xref: /netbsd-src/sys/kern/subr_pool.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: subr_pool.c,v 1.141 2007/12/13 02:45:10 yamt Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.141 2007/12/13 02:45:10 yamt Exp $");
42 
43 #include "opt_ddb.h"
44 #include "opt_pool.h"
45 #include "opt_poollog.h"
46 #include "opt_lockdebug.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bitops.h>
51 #include <sys/proc.h>
52 #include <sys/errno.h>
53 #include <sys/kernel.h>
54 #include <sys/malloc.h>
55 #include <sys/lock.h>
56 #include <sys/pool.h>
57 #include <sys/syslog.h>
58 #include <sys/debug.h>
59 #include <sys/lockdebug.h>
60 #include <sys/xcall.h>
61 #include <sys/cpu.h>
62 
63 #include <uvm/uvm.h>
64 
65 /*
66  * Pool resource management utility.
67  *
68  * Memory is allocated in pages which are split into pieces according to
69  * the pool item size. Each page is kept on one of three lists in the
70  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
71  * for empty, full and partially-full pages respectively. The individual
72  * pool items are on a linked list headed by `ph_itemlist' in each page
73  * header. The memory for building the page list is either taken from
74  * the allocated pages themselves (for small pool items) or taken from
75  * an internal pool of page headers (`phpool').
76  */
77 
78 /* List of all pools */
79 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
80 
81 /* List of all caches. */
82 LIST_HEAD(,pool_cache) pool_cache_head =
83     LIST_HEAD_INITIALIZER(pool_cache_head);
84 
85 /* Private pool for page header structures */
86 #define	PHPOOL_MAX	8
87 static struct pool phpool[PHPOOL_MAX];
88 #define	PHPOOL_FREELIST_NELEM(idx) \
89 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
90 
91 #ifdef POOL_SUBPAGE
92 /* Pool of subpages for use by normal pools. */
93 static struct pool psppool;
94 #endif
95 
96 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
97     SLIST_HEAD_INITIALIZER(pa_deferinitq);
98 
99 static void *pool_page_alloc_meta(struct pool *, int);
100 static void pool_page_free_meta(struct pool *, void *);
101 
102 /* allocator for pool metadata */
103 struct pool_allocator pool_allocator_meta = {
104 	pool_page_alloc_meta, pool_page_free_meta,
105 	.pa_backingmapptr = &kmem_map,
106 };
107 
108 /* # of seconds to retain page after last use */
109 int pool_inactive_time = 10;
110 
111 /* Next candidate for drainage (see pool_drain()) */
112 static struct pool	*drainpp;
113 
114 /* This lock protects both pool_head and drainpp. */
115 static kmutex_t pool_head_lock;
116 static kcondvar_t pool_busy;
117 
118 typedef uint32_t pool_item_bitmap_t;
119 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
120 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
121 
122 struct pool_item_header {
123 	/* Page headers */
124 	LIST_ENTRY(pool_item_header)
125 				ph_pagelist;	/* pool page list */
126 	SPLAY_ENTRY(pool_item_header)
127 				ph_node;	/* Off-page page headers */
128 	void *			ph_page;	/* this page's address */
129 	struct timeval		ph_time;	/* last referenced */
130 	uint16_t		ph_nmissing;	/* # of chunks in use */
131 	uint16_t		ph_off;		/* start offset in page */
132 	union {
133 		/* !PR_NOTOUCH */
134 		struct {
135 			LIST_HEAD(, pool_item)
136 				phu_itemlist;	/* chunk list for this page */
137 		} phu_normal;
138 		/* PR_NOTOUCH */
139 		struct {
140 			pool_item_bitmap_t phu_bitmap[1];
141 		} phu_notouch;
142 	} ph_u;
143 };
144 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
145 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
146 
147 struct pool_item {
148 #ifdef DIAGNOSTIC
149 	u_int pi_magic;
150 #endif
151 #define	PI_MAGIC 0xdeaddeadU
152 	/* Other entries use only this list entry */
153 	LIST_ENTRY(pool_item)	pi_list;
154 };
155 
156 #define	POOL_NEEDS_CATCHUP(pp)						\
157 	((pp)->pr_nitems < (pp)->pr_minitems)
158 
159 /*
160  * Pool cache management.
161  *
162  * Pool caches provide a way for constructed objects to be cached by the
163  * pool subsystem.  This can lead to performance improvements by avoiding
164  * needless object construction/destruction; it is deferred until absolutely
165  * necessary.
166  *
167  * Caches are grouped into cache groups.  Each cache group references up
168  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
169  * object from the pool, it calls the object's constructor and places it
170  * into a cache group.  When a cache group frees an object back to the
171  * pool, it first calls the object's destructor.  This allows the object
172  * to persist in constructed form while freed to the cache.
173  *
174  * The pool references each cache, so that when a pool is drained by the
175  * pagedaemon, it can drain each individual cache as well.  Each time a
176  * cache is drained, the most idle cache group is freed to the pool in
177  * its entirety.
178  *
179  * Pool caches are layed on top of pools.  By layering them, we can avoid
180  * the complexity of cache management for pools which would not benefit
181  * from it.
182  */
183 
184 static struct pool pcgpool;
185 static struct pool cache_pool;
186 static struct pool cache_cpu_pool;
187 
188 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
189 					     void *, paddr_t);
190 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
191 					     void **, paddr_t *, int);
192 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
193 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
194 static void	pool_cache_xcall(pool_cache_t);
195 
196 static int	pool_catchup(struct pool *);
197 static void	pool_prime_page(struct pool *, void *,
198 		    struct pool_item_header *);
199 static void	pool_update_curpage(struct pool *);
200 
201 static int	pool_grow(struct pool *, int);
202 static void	*pool_allocator_alloc(struct pool *, int);
203 static void	pool_allocator_free(struct pool *, void *);
204 
205 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
206 	void (*)(const char *, ...));
207 static void pool_print1(struct pool *, const char *,
208 	void (*)(const char *, ...));
209 
210 static int pool_chk_page(struct pool *, const char *,
211 			 struct pool_item_header *);
212 
213 /*
214  * Pool log entry. An array of these is allocated in pool_init().
215  */
216 struct pool_log {
217 	const char	*pl_file;
218 	long		pl_line;
219 	int		pl_action;
220 #define	PRLOG_GET	1
221 #define	PRLOG_PUT	2
222 	void		*pl_addr;
223 };
224 
225 #ifdef POOL_DIAGNOSTIC
226 /* Number of entries in pool log buffers */
227 #ifndef POOL_LOGSIZE
228 #define	POOL_LOGSIZE	10
229 #endif
230 
231 int pool_logsize = POOL_LOGSIZE;
232 
233 static inline void
234 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
235 {
236 	int n = pp->pr_curlogentry;
237 	struct pool_log *pl;
238 
239 	if ((pp->pr_roflags & PR_LOGGING) == 0)
240 		return;
241 
242 	/*
243 	 * Fill in the current entry. Wrap around and overwrite
244 	 * the oldest entry if necessary.
245 	 */
246 	pl = &pp->pr_log[n];
247 	pl->pl_file = file;
248 	pl->pl_line = line;
249 	pl->pl_action = action;
250 	pl->pl_addr = v;
251 	if (++n >= pp->pr_logsize)
252 		n = 0;
253 	pp->pr_curlogentry = n;
254 }
255 
256 static void
257 pr_printlog(struct pool *pp, struct pool_item *pi,
258     void (*pr)(const char *, ...))
259 {
260 	int i = pp->pr_logsize;
261 	int n = pp->pr_curlogentry;
262 
263 	if ((pp->pr_roflags & PR_LOGGING) == 0)
264 		return;
265 
266 	/*
267 	 * Print all entries in this pool's log.
268 	 */
269 	while (i-- > 0) {
270 		struct pool_log *pl = &pp->pr_log[n];
271 		if (pl->pl_action != 0) {
272 			if (pi == NULL || pi == pl->pl_addr) {
273 				(*pr)("\tlog entry %d:\n", i);
274 				(*pr)("\t\taction = %s, addr = %p\n",
275 				    pl->pl_action == PRLOG_GET ? "get" : "put",
276 				    pl->pl_addr);
277 				(*pr)("\t\tfile: %s at line %lu\n",
278 				    pl->pl_file, pl->pl_line);
279 			}
280 		}
281 		if (++n >= pp->pr_logsize)
282 			n = 0;
283 	}
284 }
285 
286 static inline void
287 pr_enter(struct pool *pp, const char *file, long line)
288 {
289 
290 	if (__predict_false(pp->pr_entered_file != NULL)) {
291 		printf("pool %s: reentrancy at file %s line %ld\n",
292 		    pp->pr_wchan, file, line);
293 		printf("         previous entry at file %s line %ld\n",
294 		    pp->pr_entered_file, pp->pr_entered_line);
295 		panic("pr_enter");
296 	}
297 
298 	pp->pr_entered_file = file;
299 	pp->pr_entered_line = line;
300 }
301 
302 static inline void
303 pr_leave(struct pool *pp)
304 {
305 
306 	if (__predict_false(pp->pr_entered_file == NULL)) {
307 		printf("pool %s not entered?\n", pp->pr_wchan);
308 		panic("pr_leave");
309 	}
310 
311 	pp->pr_entered_file = NULL;
312 	pp->pr_entered_line = 0;
313 }
314 
315 static inline void
316 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
317 {
318 
319 	if (pp->pr_entered_file != NULL)
320 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
321 		    pp->pr_entered_file, pp->pr_entered_line);
322 }
323 #else
324 #define	pr_log(pp, v, action, file, line)
325 #define	pr_printlog(pp, pi, pr)
326 #define	pr_enter(pp, file, line)
327 #define	pr_leave(pp)
328 #define	pr_enter_check(pp, pr)
329 #endif /* POOL_DIAGNOSTIC */
330 
331 static inline unsigned int
332 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
333     const void *v)
334 {
335 	const char *cp = v;
336 	unsigned int idx;
337 
338 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
339 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
340 	KASSERT(idx < pp->pr_itemsperpage);
341 	return idx;
342 }
343 
344 static inline void
345 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
346     void *obj)
347 {
348 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
349 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
350 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
351 
352 	KASSERT((*bitmap & mask) == 0);
353 	*bitmap |= mask;
354 }
355 
356 static inline void *
357 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
358 {
359 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
360 	unsigned int idx;
361 	int i;
362 
363 	for (i = 0; ; i++) {
364 		int bit;
365 
366 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
367 		bit = ffs32(bitmap[i]);
368 		if (bit) {
369 			pool_item_bitmap_t mask;
370 
371 			bit--;
372 			idx = (i * BITMAP_SIZE) + bit;
373 			mask = 1 << bit;
374 			KASSERT((bitmap[i] & mask) != 0);
375 			bitmap[i] &= ~mask;
376 			break;
377 		}
378 	}
379 	KASSERT(idx < pp->pr_itemsperpage);
380 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
381 }
382 
383 static inline void
384 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
385 {
386 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
387 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
388 	int i;
389 
390 	for (i = 0; i < n; i++) {
391 		bitmap[i] = (pool_item_bitmap_t)-1;
392 	}
393 }
394 
395 static inline int
396 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
397 {
398 
399 	/*
400 	 * we consider pool_item_header with smaller ph_page bigger.
401 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
402 	 */
403 
404 	if (a->ph_page < b->ph_page)
405 		return (1);
406 	else if (a->ph_page > b->ph_page)
407 		return (-1);
408 	else
409 		return (0);
410 }
411 
412 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
413 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
414 
415 static inline struct pool_item_header *
416 pr_find_pagehead_noalign(struct pool *pp, void *v)
417 {
418 	struct pool_item_header *ph, tmp;
419 
420 	tmp.ph_page = (void *)(uintptr_t)v;
421 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
422 	if (ph == NULL) {
423 		ph = SPLAY_ROOT(&pp->pr_phtree);
424 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
425 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
426 		}
427 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
428 	}
429 
430 	return ph;
431 }
432 
433 /*
434  * Return the pool page header based on item address.
435  */
436 static inline struct pool_item_header *
437 pr_find_pagehead(struct pool *pp, void *v)
438 {
439 	struct pool_item_header *ph, tmp;
440 
441 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
442 		ph = pr_find_pagehead_noalign(pp, v);
443 	} else {
444 		void *page =
445 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
446 
447 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
448 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
449 		} else {
450 			tmp.ph_page = page;
451 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
452 		}
453 	}
454 
455 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
456 	    ((char *)ph->ph_page <= (char *)v &&
457 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
458 	return ph;
459 }
460 
461 static void
462 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
463 {
464 	struct pool_item_header *ph;
465 
466 	while ((ph = LIST_FIRST(pq)) != NULL) {
467 		LIST_REMOVE(ph, ph_pagelist);
468 		pool_allocator_free(pp, ph->ph_page);
469 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
470 			pool_put(pp->pr_phpool, ph);
471 	}
472 }
473 
474 /*
475  * Remove a page from the pool.
476  */
477 static inline void
478 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
479      struct pool_pagelist *pq)
480 {
481 
482 	KASSERT(mutex_owned(&pp->pr_lock));
483 
484 	/*
485 	 * If the page was idle, decrement the idle page count.
486 	 */
487 	if (ph->ph_nmissing == 0) {
488 #ifdef DIAGNOSTIC
489 		if (pp->pr_nidle == 0)
490 			panic("pr_rmpage: nidle inconsistent");
491 		if (pp->pr_nitems < pp->pr_itemsperpage)
492 			panic("pr_rmpage: nitems inconsistent");
493 #endif
494 		pp->pr_nidle--;
495 	}
496 
497 	pp->pr_nitems -= pp->pr_itemsperpage;
498 
499 	/*
500 	 * Unlink the page from the pool and queue it for release.
501 	 */
502 	LIST_REMOVE(ph, ph_pagelist);
503 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
504 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
505 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
506 
507 	pp->pr_npages--;
508 	pp->pr_npagefree++;
509 
510 	pool_update_curpage(pp);
511 }
512 
513 static bool
514 pa_starved_p(struct pool_allocator *pa)
515 {
516 
517 	if (pa->pa_backingmap != NULL) {
518 		return vm_map_starved_p(pa->pa_backingmap);
519 	}
520 	return false;
521 }
522 
523 static int
524 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
525 {
526 	struct pool *pp = obj;
527 	struct pool_allocator *pa = pp->pr_alloc;
528 
529 	KASSERT(&pp->pr_reclaimerentry == ce);
530 	pool_reclaim(pp);
531 	if (!pa_starved_p(pa)) {
532 		return CALLBACK_CHAIN_ABORT;
533 	}
534 	return CALLBACK_CHAIN_CONTINUE;
535 }
536 
537 static void
538 pool_reclaim_register(struct pool *pp)
539 {
540 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
541 	int s;
542 
543 	if (map == NULL) {
544 		return;
545 	}
546 
547 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
548 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
549 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
550 	splx(s);
551 }
552 
553 static void
554 pool_reclaim_unregister(struct pool *pp)
555 {
556 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
557 	int s;
558 
559 	if (map == NULL) {
560 		return;
561 	}
562 
563 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
564 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
565 	    &pp->pr_reclaimerentry);
566 	splx(s);
567 }
568 
569 static void
570 pa_reclaim_register(struct pool_allocator *pa)
571 {
572 	struct vm_map *map = *pa->pa_backingmapptr;
573 	struct pool *pp;
574 
575 	KASSERT(pa->pa_backingmap == NULL);
576 	if (map == NULL) {
577 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
578 		return;
579 	}
580 	pa->pa_backingmap = map;
581 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
582 		pool_reclaim_register(pp);
583 	}
584 }
585 
586 /*
587  * Initialize all the pools listed in the "pools" link set.
588  */
589 void
590 pool_subsystem_init(void)
591 {
592 	struct pool_allocator *pa;
593 	__link_set_decl(pools, struct link_pool_init);
594 	struct link_pool_init * const *pi;
595 
596 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
597 	cv_init(&pool_busy, "poolbusy");
598 
599 	__link_set_foreach(pi, pools)
600 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
601 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
602 		    (*pi)->palloc, (*pi)->ipl);
603 
604 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
605 		KASSERT(pa->pa_backingmapptr != NULL);
606 		KASSERT(*pa->pa_backingmapptr != NULL);
607 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
608 		pa_reclaim_register(pa);
609 	}
610 
611 	pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE,
612 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
613 
614 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE,
615 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
616 }
617 
618 /*
619  * Initialize the given pool resource structure.
620  *
621  * We export this routine to allow other kernel parts to declare
622  * static pools that must be initialized before malloc() is available.
623  */
624 void
625 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
626     const char *wchan, struct pool_allocator *palloc, int ipl)
627 {
628 #ifdef DEBUG
629 	struct pool *pp1;
630 #endif
631 	size_t trysize, phsize;
632 	int off, slack;
633 
634 #ifdef DEBUG
635 	/*
636 	 * Check that the pool hasn't already been initialised and
637 	 * added to the list of all pools.
638 	 */
639 	LIST_FOREACH(pp1, &pool_head, pr_poollist) {
640 		if (pp == pp1)
641 			panic("pool_init: pool %s already initialised",
642 			    wchan);
643 	}
644 #endif
645 
646 #ifdef POOL_DIAGNOSTIC
647 	/*
648 	 * Always log if POOL_DIAGNOSTIC is defined.
649 	 */
650 	if (pool_logsize != 0)
651 		flags |= PR_LOGGING;
652 #endif
653 
654 	if (palloc == NULL)
655 		palloc = &pool_allocator_kmem;
656 #ifdef POOL_SUBPAGE
657 	if (size > palloc->pa_pagesz) {
658 		if (palloc == &pool_allocator_kmem)
659 			palloc = &pool_allocator_kmem_fullpage;
660 		else if (palloc == &pool_allocator_nointr)
661 			palloc = &pool_allocator_nointr_fullpage;
662 	}
663 #endif /* POOL_SUBPAGE */
664 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
665 		if (palloc->pa_pagesz == 0)
666 			palloc->pa_pagesz = PAGE_SIZE;
667 
668 		TAILQ_INIT(&palloc->pa_list);
669 
670 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
671 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
672 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
673 
674 		if (palloc->pa_backingmapptr != NULL) {
675 			pa_reclaim_register(palloc);
676 		}
677 		palloc->pa_flags |= PA_INITIALIZED;
678 	}
679 
680 	if (align == 0)
681 		align = ALIGN(1);
682 
683 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
684 		size = sizeof(struct pool_item);
685 
686 	size = roundup(size, align);
687 #ifdef DIAGNOSTIC
688 	if (size > palloc->pa_pagesz)
689 		panic("pool_init: pool item size (%zu) too large", size);
690 #endif
691 
692 	/*
693 	 * Initialize the pool structure.
694 	 */
695 	LIST_INIT(&pp->pr_emptypages);
696 	LIST_INIT(&pp->pr_fullpages);
697 	LIST_INIT(&pp->pr_partpages);
698 	pp->pr_cache = NULL;
699 	pp->pr_curpage = NULL;
700 	pp->pr_npages = 0;
701 	pp->pr_minitems = 0;
702 	pp->pr_minpages = 0;
703 	pp->pr_maxpages = UINT_MAX;
704 	pp->pr_roflags = flags;
705 	pp->pr_flags = 0;
706 	pp->pr_size = size;
707 	pp->pr_align = align;
708 	pp->pr_wchan = wchan;
709 	pp->pr_alloc = palloc;
710 	pp->pr_nitems = 0;
711 	pp->pr_nout = 0;
712 	pp->pr_hardlimit = UINT_MAX;
713 	pp->pr_hardlimit_warning = NULL;
714 	pp->pr_hardlimit_ratecap.tv_sec = 0;
715 	pp->pr_hardlimit_ratecap.tv_usec = 0;
716 	pp->pr_hardlimit_warning_last.tv_sec = 0;
717 	pp->pr_hardlimit_warning_last.tv_usec = 0;
718 	pp->pr_drain_hook = NULL;
719 	pp->pr_drain_hook_arg = NULL;
720 	pp->pr_freecheck = NULL;
721 
722 	/*
723 	 * Decide whether to put the page header off page to avoid
724 	 * wasting too large a part of the page or too big item.
725 	 * Off-page page headers go on a hash table, so we can match
726 	 * a returned item with its header based on the page address.
727 	 * We use 1/16 of the page size and about 8 times of the item
728 	 * size as the threshold (XXX: tune)
729 	 *
730 	 * However, we'll put the header into the page if we can put
731 	 * it without wasting any items.
732 	 *
733 	 * Silently enforce `0 <= ioff < align'.
734 	 */
735 	pp->pr_itemoffset = ioff %= align;
736 	/* See the comment below about reserved bytes. */
737 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
738 	phsize = ALIGN(sizeof(struct pool_item_header));
739 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
740 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
741 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
742 		/* Use the end of the page for the page header */
743 		pp->pr_roflags |= PR_PHINPAGE;
744 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
745 	} else {
746 		/* The page header will be taken from our page header pool */
747 		pp->pr_phoffset = 0;
748 		off = palloc->pa_pagesz;
749 		SPLAY_INIT(&pp->pr_phtree);
750 	}
751 
752 	/*
753 	 * Alignment is to take place at `ioff' within the item. This means
754 	 * we must reserve up to `align - 1' bytes on the page to allow
755 	 * appropriate positioning of each item.
756 	 */
757 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
758 	KASSERT(pp->pr_itemsperpage != 0);
759 	if ((pp->pr_roflags & PR_NOTOUCH)) {
760 		int idx;
761 
762 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
763 		    idx++) {
764 			/* nothing */
765 		}
766 		if (idx >= PHPOOL_MAX) {
767 			/*
768 			 * if you see this panic, consider to tweak
769 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
770 			 */
771 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
772 			    pp->pr_wchan, pp->pr_itemsperpage);
773 		}
774 		pp->pr_phpool = &phpool[idx];
775 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
776 		pp->pr_phpool = &phpool[0];
777 	}
778 #if defined(DIAGNOSTIC)
779 	else {
780 		pp->pr_phpool = NULL;
781 	}
782 #endif
783 
784 	/*
785 	 * Use the slack between the chunks and the page header
786 	 * for "cache coloring".
787 	 */
788 	slack = off - pp->pr_itemsperpage * pp->pr_size;
789 	pp->pr_maxcolor = (slack / align) * align;
790 	pp->pr_curcolor = 0;
791 
792 	pp->pr_nget = 0;
793 	pp->pr_nfail = 0;
794 	pp->pr_nput = 0;
795 	pp->pr_npagealloc = 0;
796 	pp->pr_npagefree = 0;
797 	pp->pr_hiwat = 0;
798 	pp->pr_nidle = 0;
799 	pp->pr_refcnt = 0;
800 
801 #ifdef POOL_DIAGNOSTIC
802 	if (flags & PR_LOGGING) {
803 		if (kmem_map == NULL ||
804 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
805 		     M_TEMP, M_NOWAIT)) == NULL)
806 			pp->pr_roflags &= ~PR_LOGGING;
807 		pp->pr_curlogentry = 0;
808 		pp->pr_logsize = pool_logsize;
809 	}
810 #endif
811 
812 	pp->pr_entered_file = NULL;
813 	pp->pr_entered_line = 0;
814 
815 	/*
816 	 * XXXAD hack to prevent IP input processing from blocking.
817 	 */
818 	if (ipl == IPL_SOFTNET) {
819 		mutex_init(&pp->pr_lock, MUTEX_DEFAULT, IPL_VM);
820 	} else {
821 		mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
822 	}
823 	cv_init(&pp->pr_cv, wchan);
824 	pp->pr_ipl = ipl;
825 
826 	/*
827 	 * Initialize private page header pool and cache magazine pool if we
828 	 * haven't done so yet.
829 	 * XXX LOCKING.
830 	 */
831 	if (phpool[0].pr_size == 0) {
832 		int idx;
833 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
834 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
835 			int nelem;
836 			size_t sz;
837 
838 			nelem = PHPOOL_FREELIST_NELEM(idx);
839 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
840 			    "phpool-%d", nelem);
841 			sz = sizeof(struct pool_item_header);
842 			if (nelem) {
843 				sz = offsetof(struct pool_item_header,
844 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
845 			}
846 			pool_init(&phpool[idx], sz, 0, 0, 0,
847 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
848 		}
849 #ifdef POOL_SUBPAGE
850 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
851 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
852 #endif
853 		pool_init(&pcgpool, sizeof(pcg_t), CACHE_LINE_SIZE, 0, 0,
854 		    "cachegrp", &pool_allocator_meta, IPL_VM);
855 	}
856 
857 	if (__predict_true(!cold)) {
858 		/* Insert into the list of all pools. */
859 		mutex_enter(&pool_head_lock);
860 		LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
861 		mutex_exit(&pool_head_lock);
862 
863 		/* Insert this into the list of pools using this allocator. */
864 		mutex_enter(&palloc->pa_lock);
865 		TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
866 		mutex_exit(&palloc->pa_lock);
867 	} else {
868 		LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
869 		TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
870 	}
871 
872 	pool_reclaim_register(pp);
873 }
874 
875 /*
876  * De-commision a pool resource.
877  */
878 void
879 pool_destroy(struct pool *pp)
880 {
881 	struct pool_pagelist pq;
882 	struct pool_item_header *ph;
883 
884 	/* Remove from global pool list */
885 	mutex_enter(&pool_head_lock);
886 	while (pp->pr_refcnt != 0)
887 		cv_wait(&pool_busy, &pool_head_lock);
888 	LIST_REMOVE(pp, pr_poollist);
889 	if (drainpp == pp)
890 		drainpp = NULL;
891 	mutex_exit(&pool_head_lock);
892 
893 	/* Remove this pool from its allocator's list of pools. */
894 	pool_reclaim_unregister(pp);
895 	mutex_enter(&pp->pr_alloc->pa_lock);
896 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
897 	mutex_exit(&pp->pr_alloc->pa_lock);
898 
899 	mutex_enter(&pp->pr_lock);
900 
901 	KASSERT(pp->pr_cache == NULL);
902 
903 #ifdef DIAGNOSTIC
904 	if (pp->pr_nout != 0) {
905 		pr_printlog(pp, NULL, printf);
906 		panic("pool_destroy: pool busy: still out: %u",
907 		    pp->pr_nout);
908 	}
909 #endif
910 
911 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
912 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
913 
914 	/* Remove all pages */
915 	LIST_INIT(&pq);
916 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
917 		pr_rmpage(pp, ph, &pq);
918 
919 	mutex_exit(&pp->pr_lock);
920 
921 	pr_pagelist_free(pp, &pq);
922 
923 #ifdef POOL_DIAGNOSTIC
924 	if ((pp->pr_roflags & PR_LOGGING) != 0)
925 		free(pp->pr_log, M_TEMP);
926 #endif
927 
928 	cv_destroy(&pp->pr_cv);
929 	mutex_destroy(&pp->pr_lock);
930 }
931 
932 void
933 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
934 {
935 
936 	/* XXX no locking -- must be used just after pool_init() */
937 #ifdef DIAGNOSTIC
938 	if (pp->pr_drain_hook != NULL)
939 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
940 #endif
941 	pp->pr_drain_hook = fn;
942 	pp->pr_drain_hook_arg = arg;
943 }
944 
945 static struct pool_item_header *
946 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
947 {
948 	struct pool_item_header *ph;
949 
950 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
951 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
952 	else
953 		ph = pool_get(pp->pr_phpool, flags);
954 
955 	return (ph);
956 }
957 
958 /*
959  * Grab an item from the pool.
960  */
961 void *
962 #ifdef POOL_DIAGNOSTIC
963 _pool_get(struct pool *pp, int flags, const char *file, long line)
964 #else
965 pool_get(struct pool *pp, int flags)
966 #endif
967 {
968 	struct pool_item *pi;
969 	struct pool_item_header *ph;
970 	void *v;
971 
972 #ifdef DIAGNOSTIC
973 	if (__predict_false(pp->pr_itemsperpage == 0))
974 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
975 		    "pool not initialized?", pp);
976 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
977 			    (flags & PR_WAITOK) != 0))
978 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
979 
980 #endif /* DIAGNOSTIC */
981 #ifdef LOCKDEBUG
982 	if (flags & PR_WAITOK)
983 		ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
984 #endif
985 
986 	mutex_enter(&pp->pr_lock);
987 	pr_enter(pp, file, line);
988 
989  startover:
990 	/*
991 	 * Check to see if we've reached the hard limit.  If we have,
992 	 * and we can wait, then wait until an item has been returned to
993 	 * the pool.
994 	 */
995 #ifdef DIAGNOSTIC
996 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
997 		pr_leave(pp);
998 		mutex_exit(&pp->pr_lock);
999 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
1000 	}
1001 #endif
1002 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1003 		if (pp->pr_drain_hook != NULL) {
1004 			/*
1005 			 * Since the drain hook is going to free things
1006 			 * back to the pool, unlock, call the hook, re-lock,
1007 			 * and check the hardlimit condition again.
1008 			 */
1009 			pr_leave(pp);
1010 			mutex_exit(&pp->pr_lock);
1011 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1012 			mutex_enter(&pp->pr_lock);
1013 			pr_enter(pp, file, line);
1014 			if (pp->pr_nout < pp->pr_hardlimit)
1015 				goto startover;
1016 		}
1017 
1018 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1019 			/*
1020 			 * XXX: A warning isn't logged in this case.  Should
1021 			 * it be?
1022 			 */
1023 			pp->pr_flags |= PR_WANTED;
1024 			pr_leave(pp);
1025 			cv_wait(&pp->pr_cv, &pp->pr_lock);
1026 			pr_enter(pp, file, line);
1027 			goto startover;
1028 		}
1029 
1030 		/*
1031 		 * Log a message that the hard limit has been hit.
1032 		 */
1033 		if (pp->pr_hardlimit_warning != NULL &&
1034 		    ratecheck(&pp->pr_hardlimit_warning_last,
1035 			      &pp->pr_hardlimit_ratecap))
1036 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1037 
1038 		pp->pr_nfail++;
1039 
1040 		pr_leave(pp);
1041 		mutex_exit(&pp->pr_lock);
1042 		return (NULL);
1043 	}
1044 
1045 	/*
1046 	 * The convention we use is that if `curpage' is not NULL, then
1047 	 * it points at a non-empty bucket. In particular, `curpage'
1048 	 * never points at a page header which has PR_PHINPAGE set and
1049 	 * has no items in its bucket.
1050 	 */
1051 	if ((ph = pp->pr_curpage) == NULL) {
1052 		int error;
1053 
1054 #ifdef DIAGNOSTIC
1055 		if (pp->pr_nitems != 0) {
1056 			mutex_exit(&pp->pr_lock);
1057 			printf("pool_get: %s: curpage NULL, nitems %u\n",
1058 			    pp->pr_wchan, pp->pr_nitems);
1059 			panic("pool_get: nitems inconsistent");
1060 		}
1061 #endif
1062 
1063 		/*
1064 		 * Call the back-end page allocator for more memory.
1065 		 * Release the pool lock, as the back-end page allocator
1066 		 * may block.
1067 		 */
1068 		pr_leave(pp);
1069 		error = pool_grow(pp, flags);
1070 		pr_enter(pp, file, line);
1071 		if (error != 0) {
1072 			/*
1073 			 * We were unable to allocate a page or item
1074 			 * header, but we released the lock during
1075 			 * allocation, so perhaps items were freed
1076 			 * back to the pool.  Check for this case.
1077 			 */
1078 			if (pp->pr_curpage != NULL)
1079 				goto startover;
1080 
1081 			pp->pr_nfail++;
1082 			pr_leave(pp);
1083 			mutex_exit(&pp->pr_lock);
1084 			return (NULL);
1085 		}
1086 
1087 		/* Start the allocation process over. */
1088 		goto startover;
1089 	}
1090 	if (pp->pr_roflags & PR_NOTOUCH) {
1091 #ifdef DIAGNOSTIC
1092 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1093 			pr_leave(pp);
1094 			mutex_exit(&pp->pr_lock);
1095 			panic("pool_get: %s: page empty", pp->pr_wchan);
1096 		}
1097 #endif
1098 		v = pr_item_notouch_get(pp, ph);
1099 #ifdef POOL_DIAGNOSTIC
1100 		pr_log(pp, v, PRLOG_GET, file, line);
1101 #endif
1102 	} else {
1103 		v = pi = LIST_FIRST(&ph->ph_itemlist);
1104 		if (__predict_false(v == NULL)) {
1105 			pr_leave(pp);
1106 			mutex_exit(&pp->pr_lock);
1107 			panic("pool_get: %s: page empty", pp->pr_wchan);
1108 		}
1109 #ifdef DIAGNOSTIC
1110 		if (__predict_false(pp->pr_nitems == 0)) {
1111 			pr_leave(pp);
1112 			mutex_exit(&pp->pr_lock);
1113 			printf("pool_get: %s: items on itemlist, nitems %u\n",
1114 			    pp->pr_wchan, pp->pr_nitems);
1115 			panic("pool_get: nitems inconsistent");
1116 		}
1117 #endif
1118 
1119 #ifdef POOL_DIAGNOSTIC
1120 		pr_log(pp, v, PRLOG_GET, file, line);
1121 #endif
1122 
1123 #ifdef DIAGNOSTIC
1124 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1125 			pr_printlog(pp, pi, printf);
1126 			panic("pool_get(%s): free list modified: "
1127 			    "magic=%x; page %p; item addr %p\n",
1128 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1129 		}
1130 #endif
1131 
1132 		/*
1133 		 * Remove from item list.
1134 		 */
1135 		LIST_REMOVE(pi, pi_list);
1136 	}
1137 	pp->pr_nitems--;
1138 	pp->pr_nout++;
1139 	if (ph->ph_nmissing == 0) {
1140 #ifdef DIAGNOSTIC
1141 		if (__predict_false(pp->pr_nidle == 0))
1142 			panic("pool_get: nidle inconsistent");
1143 #endif
1144 		pp->pr_nidle--;
1145 
1146 		/*
1147 		 * This page was previously empty.  Move it to the list of
1148 		 * partially-full pages.  This page is already curpage.
1149 		 */
1150 		LIST_REMOVE(ph, ph_pagelist);
1151 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1152 	}
1153 	ph->ph_nmissing++;
1154 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
1155 #ifdef DIAGNOSTIC
1156 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1157 		    !LIST_EMPTY(&ph->ph_itemlist))) {
1158 			pr_leave(pp);
1159 			mutex_exit(&pp->pr_lock);
1160 			panic("pool_get: %s: nmissing inconsistent",
1161 			    pp->pr_wchan);
1162 		}
1163 #endif
1164 		/*
1165 		 * This page is now full.  Move it to the full list
1166 		 * and select a new current page.
1167 		 */
1168 		LIST_REMOVE(ph, ph_pagelist);
1169 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1170 		pool_update_curpage(pp);
1171 	}
1172 
1173 	pp->pr_nget++;
1174 	pr_leave(pp);
1175 
1176 	/*
1177 	 * If we have a low water mark and we are now below that low
1178 	 * water mark, add more items to the pool.
1179 	 */
1180 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1181 		/*
1182 		 * XXX: Should we log a warning?  Should we set up a timeout
1183 		 * to try again in a second or so?  The latter could break
1184 		 * a caller's assumptions about interrupt protection, etc.
1185 		 */
1186 	}
1187 
1188 	mutex_exit(&pp->pr_lock);
1189 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1190 	FREECHECK_OUT(&pp->pr_freecheck, v);
1191 	return (v);
1192 }
1193 
1194 /*
1195  * Internal version of pool_put().  Pool is already locked/entered.
1196  */
1197 static void
1198 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1199 {
1200 	struct pool_item *pi = v;
1201 	struct pool_item_header *ph;
1202 
1203 	KASSERT(mutex_owned(&pp->pr_lock));
1204 	FREECHECK_IN(&pp->pr_freecheck, v);
1205 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1206 
1207 #ifdef DIAGNOSTIC
1208 	if (__predict_false(pp->pr_nout == 0)) {
1209 		printf("pool %s: putting with none out\n",
1210 		    pp->pr_wchan);
1211 		panic("pool_put");
1212 	}
1213 #endif
1214 
1215 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1216 		pr_printlog(pp, NULL, printf);
1217 		panic("pool_put: %s: page header missing", pp->pr_wchan);
1218 	}
1219 
1220 	/*
1221 	 * Return to item list.
1222 	 */
1223 	if (pp->pr_roflags & PR_NOTOUCH) {
1224 		pr_item_notouch_put(pp, ph, v);
1225 	} else {
1226 #ifdef DIAGNOSTIC
1227 		pi->pi_magic = PI_MAGIC;
1228 #endif
1229 #ifdef DEBUG
1230 		{
1231 			int i, *ip = v;
1232 
1233 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1234 				*ip++ = PI_MAGIC;
1235 			}
1236 		}
1237 #endif
1238 
1239 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1240 	}
1241 	KDASSERT(ph->ph_nmissing != 0);
1242 	ph->ph_nmissing--;
1243 	pp->pr_nput++;
1244 	pp->pr_nitems++;
1245 	pp->pr_nout--;
1246 
1247 	/* Cancel "pool empty" condition if it exists */
1248 	if (pp->pr_curpage == NULL)
1249 		pp->pr_curpage = ph;
1250 
1251 	if (pp->pr_flags & PR_WANTED) {
1252 		pp->pr_flags &= ~PR_WANTED;
1253 		if (ph->ph_nmissing == 0)
1254 			pp->pr_nidle++;
1255 		cv_broadcast(&pp->pr_cv);
1256 		return;
1257 	}
1258 
1259 	/*
1260 	 * If this page is now empty, do one of two things:
1261 	 *
1262 	 *	(1) If we have more pages than the page high water mark,
1263 	 *	    free the page back to the system.  ONLY CONSIDER
1264 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1265 	 *	    CLAIM.
1266 	 *
1267 	 *	(2) Otherwise, move the page to the empty page list.
1268 	 *
1269 	 * Either way, select a new current page (so we use a partially-full
1270 	 * page if one is available).
1271 	 */
1272 	if (ph->ph_nmissing == 0) {
1273 		pp->pr_nidle++;
1274 		if (pp->pr_npages > pp->pr_minpages &&
1275 		    (pp->pr_npages > pp->pr_maxpages ||
1276 		     pa_starved_p(pp->pr_alloc))) {
1277 			pr_rmpage(pp, ph, pq);
1278 		} else {
1279 			LIST_REMOVE(ph, ph_pagelist);
1280 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1281 
1282 			/*
1283 			 * Update the timestamp on the page.  A page must
1284 			 * be idle for some period of time before it can
1285 			 * be reclaimed by the pagedaemon.  This minimizes
1286 			 * ping-pong'ing for memory.
1287 			 */
1288 			getmicrotime(&ph->ph_time);
1289 		}
1290 		pool_update_curpage(pp);
1291 	}
1292 
1293 	/*
1294 	 * If the page was previously completely full, move it to the
1295 	 * partially-full list and make it the current page.  The next
1296 	 * allocation will get the item from this page, instead of
1297 	 * further fragmenting the pool.
1298 	 */
1299 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1300 		LIST_REMOVE(ph, ph_pagelist);
1301 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1302 		pp->pr_curpage = ph;
1303 	}
1304 }
1305 
1306 /*
1307  * Return resource to the pool.
1308  */
1309 #ifdef POOL_DIAGNOSTIC
1310 void
1311 _pool_put(struct pool *pp, void *v, const char *file, long line)
1312 {
1313 	struct pool_pagelist pq;
1314 
1315 	LIST_INIT(&pq);
1316 
1317 	mutex_enter(&pp->pr_lock);
1318 	pr_enter(pp, file, line);
1319 
1320 	pr_log(pp, v, PRLOG_PUT, file, line);
1321 
1322 	pool_do_put(pp, v, &pq);
1323 
1324 	pr_leave(pp);
1325 	mutex_exit(&pp->pr_lock);
1326 
1327 	pr_pagelist_free(pp, &pq);
1328 }
1329 #undef pool_put
1330 #endif /* POOL_DIAGNOSTIC */
1331 
1332 void
1333 pool_put(struct pool *pp, void *v)
1334 {
1335 	struct pool_pagelist pq;
1336 
1337 	LIST_INIT(&pq);
1338 
1339 	mutex_enter(&pp->pr_lock);
1340 	pool_do_put(pp, v, &pq);
1341 	mutex_exit(&pp->pr_lock);
1342 
1343 	pr_pagelist_free(pp, &pq);
1344 }
1345 
1346 #ifdef POOL_DIAGNOSTIC
1347 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
1348 #endif
1349 
1350 /*
1351  * pool_grow: grow a pool by a page.
1352  *
1353  * => called with pool locked.
1354  * => unlock and relock the pool.
1355  * => return with pool locked.
1356  */
1357 
1358 static int
1359 pool_grow(struct pool *pp, int flags)
1360 {
1361 	struct pool_item_header *ph = NULL;
1362 	char *cp;
1363 
1364 	mutex_exit(&pp->pr_lock);
1365 	cp = pool_allocator_alloc(pp, flags);
1366 	if (__predict_true(cp != NULL)) {
1367 		ph = pool_alloc_item_header(pp, cp, flags);
1368 	}
1369 	if (__predict_false(cp == NULL || ph == NULL)) {
1370 		if (cp != NULL) {
1371 			pool_allocator_free(pp, cp);
1372 		}
1373 		mutex_enter(&pp->pr_lock);
1374 		return ENOMEM;
1375 	}
1376 
1377 	mutex_enter(&pp->pr_lock);
1378 	pool_prime_page(pp, cp, ph);
1379 	pp->pr_npagealloc++;
1380 	return 0;
1381 }
1382 
1383 /*
1384  * Add N items to the pool.
1385  */
1386 int
1387 pool_prime(struct pool *pp, int n)
1388 {
1389 	int newpages;
1390 	int error = 0;
1391 
1392 	mutex_enter(&pp->pr_lock);
1393 
1394 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1395 
1396 	while (newpages-- > 0) {
1397 		error = pool_grow(pp, PR_NOWAIT);
1398 		if (error) {
1399 			break;
1400 		}
1401 		pp->pr_minpages++;
1402 	}
1403 
1404 	if (pp->pr_minpages >= pp->pr_maxpages)
1405 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1406 
1407 	mutex_exit(&pp->pr_lock);
1408 	return error;
1409 }
1410 
1411 /*
1412  * Add a page worth of items to the pool.
1413  *
1414  * Note, we must be called with the pool descriptor LOCKED.
1415  */
1416 static void
1417 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1418 {
1419 	struct pool_item *pi;
1420 	void *cp = storage;
1421 	const unsigned int align = pp->pr_align;
1422 	const unsigned int ioff = pp->pr_itemoffset;
1423 	int n;
1424 
1425 	KASSERT(mutex_owned(&pp->pr_lock));
1426 
1427 #ifdef DIAGNOSTIC
1428 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1429 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1430 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1431 #endif
1432 
1433 	/*
1434 	 * Insert page header.
1435 	 */
1436 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1437 	LIST_INIT(&ph->ph_itemlist);
1438 	ph->ph_page = storage;
1439 	ph->ph_nmissing = 0;
1440 	getmicrotime(&ph->ph_time);
1441 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1442 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1443 
1444 	pp->pr_nidle++;
1445 
1446 	/*
1447 	 * Color this page.
1448 	 */
1449 	ph->ph_off = pp->pr_curcolor;
1450 	cp = (char *)cp + ph->ph_off;
1451 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1452 		pp->pr_curcolor = 0;
1453 
1454 	/*
1455 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1456 	 */
1457 	if (ioff != 0)
1458 		cp = (char *)cp + align - ioff;
1459 
1460 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1461 
1462 	/*
1463 	 * Insert remaining chunks on the bucket list.
1464 	 */
1465 	n = pp->pr_itemsperpage;
1466 	pp->pr_nitems += n;
1467 
1468 	if (pp->pr_roflags & PR_NOTOUCH) {
1469 		pr_item_notouch_init(pp, ph);
1470 	} else {
1471 		while (n--) {
1472 			pi = (struct pool_item *)cp;
1473 
1474 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1475 
1476 			/* Insert on page list */
1477 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1478 #ifdef DIAGNOSTIC
1479 			pi->pi_magic = PI_MAGIC;
1480 #endif
1481 			cp = (char *)cp + pp->pr_size;
1482 
1483 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1484 		}
1485 	}
1486 
1487 	/*
1488 	 * If the pool was depleted, point at the new page.
1489 	 */
1490 	if (pp->pr_curpage == NULL)
1491 		pp->pr_curpage = ph;
1492 
1493 	if (++pp->pr_npages > pp->pr_hiwat)
1494 		pp->pr_hiwat = pp->pr_npages;
1495 }
1496 
1497 /*
1498  * Used by pool_get() when nitems drops below the low water mark.  This
1499  * is used to catch up pr_nitems with the low water mark.
1500  *
1501  * Note 1, we never wait for memory here, we let the caller decide what to do.
1502  *
1503  * Note 2, we must be called with the pool already locked, and we return
1504  * with it locked.
1505  */
1506 static int
1507 pool_catchup(struct pool *pp)
1508 {
1509 	int error = 0;
1510 
1511 	while (POOL_NEEDS_CATCHUP(pp)) {
1512 		error = pool_grow(pp, PR_NOWAIT);
1513 		if (error) {
1514 			break;
1515 		}
1516 	}
1517 	return error;
1518 }
1519 
1520 static void
1521 pool_update_curpage(struct pool *pp)
1522 {
1523 
1524 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1525 	if (pp->pr_curpage == NULL) {
1526 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1527 	}
1528 }
1529 
1530 void
1531 pool_setlowat(struct pool *pp, int n)
1532 {
1533 
1534 	mutex_enter(&pp->pr_lock);
1535 
1536 	pp->pr_minitems = n;
1537 	pp->pr_minpages = (n == 0)
1538 		? 0
1539 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1540 
1541 	/* Make sure we're caught up with the newly-set low water mark. */
1542 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1543 		/*
1544 		 * XXX: Should we log a warning?  Should we set up a timeout
1545 		 * to try again in a second or so?  The latter could break
1546 		 * a caller's assumptions about interrupt protection, etc.
1547 		 */
1548 	}
1549 
1550 	mutex_exit(&pp->pr_lock);
1551 }
1552 
1553 void
1554 pool_sethiwat(struct pool *pp, int n)
1555 {
1556 
1557 	mutex_enter(&pp->pr_lock);
1558 
1559 	pp->pr_maxpages = (n == 0)
1560 		? 0
1561 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1562 
1563 	mutex_exit(&pp->pr_lock);
1564 }
1565 
1566 void
1567 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1568 {
1569 
1570 	mutex_enter(&pp->pr_lock);
1571 
1572 	pp->pr_hardlimit = n;
1573 	pp->pr_hardlimit_warning = warnmess;
1574 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1575 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1576 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1577 
1578 	/*
1579 	 * In-line version of pool_sethiwat(), because we don't want to
1580 	 * release the lock.
1581 	 */
1582 	pp->pr_maxpages = (n == 0)
1583 		? 0
1584 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1585 
1586 	mutex_exit(&pp->pr_lock);
1587 }
1588 
1589 /*
1590  * Release all complete pages that have not been used recently.
1591  */
1592 int
1593 #ifdef POOL_DIAGNOSTIC
1594 _pool_reclaim(struct pool *pp, const char *file, long line)
1595 #else
1596 pool_reclaim(struct pool *pp)
1597 #endif
1598 {
1599 	struct pool_item_header *ph, *phnext;
1600 	struct pool_pagelist pq;
1601 	struct timeval curtime, diff;
1602 	bool klock;
1603 	int rv;
1604 
1605 	if (pp->pr_drain_hook != NULL) {
1606 		/*
1607 		 * The drain hook must be called with the pool unlocked.
1608 		 */
1609 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1610 	}
1611 
1612 	/*
1613 	 * XXXSMP Because mutexes at IPL_SOFTXXX are still spinlocks,
1614 	 * and we are called from the pagedaemon without kernel_lock.
1615 	 * Does not apply to IPL_SOFTBIO.
1616 	 */
1617 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1618 	    pp->pr_ipl == IPL_SOFTSERIAL) {
1619 		KERNEL_LOCK(1, NULL);
1620 		klock = true;
1621 	} else
1622 		klock = false;
1623 
1624 	/* Reclaim items from the pool's cache (if any). */
1625 	if (pp->pr_cache != NULL)
1626 		pool_cache_invalidate(pp->pr_cache);
1627 
1628 	if (mutex_tryenter(&pp->pr_lock) == 0) {
1629 		if (klock) {
1630 			KERNEL_UNLOCK_ONE(NULL);
1631 		}
1632 		return (0);
1633 	}
1634 	pr_enter(pp, file, line);
1635 
1636 	LIST_INIT(&pq);
1637 
1638 	getmicrotime(&curtime);
1639 
1640 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1641 		phnext = LIST_NEXT(ph, ph_pagelist);
1642 
1643 		/* Check our minimum page claim */
1644 		if (pp->pr_npages <= pp->pr_minpages)
1645 			break;
1646 
1647 		KASSERT(ph->ph_nmissing == 0);
1648 		timersub(&curtime, &ph->ph_time, &diff);
1649 		if (diff.tv_sec < pool_inactive_time
1650 		    && !pa_starved_p(pp->pr_alloc))
1651 			continue;
1652 
1653 		/*
1654 		 * If freeing this page would put us below
1655 		 * the low water mark, stop now.
1656 		 */
1657 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
1658 		    pp->pr_minitems)
1659 			break;
1660 
1661 		pr_rmpage(pp, ph, &pq);
1662 	}
1663 
1664 	pr_leave(pp);
1665 	mutex_exit(&pp->pr_lock);
1666 
1667 	if (LIST_EMPTY(&pq))
1668 		rv = 0;
1669 	else {
1670 		pr_pagelist_free(pp, &pq);
1671 		rv = 1;
1672 	}
1673 
1674 	if (klock) {
1675 		KERNEL_UNLOCK_ONE(NULL);
1676 	}
1677 
1678 	return (rv);
1679 }
1680 
1681 /*
1682  * Drain pools, one at a time.  This is a two stage process;
1683  * drain_start kicks off a cross call to drain CPU-level caches
1684  * if the pool has an associated pool_cache.  drain_end waits
1685  * for those cross calls to finish, and then drains the cache
1686  * (if any) and pool.
1687  *
1688  * Note, must never be called from interrupt context.
1689  */
1690 void
1691 pool_drain_start(struct pool **ppp, uint64_t *wp)
1692 {
1693 	struct pool *pp;
1694 
1695 	KASSERT(!LIST_EMPTY(&pool_head));
1696 
1697 	pp = NULL;
1698 
1699 	/* Find next pool to drain, and add a reference. */
1700 	mutex_enter(&pool_head_lock);
1701 	do {
1702 		if (drainpp == NULL) {
1703 			drainpp = LIST_FIRST(&pool_head);
1704 		}
1705 		if (drainpp != NULL) {
1706 			pp = drainpp;
1707 			drainpp = LIST_NEXT(pp, pr_poollist);
1708 		}
1709 		/*
1710 		 * Skip completely idle pools.  We depend on at least
1711 		 * one pool in the system being active.
1712 		 */
1713 	} while (pp == NULL || pp->pr_npages == 0);
1714 	pp->pr_refcnt++;
1715 	mutex_exit(&pool_head_lock);
1716 
1717 	/* If there is a pool_cache, drain CPU level caches. */
1718 	*ppp = pp;
1719 	if (pp->pr_cache != NULL) {
1720 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1721 		    pp->pr_cache, NULL);
1722 	}
1723 }
1724 
1725 void
1726 pool_drain_end(struct pool *pp, uint64_t where)
1727 {
1728 
1729 	if (pp == NULL)
1730 		return;
1731 
1732 	KASSERT(pp->pr_refcnt > 0);
1733 
1734 	/* Wait for remote draining to complete. */
1735 	if (pp->pr_cache != NULL)
1736 		xc_wait(where);
1737 
1738 	/* Drain the cache (if any) and pool.. */
1739 	pool_reclaim(pp);
1740 
1741 	/* Finally, unlock the pool. */
1742 	mutex_enter(&pool_head_lock);
1743 	pp->pr_refcnt--;
1744 	cv_broadcast(&pool_busy);
1745 	mutex_exit(&pool_head_lock);
1746 }
1747 
1748 /*
1749  * Diagnostic helpers.
1750  */
1751 void
1752 pool_print(struct pool *pp, const char *modif)
1753 {
1754 
1755 	pool_print1(pp, modif, printf);
1756 }
1757 
1758 void
1759 pool_printall(const char *modif, void (*pr)(const char *, ...))
1760 {
1761 	struct pool *pp;
1762 
1763 	LIST_FOREACH(pp, &pool_head, pr_poollist) {
1764 		pool_printit(pp, modif, pr);
1765 	}
1766 }
1767 
1768 void
1769 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1770 {
1771 
1772 	if (pp == NULL) {
1773 		(*pr)("Must specify a pool to print.\n");
1774 		return;
1775 	}
1776 
1777 	pool_print1(pp, modif, pr);
1778 }
1779 
1780 static void
1781 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1782     void (*pr)(const char *, ...))
1783 {
1784 	struct pool_item_header *ph;
1785 #ifdef DIAGNOSTIC
1786 	struct pool_item *pi;
1787 #endif
1788 
1789 	LIST_FOREACH(ph, pl, ph_pagelist) {
1790 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1791 		    ph->ph_page, ph->ph_nmissing,
1792 		    (u_long)ph->ph_time.tv_sec,
1793 		    (u_long)ph->ph_time.tv_usec);
1794 #ifdef DIAGNOSTIC
1795 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
1796 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1797 				if (pi->pi_magic != PI_MAGIC) {
1798 					(*pr)("\t\t\titem %p, magic 0x%x\n",
1799 					    pi, pi->pi_magic);
1800 				}
1801 			}
1802 		}
1803 #endif
1804 	}
1805 }
1806 
1807 static void
1808 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1809 {
1810 	struct pool_item_header *ph;
1811 	pool_cache_t pc;
1812 	pcg_t *pcg;
1813 	pool_cache_cpu_t *cc;
1814 	uint64_t cpuhit, cpumiss;
1815 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1816 	char c;
1817 
1818 	while ((c = *modif++) != '\0') {
1819 		if (c == 'l')
1820 			print_log = 1;
1821 		if (c == 'p')
1822 			print_pagelist = 1;
1823 		if (c == 'c')
1824 			print_cache = 1;
1825 	}
1826 
1827 	if ((pc = pp->pr_cache) != NULL) {
1828 		(*pr)("POOL CACHE");
1829 	} else {
1830 		(*pr)("POOL");
1831 	}
1832 
1833 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1834 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1835 	    pp->pr_roflags);
1836 	(*pr)("\talloc %p\n", pp->pr_alloc);
1837 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1838 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1839 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1840 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1841 
1842 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1843 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1844 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1845 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1846 
1847 	if (print_pagelist == 0)
1848 		goto skip_pagelist;
1849 
1850 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1851 		(*pr)("\n\tempty page list:\n");
1852 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1853 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1854 		(*pr)("\n\tfull page list:\n");
1855 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1856 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1857 		(*pr)("\n\tpartial-page list:\n");
1858 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
1859 
1860 	if (pp->pr_curpage == NULL)
1861 		(*pr)("\tno current page\n");
1862 	else
1863 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1864 
1865  skip_pagelist:
1866 	if (print_log == 0)
1867 		goto skip_log;
1868 
1869 	(*pr)("\n");
1870 	if ((pp->pr_roflags & PR_LOGGING) == 0)
1871 		(*pr)("\tno log\n");
1872 	else {
1873 		pr_printlog(pp, NULL, pr);
1874 	}
1875 
1876  skip_log:
1877 
1878 #define PR_GROUPLIST(pcg)						\
1879 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
1880 	for (i = 0; i < PCG_NOBJECTS; i++) {				\
1881 		if (pcg->pcg_objects[i].pcgo_pa !=			\
1882 		    POOL_PADDR_INVALID) {				\
1883 			(*pr)("\t\t\t%p, 0x%llx\n",			\
1884 			    pcg->pcg_objects[i].pcgo_va,		\
1885 			    (unsigned long long)			\
1886 			    pcg->pcg_objects[i].pcgo_pa);		\
1887 		} else {						\
1888 			(*pr)("\t\t\t%p\n",				\
1889 			    pcg->pcg_objects[i].pcgo_va);		\
1890 		}							\
1891 	}
1892 
1893 	if (pc != NULL) {
1894 		cpuhit = 0;
1895 		cpumiss = 0;
1896 		for (i = 0; i < MAXCPUS; i++) {
1897 			if ((cc = pc->pc_cpus[i]) == NULL)
1898 				continue;
1899 			cpuhit += cc->cc_hits;
1900 			cpumiss += cc->cc_misses;
1901 		}
1902 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1903 		(*pr)("\tcache layer hits %llu misses %llu\n",
1904 		    pc->pc_hits, pc->pc_misses);
1905 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1906 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
1907 		    pc->pc_contended);
1908 		(*pr)("\tcache layer empty groups %u full groups %u\n",
1909 		    pc->pc_nempty, pc->pc_nfull);
1910 		if (print_cache) {
1911 			(*pr)("\tfull cache groups:\n");
1912 			for (pcg = pc->pc_fullgroups; pcg != NULL;
1913 			    pcg = pcg->pcg_next) {
1914 				PR_GROUPLIST(pcg);
1915 			}
1916 			(*pr)("\tempty cache groups:\n");
1917 			for (pcg = pc->pc_emptygroups; pcg != NULL;
1918 			    pcg = pcg->pcg_next) {
1919 				PR_GROUPLIST(pcg);
1920 			}
1921 		}
1922 	}
1923 #undef PR_GROUPLIST
1924 
1925 	pr_enter_check(pp, pr);
1926 }
1927 
1928 static int
1929 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1930 {
1931 	struct pool_item *pi;
1932 	void *page;
1933 	int n;
1934 
1935 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1936 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1937 		if (page != ph->ph_page &&
1938 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1939 			if (label != NULL)
1940 				printf("%s: ", label);
1941 			printf("pool(%p:%s): page inconsistency: page %p;"
1942 			       " at page head addr %p (p %p)\n", pp,
1943 				pp->pr_wchan, ph->ph_page,
1944 				ph, page);
1945 			return 1;
1946 		}
1947 	}
1948 
1949 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1950 		return 0;
1951 
1952 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1953 	     pi != NULL;
1954 	     pi = LIST_NEXT(pi,pi_list), n++) {
1955 
1956 #ifdef DIAGNOSTIC
1957 		if (pi->pi_magic != PI_MAGIC) {
1958 			if (label != NULL)
1959 				printf("%s: ", label);
1960 			printf("pool(%s): free list modified: magic=%x;"
1961 			       " page %p; item ordinal %d; addr %p\n",
1962 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
1963 				n, pi);
1964 			panic("pool");
1965 		}
1966 #endif
1967 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1968 			continue;
1969 		}
1970 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1971 		if (page == ph->ph_page)
1972 			continue;
1973 
1974 		if (label != NULL)
1975 			printf("%s: ", label);
1976 		printf("pool(%p:%s): page inconsistency: page %p;"
1977 		       " item ordinal %d; addr %p (p %p)\n", pp,
1978 			pp->pr_wchan, ph->ph_page,
1979 			n, pi, page);
1980 		return 1;
1981 	}
1982 	return 0;
1983 }
1984 
1985 
1986 int
1987 pool_chk(struct pool *pp, const char *label)
1988 {
1989 	struct pool_item_header *ph;
1990 	int r = 0;
1991 
1992 	mutex_enter(&pp->pr_lock);
1993 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1994 		r = pool_chk_page(pp, label, ph);
1995 		if (r) {
1996 			goto out;
1997 		}
1998 	}
1999 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2000 		r = pool_chk_page(pp, label, ph);
2001 		if (r) {
2002 			goto out;
2003 		}
2004 	}
2005 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2006 		r = pool_chk_page(pp, label, ph);
2007 		if (r) {
2008 			goto out;
2009 		}
2010 	}
2011 
2012 out:
2013 	mutex_exit(&pp->pr_lock);
2014 	return (r);
2015 }
2016 
2017 /*
2018  * pool_cache_init:
2019  *
2020  *	Initialize a pool cache.
2021  */
2022 pool_cache_t
2023 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2024     const char *wchan, struct pool_allocator *palloc, int ipl,
2025     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2026 {
2027 	pool_cache_t pc;
2028 
2029 	pc = pool_get(&cache_pool, PR_WAITOK);
2030 	if (pc == NULL)
2031 		return NULL;
2032 
2033 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2034 	   palloc, ipl, ctor, dtor, arg);
2035 
2036 	return pc;
2037 }
2038 
2039 /*
2040  * pool_cache_bootstrap:
2041  *
2042  *	Kernel-private version of pool_cache_init().  The caller
2043  *	provides initial storage.
2044  */
2045 void
2046 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2047     u_int align_offset, u_int flags, const char *wchan,
2048     struct pool_allocator *palloc, int ipl,
2049     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2050     void *arg)
2051 {
2052 	CPU_INFO_ITERATOR cii;
2053 	struct cpu_info *ci;
2054 	struct pool *pp;
2055 
2056 	pp = &pc->pc_pool;
2057 	if (palloc == NULL && ipl == IPL_NONE)
2058 		palloc = &pool_allocator_nointr;
2059 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2060 
2061 	/*
2062 	 * XXXAD hack to prevent IP input processing from blocking.
2063 	 */
2064 	if (ipl == IPL_SOFTNET) {
2065 		mutex_init(&pc->pc_lock, MUTEX_DEFAULT, IPL_VM);
2066 	} else {
2067 		mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2068 	}
2069 
2070 	if (ctor == NULL) {
2071 		ctor = (int (*)(void *, void *, int))nullop;
2072 	}
2073 	if (dtor == NULL) {
2074 		dtor = (void (*)(void *, void *))nullop;
2075 	}
2076 
2077 	pc->pc_emptygroups = NULL;
2078 	pc->pc_fullgroups = NULL;
2079 	pc->pc_partgroups = NULL;
2080 	pc->pc_ctor = ctor;
2081 	pc->pc_dtor = dtor;
2082 	pc->pc_arg  = arg;
2083 	pc->pc_hits  = 0;
2084 	pc->pc_misses = 0;
2085 	pc->pc_nempty = 0;
2086 	pc->pc_npart = 0;
2087 	pc->pc_nfull = 0;
2088 	pc->pc_contended = 0;
2089 	pc->pc_refcnt = 0;
2090 	pc->pc_freecheck = NULL;
2091 
2092 	/* Allocate per-CPU caches. */
2093 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2094 	pc->pc_ncpu = 0;
2095 	if (ncpu < 2) {
2096 		/* XXX For sparc: boot CPU is not attached yet. */
2097 		pool_cache_cpu_init1(curcpu(), pc);
2098 	} else {
2099 		for (CPU_INFO_FOREACH(cii, ci)) {
2100 			pool_cache_cpu_init1(ci, pc);
2101 		}
2102 	}
2103 
2104 	if (__predict_true(!cold)) {
2105 		mutex_enter(&pp->pr_lock);
2106 		pp->pr_cache = pc;
2107 		mutex_exit(&pp->pr_lock);
2108 		mutex_enter(&pool_head_lock);
2109 		LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
2110 		mutex_exit(&pool_head_lock);
2111 	} else {
2112 		pp->pr_cache = pc;
2113 		LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
2114 	}
2115 }
2116 
2117 /*
2118  * pool_cache_destroy:
2119  *
2120  *	Destroy a pool cache.
2121  */
2122 void
2123 pool_cache_destroy(pool_cache_t pc)
2124 {
2125 	struct pool *pp = &pc->pc_pool;
2126 	pool_cache_cpu_t *cc;
2127 	pcg_t *pcg;
2128 	int i;
2129 
2130 	/* Remove it from the global list. */
2131 	mutex_enter(&pool_head_lock);
2132 	while (pc->pc_refcnt != 0)
2133 		cv_wait(&pool_busy, &pool_head_lock);
2134 	LIST_REMOVE(pc, pc_cachelist);
2135 	mutex_exit(&pool_head_lock);
2136 
2137 	/* First, invalidate the entire cache. */
2138 	pool_cache_invalidate(pc);
2139 
2140 	/* Disassociate it from the pool. */
2141 	mutex_enter(&pp->pr_lock);
2142 	pp->pr_cache = NULL;
2143 	mutex_exit(&pp->pr_lock);
2144 
2145 	/* Destroy per-CPU data */
2146 	for (i = 0; i < MAXCPUS; i++) {
2147 		if ((cc = pc->pc_cpus[i]) == NULL)
2148 			continue;
2149 		if ((pcg = cc->cc_current) != NULL) {
2150 			pcg->pcg_next = NULL;
2151 			pool_cache_invalidate_groups(pc, pcg);
2152 		}
2153 		if ((pcg = cc->cc_previous) != NULL) {
2154 			pcg->pcg_next = NULL;
2155 			pool_cache_invalidate_groups(pc, pcg);
2156 		}
2157 		if (cc != &pc->pc_cpu0)
2158 			pool_put(&cache_cpu_pool, cc);
2159 	}
2160 
2161 	/* Finally, destroy it. */
2162 	mutex_destroy(&pc->pc_lock);
2163 	pool_destroy(pp);
2164 	pool_put(&cache_pool, pc);
2165 }
2166 
2167 /*
2168  * pool_cache_cpu_init1:
2169  *
2170  *	Called for each pool_cache whenever a new CPU is attached.
2171  */
2172 static void
2173 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2174 {
2175 	pool_cache_cpu_t *cc;
2176 	int index;
2177 
2178 	index = ci->ci_index;
2179 
2180 	KASSERT(index < MAXCPUS);
2181 	KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0);
2182 
2183 	if ((cc = pc->pc_cpus[index]) != NULL) {
2184 		KASSERT(cc->cc_cpuindex == index);
2185 		return;
2186 	}
2187 
2188 	/*
2189 	 * The first CPU is 'free'.  This needs to be the case for
2190 	 * bootstrap - we may not be able to allocate yet.
2191 	 */
2192 	if (pc->pc_ncpu == 0) {
2193 		cc = &pc->pc_cpu0;
2194 		pc->pc_ncpu = 1;
2195 	} else {
2196 		mutex_enter(&pc->pc_lock);
2197 		pc->pc_ncpu++;
2198 		mutex_exit(&pc->pc_lock);
2199 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2200 	}
2201 
2202 	cc->cc_ipl = pc->pc_pool.pr_ipl;
2203 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2204 	cc->cc_cache = pc;
2205 	cc->cc_cpuindex = index;
2206 	cc->cc_hits = 0;
2207 	cc->cc_misses = 0;
2208 	cc->cc_current = NULL;
2209 	cc->cc_previous = NULL;
2210 
2211 	pc->pc_cpus[index] = cc;
2212 }
2213 
2214 /*
2215  * pool_cache_cpu_init:
2216  *
2217  *	Called whenever a new CPU is attached.
2218  */
2219 void
2220 pool_cache_cpu_init(struct cpu_info *ci)
2221 {
2222 	pool_cache_t pc;
2223 
2224 	mutex_enter(&pool_head_lock);
2225 	LIST_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2226 		pc->pc_refcnt++;
2227 		mutex_exit(&pool_head_lock);
2228 
2229 		pool_cache_cpu_init1(ci, pc);
2230 
2231 		mutex_enter(&pool_head_lock);
2232 		pc->pc_refcnt--;
2233 		cv_broadcast(&pool_busy);
2234 	}
2235 	mutex_exit(&pool_head_lock);
2236 }
2237 
2238 /*
2239  * pool_cache_reclaim:
2240  *
2241  *	Reclaim memory from a pool cache.
2242  */
2243 bool
2244 pool_cache_reclaim(pool_cache_t pc)
2245 {
2246 
2247 	return pool_reclaim(&pc->pc_pool);
2248 }
2249 
2250 static void
2251 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2252 {
2253 
2254 	(*pc->pc_dtor)(pc->pc_arg, object);
2255 	pool_put(&pc->pc_pool, object);
2256 }
2257 
2258 /*
2259  * pool_cache_destruct_object:
2260  *
2261  *	Force destruction of an object and its release back into
2262  *	the pool.
2263  */
2264 void
2265 pool_cache_destruct_object(pool_cache_t pc, void *object)
2266 {
2267 
2268 	FREECHECK_IN(&pc->pc_freecheck, object);
2269 
2270 	pool_cache_destruct_object1(pc, object);
2271 }
2272 
2273 /*
2274  * pool_cache_invalidate_groups:
2275  *
2276  *	Invalidate a chain of groups and destruct all objects.
2277  */
2278 static void
2279 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2280 {
2281 	void *object;
2282 	pcg_t *next;
2283 	int i;
2284 
2285 	for (; pcg != NULL; pcg = next) {
2286 		next = pcg->pcg_next;
2287 
2288 		for (i = 0; i < pcg->pcg_avail; i++) {
2289 			object = pcg->pcg_objects[i].pcgo_va;
2290 			pool_cache_destruct_object1(pc, object);
2291 		}
2292 
2293 		pool_put(&pcgpool, pcg);
2294 	}
2295 }
2296 
2297 /*
2298  * pool_cache_invalidate:
2299  *
2300  *	Invalidate a pool cache (destruct and release all of the
2301  *	cached objects).  Does not reclaim objects from the pool.
2302  */
2303 void
2304 pool_cache_invalidate(pool_cache_t pc)
2305 {
2306 	pcg_t *full, *empty, *part;
2307 
2308 	mutex_enter(&pc->pc_lock);
2309 	full = pc->pc_fullgroups;
2310 	empty = pc->pc_emptygroups;
2311 	part = pc->pc_partgroups;
2312 	pc->pc_fullgroups = NULL;
2313 	pc->pc_emptygroups = NULL;
2314 	pc->pc_partgroups = NULL;
2315 	pc->pc_nfull = 0;
2316 	pc->pc_nempty = 0;
2317 	pc->pc_npart = 0;
2318 	mutex_exit(&pc->pc_lock);
2319 
2320 	pool_cache_invalidate_groups(pc, full);
2321 	pool_cache_invalidate_groups(pc, empty);
2322 	pool_cache_invalidate_groups(pc, part);
2323 }
2324 
2325 void
2326 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2327 {
2328 
2329 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
2330 }
2331 
2332 void
2333 pool_cache_setlowat(pool_cache_t pc, int n)
2334 {
2335 
2336 	pool_setlowat(&pc->pc_pool, n);
2337 }
2338 
2339 void
2340 pool_cache_sethiwat(pool_cache_t pc, int n)
2341 {
2342 
2343 	pool_sethiwat(&pc->pc_pool, n);
2344 }
2345 
2346 void
2347 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2348 {
2349 
2350 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2351 }
2352 
2353 static inline pool_cache_cpu_t *
2354 pool_cache_cpu_enter(pool_cache_t pc, int *s)
2355 {
2356 	pool_cache_cpu_t *cc;
2357 
2358 	/*
2359 	 * Prevent other users of the cache from accessing our
2360 	 * CPU-local data.  To avoid touching shared state, we
2361 	 * pull the neccessary information from CPU local data.
2362 	 */
2363 	crit_enter();
2364 	cc = pc->pc_cpus[curcpu()->ci_index];
2365 	KASSERT(cc->cc_cache == pc);
2366 	if (cc->cc_ipl != IPL_NONE) {
2367 		*s = splraiseipl(cc->cc_iplcookie);
2368 	}
2369 	KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0);
2370 
2371 	return cc;
2372 }
2373 
2374 static inline void
2375 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
2376 {
2377 
2378 	/* No longer need exclusive access to the per-CPU data. */
2379 	if (cc->cc_ipl != IPL_NONE) {
2380 		splx(*s);
2381 	}
2382 	crit_exit();
2383 }
2384 
2385 #if __GNUC_PREREQ__(3, 0)
2386 __attribute ((noinline))
2387 #endif
2388 pool_cache_cpu_t *
2389 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
2390 		    paddr_t *pap, int flags)
2391 {
2392 	pcg_t *pcg, *cur;
2393 	uint64_t ncsw;
2394 	pool_cache_t pc;
2395 	void *object;
2396 
2397 	pc = cc->cc_cache;
2398 	cc->cc_misses++;
2399 
2400 	/*
2401 	 * Nothing was available locally.  Try and grab a group
2402 	 * from the cache.
2403 	 */
2404 	if (!mutex_tryenter(&pc->pc_lock)) {
2405 		ncsw = curlwp->l_ncsw;
2406 		mutex_enter(&pc->pc_lock);
2407 		pc->pc_contended++;
2408 
2409 		/*
2410 		 * If we context switched while locking, then
2411 		 * our view of the per-CPU data is invalid:
2412 		 * retry.
2413 		 */
2414 		if (curlwp->l_ncsw != ncsw) {
2415 			mutex_exit(&pc->pc_lock);
2416 			pool_cache_cpu_exit(cc, s);
2417 			return pool_cache_cpu_enter(pc, s);
2418 		}
2419 	}
2420 
2421 	if ((pcg = pc->pc_fullgroups) != NULL) {
2422 		/*
2423 		 * If there's a full group, release our empty
2424 		 * group back to the cache.  Install the full
2425 		 * group as cc_current and return.
2426 		 */
2427 		if ((cur = cc->cc_current) != NULL) {
2428 			KASSERT(cur->pcg_avail == 0);
2429 			cur->pcg_next = pc->pc_emptygroups;
2430 			pc->pc_emptygroups = cur;
2431 			pc->pc_nempty++;
2432 		}
2433 		KASSERT(pcg->pcg_avail == PCG_NOBJECTS);
2434 		cc->cc_current = pcg;
2435 		pc->pc_fullgroups = pcg->pcg_next;
2436 		pc->pc_hits++;
2437 		pc->pc_nfull--;
2438 		mutex_exit(&pc->pc_lock);
2439 		return cc;
2440 	}
2441 
2442 	/*
2443 	 * Nothing available locally or in cache.  Take the slow
2444 	 * path: fetch a new object from the pool and construct
2445 	 * it.
2446 	 */
2447 	pc->pc_misses++;
2448 	mutex_exit(&pc->pc_lock);
2449 	pool_cache_cpu_exit(cc, s);
2450 
2451 	object = pool_get(&pc->pc_pool, flags);
2452 	*objectp = object;
2453 	if (object == NULL)
2454 		return NULL;
2455 
2456 	if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2457 		pool_put(&pc->pc_pool, object);
2458 		*objectp = NULL;
2459 		return NULL;
2460 	}
2461 
2462 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2463 	    (pc->pc_pool.pr_align - 1)) == 0);
2464 
2465 	if (pap != NULL) {
2466 #ifdef POOL_VTOPHYS
2467 		*pap = POOL_VTOPHYS(object);
2468 #else
2469 		*pap = POOL_PADDR_INVALID;
2470 #endif
2471 	}
2472 
2473 	FREECHECK_OUT(&pc->pc_freecheck, object);
2474 	return NULL;
2475 }
2476 
2477 /*
2478  * pool_cache_get{,_paddr}:
2479  *
2480  *	Get an object from a pool cache (optionally returning
2481  *	the physical address of the object).
2482  */
2483 void *
2484 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2485 {
2486 	pool_cache_cpu_t *cc;
2487 	pcg_t *pcg;
2488 	void *object;
2489 	int s;
2490 
2491 #ifdef LOCKDEBUG
2492 	if (flags & PR_WAITOK)
2493 		ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
2494 #endif
2495 
2496 	cc = pool_cache_cpu_enter(pc, &s);
2497 	do {
2498 		/* Try and allocate an object from the current group. */
2499 	 	pcg = cc->cc_current;
2500 		if (pcg != NULL && pcg->pcg_avail > 0) {
2501 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2502 			if (pap != NULL)
2503 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2504 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2505 			KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
2506 			KASSERT(object != NULL);
2507 			cc->cc_hits++;
2508 			pool_cache_cpu_exit(cc, &s);
2509 			FREECHECK_OUT(&pc->pc_freecheck, object);
2510 			return object;
2511 		}
2512 
2513 		/*
2514 		 * That failed.  If the previous group isn't empty, swap
2515 		 * it with the current group and allocate from there.
2516 		 */
2517 		pcg = cc->cc_previous;
2518 		if (pcg != NULL && pcg->pcg_avail > 0) {
2519 			cc->cc_previous = cc->cc_current;
2520 			cc->cc_current = pcg;
2521 			continue;
2522 		}
2523 
2524 		/*
2525 		 * Can't allocate from either group: try the slow path.
2526 		 * If get_slow() allocated an object for us, or if
2527 		 * no more objects are available, it will return NULL.
2528 		 * Otherwise, we need to retry.
2529 		 */
2530 		cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
2531 	} while (cc != NULL);
2532 
2533 	return object;
2534 }
2535 
2536 #if __GNUC_PREREQ__(3, 0)
2537 __attribute ((noinline))
2538 #endif
2539 pool_cache_cpu_t *
2540 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
2541 {
2542 	pcg_t *pcg, *cur;
2543 	uint64_t ncsw;
2544 	pool_cache_t pc;
2545 
2546 	pc = cc->cc_cache;
2547 	cc->cc_misses++;
2548 
2549 	/*
2550 	 * No free slots locally.  Try to grab an empty, unused
2551 	 * group from the cache.
2552 	 */
2553 	if (!mutex_tryenter(&pc->pc_lock)) {
2554 		ncsw = curlwp->l_ncsw;
2555 		mutex_enter(&pc->pc_lock);
2556 		pc->pc_contended++;
2557 
2558 		/*
2559 		 * If we context switched while locking, then
2560 		 * our view of the per-CPU data is invalid:
2561 		 * retry.
2562 		 */
2563 		if (curlwp->l_ncsw != ncsw) {
2564 			mutex_exit(&pc->pc_lock);
2565 			pool_cache_cpu_exit(cc, s);
2566 			return pool_cache_cpu_enter(pc, s);
2567 		}
2568 	}
2569 
2570 	if ((pcg = pc->pc_emptygroups) != NULL) {
2571 		/*
2572 		 * If there's a empty group, release our full
2573 		 * group back to the cache.  Install the empty
2574 		 * group as cc_current and return.
2575 		 */
2576 		if ((cur = cc->cc_current) != NULL) {
2577 			KASSERT(cur->pcg_avail == PCG_NOBJECTS);
2578 			cur->pcg_next = pc->pc_fullgroups;
2579 			pc->pc_fullgroups = cur;
2580 			pc->pc_nfull++;
2581 		}
2582 		KASSERT(pcg->pcg_avail == 0);
2583 		cc->cc_current = pcg;
2584 		pc->pc_emptygroups = pcg->pcg_next;
2585 		pc->pc_hits++;
2586 		pc->pc_nempty--;
2587 		mutex_exit(&pc->pc_lock);
2588 		return cc;
2589 	}
2590 
2591 	/*
2592 	 * Nothing available locally or in cache.  Take the
2593 	 * slow path and try to allocate a new group that we
2594 	 * can release to.
2595 	 */
2596 	pc->pc_misses++;
2597 	mutex_exit(&pc->pc_lock);
2598 	pool_cache_cpu_exit(cc, s);
2599 
2600 	/*
2601 	 * If we can't allocate a new group, just throw the
2602 	 * object away.
2603 	 */
2604 	pcg = pool_get(&pcgpool, PR_NOWAIT);
2605 	if (pcg == NULL) {
2606 		pool_cache_destruct_object(pc, object);
2607 		return NULL;
2608 	}
2609 #ifdef DIAGNOSTIC
2610 	memset(pcg, 0, sizeof(*pcg));
2611 #else
2612 	pcg->pcg_avail = 0;
2613 #endif
2614 
2615 	/*
2616 	 * Add the empty group to the cache and try again.
2617 	 */
2618 	mutex_enter(&pc->pc_lock);
2619 	pcg->pcg_next = pc->pc_emptygroups;
2620 	pc->pc_emptygroups = pcg;
2621 	pc->pc_nempty++;
2622 	mutex_exit(&pc->pc_lock);
2623 
2624 	return pool_cache_cpu_enter(pc, s);
2625 }
2626 
2627 /*
2628  * pool_cache_put{,_paddr}:
2629  *
2630  *	Put an object back to the pool cache (optionally caching the
2631  *	physical address of the object).
2632  */
2633 void
2634 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2635 {
2636 	pool_cache_cpu_t *cc;
2637 	pcg_t *pcg;
2638 	int s;
2639 
2640 	FREECHECK_IN(&pc->pc_freecheck, object);
2641 
2642 	cc = pool_cache_cpu_enter(pc, &s);
2643 	do {
2644 		/* If the current group isn't full, release it there. */
2645 	 	pcg = cc->cc_current;
2646 		if (pcg != NULL && pcg->pcg_avail < PCG_NOBJECTS) {
2647 			KASSERT(pcg->pcg_objects[pcg->pcg_avail].pcgo_va
2648 			    == NULL);
2649 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2650 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2651 			pcg->pcg_avail++;
2652 			cc->cc_hits++;
2653 			pool_cache_cpu_exit(cc, &s);
2654 			return;
2655 		}
2656 
2657 		/*
2658 		 * That failed.  If the previous group is empty, swap
2659 		 * it with the current group and try again.
2660 		 */
2661 		pcg = cc->cc_previous;
2662 		if (pcg != NULL && pcg->pcg_avail == 0) {
2663 			cc->cc_previous = cc->cc_current;
2664 			cc->cc_current = pcg;
2665 			continue;
2666 		}
2667 
2668 		/*
2669 		 * Can't free to either group: try the slow path.
2670 		 * If put_slow() releases the object for us, it
2671 		 * will return NULL.  Otherwise we need to retry.
2672 		 */
2673 		cc = pool_cache_put_slow(cc, &s, object, pa);
2674 	} while (cc != NULL);
2675 }
2676 
2677 /*
2678  * pool_cache_xcall:
2679  *
2680  *	Transfer objects from the per-CPU cache to the global cache.
2681  *	Run within a cross-call thread.
2682  */
2683 static void
2684 pool_cache_xcall(pool_cache_t pc)
2685 {
2686 	pool_cache_cpu_t *cc;
2687 	pcg_t *prev, *cur, **list;
2688 	int s = 0; /* XXXgcc */
2689 
2690 	cc = pool_cache_cpu_enter(pc, &s);
2691 	cur = cc->cc_current;
2692 	cc->cc_current = NULL;
2693 	prev = cc->cc_previous;
2694 	cc->cc_previous = NULL;
2695 	pool_cache_cpu_exit(cc, &s);
2696 
2697 	/*
2698 	 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
2699 	 * because locks at IPL_SOFTXXX are still spinlocks.  Does not
2700 	 * apply to IPL_SOFTBIO.  Cross-call threads do not take the
2701 	 * kernel_lock.
2702 	 */
2703 	s = splvm();
2704 	mutex_enter(&pc->pc_lock);
2705 	if (cur != NULL) {
2706 		if (cur->pcg_avail == PCG_NOBJECTS) {
2707 			list = &pc->pc_fullgroups;
2708 			pc->pc_nfull++;
2709 		} else if (cur->pcg_avail == 0) {
2710 			list = &pc->pc_emptygroups;
2711 			pc->pc_nempty++;
2712 		} else {
2713 			list = &pc->pc_partgroups;
2714 			pc->pc_npart++;
2715 		}
2716 		cur->pcg_next = *list;
2717 		*list = cur;
2718 	}
2719 	if (prev != NULL) {
2720 		if (prev->pcg_avail == PCG_NOBJECTS) {
2721 			list = &pc->pc_fullgroups;
2722 			pc->pc_nfull++;
2723 		} else if (prev->pcg_avail == 0) {
2724 			list = &pc->pc_emptygroups;
2725 			pc->pc_nempty++;
2726 		} else {
2727 			list = &pc->pc_partgroups;
2728 			pc->pc_npart++;
2729 		}
2730 		prev->pcg_next = *list;
2731 		*list = prev;
2732 	}
2733 	mutex_exit(&pc->pc_lock);
2734 	splx(s);
2735 }
2736 
2737 /*
2738  * Pool backend allocators.
2739  *
2740  * Each pool has a backend allocator that handles allocation, deallocation,
2741  * and any additional draining that might be needed.
2742  *
2743  * We provide two standard allocators:
2744  *
2745  *	pool_allocator_kmem - the default when no allocator is specified
2746  *
2747  *	pool_allocator_nointr - used for pools that will not be accessed
2748  *	in interrupt context.
2749  */
2750 void	*pool_page_alloc(struct pool *, int);
2751 void	pool_page_free(struct pool *, void *);
2752 
2753 #ifdef POOL_SUBPAGE
2754 struct pool_allocator pool_allocator_kmem_fullpage = {
2755 	pool_page_alloc, pool_page_free, 0,
2756 	.pa_backingmapptr = &kmem_map,
2757 };
2758 #else
2759 struct pool_allocator pool_allocator_kmem = {
2760 	pool_page_alloc, pool_page_free, 0,
2761 	.pa_backingmapptr = &kmem_map,
2762 };
2763 #endif
2764 
2765 void	*pool_page_alloc_nointr(struct pool *, int);
2766 void	pool_page_free_nointr(struct pool *, void *);
2767 
2768 #ifdef POOL_SUBPAGE
2769 struct pool_allocator pool_allocator_nointr_fullpage = {
2770 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
2771 	.pa_backingmapptr = &kernel_map,
2772 };
2773 #else
2774 struct pool_allocator pool_allocator_nointr = {
2775 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
2776 	.pa_backingmapptr = &kernel_map,
2777 };
2778 #endif
2779 
2780 #ifdef POOL_SUBPAGE
2781 void	*pool_subpage_alloc(struct pool *, int);
2782 void	pool_subpage_free(struct pool *, void *);
2783 
2784 struct pool_allocator pool_allocator_kmem = {
2785 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2786 	.pa_backingmapptr = &kmem_map,
2787 };
2788 
2789 void	*pool_subpage_alloc_nointr(struct pool *, int);
2790 void	pool_subpage_free_nointr(struct pool *, void *);
2791 
2792 struct pool_allocator pool_allocator_nointr = {
2793 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2794 	.pa_backingmapptr = &kmem_map,
2795 };
2796 #endif /* POOL_SUBPAGE */
2797 
2798 static void *
2799 pool_allocator_alloc(struct pool *pp, int flags)
2800 {
2801 	struct pool_allocator *pa = pp->pr_alloc;
2802 	void *res;
2803 
2804 	res = (*pa->pa_alloc)(pp, flags);
2805 	if (res == NULL && (flags & PR_WAITOK) == 0) {
2806 		/*
2807 		 * We only run the drain hook here if PR_NOWAIT.
2808 		 * In other cases, the hook will be run in
2809 		 * pool_reclaim().
2810 		 */
2811 		if (pp->pr_drain_hook != NULL) {
2812 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2813 			res = (*pa->pa_alloc)(pp, flags);
2814 		}
2815 	}
2816 	return res;
2817 }
2818 
2819 static void
2820 pool_allocator_free(struct pool *pp, void *v)
2821 {
2822 	struct pool_allocator *pa = pp->pr_alloc;
2823 
2824 	(*pa->pa_free)(pp, v);
2825 }
2826 
2827 void *
2828 pool_page_alloc(struct pool *pp, int flags)
2829 {
2830 	bool waitok = (flags & PR_WAITOK) ? true : false;
2831 
2832 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2833 }
2834 
2835 void
2836 pool_page_free(struct pool *pp, void *v)
2837 {
2838 
2839 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2840 }
2841 
2842 static void *
2843 pool_page_alloc_meta(struct pool *pp, int flags)
2844 {
2845 	bool waitok = (flags & PR_WAITOK) ? true : false;
2846 
2847 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2848 }
2849 
2850 static void
2851 pool_page_free_meta(struct pool *pp, void *v)
2852 {
2853 
2854 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2855 }
2856 
2857 #ifdef POOL_SUBPAGE
2858 /* Sub-page allocator, for machines with large hardware pages. */
2859 void *
2860 pool_subpage_alloc(struct pool *pp, int flags)
2861 {
2862 	return pool_get(&psppool, flags);
2863 }
2864 
2865 void
2866 pool_subpage_free(struct pool *pp, void *v)
2867 {
2868 	pool_put(&psppool, v);
2869 }
2870 
2871 /* We don't provide a real nointr allocator.  Maybe later. */
2872 void *
2873 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2874 {
2875 
2876 	return (pool_subpage_alloc(pp, flags));
2877 }
2878 
2879 void
2880 pool_subpage_free_nointr(struct pool *pp, void *v)
2881 {
2882 
2883 	pool_subpage_free(pp, v);
2884 }
2885 #endif /* POOL_SUBPAGE */
2886 void *
2887 pool_page_alloc_nointr(struct pool *pp, int flags)
2888 {
2889 	bool waitok = (flags & PR_WAITOK) ? true : false;
2890 
2891 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2892 }
2893 
2894 void
2895 pool_page_free_nointr(struct pool *pp, void *v)
2896 {
2897 
2898 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2899 }
2900 
2901 #if defined(DDB)
2902 static bool
2903 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2904 {
2905 
2906 	return (uintptr_t)ph->ph_page <= addr &&
2907 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2908 }
2909 
2910 void
2911 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2912 {
2913 	struct pool *pp;
2914 
2915 	LIST_FOREACH(pp, &pool_head, pr_poollist) {
2916 		struct pool_item_header *ph;
2917 		uintptr_t item;
2918 
2919 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
2920 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2921 				if (pool_in_page(pp, ph, addr)) {
2922 					goto found;
2923 				}
2924 			}
2925 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2926 				if (pool_in_page(pp, ph, addr)) {
2927 					goto found;
2928 				}
2929 			}
2930 			continue;
2931 		} else {
2932 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
2933 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
2934 				continue;
2935 			}
2936 		}
2937 found:
2938 		item = (uintptr_t)ph->ph_page + ph->ph_off;
2939 		item = item + rounddown(addr - item, pp->pr_size);
2940 		(*pr)("%p is %p+%zu from POOL '%s'\n",
2941 		    (void *)addr, item, (size_t)(addr - item),
2942 		    pp->pr_wchan);
2943 	}
2944 }
2945 #endif /* defined(DDB) */
2946