2355 		 * If we context switched while locking, then
2356 		 * our view of the per-CPU data is invalid:
2357 		 * retry.
2358 		 */
2359 		if (curlwp->l_ncsw != ncsw) {
2360 			mutex_exit(&pc->pc_lock);
2361 			return true;
2362 		}
2363 	}
2364 
2365 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2366 		/*
2367 		 * If there's a full group, release our empty
2368 		 * group back to the cache.  Install the full
2369 		 * group as cc_current and return.
2370 		 */
2371 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2372 			KASSERT(cur->pcg_avail == 0);
2373 			cur->pcg_next = pc->pc_emptygroups;
2374 			pc->pc_emptygroups = cur;
2375 			pc->pc_nempty++;
2376 		}
2377 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
2378 		cc->cc_current = pcg;
2379 		pc->pc_fullgroups = pcg->pcg_next;
2380 		pc->pc_hits++;
2381 		pc->pc_nfull--;
2382 		mutex_exit(&pc->pc_lock);
2383 		return true;
2384 	}
2385 
2386 	/*
2387 	 * Nothing available locally or in cache.  Take the slow
2388 	 * path: fetch a new object from the pool and construct
2389 	 * it.
2390 	 */
2391 	pc->pc_misses++;
2392 	mutex_exit(&pc->pc_lock);
2393 	splx(s);
2394 
2395 	object = pool_get(&pc->pc_pool, flags);
2396 	*objectp = object;
2397 	if (__predict_false(object == NULL)) {
2398 		KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
2399 		return false;
2400 	}
2401 
2402 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2403 		pool_put(&pc->pc_pool, object);
2404 		*objectp = NULL;
2405 		return false;
2406 	}
2407 
2408 	KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
2409 
2410 	if (pap != NULL) {
2411 #ifdef POOL_VTOPHYS
2412 		*pap = POOL_VTOPHYS(object);
2413 #else
2414 		*pap = POOL_PADDR_INVALID;
2415 #endif
2416 	}
2417 
2418 	FREECHECK_OUT(&pc->pc_freecheck, object);
2419 	pool_cache_kleak_fill(pc, object);
2420 	return false;
2421 }
2422 
2423 /*
2424  * pool_cache_get{,_paddr}:
2425  *
2426  *	Get an object from a pool cache (optionally returning
2427  *	the physical address of the object).
2428  */
2429 void *
2430 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2431 {
2432 	pool_cache_cpu_t *cc;
2433 	pcg_t *pcg;
2434 	void *object;
2435 	int s;
2436 
2437 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2438 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2439 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2440 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
2441 	    __func__, pc->pc_pool.pr_wchan);
2442 
2443 	if (flags & PR_WAITOK) {
2444 		ASSERT_SLEEPABLE();
2445 	}
2446 
2447 	/* Lock out interrupts and disable preemption. */
2448 	s = splvm();
2449 	while (/* CONSTCOND */ true) {
2450 		/* Try and allocate an object from the current group. */
2451 		cc = pc->pc_cpus[curcpu()->ci_index];
2452 		KASSERT(cc->cc_cache == pc);
2453 	 	pcg = cc->cc_current;
2454 		if (__predict_true(pcg->pcg_avail > 0)) {
2455 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2456 			if (__predict_false(pap != NULL))
2457 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2458 #if defined(DIAGNOSTIC)
2459 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2460 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
2461 			KASSERT(object != NULL);
2462 #endif
2463 			cc->cc_hits++;
2464 			splx(s);
2465 			FREECHECK_OUT(&pc->pc_freecheck, object);
2466 			pool_redzone_fill(&pc->pc_pool, object);
2467 			pool_cache_kleak_fill(pc, object);
2468 			return object;
2469 		}
2470 
2471 		/*
2472 		 * That failed.  If the previous group isn't empty, swap
2473 		 * it with the current group and allocate from there.
2474 		 */
2475 		pcg = cc->cc_previous;
2476 		if (__predict_true(pcg->pcg_avail > 0)) {
2477 			cc->cc_previous = cc->cc_current;
2478 			cc->cc_current = pcg;
2479 			continue;
2480 		}
2481 
2482 		/*
2483 		 * Can't allocate from either group: try the slow path.
2484 		 * If get_slow() allocated an object for us, or if
2485 		 * no more objects are available, it will return false.
2486 		 * Otherwise, we need to retry.
2487 		 */
2488 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2489 			break;
2490 	}
2491 
2492 	/*
2493 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2494 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
2495 	 * constructor fails.
2496 	 */
2497 	return object;
2498 }
2499 
2500 static bool __noinline
2501 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2502 {
2503 	struct lwp *l = curlwp;
2504 	pcg_t *pcg, *cur;
2505 	uint64_t ncsw;
2506 	pool_cache_t pc;
2507 
2508 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2509 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2510 
2511 	pc = cc->cc_cache;
2512 	pcg = NULL;
2513 	cc->cc_misses++;
2514 	ncsw = l->l_ncsw;
2515 
2516 	/*
2517 	 * If there are no empty groups in the cache then allocate one
2518 	 * while still unlocked.
2519 	 */
2520 	if (__predict_false(pc->pc_emptygroups == NULL)) {
2521 		if (__predict_true(!pool_cache_disable)) {
2522 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2523 		}
2524 		/*
2525 		 * If pool_get() blocked, then our view of
2526 		 * the per-CPU data is invalid: retry.
2527 		 */
2528 		if (__predict_false(l->l_ncsw != ncsw)) {
2529 			if (pcg != NULL) {
2530 				pool_put(pc->pc_pcgpool, pcg);
2531 			}
2532 			return true;
2533 		}
2534 		if (__predict_true(pcg != NULL)) {
2535 			pcg->pcg_avail = 0;
2536 			pcg->pcg_size = pc->pc_pcgsize;
2537 		}
2538 	}
2539 
2540 	/* Lock the cache. */
2541 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2542 		mutex_enter(&pc->pc_lock);
2543 		pc->pc_contended++;
2544 
2545 		/*
2546 		 * If we context switched while locking, then our view of
2547 		 * the per-CPU data is invalid: retry.
2548 		 */
2549 		if (__predict_false(l->l_ncsw != ncsw)) {
2550 			mutex_exit(&pc->pc_lock);
2551 			if (pcg != NULL) {
2552 				pool_put(pc->pc_pcgpool, pcg);
2553 			}
2554 			return true;
2555 		}
2556 	}
2557 
2558 	/* If there are no empty groups in the cache then allocate one. */
2559 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
2560 		pcg = pc->pc_emptygroups;
2561 		pc->pc_emptygroups = pcg->pcg_next;
2562 		pc->pc_nempty--;
2563 	}
2564 
2565 	/*
2566 	 * If there's a empty group, release our full group back
2567 	 * to the cache.  Install the empty group to the local CPU
2568 	 * and return.
2569 	 */
2570 	if (pcg != NULL) {
2571 		KASSERT(pcg->pcg_avail == 0);
2572 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2573 			cc->cc_previous = pcg;
2574 		} else {
2575 			cur = cc->cc_current;
2576 			if (__predict_true(cur != &pcg_dummy)) {
2577 				KASSERT(cur->pcg_avail == cur->pcg_size);
2578 				cur->pcg_next = pc->pc_fullgroups;
2579 				pc->pc_fullgroups = cur;
2580 				pc->pc_nfull++;
2581 			}
2582 			cc->cc_current = pcg;
2583 		}
2584 		pc->pc_hits++;
2585 		mutex_exit(&pc->pc_lock);
2586 		return true;
2587 	}
2588 
2589 	/*
2590 	 * Nothing available locally or in cache, and we didn't
2591 	 * allocate an empty group.  Take the slow path and destroy
2592 	 * the object here and now.
2593 	 */
2594 	pc->pc_misses++;
2595 	mutex_exit(&pc->pc_lock);
2596 	splx(s);
2597 	pool_cache_destruct_object(pc, object);
2598 
2599 	return false;
2600 }
2601 
2602 /*
2603  * pool_cache_put{,_paddr}:
2604  *
2605  *	Put an object back to the pool cache (optionally caching the
2606  *	physical address of the object).
2607  */
2608 void
2609 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2610 {
2611 	pool_cache_cpu_t *cc;
2612 	pcg_t *pcg;
2613 	int s;
2614 
2615 	KASSERT(object != NULL);
2616 	pool_cache_redzone_check(pc, object);
2617 	FREECHECK_IN(&pc->pc_freecheck, object);
2618 
2619 	if (pool_cache_put_quarantine(pc, object, pa)) {
2620 		return;
2621 	}
2622 
2623 	/* Lock out interrupts and disable preemption. */
2624 	s = splvm();
2625 	while (/* CONSTCOND */ true) {
2626 		/* If the current group isn't full, release it there. */
2627 		cc = pc->pc_cpus[curcpu()->ci_index];
2628 		KASSERT(cc->cc_cache == pc);
2629 	 	pcg = cc->cc_current;
2630 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2631 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2632 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2633 			pcg->pcg_avail++;
2634 			cc->cc_hits++;
2635 			splx(s);
2636 			return;
2637 		}
2638 
2639 		/*
2640 		 * That failed.  If the previous group isn't full, swap
2641 		 * it with the current group and try again.
2642 		 */
2643 		pcg = cc->cc_previous;
2644 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2645 			cc->cc_previous = cc->cc_current;
2646 			cc->cc_current = pcg;
2647 			continue;
2648 		}
2649 
2650 		/*
2651 		 * Can't free to either group: try the slow path.
2652 		 * If put_slow() releases the object for us, it
2653 		 * will return false.  Otherwise we need to retry.
2654 		 */
2655 		if (!pool_cache_put_slow(cc, s, object))
2656 			break;
2657 	}
2658 }
2659 
2660 /*
2661  * pool_cache_transfer:
2662  *
2663  *	Transfer objects from the per-CPU cache to the global cache.
2664  *	Run within a cross-call thread.
2665  */
2666 static void
2667 pool_cache_transfer(pool_cache_t pc)
2668 {
2669 	pool_cache_cpu_t *cc;
2670 	pcg_t *prev, *cur, **list;
2671 	int s;
2672 
2673 	s = splvm();
2674 	mutex_enter(&pc->pc_lock);
2675 	cc = pc->pc_cpus[curcpu()->ci_index];
2676 	cur = cc->cc_current;
2677 	cc->cc_current = __UNCONST(&pcg_dummy);
2678 	prev = cc->cc_previous;
2679 	cc->cc_previous = __UNCONST(&pcg_dummy);
2680 	if (cur != &pcg_dummy) {
2681 		if (cur->pcg_avail == cur->pcg_size) {
2682 			list = &pc->pc_fullgroups;
2683 			pc->pc_nfull++;
2684 		} else if (cur->pcg_avail == 0) {
2685 			list = &pc->pc_emptygroups;
2686 			pc->pc_nempty++;
2687 		} else {
2688 			list = &pc->pc_partgroups;
2689 			pc->pc_npart++;
2690 		}
2691 		cur->pcg_next = *list;
2692 		*list = cur;
2693 	}
2694 	if (prev != &pcg_dummy) {
2695 		if (prev->pcg_avail == prev->pcg_size) {
2696 			list = &pc->pc_fullgroups;
2697 			pc->pc_nfull++;
2698 		} else if (prev->pcg_avail == 0) {
2699 			list = &pc->pc_emptygroups;
2700 			pc->pc_nempty++;
2701 		} else {
2702 			list = &pc->pc_partgroups;
2703 			pc->pc_npart++;
2704 		}
2705 		prev->pcg_next = *list;
2706 		*list = prev;
2707 	}
2708 	mutex_exit(&pc->pc_lock);
2709 	splx(s);
2710 }
2711 
2712 /*
2713  * Pool backend allocators.
2714  *
2715  * Each pool has a backend allocator that handles allocation, deallocation,
2716  * and any additional draining that might be needed.
2717  *
2718  * We provide two standard allocators:
2719  *
2720  *	pool_allocator_kmem - the default when no allocator is specified
2721  *
2722  *	pool_allocator_nointr - used for pools that will not be accessed
2723  *	in interrupt context.
2724  */
2725 void	*pool_page_alloc(struct pool *, int);
2726 void	pool_page_free(struct pool *, void *);
2727 
2728 struct pool_allocator pool_allocator_kmem = {
2729 	.pa_alloc = pool_page_alloc,
2730 	.pa_free = pool_page_free,
2731 	.pa_pagesz = 0
2732 };
2733 
2734 struct pool_allocator pool_allocator_nointr = {
2735 	.pa_alloc = pool_page_alloc,
2736 	.pa_free = pool_page_free,
2737 	.pa_pagesz = 0
2738 };
2739 
2740 struct pool_allocator pool_allocator_big[] = {
2741 	{
2742 		.pa_alloc = pool_page_alloc,
2743 		.pa_free = pool_page_free,
2744 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
2745 	},
2746 	{
2747 		.pa_alloc = pool_page_alloc,
2748 		.pa_free = pool_page_free,
2749 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
2750 	},
2751 	{
2752 		.pa_alloc = pool_page_alloc,
2753 		.pa_free = pool_page_free,
2754 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
2755 	},
2756 	{
2757 		.pa_alloc = pool_page_alloc,
2758 		.pa_free = pool_page_free,
2759 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
2760 	},
2761 	{
2762 		.pa_alloc = pool_page_alloc,
2763 		.pa_free = pool_page_free,
2764 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
2765 	},
2766 	{
2767 		.pa_alloc = pool_page_alloc,
2768 		.pa_free = pool_page_free,
2769 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
2770 	},
2771 	{
2772 		.pa_alloc = pool_page_alloc,
2773 		.pa_free = pool_page_free,
2774 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
2775 	},
2776 	{
2777 		.pa_alloc = pool_page_alloc,
2778 		.pa_free = pool_page_free,
2779 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
2780 	}
2781 };
2782 
2783 static int
2784 pool_bigidx(size_t size)
2785 {
2786 	int i;
2787 
2788 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2789 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2790 			return i;
2791 	}
2792 	panic("pool item size %zu too large, use a custom allocator", size);
2793 }
2794 
2795 static void *
2796 pool_allocator_alloc(struct pool *pp, int flags)
2797 {
2798 	struct pool_allocator *pa = pp->pr_alloc;
2799 	void *res;
2800 
2801 	res = (*pa->pa_alloc)(pp, flags);
2802 	if (res == NULL && (flags & PR_WAITOK) == 0) {
2803 		/*
2804 		 * We only run the drain hook here if PR_NOWAIT.
2805 		 * In other cases, the hook will be run in
2806 		 * pool_reclaim().
2807 		 */
2808 		if (pp->pr_drain_hook != NULL) {
2809 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2810 			res = (*pa->pa_alloc)(pp, flags);
2811 		}
2812 	}
2813 	return res;
2814 }
2815 
2816 static void
2817 pool_allocator_free(struct pool *pp, void *v)
2818 {
2819 	struct pool_allocator *pa = pp->pr_alloc;
2820 
2821 	if (pp->pr_redzone) {
2822 		kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
2823 	}
2824 	(*pa->pa_free)(pp, v);
2825 }
2826 
2827 void *
2828 pool_page_alloc(struct pool *pp, int flags)
2829 {
2830 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2831 	vmem_addr_t va;
2832 	int ret;
2833 
2834 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2835 	    vflags | VM_INSTANTFIT, &va);
2836 
2837 	return ret ? NULL : (void *)va;
2838 }
2839 
2840 void
2841 pool_page_free(struct pool *pp, void *v)
2842 {
2843 
2844 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2845 }
2846 
2847 static void *
2848 pool_page_alloc_meta(struct pool *pp, int flags)
2849 {
2850 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2851 	vmem_addr_t va;
2852 	int ret;
2853 
2854 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2855 	    vflags | VM_INSTANTFIT, &va);
2856 
2857 	return ret ? NULL : (void *)va;
2858 }
2859 
2860 static void
2861 pool_page_free_meta(struct pool *pp, void *v)
2862 {
2863 
2864 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2865 }
2866 
2867 #ifdef KLEAK
2868 static void
2869 pool_kleak_fill(struct pool *pp, void *p)
2870 {
2871 	if (__predict_false(pp->pr_roflags & PR_NOTOUCH)) {
2872 		return;
2873 	}
2874 	kleak_fill_area(p, pp->pr_size);
2875 }
2876 
2877 static void
2878 pool_cache_kleak_fill(pool_cache_t pc, void *p)
2879 {
2880 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
2881 		return;
2882 	}
2883 	pool_kleak_fill(&pc->pc_pool, p);
2884 }
2885 #endif
2886 
2887 #ifdef POOL_QUARANTINE
2888 static void
2889 pool_quarantine_init(struct pool *pp)
2890 {
2891 	pp->pr_quar.rotor = 0;
2892 	memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
2893 }
2894 
2895 static void
2896 pool_quarantine_flush(struct pool *pp)
2897 {
2898 	pool_quar_t *quar = &pp->pr_quar;
2899 	struct pool_pagelist pq;
2900 	size_t i;
2901 
2902 	LIST_INIT(&pq);
2903 
2904 	mutex_enter(&pp->pr_lock);
2905 	for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
2906 		if (quar->list[i] == 0)
2907 			continue;
2908 		pool_do_put(pp, (void *)quar->list[i], &pq);
2909 	}
2910 	mutex_exit(&pp->pr_lock);
2911 
2912 	pr_pagelist_free(pp, &pq);
2913 }
2914 
2915 static bool
2916 pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
2917 {
2918 	pool_quar_t *quar = &pp->pr_quar;
2919 	uintptr_t old;
2920 
2921 	if (pp->pr_roflags & PR_NOTOUCH) {
2922 		return false;
2923 	}
2924 
2925 	pool_redzone_check(pp, v);
2926 
2927 	old = quar->list[quar->rotor];
2928 	quar->list[quar->rotor] = (uintptr_t)v;
2929 	quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
2930 	if (old != 0) {
2931 		pool_do_put(pp, (void *)old, pq);
2932 	}
2933 
2934 	return true;
2935 }
2936 
2937 static bool
2938 pool_cache_put_quarantine(pool_cache_t pc, void *p, paddr_t pa)
2939 {
2940 	pool_cache_destruct_object(pc, p);
2941 	return true;
2942 }
2943 #endif
2944 
2945 #ifdef POOL_REDZONE
2946 #if defined(_LP64)
2947 # define PRIME 0x9e37fffffffc0000UL
2948 #else /* defined(_LP64) */
2949 # define PRIME 0x9e3779b1
2950 #endif /* defined(_LP64) */
2951 #define STATIC_BYTE	0xFE
2952 CTASSERT(POOL_REDZONE_SIZE > 1);
2953 
2954 #ifndef KASAN
2955 static inline uint8_t
2956 pool_pattern_generate(const void *p)
2957 {
2958 	return (uint8_t)(((uintptr_t)p) * PRIME
2959 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
2960 }
2961 #endif
2962 
2963 static void
2964 pool_redzone_init(struct pool *pp, size_t requested_size)
2965 {
2966 	size_t redzsz;
2967 	size_t nsz;
2968 
2969 #ifdef KASAN
2970 	redzsz = requested_size;
2971 	kasan_add_redzone(&redzsz);
2972 	redzsz -= requested_size;
2973 #else
2974 	redzsz = POOL_REDZONE_SIZE;
2975 #endif
2976 
2977 	if (pp->pr_roflags & PR_NOTOUCH) {
2978 		pp->pr_redzone = false;
2979 		return;
2980 	}
2981 
2982 	/*
2983 	 * We may have extended the requested size earlier; check if
2984 	 * there's naturally space in the padding for a red zone.
2985 	 */
2986 	if (pp->pr_size - requested_size >= redzsz) {
2987 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
2988 		pp->pr_redzone = true;
2989 		return;
2990 	}
2991 
2992 	/*
2993 	 * No space in the natural padding; check if we can extend a
2994 	 * bit the size of the pool.
2995 	 */
2996 	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
2997 	if (nsz <= pp->pr_alloc->pa_pagesz) {
2998 		/* Ok, we can */
2999 		pp->pr_size = nsz;
3000 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
3001 		pp->pr_redzone = true;
3002 	} else {
3003 		/* No space for a red zone... snif :'( */
3004 		pp->pr_redzone = false;
3005 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
3006 	}
3007 }
3008 
3009 static void
3010 pool_redzone_fill(struct pool *pp, void *p)
3011 {
3012 	if (!pp->pr_redzone)
3013 		return;
3014 #ifdef KASAN
3015 	kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
3016 	    KASAN_POOL_REDZONE);
3017 #else
3018 	uint8_t *cp, pat;
3019 	const uint8_t *ep;
3020 
3021 	cp = (uint8_t *)p + pp->pr_reqsize;
3022 	ep = cp + POOL_REDZONE_SIZE;
3023 
3024 	/*
3025 	 * We really don't want the first byte of the red zone to be '\0';
3026 	 * an off-by-one in a string may not be properly detected.
3027 	 */
3028 	pat = pool_pattern_generate(cp);
3029 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
3030 	cp++;
3031 
3032 	while (cp < ep) {
3033 		*cp = pool_pattern_generate(cp);
3034 		cp++;
3035 	}
3036 #endif
3037 }
3038 
3039 static void
3040 pool_redzone_check(struct pool *pp, void *p)
3041 {
3042 	if (!pp->pr_redzone)
3043 		return;
3044 #ifdef KASAN
3045 	kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
3046 #else
3047 	uint8_t *cp, pat, expected;
3048 	const uint8_t *ep;
3049 
3050 	cp = (uint8_t *)p + pp->pr_reqsize;
3051 	ep = cp + POOL_REDZONE_SIZE;
3052 
3053 	pat = pool_pattern_generate(cp);
3054 	expected = (pat == '\0') ? STATIC_BYTE: pat;
3055 	if (__predict_false(expected != *cp)) {
3056 		printf("%s: %p: 0x%02x != 0x%02x\n",
3057 		   __func__, cp, *cp, expected);
3058 	}
3059 	cp++;
3060 
3061 	while (cp < ep) {
3062 		expected = pool_pattern_generate(cp);
3063 		if (__predict_false(*cp != expected)) {
3064 			printf("%s: %p: 0x%02x != 0x%02x\n",
3065 			   __func__, cp, *cp, expected);
3066 		}
3067 		cp++;
3068 	}
3069 #endif
3070 }
3071 
3072 static void
3073 pool_cache_redzone_check(pool_cache_t pc, void *p)
3074 {
3075 #ifdef KASAN
3076 	/* If there is a ctor/dtor, leave the data as valid. */
3077 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
3078 		return;
3079 	}
3080 #endif
3081 	pool_redzone_check(&pc->pc_pool, p);
3082 }
3083 
3084 #endif /* POOL_REDZONE */
3085 
3086 #if defined(DDB)
3087 static bool
3088 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3089 {
3090 
3091 	return (uintptr_t)ph->ph_page <= addr &&
3092 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
3093 }
3094 
3095 static bool
3096 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
3097 {
3098 
3099 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
3100 }
3101 
3102 static bool
3103 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
3104 {
3105 	int i;
3106 
3107 	if (pcg == NULL) {
3108 		return false;
3109 	}
3110 	for (i = 0; i < pcg->pcg_avail; i++) {
3111 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
3112 			return true;
3113 		}
3114 	}
3115 	return false;
3116 }
3117 
3118 static bool
3119 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3120 {
3121 
3122 	if ((pp->pr_roflags & PR_USEBMAP) != 0) {
3123 		unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
3124 		pool_item_bitmap_t *bitmap =
3125 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
3126 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
3127 
3128 		return (*bitmap & mask) == 0;
3129 	} else {
3130 		struct pool_item *pi;
3131 
3132 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3133 			if (pool_in_item(pp, pi, addr)) {
3134 				return false;
3135 			}
3136 		}
3137 		return true;
3138 	}
3139 }
3140 
3141 void
3142 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3143 {
3144 	struct pool *pp;
3145 
3146 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3147 		struct pool_item_header *ph;
3148 		uintptr_t item;
3149 		bool allocated = true;
3150 		bool incache = false;
3151 		bool incpucache = false;
3152 		char cpucachestr[32];
3153 
3154 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3155 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3156 				if (pool_in_page(pp, ph, addr)) {
3157 					goto found;
3158 				}
3159 			}
3160 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3161 				if (pool_in_page(pp, ph, addr)) {
3162 					allocated =
3163 					    pool_allocated(pp, ph, addr);
3164 					goto found;
3165 				}
3166 			}
3167 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3168 				if (pool_in_page(pp, ph, addr)) {
3169 					allocated = false;
3170 					goto found;
3171 				}
3172 			}
3173 			continue;
3174 		} else {
3175 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
3176 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3177 				continue;
3178 			}
3179 			allocated = pool_allocated(pp, ph, addr);
3180 		}
3181 found:
3182 		if (allocated && pp->pr_cache) {
3183 			pool_cache_t pc = pp->pr_cache;
3184 			struct pool_cache_group *pcg;
3185 			int i;
3186 
3187 			for (pcg = pc->pc_fullgroups; pcg != NULL;
3188 			    pcg = pcg->pcg_next) {
3189 				if (pool_in_cg(pp, pcg, addr)) {
3190 					incache = true;
3191 					goto print;
3192 				}
3193 			}
3194 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3195 				pool_cache_cpu_t *cc;
3196 
3197 				if ((cc = pc->pc_cpus[i]) == NULL) {
3198 					continue;
3199 				}
3200 				if (pool_in_cg(pp, cc->cc_current, addr) ||
3201 				    pool_in_cg(pp, cc->cc_previous, addr)) {
3202 					struct cpu_info *ci =
3203 					    cpu_lookup(i);
3204 
3205 					incpucache = true;
3206 					snprintf(cpucachestr,
3207 					    sizeof(cpucachestr),
3208 					    "cached by CPU %u",
3209 					    ci->ci_index);
3210 					goto print;
3211 				}
3212 			}
3213 		}
3214 print:
3215 		item = (uintptr_t)ph->ph_page + ph->ph_off;
3216 		item = item + rounddown(addr - item, pp->pr_size);
3217 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3218 		    (void *)addr, item, (size_t)(addr - item),
3219 		    pp->pr_wchan,
3220 		    incpucache ? cpucachestr :
3221 		    incache ? "cached" : allocated ? "allocated" : "free");
3222 	}
3223 }
3224 #endif /* defined(DDB) */
3225 
3226 static int
3227 pool_sysctl(SYSCTLFN_ARGS)
3228 {
3229 	struct pool_sysctl data;
3230 	struct pool *pp;
3231 	struct pool_cache *pc;
3232 	pool_cache_cpu_t *cc;
3233 	int error;
3234 	size_t i, written;
3235 
3236 	if (oldp == NULL) {
3237 		*oldlenp = 0;
3238 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3239 			*oldlenp += sizeof(data);
3240 		return 0;
3241 	}
3242 
3243 	memset(&data, 0, sizeof(data));
3244 	error = 0;
3245 	written = 0;
3246 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3247 		if (written + sizeof(data) > *oldlenp)
3248 			break;
3249 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3250 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3251 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
3252 #define COPY(field) data.field = pp->field
3253 		COPY(pr_size);
3254 
3255 		COPY(pr_itemsperpage);
3256 		COPY(pr_nitems);
3257 		COPY(pr_nout);
3258 		COPY(pr_hardlimit);
3259 		COPY(pr_npages);
3260 		COPY(pr_minpages);
3261 		COPY(pr_maxpages);
3262 
3263 		COPY(pr_nget);
3264 		COPY(pr_nfail);
3265 		COPY(pr_nput);
3266 		COPY(pr_npagealloc);
3267 		COPY(pr_npagefree);
3268 		COPY(pr_hiwat);
3269 		COPY(pr_nidle);
3270 #undef COPY
3271 
3272 		data.pr_cache_nmiss_pcpu = 0;
3273 		data.pr_cache_nhit_pcpu = 0;
3274 		if (pp->pr_cache) {
3275 			pc = pp->pr_cache;
3276 			data.pr_cache_meta_size = pc->pc_pcgsize;
3277 			data.pr_cache_nfull = pc->pc_nfull;
3278 			data.pr_cache_npartial = pc->pc_npart;
3279 			data.pr_cache_nempty = pc->pc_nempty;
3280 			data.pr_cache_ncontended = pc->pc_contended;
3281 			data.pr_cache_nmiss_global = pc->pc_misses;
3282 			data.pr_cache_nhit_global = pc->pc_hits;
3283 			for (i = 0; i < pc->pc_ncpu; ++i) {
3284 				cc = pc->pc_cpus[i];
3285 				if (cc == NULL)
3286 					continue;
3287 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
3288 				data.pr_cache_nhit_pcpu += cc->cc_hits;
3289 			}
3290 		} else {
3291 			data.pr_cache_meta_size = 0;
3292 			data.pr_cache_nfull = 0;
3293 			data.pr_cache_npartial = 0;
3294 			data.pr_cache_nempty = 0;
3295 			data.pr_cache_ncontended = 0;
3296 			data.pr_cache_nmiss_global = 0;
3297 			data.pr_cache_nhit_global = 0;
3298 		}
3299 
3300 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
3301 		if (error)
3302 			break;
3303 		written += sizeof(data);
3304 		oldp = (char *)oldp + sizeof(data);
3305 	}
3306 
3307 	*oldlenp = written;
3308 	return error;
3309 }
3310 
3311 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3312 {
3313 	const struct sysctlnode *rnode = NULL;
3314 
3315 	sysctl_createv(clog, 0, NULL, &rnode,
3316 		       CTLFLAG_PERMANENT,
3317 		       CTLTYPE_STRUCT, "pool",
3318 		       SYSCTL_DESCR("Get pool statistics"),
3319 		       pool_sysctl, 0, NULL, 0,
3320 		       CTL_KERN, CTL_CREATE, CTL_EOL);
3321 }
3322