1 /* $NetBSD: subr_pool.c,v 1.203 2014/06/13 19:09:07 joerg Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014 5 * The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 10 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.203 2014/06/13 19:09:07 joerg Exp $"); 36 37 #include "opt_ddb.h" 38 #include "opt_lockdebug.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/sysctl.h> 43 #include <sys/bitops.h> 44 #include <sys/proc.h> 45 #include <sys/errno.h> 46 #include <sys/kernel.h> 47 #include <sys/vmem.h> 48 #include <sys/pool.h> 49 #include <sys/syslog.h> 50 #include <sys/debug.h> 51 #include <sys/lockdebug.h> 52 #include <sys/xcall.h> 53 #include <sys/cpu.h> 54 #include <sys/atomic.h> 55 56 #include <uvm/uvm_extern.h> 57 58 /* 59 * Pool resource management utility. 60 * 61 * Memory is allocated in pages which are split into pieces according to 62 * the pool item size. Each page is kept on one of three lists in the 63 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', 64 * for empty, full and partially-full pages respectively. The individual 65 * pool items are on a linked list headed by `ph_itemlist' in each page 66 * header. The memory for building the page list is either taken from 67 * the allocated pages themselves (for small pool items) or taken from 68 * an internal pool of page headers (`phpool'). 69 */ 70 71 /* List of all pools. Non static as needed by 'vmstat -i' */ 72 TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 73 74 /* Private pool for page header structures */ 75 #define PHPOOL_MAX 8 76 static struct pool phpool[PHPOOL_MAX]; 77 #define PHPOOL_FREELIST_NELEM(idx) \ 78 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx))) 79 80 #ifdef POOL_SUBPAGE 81 /* Pool of subpages for use by normal pools. */ 82 static struct pool psppool; 83 #endif 84 85 static void *pool_page_alloc_meta(struct pool *, int); 86 static void pool_page_free_meta(struct pool *, void *); 87 88 /* allocator for pool metadata */ 89 struct pool_allocator pool_allocator_meta = { 90 .pa_alloc = pool_page_alloc_meta, 91 .pa_free = pool_page_free_meta, 92 .pa_pagesz = 0 93 }; 94 95 /* # of seconds to retain page after last use */ 96 int pool_inactive_time = 10; 97 98 /* Next candidate for drainage (see pool_drain()) */ 99 static struct pool *drainpp; 100 101 /* This lock protects both pool_head and drainpp. */ 102 static kmutex_t pool_head_lock; 103 static kcondvar_t pool_busy; 104 105 /* This lock protects initialization of a potentially shared pool allocator */ 106 static kmutex_t pool_allocator_lock; 107 108 typedef uint32_t pool_item_bitmap_t; 109 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t)) 110 #define BITMAP_MASK (BITMAP_SIZE - 1) 111 112 struct pool_item_header { 113 /* Page headers */ 114 LIST_ENTRY(pool_item_header) 115 ph_pagelist; /* pool page list */ 116 SPLAY_ENTRY(pool_item_header) 117 ph_node; /* Off-page page headers */ 118 void * ph_page; /* this page's address */ 119 uint32_t ph_time; /* last referenced */ 120 uint16_t ph_nmissing; /* # of chunks in use */ 121 uint16_t ph_off; /* start offset in page */ 122 union { 123 /* !PR_NOTOUCH */ 124 struct { 125 LIST_HEAD(, pool_item) 126 phu_itemlist; /* chunk list for this page */ 127 } phu_normal; 128 /* PR_NOTOUCH */ 129 struct { 130 pool_item_bitmap_t phu_bitmap[1]; 131 } phu_notouch; 132 } ph_u; 133 }; 134 #define ph_itemlist ph_u.phu_normal.phu_itemlist 135 #define ph_bitmap ph_u.phu_notouch.phu_bitmap 136 137 struct pool_item { 138 #ifdef DIAGNOSTIC 139 u_int pi_magic; 140 #endif 141 #define PI_MAGIC 0xdeaddeadU 142 /* Other entries use only this list entry */ 143 LIST_ENTRY(pool_item) pi_list; 144 }; 145 146 #define POOL_NEEDS_CATCHUP(pp) \ 147 ((pp)->pr_nitems < (pp)->pr_minitems) 148 149 /* 150 * Pool cache management. 151 * 152 * Pool caches provide a way for constructed objects to be cached by the 153 * pool subsystem. This can lead to performance improvements by avoiding 154 * needless object construction/destruction; it is deferred until absolutely 155 * necessary. 156 * 157 * Caches are grouped into cache groups. Each cache group references up 158 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an 159 * object from the pool, it calls the object's constructor and places it 160 * into a cache group. When a cache group frees an object back to the 161 * pool, it first calls the object's destructor. This allows the object 162 * to persist in constructed form while freed to the cache. 163 * 164 * The pool references each cache, so that when a pool is drained by the 165 * pagedaemon, it can drain each individual cache as well. Each time a 166 * cache is drained, the most idle cache group is freed to the pool in 167 * its entirety. 168 * 169 * Pool caches are layed on top of pools. By layering them, we can avoid 170 * the complexity of cache management for pools which would not benefit 171 * from it. 172 */ 173 174 static struct pool pcg_normal_pool; 175 static struct pool pcg_large_pool; 176 static struct pool cache_pool; 177 static struct pool cache_cpu_pool; 178 179 pool_cache_t pnbuf_cache; /* pathname buffer cache */ 180 181 /* List of all caches. */ 182 TAILQ_HEAD(,pool_cache) pool_cache_head = 183 TAILQ_HEAD_INITIALIZER(pool_cache_head); 184 185 int pool_cache_disable; /* global disable for caching */ 186 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */ 187 188 static bool pool_cache_put_slow(pool_cache_cpu_t *, int, 189 void *); 190 static bool pool_cache_get_slow(pool_cache_cpu_t *, int, 191 void **, paddr_t *, int); 192 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t); 193 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *); 194 static void pool_cache_invalidate_cpu(pool_cache_t, u_int); 195 static void pool_cache_transfer(pool_cache_t); 196 197 static int pool_catchup(struct pool *); 198 static void pool_prime_page(struct pool *, void *, 199 struct pool_item_header *); 200 static void pool_update_curpage(struct pool *); 201 202 static int pool_grow(struct pool *, int); 203 static void *pool_allocator_alloc(struct pool *, int); 204 static void pool_allocator_free(struct pool *, void *); 205 206 static void pool_print_pagelist(struct pool *, struct pool_pagelist *, 207 void (*)(const char *, ...) __printflike(1, 2)); 208 static void pool_print1(struct pool *, const char *, 209 void (*)(const char *, ...) __printflike(1, 2)); 210 211 static int pool_chk_page(struct pool *, const char *, 212 struct pool_item_header *); 213 214 static inline unsigned int 215 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph, 216 const void *v) 217 { 218 const char *cp = v; 219 unsigned int idx; 220 221 KASSERT(pp->pr_roflags & PR_NOTOUCH); 222 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size; 223 KASSERT(idx < pp->pr_itemsperpage); 224 return idx; 225 } 226 227 static inline void 228 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph, 229 void *obj) 230 { 231 unsigned int idx = pr_item_notouch_index(pp, ph, obj); 232 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE); 233 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 234 235 KASSERT((*bitmap & mask) == 0); 236 *bitmap |= mask; 237 } 238 239 static inline void * 240 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph) 241 { 242 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 243 unsigned int idx; 244 int i; 245 246 for (i = 0; ; i++) { 247 int bit; 248 249 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage); 250 bit = ffs32(bitmap[i]); 251 if (bit) { 252 pool_item_bitmap_t mask; 253 254 bit--; 255 idx = (i * BITMAP_SIZE) + bit; 256 mask = 1 << bit; 257 KASSERT((bitmap[i] & mask) != 0); 258 bitmap[i] &= ~mask; 259 break; 260 } 261 } 262 KASSERT(idx < pp->pr_itemsperpage); 263 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size; 264 } 265 266 static inline void 267 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph) 268 { 269 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 270 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE); 271 int i; 272 273 for (i = 0; i < n; i++) { 274 bitmap[i] = (pool_item_bitmap_t)-1; 275 } 276 } 277 278 static inline int 279 phtree_compare(struct pool_item_header *a, struct pool_item_header *b) 280 { 281 282 /* 283 * we consider pool_item_header with smaller ph_page bigger. 284 * (this unnatural ordering is for the benefit of pr_find_pagehead.) 285 */ 286 287 if (a->ph_page < b->ph_page) 288 return (1); 289 else if (a->ph_page > b->ph_page) 290 return (-1); 291 else 292 return (0); 293 } 294 295 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare); 296 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare); 297 298 static inline struct pool_item_header * 299 pr_find_pagehead_noalign(struct pool *pp, void *v) 300 { 301 struct pool_item_header *ph, tmp; 302 303 tmp.ph_page = (void *)(uintptr_t)v; 304 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 305 if (ph == NULL) { 306 ph = SPLAY_ROOT(&pp->pr_phtree); 307 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) { 308 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph); 309 } 310 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0); 311 } 312 313 return ph; 314 } 315 316 /* 317 * Return the pool page header based on item address. 318 */ 319 static inline struct pool_item_header * 320 pr_find_pagehead(struct pool *pp, void *v) 321 { 322 struct pool_item_header *ph, tmp; 323 324 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 325 ph = pr_find_pagehead_noalign(pp, v); 326 } else { 327 void *page = 328 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask); 329 330 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 331 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset); 332 } else { 333 tmp.ph_page = page; 334 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 335 } 336 } 337 338 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) || 339 ((char *)ph->ph_page <= (char *)v && 340 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz)); 341 return ph; 342 } 343 344 static void 345 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq) 346 { 347 struct pool_item_header *ph; 348 349 while ((ph = LIST_FIRST(pq)) != NULL) { 350 LIST_REMOVE(ph, ph_pagelist); 351 pool_allocator_free(pp, ph->ph_page); 352 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 353 pool_put(pp->pr_phpool, ph); 354 } 355 } 356 357 /* 358 * Remove a page from the pool. 359 */ 360 static inline void 361 pr_rmpage(struct pool *pp, struct pool_item_header *ph, 362 struct pool_pagelist *pq) 363 { 364 365 KASSERT(mutex_owned(&pp->pr_lock)); 366 367 /* 368 * If the page was idle, decrement the idle page count. 369 */ 370 if (ph->ph_nmissing == 0) { 371 #ifdef DIAGNOSTIC 372 if (pp->pr_nidle == 0) 373 panic("pr_rmpage: nidle inconsistent"); 374 if (pp->pr_nitems < pp->pr_itemsperpage) 375 panic("pr_rmpage: nitems inconsistent"); 376 #endif 377 pp->pr_nidle--; 378 } 379 380 pp->pr_nitems -= pp->pr_itemsperpage; 381 382 /* 383 * Unlink the page from the pool and queue it for release. 384 */ 385 LIST_REMOVE(ph, ph_pagelist); 386 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 387 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph); 388 LIST_INSERT_HEAD(pq, ph, ph_pagelist); 389 390 pp->pr_npages--; 391 pp->pr_npagefree++; 392 393 pool_update_curpage(pp); 394 } 395 396 /* 397 * Initialize all the pools listed in the "pools" link set. 398 */ 399 void 400 pool_subsystem_init(void) 401 { 402 size_t size; 403 int idx; 404 405 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE); 406 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE); 407 cv_init(&pool_busy, "poolbusy"); 408 409 /* 410 * Initialize private page header pool and cache magazine pool if we 411 * haven't done so yet. 412 */ 413 for (idx = 0; idx < PHPOOL_MAX; idx++) { 414 static char phpool_names[PHPOOL_MAX][6+1+6+1]; 415 int nelem; 416 size_t sz; 417 418 nelem = PHPOOL_FREELIST_NELEM(idx); 419 snprintf(phpool_names[idx], sizeof(phpool_names[idx]), 420 "phpool-%d", nelem); 421 sz = sizeof(struct pool_item_header); 422 if (nelem) { 423 sz = offsetof(struct pool_item_header, 424 ph_bitmap[howmany(nelem, BITMAP_SIZE)]); 425 } 426 pool_init(&phpool[idx], sz, 0, 0, 0, 427 phpool_names[idx], &pool_allocator_meta, IPL_VM); 428 } 429 #ifdef POOL_SUBPAGE 430 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0, 431 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM); 432 #endif 433 434 size = sizeof(pcg_t) + 435 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t); 436 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0, 437 "pcgnormal", &pool_allocator_meta, IPL_VM); 438 439 size = sizeof(pcg_t) + 440 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t); 441 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0, 442 "pcglarge", &pool_allocator_meta, IPL_VM); 443 444 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit, 445 0, 0, "pcache", &pool_allocator_meta, IPL_NONE); 446 447 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit, 448 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE); 449 } 450 451 /* 452 * Initialize the given pool resource structure. 453 * 454 * We export this routine to allow other kernel parts to declare 455 * static pools that must be initialized before kmem(9) is available. 456 */ 457 void 458 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 459 const char *wchan, struct pool_allocator *palloc, int ipl) 460 { 461 struct pool *pp1; 462 size_t trysize, phsize; 463 int off, slack; 464 465 #ifdef DEBUG 466 if (__predict_true(!cold)) 467 mutex_enter(&pool_head_lock); 468 /* 469 * Check that the pool hasn't already been initialised and 470 * added to the list of all pools. 471 */ 472 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 473 if (pp == pp1) 474 panic("pool_init: pool %s already initialised", 475 wchan); 476 } 477 if (__predict_true(!cold)) 478 mutex_exit(&pool_head_lock); 479 #endif 480 481 if (palloc == NULL) 482 palloc = &pool_allocator_kmem; 483 #ifdef POOL_SUBPAGE 484 if (size > palloc->pa_pagesz) { 485 if (palloc == &pool_allocator_kmem) 486 palloc = &pool_allocator_kmem_fullpage; 487 else if (palloc == &pool_allocator_nointr) 488 palloc = &pool_allocator_nointr_fullpage; 489 } 490 #endif /* POOL_SUBPAGE */ 491 if (!cold) 492 mutex_enter(&pool_allocator_lock); 493 if (palloc->pa_refcnt++ == 0) { 494 if (palloc->pa_pagesz == 0) 495 palloc->pa_pagesz = PAGE_SIZE; 496 497 TAILQ_INIT(&palloc->pa_list); 498 499 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM); 500 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1); 501 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1; 502 } 503 if (!cold) 504 mutex_exit(&pool_allocator_lock); 505 506 if (align == 0) 507 align = ALIGN(1); 508 509 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item)) 510 size = sizeof(struct pool_item); 511 512 size = roundup(size, align); 513 #ifdef DIAGNOSTIC 514 if (size > palloc->pa_pagesz) 515 panic("pool_init: pool item size (%zu) too large", size); 516 #endif 517 518 /* 519 * Initialize the pool structure. 520 */ 521 LIST_INIT(&pp->pr_emptypages); 522 LIST_INIT(&pp->pr_fullpages); 523 LIST_INIT(&pp->pr_partpages); 524 pp->pr_cache = NULL; 525 pp->pr_curpage = NULL; 526 pp->pr_npages = 0; 527 pp->pr_minitems = 0; 528 pp->pr_minpages = 0; 529 pp->pr_maxpages = UINT_MAX; 530 pp->pr_roflags = flags; 531 pp->pr_flags = 0; 532 pp->pr_size = size; 533 pp->pr_align = align; 534 pp->pr_wchan = wchan; 535 pp->pr_alloc = palloc; 536 pp->pr_nitems = 0; 537 pp->pr_nout = 0; 538 pp->pr_hardlimit = UINT_MAX; 539 pp->pr_hardlimit_warning = NULL; 540 pp->pr_hardlimit_ratecap.tv_sec = 0; 541 pp->pr_hardlimit_ratecap.tv_usec = 0; 542 pp->pr_hardlimit_warning_last.tv_sec = 0; 543 pp->pr_hardlimit_warning_last.tv_usec = 0; 544 pp->pr_drain_hook = NULL; 545 pp->pr_drain_hook_arg = NULL; 546 pp->pr_freecheck = NULL; 547 548 /* 549 * Decide whether to put the page header off page to avoid 550 * wasting too large a part of the page or too big item. 551 * Off-page page headers go on a hash table, so we can match 552 * a returned item with its header based on the page address. 553 * We use 1/16 of the page size and about 8 times of the item 554 * size as the threshold (XXX: tune) 555 * 556 * However, we'll put the header into the page if we can put 557 * it without wasting any items. 558 * 559 * Silently enforce `0 <= ioff < align'. 560 */ 561 pp->pr_itemoffset = ioff %= align; 562 /* See the comment below about reserved bytes. */ 563 trysize = palloc->pa_pagesz - ((align - ioff) % align); 564 phsize = ALIGN(sizeof(struct pool_item_header)); 565 if (pp->pr_roflags & PR_PHINPAGE || 566 ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 && 567 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) || 568 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) { 569 /* Use the end of the page for the page header */ 570 pp->pr_roflags |= PR_PHINPAGE; 571 pp->pr_phoffset = off = palloc->pa_pagesz - phsize; 572 } else { 573 /* The page header will be taken from our page header pool */ 574 pp->pr_phoffset = 0; 575 off = palloc->pa_pagesz; 576 SPLAY_INIT(&pp->pr_phtree); 577 } 578 579 /* 580 * Alignment is to take place at `ioff' within the item. This means 581 * we must reserve up to `align - 1' bytes on the page to allow 582 * appropriate positioning of each item. 583 */ 584 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; 585 KASSERT(pp->pr_itemsperpage != 0); 586 if ((pp->pr_roflags & PR_NOTOUCH)) { 587 int idx; 588 589 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx); 590 idx++) { 591 /* nothing */ 592 } 593 if (idx >= PHPOOL_MAX) { 594 /* 595 * if you see this panic, consider to tweak 596 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM. 597 */ 598 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH", 599 pp->pr_wchan, pp->pr_itemsperpage); 600 } 601 pp->pr_phpool = &phpool[idx]; 602 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) { 603 pp->pr_phpool = &phpool[0]; 604 } 605 #if defined(DIAGNOSTIC) 606 else { 607 pp->pr_phpool = NULL; 608 } 609 #endif 610 611 /* 612 * Use the slack between the chunks and the page header 613 * for "cache coloring". 614 */ 615 slack = off - pp->pr_itemsperpage * pp->pr_size; 616 pp->pr_maxcolor = (slack / align) * align; 617 pp->pr_curcolor = 0; 618 619 pp->pr_nget = 0; 620 pp->pr_nfail = 0; 621 pp->pr_nput = 0; 622 pp->pr_npagealloc = 0; 623 pp->pr_npagefree = 0; 624 pp->pr_hiwat = 0; 625 pp->pr_nidle = 0; 626 pp->pr_refcnt = 0; 627 628 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl); 629 cv_init(&pp->pr_cv, wchan); 630 pp->pr_ipl = ipl; 631 632 /* Insert into the list of all pools. */ 633 if (!cold) 634 mutex_enter(&pool_head_lock); 635 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 636 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0) 637 break; 638 } 639 if (pp1 == NULL) 640 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 641 else 642 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist); 643 if (!cold) 644 mutex_exit(&pool_head_lock); 645 646 /* Insert this into the list of pools using this allocator. */ 647 if (!cold) 648 mutex_enter(&palloc->pa_lock); 649 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list); 650 if (!cold) 651 mutex_exit(&palloc->pa_lock); 652 } 653 654 /* 655 * De-commision a pool resource. 656 */ 657 void 658 pool_destroy(struct pool *pp) 659 { 660 struct pool_pagelist pq; 661 struct pool_item_header *ph; 662 663 /* Remove from global pool list */ 664 mutex_enter(&pool_head_lock); 665 while (pp->pr_refcnt != 0) 666 cv_wait(&pool_busy, &pool_head_lock); 667 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 668 if (drainpp == pp) 669 drainpp = NULL; 670 mutex_exit(&pool_head_lock); 671 672 /* Remove this pool from its allocator's list of pools. */ 673 mutex_enter(&pp->pr_alloc->pa_lock); 674 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list); 675 mutex_exit(&pp->pr_alloc->pa_lock); 676 677 mutex_enter(&pool_allocator_lock); 678 if (--pp->pr_alloc->pa_refcnt == 0) 679 mutex_destroy(&pp->pr_alloc->pa_lock); 680 mutex_exit(&pool_allocator_lock); 681 682 mutex_enter(&pp->pr_lock); 683 684 KASSERT(pp->pr_cache == NULL); 685 686 #ifdef DIAGNOSTIC 687 if (pp->pr_nout != 0) { 688 panic("pool_destroy: pool busy: still out: %u", 689 pp->pr_nout); 690 } 691 #endif 692 693 KASSERT(LIST_EMPTY(&pp->pr_fullpages)); 694 KASSERT(LIST_EMPTY(&pp->pr_partpages)); 695 696 /* Remove all pages */ 697 LIST_INIT(&pq); 698 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 699 pr_rmpage(pp, ph, &pq); 700 701 mutex_exit(&pp->pr_lock); 702 703 pr_pagelist_free(pp, &pq); 704 cv_destroy(&pp->pr_cv); 705 mutex_destroy(&pp->pr_lock); 706 } 707 708 void 709 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg) 710 { 711 712 /* XXX no locking -- must be used just after pool_init() */ 713 #ifdef DIAGNOSTIC 714 if (pp->pr_drain_hook != NULL) 715 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan); 716 #endif 717 pp->pr_drain_hook = fn; 718 pp->pr_drain_hook_arg = arg; 719 } 720 721 static struct pool_item_header * 722 pool_alloc_item_header(struct pool *pp, void *storage, int flags) 723 { 724 struct pool_item_header *ph; 725 726 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 727 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset); 728 else 729 ph = pool_get(pp->pr_phpool, flags); 730 731 return (ph); 732 } 733 734 /* 735 * Grab an item from the pool. 736 */ 737 void * 738 pool_get(struct pool *pp, int flags) 739 { 740 struct pool_item *pi; 741 struct pool_item_header *ph; 742 void *v; 743 744 #ifdef DIAGNOSTIC 745 if (pp->pr_itemsperpage == 0) 746 panic("pool_get: pool '%s': pr_itemsperpage is zero, " 747 "pool not initialized?", pp->pr_wchan); 748 if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE && 749 !cold && panicstr == NULL) 750 panic("pool '%s' is IPL_NONE, but called from " 751 "interrupt context\n", pp->pr_wchan); 752 #endif 753 if (flags & PR_WAITOK) { 754 ASSERT_SLEEPABLE(); 755 } 756 757 mutex_enter(&pp->pr_lock); 758 startover: 759 /* 760 * Check to see if we've reached the hard limit. If we have, 761 * and we can wait, then wait until an item has been returned to 762 * the pool. 763 */ 764 #ifdef DIAGNOSTIC 765 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) { 766 mutex_exit(&pp->pr_lock); 767 panic("pool_get: %s: crossed hard limit", pp->pr_wchan); 768 } 769 #endif 770 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 771 if (pp->pr_drain_hook != NULL) { 772 /* 773 * Since the drain hook is going to free things 774 * back to the pool, unlock, call the hook, re-lock, 775 * and check the hardlimit condition again. 776 */ 777 mutex_exit(&pp->pr_lock); 778 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 779 mutex_enter(&pp->pr_lock); 780 if (pp->pr_nout < pp->pr_hardlimit) 781 goto startover; 782 } 783 784 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 785 /* 786 * XXX: A warning isn't logged in this case. Should 787 * it be? 788 */ 789 pp->pr_flags |= PR_WANTED; 790 cv_wait(&pp->pr_cv, &pp->pr_lock); 791 goto startover; 792 } 793 794 /* 795 * Log a message that the hard limit has been hit. 796 */ 797 if (pp->pr_hardlimit_warning != NULL && 798 ratecheck(&pp->pr_hardlimit_warning_last, 799 &pp->pr_hardlimit_ratecap)) 800 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 801 802 pp->pr_nfail++; 803 804 mutex_exit(&pp->pr_lock); 805 return (NULL); 806 } 807 808 /* 809 * The convention we use is that if `curpage' is not NULL, then 810 * it points at a non-empty bucket. In particular, `curpage' 811 * never points at a page header which has PR_PHINPAGE set and 812 * has no items in its bucket. 813 */ 814 if ((ph = pp->pr_curpage) == NULL) { 815 int error; 816 817 #ifdef DIAGNOSTIC 818 if (pp->pr_nitems != 0) { 819 mutex_exit(&pp->pr_lock); 820 printf("pool_get: %s: curpage NULL, nitems %u\n", 821 pp->pr_wchan, pp->pr_nitems); 822 panic("pool_get: nitems inconsistent"); 823 } 824 #endif 825 826 /* 827 * Call the back-end page allocator for more memory. 828 * Release the pool lock, as the back-end page allocator 829 * may block. 830 */ 831 error = pool_grow(pp, flags); 832 if (error != 0) { 833 /* 834 * We were unable to allocate a page or item 835 * header, but we released the lock during 836 * allocation, so perhaps items were freed 837 * back to the pool. Check for this case. 838 */ 839 if (pp->pr_curpage != NULL) 840 goto startover; 841 842 pp->pr_nfail++; 843 mutex_exit(&pp->pr_lock); 844 return (NULL); 845 } 846 847 /* Start the allocation process over. */ 848 goto startover; 849 } 850 if (pp->pr_roflags & PR_NOTOUCH) { 851 #ifdef DIAGNOSTIC 852 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) { 853 mutex_exit(&pp->pr_lock); 854 panic("pool_get: %s: page empty", pp->pr_wchan); 855 } 856 #endif 857 v = pr_item_notouch_get(pp, ph); 858 } else { 859 v = pi = LIST_FIRST(&ph->ph_itemlist); 860 if (__predict_false(v == NULL)) { 861 mutex_exit(&pp->pr_lock); 862 panic("pool_get: %s: page empty", pp->pr_wchan); 863 } 864 #ifdef DIAGNOSTIC 865 if (__predict_false(pp->pr_nitems == 0)) { 866 mutex_exit(&pp->pr_lock); 867 printf("pool_get: %s: items on itemlist, nitems %u\n", 868 pp->pr_wchan, pp->pr_nitems); 869 panic("pool_get: nitems inconsistent"); 870 } 871 #endif 872 873 #ifdef DIAGNOSTIC 874 if (__predict_false(pi->pi_magic != PI_MAGIC)) { 875 panic("pool_get(%s): free list modified: " 876 "magic=%x; page %p; item addr %p\n", 877 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 878 } 879 #endif 880 881 /* 882 * Remove from item list. 883 */ 884 LIST_REMOVE(pi, pi_list); 885 } 886 pp->pr_nitems--; 887 pp->pr_nout++; 888 if (ph->ph_nmissing == 0) { 889 #ifdef DIAGNOSTIC 890 if (__predict_false(pp->pr_nidle == 0)) 891 panic("pool_get: nidle inconsistent"); 892 #endif 893 pp->pr_nidle--; 894 895 /* 896 * This page was previously empty. Move it to the list of 897 * partially-full pages. This page is already curpage. 898 */ 899 LIST_REMOVE(ph, ph_pagelist); 900 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 901 } 902 ph->ph_nmissing++; 903 if (ph->ph_nmissing == pp->pr_itemsperpage) { 904 #ifdef DIAGNOSTIC 905 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 && 906 !LIST_EMPTY(&ph->ph_itemlist))) { 907 mutex_exit(&pp->pr_lock); 908 panic("pool_get: %s: nmissing inconsistent", 909 pp->pr_wchan); 910 } 911 #endif 912 /* 913 * This page is now full. Move it to the full list 914 * and select a new current page. 915 */ 916 LIST_REMOVE(ph, ph_pagelist); 917 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist); 918 pool_update_curpage(pp); 919 } 920 921 pp->pr_nget++; 922 923 /* 924 * If we have a low water mark and we are now below that low 925 * water mark, add more items to the pool. 926 */ 927 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 928 /* 929 * XXX: Should we log a warning? Should we set up a timeout 930 * to try again in a second or so? The latter could break 931 * a caller's assumptions about interrupt protection, etc. 932 */ 933 } 934 935 mutex_exit(&pp->pr_lock); 936 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0); 937 FREECHECK_OUT(&pp->pr_freecheck, v); 938 return (v); 939 } 940 941 /* 942 * Internal version of pool_put(). Pool is already locked/entered. 943 */ 944 static void 945 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq) 946 { 947 struct pool_item *pi = v; 948 struct pool_item_header *ph; 949 950 KASSERT(mutex_owned(&pp->pr_lock)); 951 FREECHECK_IN(&pp->pr_freecheck, v); 952 LOCKDEBUG_MEM_CHECK(v, pp->pr_size); 953 954 #ifdef DIAGNOSTIC 955 if (__predict_false(pp->pr_nout == 0)) { 956 printf("pool %s: putting with none out\n", 957 pp->pr_wchan); 958 panic("pool_put"); 959 } 960 #endif 961 962 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) { 963 panic("pool_put: %s: page header missing", pp->pr_wchan); 964 } 965 966 /* 967 * Return to item list. 968 */ 969 if (pp->pr_roflags & PR_NOTOUCH) { 970 pr_item_notouch_put(pp, ph, v); 971 } else { 972 #ifdef DIAGNOSTIC 973 pi->pi_magic = PI_MAGIC; 974 #endif 975 #ifdef DEBUG 976 { 977 int i, *ip = v; 978 979 for (i = 0; i < pp->pr_size / sizeof(int); i++) { 980 *ip++ = PI_MAGIC; 981 } 982 } 983 #endif 984 985 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 986 } 987 KDASSERT(ph->ph_nmissing != 0); 988 ph->ph_nmissing--; 989 pp->pr_nput++; 990 pp->pr_nitems++; 991 pp->pr_nout--; 992 993 /* Cancel "pool empty" condition if it exists */ 994 if (pp->pr_curpage == NULL) 995 pp->pr_curpage = ph; 996 997 if (pp->pr_flags & PR_WANTED) { 998 pp->pr_flags &= ~PR_WANTED; 999 cv_broadcast(&pp->pr_cv); 1000 } 1001 1002 /* 1003 * If this page is now empty, do one of two things: 1004 * 1005 * (1) If we have more pages than the page high water mark, 1006 * free the page back to the system. ONLY CONSIDER 1007 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE 1008 * CLAIM. 1009 * 1010 * (2) Otherwise, move the page to the empty page list. 1011 * 1012 * Either way, select a new current page (so we use a partially-full 1013 * page if one is available). 1014 */ 1015 if (ph->ph_nmissing == 0) { 1016 pp->pr_nidle++; 1017 if (pp->pr_npages > pp->pr_minpages && 1018 pp->pr_npages > pp->pr_maxpages) { 1019 pr_rmpage(pp, ph, pq); 1020 } else { 1021 LIST_REMOVE(ph, ph_pagelist); 1022 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1023 1024 /* 1025 * Update the timestamp on the page. A page must 1026 * be idle for some period of time before it can 1027 * be reclaimed by the pagedaemon. This minimizes 1028 * ping-pong'ing for memory. 1029 * 1030 * note for 64-bit time_t: truncating to 32-bit is not 1031 * a problem for our usage. 1032 */ 1033 ph->ph_time = time_uptime; 1034 } 1035 pool_update_curpage(pp); 1036 } 1037 1038 /* 1039 * If the page was previously completely full, move it to the 1040 * partially-full list and make it the current page. The next 1041 * allocation will get the item from this page, instead of 1042 * further fragmenting the pool. 1043 */ 1044 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 1045 LIST_REMOVE(ph, ph_pagelist); 1046 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1047 pp->pr_curpage = ph; 1048 } 1049 } 1050 1051 void 1052 pool_put(struct pool *pp, void *v) 1053 { 1054 struct pool_pagelist pq; 1055 1056 LIST_INIT(&pq); 1057 1058 mutex_enter(&pp->pr_lock); 1059 pool_do_put(pp, v, &pq); 1060 mutex_exit(&pp->pr_lock); 1061 1062 pr_pagelist_free(pp, &pq); 1063 } 1064 1065 /* 1066 * pool_grow: grow a pool by a page. 1067 * 1068 * => called with pool locked. 1069 * => unlock and relock the pool. 1070 * => return with pool locked. 1071 */ 1072 1073 static int 1074 pool_grow(struct pool *pp, int flags) 1075 { 1076 struct pool_item_header *ph = NULL; 1077 char *cp; 1078 1079 mutex_exit(&pp->pr_lock); 1080 cp = pool_allocator_alloc(pp, flags); 1081 if (__predict_true(cp != NULL)) { 1082 ph = pool_alloc_item_header(pp, cp, flags); 1083 } 1084 if (__predict_false(cp == NULL || ph == NULL)) { 1085 if (cp != NULL) { 1086 pool_allocator_free(pp, cp); 1087 } 1088 mutex_enter(&pp->pr_lock); 1089 return ENOMEM; 1090 } 1091 1092 mutex_enter(&pp->pr_lock); 1093 pool_prime_page(pp, cp, ph); 1094 pp->pr_npagealloc++; 1095 return 0; 1096 } 1097 1098 /* 1099 * Add N items to the pool. 1100 */ 1101 int 1102 pool_prime(struct pool *pp, int n) 1103 { 1104 int newpages; 1105 int error = 0; 1106 1107 mutex_enter(&pp->pr_lock); 1108 1109 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1110 1111 while (newpages-- > 0) { 1112 error = pool_grow(pp, PR_NOWAIT); 1113 if (error) { 1114 break; 1115 } 1116 pp->pr_minpages++; 1117 } 1118 1119 if (pp->pr_minpages >= pp->pr_maxpages) 1120 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1121 1122 mutex_exit(&pp->pr_lock); 1123 return error; 1124 } 1125 1126 /* 1127 * Add a page worth of items to the pool. 1128 * 1129 * Note, we must be called with the pool descriptor LOCKED. 1130 */ 1131 static void 1132 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph) 1133 { 1134 struct pool_item *pi; 1135 void *cp = storage; 1136 const unsigned int align = pp->pr_align; 1137 const unsigned int ioff = pp->pr_itemoffset; 1138 int n; 1139 1140 KASSERT(mutex_owned(&pp->pr_lock)); 1141 1142 #ifdef DIAGNOSTIC 1143 if ((pp->pr_roflags & PR_NOALIGN) == 0 && 1144 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0) 1145 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan); 1146 #endif 1147 1148 /* 1149 * Insert page header. 1150 */ 1151 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1152 LIST_INIT(&ph->ph_itemlist); 1153 ph->ph_page = storage; 1154 ph->ph_nmissing = 0; 1155 ph->ph_time = time_uptime; 1156 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 1157 SPLAY_INSERT(phtree, &pp->pr_phtree, ph); 1158 1159 pp->pr_nidle++; 1160 1161 /* 1162 * Color this page. 1163 */ 1164 ph->ph_off = pp->pr_curcolor; 1165 cp = (char *)cp + ph->ph_off; 1166 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1167 pp->pr_curcolor = 0; 1168 1169 /* 1170 * Adjust storage to apply aligment to `pr_itemoffset' in each item. 1171 */ 1172 if (ioff != 0) 1173 cp = (char *)cp + align - ioff; 1174 1175 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); 1176 1177 /* 1178 * Insert remaining chunks on the bucket list. 1179 */ 1180 n = pp->pr_itemsperpage; 1181 pp->pr_nitems += n; 1182 1183 if (pp->pr_roflags & PR_NOTOUCH) { 1184 pr_item_notouch_init(pp, ph); 1185 } else { 1186 while (n--) { 1187 pi = (struct pool_item *)cp; 1188 1189 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0); 1190 1191 /* Insert on page list */ 1192 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1193 #ifdef DIAGNOSTIC 1194 pi->pi_magic = PI_MAGIC; 1195 #endif 1196 cp = (char *)cp + pp->pr_size; 1197 1198 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); 1199 } 1200 } 1201 1202 /* 1203 * If the pool was depleted, point at the new page. 1204 */ 1205 if (pp->pr_curpage == NULL) 1206 pp->pr_curpage = ph; 1207 1208 if (++pp->pr_npages > pp->pr_hiwat) 1209 pp->pr_hiwat = pp->pr_npages; 1210 } 1211 1212 /* 1213 * Used by pool_get() when nitems drops below the low water mark. This 1214 * is used to catch up pr_nitems with the low water mark. 1215 * 1216 * Note 1, we never wait for memory here, we let the caller decide what to do. 1217 * 1218 * Note 2, we must be called with the pool already locked, and we return 1219 * with it locked. 1220 */ 1221 static int 1222 pool_catchup(struct pool *pp) 1223 { 1224 int error = 0; 1225 1226 while (POOL_NEEDS_CATCHUP(pp)) { 1227 error = pool_grow(pp, PR_NOWAIT); 1228 if (error) { 1229 break; 1230 } 1231 } 1232 return error; 1233 } 1234 1235 static void 1236 pool_update_curpage(struct pool *pp) 1237 { 1238 1239 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages); 1240 if (pp->pr_curpage == NULL) { 1241 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages); 1242 } 1243 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) || 1244 (pp->pr_curpage != NULL && pp->pr_nitems > 0)); 1245 } 1246 1247 void 1248 pool_setlowat(struct pool *pp, int n) 1249 { 1250 1251 mutex_enter(&pp->pr_lock); 1252 1253 pp->pr_minitems = n; 1254 pp->pr_minpages = (n == 0) 1255 ? 0 1256 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1257 1258 /* Make sure we're caught up with the newly-set low water mark. */ 1259 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1260 /* 1261 * XXX: Should we log a warning? Should we set up a timeout 1262 * to try again in a second or so? The latter could break 1263 * a caller's assumptions about interrupt protection, etc. 1264 */ 1265 } 1266 1267 mutex_exit(&pp->pr_lock); 1268 } 1269 1270 void 1271 pool_sethiwat(struct pool *pp, int n) 1272 { 1273 1274 mutex_enter(&pp->pr_lock); 1275 1276 pp->pr_maxpages = (n == 0) 1277 ? 0 1278 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1279 1280 mutex_exit(&pp->pr_lock); 1281 } 1282 1283 void 1284 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) 1285 { 1286 1287 mutex_enter(&pp->pr_lock); 1288 1289 pp->pr_hardlimit = n; 1290 pp->pr_hardlimit_warning = warnmess; 1291 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1292 pp->pr_hardlimit_warning_last.tv_sec = 0; 1293 pp->pr_hardlimit_warning_last.tv_usec = 0; 1294 1295 /* 1296 * In-line version of pool_sethiwat(), because we don't want to 1297 * release the lock. 1298 */ 1299 pp->pr_maxpages = (n == 0) 1300 ? 0 1301 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1302 1303 mutex_exit(&pp->pr_lock); 1304 } 1305 1306 /* 1307 * Release all complete pages that have not been used recently. 1308 * 1309 * Must not be called from interrupt context. 1310 */ 1311 int 1312 pool_reclaim(struct pool *pp) 1313 { 1314 struct pool_item_header *ph, *phnext; 1315 struct pool_pagelist pq; 1316 uint32_t curtime; 1317 bool klock; 1318 int rv; 1319 1320 KASSERT(!cpu_intr_p() && !cpu_softintr_p()); 1321 1322 if (pp->pr_drain_hook != NULL) { 1323 /* 1324 * The drain hook must be called with the pool unlocked. 1325 */ 1326 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT); 1327 } 1328 1329 /* 1330 * XXXSMP Because we do not want to cause non-MPSAFE code 1331 * to block. 1332 */ 1333 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK || 1334 pp->pr_ipl == IPL_SOFTSERIAL) { 1335 KERNEL_LOCK(1, NULL); 1336 klock = true; 1337 } else 1338 klock = false; 1339 1340 /* Reclaim items from the pool's cache (if any). */ 1341 if (pp->pr_cache != NULL) 1342 pool_cache_invalidate(pp->pr_cache); 1343 1344 if (mutex_tryenter(&pp->pr_lock) == 0) { 1345 if (klock) { 1346 KERNEL_UNLOCK_ONE(NULL); 1347 } 1348 return (0); 1349 } 1350 1351 LIST_INIT(&pq); 1352 1353 curtime = time_uptime; 1354 1355 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { 1356 phnext = LIST_NEXT(ph, ph_pagelist); 1357 1358 /* Check our minimum page claim */ 1359 if (pp->pr_npages <= pp->pr_minpages) 1360 break; 1361 1362 KASSERT(ph->ph_nmissing == 0); 1363 if (curtime - ph->ph_time < pool_inactive_time) 1364 continue; 1365 1366 /* 1367 * If freeing this page would put us below 1368 * the low water mark, stop now. 1369 */ 1370 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1371 pp->pr_minitems) 1372 break; 1373 1374 pr_rmpage(pp, ph, &pq); 1375 } 1376 1377 mutex_exit(&pp->pr_lock); 1378 1379 if (LIST_EMPTY(&pq)) 1380 rv = 0; 1381 else { 1382 pr_pagelist_free(pp, &pq); 1383 rv = 1; 1384 } 1385 1386 if (klock) { 1387 KERNEL_UNLOCK_ONE(NULL); 1388 } 1389 1390 return (rv); 1391 } 1392 1393 /* 1394 * Drain pools, one at a time. The drained pool is returned within ppp. 1395 * 1396 * Note, must never be called from interrupt context. 1397 */ 1398 bool 1399 pool_drain(struct pool **ppp) 1400 { 1401 bool reclaimed; 1402 struct pool *pp; 1403 1404 KASSERT(!TAILQ_EMPTY(&pool_head)); 1405 1406 pp = NULL; 1407 1408 /* Find next pool to drain, and add a reference. */ 1409 mutex_enter(&pool_head_lock); 1410 do { 1411 if (drainpp == NULL) { 1412 drainpp = TAILQ_FIRST(&pool_head); 1413 } 1414 if (drainpp != NULL) { 1415 pp = drainpp; 1416 drainpp = TAILQ_NEXT(pp, pr_poollist); 1417 } 1418 /* 1419 * Skip completely idle pools. We depend on at least 1420 * one pool in the system being active. 1421 */ 1422 } while (pp == NULL || pp->pr_npages == 0); 1423 pp->pr_refcnt++; 1424 mutex_exit(&pool_head_lock); 1425 1426 /* Drain the cache (if any) and pool.. */ 1427 reclaimed = pool_reclaim(pp); 1428 1429 /* Finally, unlock the pool. */ 1430 mutex_enter(&pool_head_lock); 1431 pp->pr_refcnt--; 1432 cv_broadcast(&pool_busy); 1433 mutex_exit(&pool_head_lock); 1434 1435 if (ppp != NULL) 1436 *ppp = pp; 1437 1438 return reclaimed; 1439 } 1440 1441 /* 1442 * Diagnostic helpers. 1443 */ 1444 1445 void 1446 pool_printall(const char *modif, void (*pr)(const char *, ...)) 1447 { 1448 struct pool *pp; 1449 1450 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1451 pool_printit(pp, modif, pr); 1452 } 1453 } 1454 1455 void 1456 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1457 { 1458 1459 if (pp == NULL) { 1460 (*pr)("Must specify a pool to print.\n"); 1461 return; 1462 } 1463 1464 pool_print1(pp, modif, pr); 1465 } 1466 1467 static void 1468 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl, 1469 void (*pr)(const char *, ...)) 1470 { 1471 struct pool_item_header *ph; 1472 #ifdef DIAGNOSTIC 1473 struct pool_item *pi; 1474 #endif 1475 1476 LIST_FOREACH(ph, pl, ph_pagelist) { 1477 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n", 1478 ph->ph_page, ph->ph_nmissing, ph->ph_time); 1479 #ifdef DIAGNOSTIC 1480 if (!(pp->pr_roflags & PR_NOTOUCH)) { 1481 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1482 if (pi->pi_magic != PI_MAGIC) { 1483 (*pr)("\t\t\titem %p, magic 0x%x\n", 1484 pi, pi->pi_magic); 1485 } 1486 } 1487 } 1488 #endif 1489 } 1490 } 1491 1492 static void 1493 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1494 { 1495 struct pool_item_header *ph; 1496 pool_cache_t pc; 1497 pcg_t *pcg; 1498 pool_cache_cpu_t *cc; 1499 uint64_t cpuhit, cpumiss; 1500 int i, print_log = 0, print_pagelist = 0, print_cache = 0; 1501 char c; 1502 1503 while ((c = *modif++) != '\0') { 1504 if (c == 'l') 1505 print_log = 1; 1506 if (c == 'p') 1507 print_pagelist = 1; 1508 if (c == 'c') 1509 print_cache = 1; 1510 } 1511 1512 if ((pc = pp->pr_cache) != NULL) { 1513 (*pr)("POOL CACHE"); 1514 } else { 1515 (*pr)("POOL"); 1516 } 1517 1518 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1519 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1520 pp->pr_roflags); 1521 (*pr)("\talloc %p\n", pp->pr_alloc); 1522 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1523 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1524 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1525 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1526 1527 (*pr)("\tnget %lu, nfail %lu, nput %lu\n", 1528 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1529 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1530 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1531 1532 if (print_pagelist == 0) 1533 goto skip_pagelist; 1534 1535 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1536 (*pr)("\n\tempty page list:\n"); 1537 pool_print_pagelist(pp, &pp->pr_emptypages, pr); 1538 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL) 1539 (*pr)("\n\tfull page list:\n"); 1540 pool_print_pagelist(pp, &pp->pr_fullpages, pr); 1541 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL) 1542 (*pr)("\n\tpartial-page list:\n"); 1543 pool_print_pagelist(pp, &pp->pr_partpages, pr); 1544 1545 if (pp->pr_curpage == NULL) 1546 (*pr)("\tno current page\n"); 1547 else 1548 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1549 1550 skip_pagelist: 1551 if (print_log == 0) 1552 goto skip_log; 1553 1554 (*pr)("\n"); 1555 1556 skip_log: 1557 1558 #define PR_GROUPLIST(pcg) \ 1559 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \ 1560 for (i = 0; i < pcg->pcg_size; i++) { \ 1561 if (pcg->pcg_objects[i].pcgo_pa != \ 1562 POOL_PADDR_INVALID) { \ 1563 (*pr)("\t\t\t%p, 0x%llx\n", \ 1564 pcg->pcg_objects[i].pcgo_va, \ 1565 (unsigned long long) \ 1566 pcg->pcg_objects[i].pcgo_pa); \ 1567 } else { \ 1568 (*pr)("\t\t\t%p\n", \ 1569 pcg->pcg_objects[i].pcgo_va); \ 1570 } \ 1571 } 1572 1573 if (pc != NULL) { 1574 cpuhit = 0; 1575 cpumiss = 0; 1576 for (i = 0; i < __arraycount(pc->pc_cpus); i++) { 1577 if ((cc = pc->pc_cpus[i]) == NULL) 1578 continue; 1579 cpuhit += cc->cc_hits; 1580 cpumiss += cc->cc_misses; 1581 } 1582 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss); 1583 (*pr)("\tcache layer hits %llu misses %llu\n", 1584 pc->pc_hits, pc->pc_misses); 1585 (*pr)("\tcache layer entry uncontended %llu contended %llu\n", 1586 pc->pc_hits + pc->pc_misses - pc->pc_contended, 1587 pc->pc_contended); 1588 (*pr)("\tcache layer empty groups %u full groups %u\n", 1589 pc->pc_nempty, pc->pc_nfull); 1590 if (print_cache) { 1591 (*pr)("\tfull cache groups:\n"); 1592 for (pcg = pc->pc_fullgroups; pcg != NULL; 1593 pcg = pcg->pcg_next) { 1594 PR_GROUPLIST(pcg); 1595 } 1596 (*pr)("\tempty cache groups:\n"); 1597 for (pcg = pc->pc_emptygroups; pcg != NULL; 1598 pcg = pcg->pcg_next) { 1599 PR_GROUPLIST(pcg); 1600 } 1601 } 1602 } 1603 #undef PR_GROUPLIST 1604 } 1605 1606 static int 1607 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph) 1608 { 1609 struct pool_item *pi; 1610 void *page; 1611 int n; 1612 1613 if ((pp->pr_roflags & PR_NOALIGN) == 0) { 1614 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask); 1615 if (page != ph->ph_page && 1616 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1617 if (label != NULL) 1618 printf("%s: ", label); 1619 printf("pool(%p:%s): page inconsistency: page %p;" 1620 " at page head addr %p (p %p)\n", pp, 1621 pp->pr_wchan, ph->ph_page, 1622 ph, page); 1623 return 1; 1624 } 1625 } 1626 1627 if ((pp->pr_roflags & PR_NOTOUCH) != 0) 1628 return 0; 1629 1630 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0; 1631 pi != NULL; 1632 pi = LIST_NEXT(pi,pi_list), n++) { 1633 1634 #ifdef DIAGNOSTIC 1635 if (pi->pi_magic != PI_MAGIC) { 1636 if (label != NULL) 1637 printf("%s: ", label); 1638 printf("pool(%s): free list modified: magic=%x;" 1639 " page %p; item ordinal %d; addr %p\n", 1640 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1641 n, pi); 1642 panic("pool"); 1643 } 1644 #endif 1645 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 1646 continue; 1647 } 1648 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask); 1649 if (page == ph->ph_page) 1650 continue; 1651 1652 if (label != NULL) 1653 printf("%s: ", label); 1654 printf("pool(%p:%s): page inconsistency: page %p;" 1655 " item ordinal %d; addr %p (p %p)\n", pp, 1656 pp->pr_wchan, ph->ph_page, 1657 n, pi, page); 1658 return 1; 1659 } 1660 return 0; 1661 } 1662 1663 1664 int 1665 pool_chk(struct pool *pp, const char *label) 1666 { 1667 struct pool_item_header *ph; 1668 int r = 0; 1669 1670 mutex_enter(&pp->pr_lock); 1671 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 1672 r = pool_chk_page(pp, label, ph); 1673 if (r) { 1674 goto out; 1675 } 1676 } 1677 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 1678 r = pool_chk_page(pp, label, ph); 1679 if (r) { 1680 goto out; 1681 } 1682 } 1683 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 1684 r = pool_chk_page(pp, label, ph); 1685 if (r) { 1686 goto out; 1687 } 1688 } 1689 1690 out: 1691 mutex_exit(&pp->pr_lock); 1692 return (r); 1693 } 1694 1695 /* 1696 * pool_cache_init: 1697 * 1698 * Initialize a pool cache. 1699 */ 1700 pool_cache_t 1701 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags, 1702 const char *wchan, struct pool_allocator *palloc, int ipl, 1703 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg) 1704 { 1705 pool_cache_t pc; 1706 1707 pc = pool_get(&cache_pool, PR_WAITOK); 1708 if (pc == NULL) 1709 return NULL; 1710 1711 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan, 1712 palloc, ipl, ctor, dtor, arg); 1713 1714 return pc; 1715 } 1716 1717 /* 1718 * pool_cache_bootstrap: 1719 * 1720 * Kernel-private version of pool_cache_init(). The caller 1721 * provides initial storage. 1722 */ 1723 void 1724 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align, 1725 u_int align_offset, u_int flags, const char *wchan, 1726 struct pool_allocator *palloc, int ipl, 1727 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), 1728 void *arg) 1729 { 1730 CPU_INFO_ITERATOR cii; 1731 pool_cache_t pc1; 1732 struct cpu_info *ci; 1733 struct pool *pp; 1734 1735 pp = &pc->pc_pool; 1736 if (palloc == NULL && ipl == IPL_NONE) 1737 palloc = &pool_allocator_nointr; 1738 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl); 1739 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl); 1740 1741 if (ctor == NULL) { 1742 ctor = (int (*)(void *, void *, int))nullop; 1743 } 1744 if (dtor == NULL) { 1745 dtor = (void (*)(void *, void *))nullop; 1746 } 1747 1748 pc->pc_emptygroups = NULL; 1749 pc->pc_fullgroups = NULL; 1750 pc->pc_partgroups = NULL; 1751 pc->pc_ctor = ctor; 1752 pc->pc_dtor = dtor; 1753 pc->pc_arg = arg; 1754 pc->pc_hits = 0; 1755 pc->pc_misses = 0; 1756 pc->pc_nempty = 0; 1757 pc->pc_npart = 0; 1758 pc->pc_nfull = 0; 1759 pc->pc_contended = 0; 1760 pc->pc_refcnt = 0; 1761 pc->pc_freecheck = NULL; 1762 1763 if ((flags & PR_LARGECACHE) != 0) { 1764 pc->pc_pcgsize = PCG_NOBJECTS_LARGE; 1765 pc->pc_pcgpool = &pcg_large_pool; 1766 } else { 1767 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL; 1768 pc->pc_pcgpool = &pcg_normal_pool; 1769 } 1770 1771 /* Allocate per-CPU caches. */ 1772 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus)); 1773 pc->pc_ncpu = 0; 1774 if (ncpu < 2) { 1775 /* XXX For sparc: boot CPU is not attached yet. */ 1776 pool_cache_cpu_init1(curcpu(), pc); 1777 } else { 1778 for (CPU_INFO_FOREACH(cii, ci)) { 1779 pool_cache_cpu_init1(ci, pc); 1780 } 1781 } 1782 1783 /* Add to list of all pools. */ 1784 if (__predict_true(!cold)) 1785 mutex_enter(&pool_head_lock); 1786 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) { 1787 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0) 1788 break; 1789 } 1790 if (pc1 == NULL) 1791 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist); 1792 else 1793 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist); 1794 if (__predict_true(!cold)) 1795 mutex_exit(&pool_head_lock); 1796 1797 membar_sync(); 1798 pp->pr_cache = pc; 1799 } 1800 1801 /* 1802 * pool_cache_destroy: 1803 * 1804 * Destroy a pool cache. 1805 */ 1806 void 1807 pool_cache_destroy(pool_cache_t pc) 1808 { 1809 1810 pool_cache_bootstrap_destroy(pc); 1811 pool_put(&cache_pool, pc); 1812 } 1813 1814 /* 1815 * pool_cache_bootstrap_destroy: 1816 * 1817 * Destroy a pool cache. 1818 */ 1819 void 1820 pool_cache_bootstrap_destroy(pool_cache_t pc) 1821 { 1822 struct pool *pp = &pc->pc_pool; 1823 u_int i; 1824 1825 /* Remove it from the global list. */ 1826 mutex_enter(&pool_head_lock); 1827 while (pc->pc_refcnt != 0) 1828 cv_wait(&pool_busy, &pool_head_lock); 1829 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist); 1830 mutex_exit(&pool_head_lock); 1831 1832 /* First, invalidate the entire cache. */ 1833 pool_cache_invalidate(pc); 1834 1835 /* Disassociate it from the pool. */ 1836 mutex_enter(&pp->pr_lock); 1837 pp->pr_cache = NULL; 1838 mutex_exit(&pp->pr_lock); 1839 1840 /* Destroy per-CPU data */ 1841 for (i = 0; i < __arraycount(pc->pc_cpus); i++) 1842 pool_cache_invalidate_cpu(pc, i); 1843 1844 /* Finally, destroy it. */ 1845 mutex_destroy(&pc->pc_lock); 1846 pool_destroy(pp); 1847 } 1848 1849 /* 1850 * pool_cache_cpu_init1: 1851 * 1852 * Called for each pool_cache whenever a new CPU is attached. 1853 */ 1854 static void 1855 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc) 1856 { 1857 pool_cache_cpu_t *cc; 1858 int index; 1859 1860 index = ci->ci_index; 1861 1862 KASSERT(index < __arraycount(pc->pc_cpus)); 1863 1864 if ((cc = pc->pc_cpus[index]) != NULL) { 1865 KASSERT(cc->cc_cpuindex == index); 1866 return; 1867 } 1868 1869 /* 1870 * The first CPU is 'free'. This needs to be the case for 1871 * bootstrap - we may not be able to allocate yet. 1872 */ 1873 if (pc->pc_ncpu == 0) { 1874 cc = &pc->pc_cpu0; 1875 pc->pc_ncpu = 1; 1876 } else { 1877 mutex_enter(&pc->pc_lock); 1878 pc->pc_ncpu++; 1879 mutex_exit(&pc->pc_lock); 1880 cc = pool_get(&cache_cpu_pool, PR_WAITOK); 1881 } 1882 1883 cc->cc_ipl = pc->pc_pool.pr_ipl; 1884 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl); 1885 cc->cc_cache = pc; 1886 cc->cc_cpuindex = index; 1887 cc->cc_hits = 0; 1888 cc->cc_misses = 0; 1889 cc->cc_current = __UNCONST(&pcg_dummy); 1890 cc->cc_previous = __UNCONST(&pcg_dummy); 1891 1892 pc->pc_cpus[index] = cc; 1893 } 1894 1895 /* 1896 * pool_cache_cpu_init: 1897 * 1898 * Called whenever a new CPU is attached. 1899 */ 1900 void 1901 pool_cache_cpu_init(struct cpu_info *ci) 1902 { 1903 pool_cache_t pc; 1904 1905 mutex_enter(&pool_head_lock); 1906 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) { 1907 pc->pc_refcnt++; 1908 mutex_exit(&pool_head_lock); 1909 1910 pool_cache_cpu_init1(ci, pc); 1911 1912 mutex_enter(&pool_head_lock); 1913 pc->pc_refcnt--; 1914 cv_broadcast(&pool_busy); 1915 } 1916 mutex_exit(&pool_head_lock); 1917 } 1918 1919 /* 1920 * pool_cache_reclaim: 1921 * 1922 * Reclaim memory from a pool cache. 1923 */ 1924 bool 1925 pool_cache_reclaim(pool_cache_t pc) 1926 { 1927 1928 return pool_reclaim(&pc->pc_pool); 1929 } 1930 1931 static void 1932 pool_cache_destruct_object1(pool_cache_t pc, void *object) 1933 { 1934 1935 (*pc->pc_dtor)(pc->pc_arg, object); 1936 pool_put(&pc->pc_pool, object); 1937 } 1938 1939 /* 1940 * pool_cache_destruct_object: 1941 * 1942 * Force destruction of an object and its release back into 1943 * the pool. 1944 */ 1945 void 1946 pool_cache_destruct_object(pool_cache_t pc, void *object) 1947 { 1948 1949 FREECHECK_IN(&pc->pc_freecheck, object); 1950 1951 pool_cache_destruct_object1(pc, object); 1952 } 1953 1954 /* 1955 * pool_cache_invalidate_groups: 1956 * 1957 * Invalidate a chain of groups and destruct all objects. 1958 */ 1959 static void 1960 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg) 1961 { 1962 void *object; 1963 pcg_t *next; 1964 int i; 1965 1966 for (; pcg != NULL; pcg = next) { 1967 next = pcg->pcg_next; 1968 1969 for (i = 0; i < pcg->pcg_avail; i++) { 1970 object = pcg->pcg_objects[i].pcgo_va; 1971 pool_cache_destruct_object1(pc, object); 1972 } 1973 1974 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) { 1975 pool_put(&pcg_large_pool, pcg); 1976 } else { 1977 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL); 1978 pool_put(&pcg_normal_pool, pcg); 1979 } 1980 } 1981 } 1982 1983 /* 1984 * pool_cache_invalidate: 1985 * 1986 * Invalidate a pool cache (destruct and release all of the 1987 * cached objects). Does not reclaim objects from the pool. 1988 * 1989 * Note: For pool caches that provide constructed objects, there 1990 * is an assumption that another level of synchronization is occurring 1991 * between the input to the constructor and the cache invalidation. 1992 * 1993 * Invalidation is a costly process and should not be called from 1994 * interrupt context. 1995 */ 1996 void 1997 pool_cache_invalidate(pool_cache_t pc) 1998 { 1999 uint64_t where; 2000 pcg_t *full, *empty, *part; 2001 2002 KASSERT(!cpu_intr_p() && !cpu_softintr_p()); 2003 2004 if (ncpu < 2 || !mp_online) { 2005 /* 2006 * We might be called early enough in the boot process 2007 * for the CPU data structures to not be fully initialized. 2008 * In this case, transfer the content of the local CPU's 2009 * cache back into global cache as only this CPU is currently 2010 * running. 2011 */ 2012 pool_cache_transfer(pc); 2013 } else { 2014 /* 2015 * Signal all CPUs that they must transfer their local 2016 * cache back to the global pool then wait for the xcall to 2017 * complete. 2018 */ 2019 where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer, 2020 pc, NULL); 2021 xc_wait(where); 2022 } 2023 2024 /* Empty pool caches, then invalidate objects */ 2025 mutex_enter(&pc->pc_lock); 2026 full = pc->pc_fullgroups; 2027 empty = pc->pc_emptygroups; 2028 part = pc->pc_partgroups; 2029 pc->pc_fullgroups = NULL; 2030 pc->pc_emptygroups = NULL; 2031 pc->pc_partgroups = NULL; 2032 pc->pc_nfull = 0; 2033 pc->pc_nempty = 0; 2034 pc->pc_npart = 0; 2035 mutex_exit(&pc->pc_lock); 2036 2037 pool_cache_invalidate_groups(pc, full); 2038 pool_cache_invalidate_groups(pc, empty); 2039 pool_cache_invalidate_groups(pc, part); 2040 } 2041 2042 /* 2043 * pool_cache_invalidate_cpu: 2044 * 2045 * Invalidate all CPU-bound cached objects in pool cache, the CPU being 2046 * identified by its associated index. 2047 * It is caller's responsibility to ensure that no operation is 2048 * taking place on this pool cache while doing this invalidation. 2049 * WARNING: as no inter-CPU locking is enforced, trying to invalidate 2050 * pool cached objects from a CPU different from the one currently running 2051 * may result in an undefined behaviour. 2052 */ 2053 static void 2054 pool_cache_invalidate_cpu(pool_cache_t pc, u_int index) 2055 { 2056 pool_cache_cpu_t *cc; 2057 pcg_t *pcg; 2058 2059 if ((cc = pc->pc_cpus[index]) == NULL) 2060 return; 2061 2062 if ((pcg = cc->cc_current) != &pcg_dummy) { 2063 pcg->pcg_next = NULL; 2064 pool_cache_invalidate_groups(pc, pcg); 2065 } 2066 if ((pcg = cc->cc_previous) != &pcg_dummy) { 2067 pcg->pcg_next = NULL; 2068 pool_cache_invalidate_groups(pc, pcg); 2069 } 2070 if (cc != &pc->pc_cpu0) 2071 pool_put(&cache_cpu_pool, cc); 2072 2073 } 2074 2075 void 2076 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg) 2077 { 2078 2079 pool_set_drain_hook(&pc->pc_pool, fn, arg); 2080 } 2081 2082 void 2083 pool_cache_setlowat(pool_cache_t pc, int n) 2084 { 2085 2086 pool_setlowat(&pc->pc_pool, n); 2087 } 2088 2089 void 2090 pool_cache_sethiwat(pool_cache_t pc, int n) 2091 { 2092 2093 pool_sethiwat(&pc->pc_pool, n); 2094 } 2095 2096 void 2097 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap) 2098 { 2099 2100 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap); 2101 } 2102 2103 static bool __noinline 2104 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp, 2105 paddr_t *pap, int flags) 2106 { 2107 pcg_t *pcg, *cur; 2108 uint64_t ncsw; 2109 pool_cache_t pc; 2110 void *object; 2111 2112 KASSERT(cc->cc_current->pcg_avail == 0); 2113 KASSERT(cc->cc_previous->pcg_avail == 0); 2114 2115 pc = cc->cc_cache; 2116 cc->cc_misses++; 2117 2118 /* 2119 * Nothing was available locally. Try and grab a group 2120 * from the cache. 2121 */ 2122 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) { 2123 ncsw = curlwp->l_ncsw; 2124 mutex_enter(&pc->pc_lock); 2125 pc->pc_contended++; 2126 2127 /* 2128 * If we context switched while locking, then 2129 * our view of the per-CPU data is invalid: 2130 * retry. 2131 */ 2132 if (curlwp->l_ncsw != ncsw) { 2133 mutex_exit(&pc->pc_lock); 2134 return true; 2135 } 2136 } 2137 2138 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) { 2139 /* 2140 * If there's a full group, release our empty 2141 * group back to the cache. Install the full 2142 * group as cc_current and return. 2143 */ 2144 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) { 2145 KASSERT(cur->pcg_avail == 0); 2146 cur->pcg_next = pc->pc_emptygroups; 2147 pc->pc_emptygroups = cur; 2148 pc->pc_nempty++; 2149 } 2150 KASSERT(pcg->pcg_avail == pcg->pcg_size); 2151 cc->cc_current = pcg; 2152 pc->pc_fullgroups = pcg->pcg_next; 2153 pc->pc_hits++; 2154 pc->pc_nfull--; 2155 mutex_exit(&pc->pc_lock); 2156 return true; 2157 } 2158 2159 /* 2160 * Nothing available locally or in cache. Take the slow 2161 * path: fetch a new object from the pool and construct 2162 * it. 2163 */ 2164 pc->pc_misses++; 2165 mutex_exit(&pc->pc_lock); 2166 splx(s); 2167 2168 object = pool_get(&pc->pc_pool, flags); 2169 *objectp = object; 2170 if (__predict_false(object == NULL)) 2171 return false; 2172 2173 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) { 2174 pool_put(&pc->pc_pool, object); 2175 *objectp = NULL; 2176 return false; 2177 } 2178 2179 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) & 2180 (pc->pc_pool.pr_align - 1)) == 0); 2181 2182 if (pap != NULL) { 2183 #ifdef POOL_VTOPHYS 2184 *pap = POOL_VTOPHYS(object); 2185 #else 2186 *pap = POOL_PADDR_INVALID; 2187 #endif 2188 } 2189 2190 FREECHECK_OUT(&pc->pc_freecheck, object); 2191 return false; 2192 } 2193 2194 /* 2195 * pool_cache_get{,_paddr}: 2196 * 2197 * Get an object from a pool cache (optionally returning 2198 * the physical address of the object). 2199 */ 2200 void * 2201 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap) 2202 { 2203 pool_cache_cpu_t *cc; 2204 pcg_t *pcg; 2205 void *object; 2206 int s; 2207 2208 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) || 2209 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL), 2210 "pool '%s' is IPL_NONE, but called from interrupt context\n", 2211 pc->pc_pool.pr_wchan); 2212 2213 if (flags & PR_WAITOK) { 2214 ASSERT_SLEEPABLE(); 2215 } 2216 2217 /* Lock out interrupts and disable preemption. */ 2218 s = splvm(); 2219 while (/* CONSTCOND */ true) { 2220 /* Try and allocate an object from the current group. */ 2221 cc = pc->pc_cpus[curcpu()->ci_index]; 2222 KASSERT(cc->cc_cache == pc); 2223 pcg = cc->cc_current; 2224 if (__predict_true(pcg->pcg_avail > 0)) { 2225 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va; 2226 if (__predict_false(pap != NULL)) 2227 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa; 2228 #if defined(DIAGNOSTIC) 2229 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL; 2230 KASSERT(pcg->pcg_avail < pcg->pcg_size); 2231 KASSERT(object != NULL); 2232 #endif 2233 cc->cc_hits++; 2234 splx(s); 2235 FREECHECK_OUT(&pc->pc_freecheck, object); 2236 return object; 2237 } 2238 2239 /* 2240 * That failed. If the previous group isn't empty, swap 2241 * it with the current group and allocate from there. 2242 */ 2243 pcg = cc->cc_previous; 2244 if (__predict_true(pcg->pcg_avail > 0)) { 2245 cc->cc_previous = cc->cc_current; 2246 cc->cc_current = pcg; 2247 continue; 2248 } 2249 2250 /* 2251 * Can't allocate from either group: try the slow path. 2252 * If get_slow() allocated an object for us, or if 2253 * no more objects are available, it will return false. 2254 * Otherwise, we need to retry. 2255 */ 2256 if (!pool_cache_get_slow(cc, s, &object, pap, flags)) 2257 break; 2258 } 2259 2260 return object; 2261 } 2262 2263 static bool __noinline 2264 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object) 2265 { 2266 struct lwp *l = curlwp; 2267 pcg_t *pcg, *cur; 2268 uint64_t ncsw; 2269 pool_cache_t pc; 2270 2271 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size); 2272 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size); 2273 2274 pc = cc->cc_cache; 2275 pcg = NULL; 2276 cc->cc_misses++; 2277 ncsw = l->l_ncsw; 2278 2279 /* 2280 * If there are no empty groups in the cache then allocate one 2281 * while still unlocked. 2282 */ 2283 if (__predict_false(pc->pc_emptygroups == NULL)) { 2284 if (__predict_true(!pool_cache_disable)) { 2285 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT); 2286 } 2287 /* 2288 * If pool_get() blocked, then our view of 2289 * the per-CPU data is invalid: retry. 2290 */ 2291 if (__predict_false(l->l_ncsw != ncsw)) { 2292 if (pcg != NULL) { 2293 pool_put(pc->pc_pcgpool, pcg); 2294 } 2295 return true; 2296 } 2297 if (__predict_true(pcg != NULL)) { 2298 pcg->pcg_avail = 0; 2299 pcg->pcg_size = pc->pc_pcgsize; 2300 } 2301 } 2302 2303 /* Lock the cache. */ 2304 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) { 2305 mutex_enter(&pc->pc_lock); 2306 pc->pc_contended++; 2307 2308 /* 2309 * If we context switched while locking, then our view of 2310 * the per-CPU data is invalid: retry. 2311 */ 2312 if (__predict_false(l->l_ncsw != ncsw)) { 2313 mutex_exit(&pc->pc_lock); 2314 if (pcg != NULL) { 2315 pool_put(pc->pc_pcgpool, pcg); 2316 } 2317 return true; 2318 } 2319 } 2320 2321 /* If there are no empty groups in the cache then allocate one. */ 2322 if (pcg == NULL && pc->pc_emptygroups != NULL) { 2323 pcg = pc->pc_emptygroups; 2324 pc->pc_emptygroups = pcg->pcg_next; 2325 pc->pc_nempty--; 2326 } 2327 2328 /* 2329 * If there's a empty group, release our full group back 2330 * to the cache. Install the empty group to the local CPU 2331 * and return. 2332 */ 2333 if (pcg != NULL) { 2334 KASSERT(pcg->pcg_avail == 0); 2335 if (__predict_false(cc->cc_previous == &pcg_dummy)) { 2336 cc->cc_previous = pcg; 2337 } else { 2338 cur = cc->cc_current; 2339 if (__predict_true(cur != &pcg_dummy)) { 2340 KASSERT(cur->pcg_avail == cur->pcg_size); 2341 cur->pcg_next = pc->pc_fullgroups; 2342 pc->pc_fullgroups = cur; 2343 pc->pc_nfull++; 2344 } 2345 cc->cc_current = pcg; 2346 } 2347 pc->pc_hits++; 2348 mutex_exit(&pc->pc_lock); 2349 return true; 2350 } 2351 2352 /* 2353 * Nothing available locally or in cache, and we didn't 2354 * allocate an empty group. Take the slow path and destroy 2355 * the object here and now. 2356 */ 2357 pc->pc_misses++; 2358 mutex_exit(&pc->pc_lock); 2359 splx(s); 2360 pool_cache_destruct_object(pc, object); 2361 2362 return false; 2363 } 2364 2365 /* 2366 * pool_cache_put{,_paddr}: 2367 * 2368 * Put an object back to the pool cache (optionally caching the 2369 * physical address of the object). 2370 */ 2371 void 2372 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa) 2373 { 2374 pool_cache_cpu_t *cc; 2375 pcg_t *pcg; 2376 int s; 2377 2378 KASSERT(object != NULL); 2379 FREECHECK_IN(&pc->pc_freecheck, object); 2380 2381 /* Lock out interrupts and disable preemption. */ 2382 s = splvm(); 2383 while (/* CONSTCOND */ true) { 2384 /* If the current group isn't full, release it there. */ 2385 cc = pc->pc_cpus[curcpu()->ci_index]; 2386 KASSERT(cc->cc_cache == pc); 2387 pcg = cc->cc_current; 2388 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2389 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object; 2390 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa; 2391 pcg->pcg_avail++; 2392 cc->cc_hits++; 2393 splx(s); 2394 return; 2395 } 2396 2397 /* 2398 * That failed. If the previous group isn't full, swap 2399 * it with the current group and try again. 2400 */ 2401 pcg = cc->cc_previous; 2402 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2403 cc->cc_previous = cc->cc_current; 2404 cc->cc_current = pcg; 2405 continue; 2406 } 2407 2408 /* 2409 * Can't free to either group: try the slow path. 2410 * If put_slow() releases the object for us, it 2411 * will return false. Otherwise we need to retry. 2412 */ 2413 if (!pool_cache_put_slow(cc, s, object)) 2414 break; 2415 } 2416 } 2417 2418 /* 2419 * pool_cache_transfer: 2420 * 2421 * Transfer objects from the per-CPU cache to the global cache. 2422 * Run within a cross-call thread. 2423 */ 2424 static void 2425 pool_cache_transfer(pool_cache_t pc) 2426 { 2427 pool_cache_cpu_t *cc; 2428 pcg_t *prev, *cur, **list; 2429 int s; 2430 2431 s = splvm(); 2432 mutex_enter(&pc->pc_lock); 2433 cc = pc->pc_cpus[curcpu()->ci_index]; 2434 cur = cc->cc_current; 2435 cc->cc_current = __UNCONST(&pcg_dummy); 2436 prev = cc->cc_previous; 2437 cc->cc_previous = __UNCONST(&pcg_dummy); 2438 if (cur != &pcg_dummy) { 2439 if (cur->pcg_avail == cur->pcg_size) { 2440 list = &pc->pc_fullgroups; 2441 pc->pc_nfull++; 2442 } else if (cur->pcg_avail == 0) { 2443 list = &pc->pc_emptygroups; 2444 pc->pc_nempty++; 2445 } else { 2446 list = &pc->pc_partgroups; 2447 pc->pc_npart++; 2448 } 2449 cur->pcg_next = *list; 2450 *list = cur; 2451 } 2452 if (prev != &pcg_dummy) { 2453 if (prev->pcg_avail == prev->pcg_size) { 2454 list = &pc->pc_fullgroups; 2455 pc->pc_nfull++; 2456 } else if (prev->pcg_avail == 0) { 2457 list = &pc->pc_emptygroups; 2458 pc->pc_nempty++; 2459 } else { 2460 list = &pc->pc_partgroups; 2461 pc->pc_npart++; 2462 } 2463 prev->pcg_next = *list; 2464 *list = prev; 2465 } 2466 mutex_exit(&pc->pc_lock); 2467 splx(s); 2468 } 2469 2470 /* 2471 * Pool backend allocators. 2472 * 2473 * Each pool has a backend allocator that handles allocation, deallocation, 2474 * and any additional draining that might be needed. 2475 * 2476 * We provide two standard allocators: 2477 * 2478 * pool_allocator_kmem - the default when no allocator is specified 2479 * 2480 * pool_allocator_nointr - used for pools that will not be accessed 2481 * in interrupt context. 2482 */ 2483 void *pool_page_alloc(struct pool *, int); 2484 void pool_page_free(struct pool *, void *); 2485 2486 #ifdef POOL_SUBPAGE 2487 struct pool_allocator pool_allocator_kmem_fullpage = { 2488 .pa_alloc = pool_page_alloc, 2489 .pa_free = pool_page_free, 2490 .pa_pagesz = 0 2491 }; 2492 #else 2493 struct pool_allocator pool_allocator_kmem = { 2494 .pa_alloc = pool_page_alloc, 2495 .pa_free = pool_page_free, 2496 .pa_pagesz = 0 2497 }; 2498 #endif 2499 2500 #ifdef POOL_SUBPAGE 2501 struct pool_allocator pool_allocator_nointr_fullpage = { 2502 .pa_alloc = pool_page_alloc, 2503 .pa_free = pool_page_free, 2504 .pa_pagesz = 0 2505 }; 2506 #else 2507 struct pool_allocator pool_allocator_nointr = { 2508 .pa_alloc = pool_page_alloc, 2509 .pa_free = pool_page_free, 2510 .pa_pagesz = 0 2511 }; 2512 #endif 2513 2514 #ifdef POOL_SUBPAGE 2515 void *pool_subpage_alloc(struct pool *, int); 2516 void pool_subpage_free(struct pool *, void *); 2517 2518 struct pool_allocator pool_allocator_kmem = { 2519 .pa_alloc = pool_subpage_alloc, 2520 .pa_free = pool_subpage_free, 2521 .pa_pagesz = POOL_SUBPAGE 2522 }; 2523 2524 struct pool_allocator pool_allocator_nointr = { 2525 .pa_alloc = pool_subpage_alloc, 2526 .pa_free = pool_subpage_free, 2527 .pa_pagesz = POOL_SUBPAGE 2528 }; 2529 #endif /* POOL_SUBPAGE */ 2530 2531 static void * 2532 pool_allocator_alloc(struct pool *pp, int flags) 2533 { 2534 struct pool_allocator *pa = pp->pr_alloc; 2535 void *res; 2536 2537 res = (*pa->pa_alloc)(pp, flags); 2538 if (res == NULL && (flags & PR_WAITOK) == 0) { 2539 /* 2540 * We only run the drain hook here if PR_NOWAIT. 2541 * In other cases, the hook will be run in 2542 * pool_reclaim(). 2543 */ 2544 if (pp->pr_drain_hook != NULL) { 2545 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 2546 res = (*pa->pa_alloc)(pp, flags); 2547 } 2548 } 2549 return res; 2550 } 2551 2552 static void 2553 pool_allocator_free(struct pool *pp, void *v) 2554 { 2555 struct pool_allocator *pa = pp->pr_alloc; 2556 2557 (*pa->pa_free)(pp, v); 2558 } 2559 2560 void * 2561 pool_page_alloc(struct pool *pp, int flags) 2562 { 2563 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP; 2564 vmem_addr_t va; 2565 int ret; 2566 2567 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz, 2568 vflags | VM_INSTANTFIT, &va); 2569 2570 return ret ? NULL : (void *)va; 2571 } 2572 2573 void 2574 pool_page_free(struct pool *pp, void *v) 2575 { 2576 2577 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz); 2578 } 2579 2580 static void * 2581 pool_page_alloc_meta(struct pool *pp, int flags) 2582 { 2583 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP; 2584 vmem_addr_t va; 2585 int ret; 2586 2587 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz, 2588 vflags | VM_INSTANTFIT, &va); 2589 2590 return ret ? NULL : (void *)va; 2591 } 2592 2593 static void 2594 pool_page_free_meta(struct pool *pp, void *v) 2595 { 2596 2597 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz); 2598 } 2599 2600 #ifdef POOL_SUBPAGE 2601 /* Sub-page allocator, for machines with large hardware pages. */ 2602 void * 2603 pool_subpage_alloc(struct pool *pp, int flags) 2604 { 2605 return pool_get(&psppool, flags); 2606 } 2607 2608 void 2609 pool_subpage_free(struct pool *pp, void *v) 2610 { 2611 pool_put(&psppool, v); 2612 } 2613 2614 #endif /* POOL_SUBPAGE */ 2615 2616 #if defined(DDB) 2617 static bool 2618 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 2619 { 2620 2621 return (uintptr_t)ph->ph_page <= addr && 2622 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz; 2623 } 2624 2625 static bool 2626 pool_in_item(struct pool *pp, void *item, uintptr_t addr) 2627 { 2628 2629 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size; 2630 } 2631 2632 static bool 2633 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr) 2634 { 2635 int i; 2636 2637 if (pcg == NULL) { 2638 return false; 2639 } 2640 for (i = 0; i < pcg->pcg_avail; i++) { 2641 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) { 2642 return true; 2643 } 2644 } 2645 return false; 2646 } 2647 2648 static bool 2649 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) 2650 { 2651 2652 if ((pp->pr_roflags & PR_NOTOUCH) != 0) { 2653 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr); 2654 pool_item_bitmap_t *bitmap = 2655 ph->ph_bitmap + (idx / BITMAP_SIZE); 2656 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); 2657 2658 return (*bitmap & mask) == 0; 2659 } else { 2660 struct pool_item *pi; 2661 2662 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 2663 if (pool_in_item(pp, pi, addr)) { 2664 return false; 2665 } 2666 } 2667 return true; 2668 } 2669 } 2670 2671 void 2672 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 2673 { 2674 struct pool *pp; 2675 2676 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 2677 struct pool_item_header *ph; 2678 uintptr_t item; 2679 bool allocated = true; 2680 bool incache = false; 2681 bool incpucache = false; 2682 char cpucachestr[32]; 2683 2684 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 2685 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 2686 if (pool_in_page(pp, ph, addr)) { 2687 goto found; 2688 } 2689 } 2690 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 2691 if (pool_in_page(pp, ph, addr)) { 2692 allocated = 2693 pool_allocated(pp, ph, addr); 2694 goto found; 2695 } 2696 } 2697 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 2698 if (pool_in_page(pp, ph, addr)) { 2699 allocated = false; 2700 goto found; 2701 } 2702 } 2703 continue; 2704 } else { 2705 ph = pr_find_pagehead_noalign(pp, (void *)addr); 2706 if (ph == NULL || !pool_in_page(pp, ph, addr)) { 2707 continue; 2708 } 2709 allocated = pool_allocated(pp, ph, addr); 2710 } 2711 found: 2712 if (allocated && pp->pr_cache) { 2713 pool_cache_t pc = pp->pr_cache; 2714 struct pool_cache_group *pcg; 2715 int i; 2716 2717 for (pcg = pc->pc_fullgroups; pcg != NULL; 2718 pcg = pcg->pcg_next) { 2719 if (pool_in_cg(pp, pcg, addr)) { 2720 incache = true; 2721 goto print; 2722 } 2723 } 2724 for (i = 0; i < __arraycount(pc->pc_cpus); i++) { 2725 pool_cache_cpu_t *cc; 2726 2727 if ((cc = pc->pc_cpus[i]) == NULL) { 2728 continue; 2729 } 2730 if (pool_in_cg(pp, cc->cc_current, addr) || 2731 pool_in_cg(pp, cc->cc_previous, addr)) { 2732 struct cpu_info *ci = 2733 cpu_lookup(i); 2734 2735 incpucache = true; 2736 snprintf(cpucachestr, 2737 sizeof(cpucachestr), 2738 "cached by CPU %u", 2739 ci->ci_index); 2740 goto print; 2741 } 2742 } 2743 } 2744 print: 2745 item = (uintptr_t)ph->ph_page + ph->ph_off; 2746 item = item + rounddown(addr - item, pp->pr_size); 2747 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n", 2748 (void *)addr, item, (size_t)(addr - item), 2749 pp->pr_wchan, 2750 incpucache ? cpucachestr : 2751 incache ? "cached" : allocated ? "allocated" : "free"); 2752 } 2753 } 2754 #endif /* defined(DDB) */ 2755 2756 static int 2757 pool_sysctl(SYSCTLFN_ARGS) 2758 { 2759 struct pool_sysctl data; 2760 struct pool *pp; 2761 struct pool_cache *pc; 2762 pool_cache_cpu_t *cc; 2763 int error; 2764 size_t i, written; 2765 2766 if (oldp == NULL) { 2767 *oldlenp = 0; 2768 TAILQ_FOREACH(pp, &pool_head, pr_poollist) 2769 *oldlenp += sizeof(data); 2770 return 0; 2771 } 2772 2773 memset(&data, 0, sizeof(data)); 2774 error = 0; 2775 written = 0; 2776 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 2777 if (written + sizeof(data) > *oldlenp) 2778 break; 2779 strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan)); 2780 data.pr_pagesize = pp->pr_alloc->pa_pagesz; 2781 data.pr_flags = pp->pr_roflags | pp->pr_flags; 2782 #define COPY(field) data.field = pp->field 2783 COPY(pr_size); 2784 2785 COPY(pr_itemsperpage); 2786 COPY(pr_nitems); 2787 COPY(pr_nout); 2788 COPY(pr_hardlimit); 2789 COPY(pr_npages); 2790 COPY(pr_minpages); 2791 COPY(pr_maxpages); 2792 2793 COPY(pr_nget); 2794 COPY(pr_nfail); 2795 COPY(pr_nput); 2796 COPY(pr_npagealloc); 2797 COPY(pr_npagefree); 2798 COPY(pr_hiwat); 2799 COPY(pr_nidle); 2800 #undef COPY 2801 2802 data.pr_cache_nmiss_pcpu = 0; 2803 data.pr_cache_nhit_pcpu = 0; 2804 if (pp->pr_cache) { 2805 pc = pp->pr_cache; 2806 data.pr_cache_meta_size = pc->pc_pcgsize; 2807 data.pr_cache_nfull = pc->pc_nfull; 2808 data.pr_cache_npartial = pc->pc_npart; 2809 data.pr_cache_nempty = pc->pc_nempty; 2810 data.pr_cache_ncontended = pc->pc_contended; 2811 data.pr_cache_nmiss_global = pc->pc_misses; 2812 data.pr_cache_nhit_global = pc->pc_hits; 2813 for (i = 0; i < pc->pc_ncpu; ++i) { 2814 cc = pc->pc_cpus[i]; 2815 if (cc == NULL) 2816 continue; 2817 data.pr_cache_nmiss_pcpu = cc->cc_misses; 2818 data.pr_cache_nhit_pcpu = cc->cc_hits; 2819 } 2820 } else { 2821 data.pr_cache_meta_size = 0; 2822 data.pr_cache_nfull = 0; 2823 data.pr_cache_npartial = 0; 2824 data.pr_cache_nempty = 0; 2825 data.pr_cache_ncontended = 0; 2826 data.pr_cache_nmiss_global = 0; 2827 data.pr_cache_nhit_global = 0; 2828 } 2829 2830 error = sysctl_copyout(l, &data, oldp, sizeof(data)); 2831 if (error) 2832 break; 2833 written += sizeof(data); 2834 oldp = (char *)oldp + sizeof(data); 2835 } 2836 2837 *oldlenp = written; 2838 return error; 2839 } 2840 2841 SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup") 2842 { 2843 const struct sysctlnode *rnode = NULL; 2844 2845 sysctl_createv(clog, 0, NULL, &rnode, 2846 CTLFLAG_PERMANENT, 2847 CTLTYPE_STRUCT, "pool", 2848 SYSCTL_DESCR("Get pool statistics"), 2849 pool_sysctl, 0, NULL, 0, 2850 CTL_KERN, CTL_CREATE, CTL_EOL); 2851 } 2852