1*1f0e72f1Sriastradh /* $NetBSD: subr_percpu.c,v 1.25 2020/05/11 21:37:31 riastradh Exp $ */
2ea8e7591Syamt
3ea8e7591Syamt /*-
4ea8e7591Syamt * Copyright (c)2007,2008 YAMAMOTO Takashi,
5ea8e7591Syamt * All rights reserved.
6ea8e7591Syamt *
7ea8e7591Syamt * Redistribution and use in source and binary forms, with or without
8ea8e7591Syamt * modification, are permitted provided that the following conditions
9ea8e7591Syamt * are met:
10ea8e7591Syamt * 1. Redistributions of source code must retain the above copyright
11ea8e7591Syamt * notice, this list of conditions and the following disclaimer.
12ea8e7591Syamt * 2. Redistributions in binary form must reproduce the above copyright
13ea8e7591Syamt * notice, this list of conditions and the following disclaimer in the
14ea8e7591Syamt * documentation and/or other materials provided with the distribution.
15ea8e7591Syamt *
16ea8e7591Syamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17ea8e7591Syamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18ea8e7591Syamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19ea8e7591Syamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20ea8e7591Syamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21ea8e7591Syamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22ea8e7591Syamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23ea8e7591Syamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24ea8e7591Syamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25ea8e7591Syamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26ea8e7591Syamt * SUCH DAMAGE.
27ea8e7591Syamt */
28ea8e7591Syamt
29ea8e7591Syamt /*
30ea8e7591Syamt * per-cpu storage.
31ea8e7591Syamt */
32ea8e7591Syamt
33ea8e7591Syamt #include <sys/cdefs.h>
34*1f0e72f1Sriastradh __KERNEL_RCSID(0, "$NetBSD: subr_percpu.c,v 1.25 2020/05/11 21:37:31 riastradh Exp $");
35ea8e7591Syamt
36ea8e7591Syamt #include <sys/param.h>
37ea8e7591Syamt #include <sys/cpu.h>
38ea8e7591Syamt #include <sys/kernel.h>
394bf5723bSriastradh #include <sys/kmem.h>
40ea8e7591Syamt #include <sys/mutex.h>
41ea8e7591Syamt #include <sys/percpu.h>
42ea8e7591Syamt #include <sys/rwlock.h>
43ea8e7591Syamt #include <sys/vmem.h>
44ea8e7591Syamt #include <sys/xcall.h>
45ea8e7591Syamt
46ea8e7591Syamt #define PERCPU_QUANTUM_SIZE (ALIGNBYTES + 1)
47ea8e7591Syamt #define PERCPU_QCACHE_MAX 0
48ea8e7591Syamt #define PERCPU_IMPORT_SIZE 2048
49ea8e7591Syamt
50d92a26fbSriastradh struct percpu {
51d92a26fbSriastradh unsigned pc_offset;
52d92a26fbSriastradh size_t pc_size;
53*1f0e72f1Sriastradh percpu_callback_t pc_ctor;
54d92a26fbSriastradh percpu_callback_t pc_dtor;
55d92a26fbSriastradh void *pc_cookie;
56*1f0e72f1Sriastradh LIST_ENTRY(percpu) pc_list;
57d92a26fbSriastradh };
586d3b5bc3Syamt
59f132c365Srmind static krwlock_t percpu_swap_lock __cacheline_aligned;
601cae704dSriastradh static vmem_t * percpu_offset_arena __read_mostly;
611cae704dSriastradh static struct {
621cae704dSriastradh kmutex_t lock;
631cae704dSriastradh unsigned int nextoff;
64*1f0e72f1Sriastradh LIST_HEAD(, percpu) ctor_list;
65*1f0e72f1Sriastradh struct lwp *busy;
66*1f0e72f1Sriastradh kcondvar_t cv;
671cae704dSriastradh } percpu_allocation __cacheline_aligned;
687c89190bSad
69ea8e7591Syamt static percpu_cpu_t *
cpu_percpu(struct cpu_info * ci)70ea8e7591Syamt cpu_percpu(struct cpu_info *ci)
71ea8e7591Syamt {
72ea8e7591Syamt
73ea8e7591Syamt return &ci->ci_data.cpu_percpu;
74ea8e7591Syamt }
75ea8e7591Syamt
76ea8e7591Syamt static unsigned int
percpu_offset(percpu_t * pc)77ea8e7591Syamt percpu_offset(percpu_t *pc)
78ea8e7591Syamt {
79d92a26fbSriastradh const unsigned int off = pc->pc_offset;
80ea8e7591Syamt
811cae704dSriastradh KASSERT(off < percpu_allocation.nextoff);
826d3b5bc3Syamt return off;
83ea8e7591Syamt }
84ea8e7591Syamt
85ea8e7591Syamt /*
86ea8e7591Syamt * percpu_cpu_swap: crosscall handler for percpu_cpu_enlarge
87ea8e7591Syamt */
888a4b4e84Skamil __noubsan
89ea8e7591Syamt static void
percpu_cpu_swap(void * p1,void * p2)90ea8e7591Syamt percpu_cpu_swap(void *p1, void *p2)
91ea8e7591Syamt {
92ea8e7591Syamt struct cpu_info * const ci = p1;
93ea8e7591Syamt percpu_cpu_t * const newpcc = p2;
94ea8e7591Syamt percpu_cpu_t * const pcc = cpu_percpu(ci);
95ea8e7591Syamt
96ffaba5deSmartin KASSERT(ci == curcpu() || !mp_online);
97fdd122f0Smatt
98ea8e7591Syamt /*
99ea8e7591Syamt * swap *pcc and *newpcc unless anyone has beaten us.
100ea8e7591Syamt */
101ea8e7591Syamt rw_enter(&percpu_swap_lock, RW_WRITER);
102ea8e7591Syamt if (newpcc->pcc_size > pcc->pcc_size) {
103ea8e7591Syamt percpu_cpu_t tmp;
104ea8e7591Syamt int s;
105ea8e7591Syamt
106ea8e7591Syamt tmp = *pcc;
107ea8e7591Syamt
108ea8e7591Syamt /*
109ea8e7591Syamt * block interrupts so that we don't lose their modifications.
110ea8e7591Syamt */
111ea8e7591Syamt
112ea8e7591Syamt s = splhigh();
113ea8e7591Syamt
114ea8e7591Syamt /*
115ea8e7591Syamt * copy data to new storage.
116ea8e7591Syamt */
117ea8e7591Syamt
118ea8e7591Syamt memcpy(newpcc->pcc_data, pcc->pcc_data, pcc->pcc_size);
119ea8e7591Syamt
120ea8e7591Syamt /*
121ea8e7591Syamt * this assignment needs to be atomic for percpu_getptr_remote.
122ea8e7591Syamt */
123ea8e7591Syamt
124ea8e7591Syamt pcc->pcc_data = newpcc->pcc_data;
125ea8e7591Syamt
126ea8e7591Syamt splx(s);
127ea8e7591Syamt
128ea8e7591Syamt pcc->pcc_size = newpcc->pcc_size;
129ea8e7591Syamt *newpcc = tmp;
130ea8e7591Syamt }
131ea8e7591Syamt rw_exit(&percpu_swap_lock);
132ea8e7591Syamt }
133ea8e7591Syamt
134ea8e7591Syamt /*
135ea8e7591Syamt * percpu_cpu_enlarge: ensure that percpu_cpu_t of each cpus have enough space
136ea8e7591Syamt */
137ea8e7591Syamt
138ea8e7591Syamt static void
percpu_cpu_enlarge(size_t size)139ea8e7591Syamt percpu_cpu_enlarge(size_t size)
140ea8e7591Syamt {
141ea8e7591Syamt CPU_INFO_ITERATOR cii;
142ea8e7591Syamt struct cpu_info *ci;
143ea8e7591Syamt
144ea8e7591Syamt for (CPU_INFO_FOREACH(cii, ci)) {
145ea8e7591Syamt percpu_cpu_t pcc;
146ea8e7591Syamt
147ea8e7591Syamt pcc.pcc_data = kmem_alloc(size, KM_SLEEP); /* XXX cacheline */
148ea8e7591Syamt pcc.pcc_size = size;
149ea8e7591Syamt if (!mp_online) {
150ea8e7591Syamt percpu_cpu_swap(ci, &pcc);
151ea8e7591Syamt } else {
152ea8e7591Syamt uint64_t where;
153ea8e7591Syamt
154ea8e7591Syamt where = xc_unicast(0, percpu_cpu_swap, ci, &pcc, ci);
155ea8e7591Syamt xc_wait(where);
156ea8e7591Syamt }
157de3acc9dSriastradh KASSERT(pcc.pcc_size <= size);
158ea8e7591Syamt if (pcc.pcc_data != NULL) {
159ea8e7591Syamt kmem_free(pcc.pcc_data, pcc.pcc_size);
160ea8e7591Syamt }
161ea8e7591Syamt }
162ea8e7591Syamt }
163ea8e7591Syamt
164ea8e7591Syamt /*
165ea8e7591Syamt * percpu_backend_alloc: vmem import callback for percpu_offset_arena
166ea8e7591Syamt */
167ea8e7591Syamt
16878b0e183Sdyoung static int
percpu_backend_alloc(vmem_t * dummy,vmem_size_t size,vmem_size_t * resultsize,vm_flag_t vmflags,vmem_addr_t * addrp)169e62ee4d4Spara percpu_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize,
17078b0e183Sdyoung vm_flag_t vmflags, vmem_addr_t *addrp)
171ea8e7591Syamt {
172ea8e7591Syamt unsigned int offset;
173ea8e7591Syamt unsigned int nextoff;
174ea8e7591Syamt
175a67bae0bSyamt ASSERT_SLEEPABLE();
176ea8e7591Syamt KASSERT(dummy == NULL);
177ea8e7591Syamt
178ea8e7591Syamt if ((vmflags & VM_NOSLEEP) != 0)
17978b0e183Sdyoung return ENOMEM;
180ea8e7591Syamt
181ea8e7591Syamt size = roundup(size, PERCPU_IMPORT_SIZE);
1821cae704dSriastradh mutex_enter(&percpu_allocation.lock);
1831cae704dSriastradh offset = percpu_allocation.nextoff;
1841cae704dSriastradh percpu_allocation.nextoff = nextoff = percpu_allocation.nextoff + size;
1851cae704dSriastradh mutex_exit(&percpu_allocation.lock);
186ea8e7591Syamt
187ea8e7591Syamt percpu_cpu_enlarge(nextoff);
188ea8e7591Syamt
189ea8e7591Syamt *resultsize = size;
19078b0e183Sdyoung *addrp = (vmem_addr_t)offset;
19178b0e183Sdyoung return 0;
192ea8e7591Syamt }
193ea8e7591Syamt
1942c871b80Syamt static void
percpu_zero_cb(void * vp,void * vp2,struct cpu_info * ci)1952c871b80Syamt percpu_zero_cb(void *vp, void *vp2, struct cpu_info *ci)
1962c871b80Syamt {
1972c871b80Syamt size_t sz = (uintptr_t)vp2;
1982c871b80Syamt
1992c871b80Syamt memset(vp, 0, sz);
2002c871b80Syamt }
2012c871b80Syamt
2022c871b80Syamt /*
2032c871b80Syamt * percpu_zero: initialize percpu storage with zero.
2042c871b80Syamt */
2052c871b80Syamt
2062c871b80Syamt static void
percpu_zero(percpu_t * pc,size_t sz)2072c871b80Syamt percpu_zero(percpu_t *pc, size_t sz)
2082c871b80Syamt {
2092c871b80Syamt
2102c871b80Syamt percpu_foreach(pc, percpu_zero_cb, (void *)(uintptr_t)sz);
2112c871b80Syamt }
2122c871b80Syamt
213ea8e7591Syamt /*
214ea8e7591Syamt * percpu_init: subsystem initialization
215ea8e7591Syamt */
216ea8e7591Syamt
217ea8e7591Syamt void
percpu_init(void)218ea8e7591Syamt percpu_init(void)
219ea8e7591Syamt {
220ea8e7591Syamt
221a67bae0bSyamt ASSERT_SLEEPABLE();
222ea8e7591Syamt rw_init(&percpu_swap_lock);
2231cae704dSriastradh mutex_init(&percpu_allocation.lock, MUTEX_DEFAULT, IPL_NONE);
2241cae704dSriastradh percpu_allocation.nextoff = PERCPU_QUANTUM_SIZE;
225*1f0e72f1Sriastradh LIST_INIT(&percpu_allocation.ctor_list);
226*1f0e72f1Sriastradh percpu_allocation.busy = NULL;
227*1f0e72f1Sriastradh cv_init(&percpu_allocation.cv, "percpu");
228ea8e7591Syamt
229e62ee4d4Spara percpu_offset_arena = vmem_xcreate("percpu", 0, 0, PERCPU_QUANTUM_SIZE,
230ea8e7591Syamt percpu_backend_alloc, NULL, NULL, PERCPU_QCACHE_MAX, VM_SLEEP,
231ea8e7591Syamt IPL_NONE);
232ea8e7591Syamt }
233ea8e7591Syamt
234ea8e7591Syamt /*
235ea8e7591Syamt * percpu_init_cpu: cpu initialization
236ea8e7591Syamt *
237ea8e7591Syamt * => should be called before the cpu appears on the list for CPU_INFO_FOREACH.
238*1f0e72f1Sriastradh * => may be called for static CPUs afterward (typically just primary CPU)
239ea8e7591Syamt */
240ea8e7591Syamt
241ea8e7591Syamt void
percpu_init_cpu(struct cpu_info * ci)242ea8e7591Syamt percpu_init_cpu(struct cpu_info *ci)
243ea8e7591Syamt {
244ea8e7591Syamt percpu_cpu_t * const pcc = cpu_percpu(ci);
245*1f0e72f1Sriastradh struct percpu *pc;
2461cae704dSriastradh size_t size = percpu_allocation.nextoff; /* XXX racy */
247ea8e7591Syamt
248a67bae0bSyamt ASSERT_SLEEPABLE();
249*1f0e72f1Sriastradh
250*1f0e72f1Sriastradh /*
251*1f0e72f1Sriastradh * For the primary CPU, prior percpu_create may have already
252*1f0e72f1Sriastradh * triggered allocation, so there's nothing more for us to do
253*1f0e72f1Sriastradh * here.
254*1f0e72f1Sriastradh */
255*1f0e72f1Sriastradh if (pcc->pcc_size)
256*1f0e72f1Sriastradh return;
257*1f0e72f1Sriastradh KASSERT(pcc->pcc_data == NULL);
258*1f0e72f1Sriastradh
259*1f0e72f1Sriastradh /*
260*1f0e72f1Sriastradh * Otherwise, allocate storage and, while the constructor list
261*1f0e72f1Sriastradh * is locked, run constructors for all percpus on this CPU.
262*1f0e72f1Sriastradh */
263ea8e7591Syamt pcc->pcc_size = size;
264ea8e7591Syamt if (size) {
265ea8e7591Syamt pcc->pcc_data = kmem_zalloc(pcc->pcc_size, KM_SLEEP);
266*1f0e72f1Sriastradh mutex_enter(&percpu_allocation.lock);
267*1f0e72f1Sriastradh while (percpu_allocation.busy)
268*1f0e72f1Sriastradh cv_wait(&percpu_allocation.cv,
269*1f0e72f1Sriastradh &percpu_allocation.lock);
270*1f0e72f1Sriastradh percpu_allocation.busy = curlwp;
271*1f0e72f1Sriastradh LIST_FOREACH(pc, &percpu_allocation.ctor_list, pc_list) {
272*1f0e72f1Sriastradh KASSERT(pc->pc_ctor);
273*1f0e72f1Sriastradh mutex_exit(&percpu_allocation.lock);
274*1f0e72f1Sriastradh (*pc->pc_ctor)((char *)pcc->pcc_data + pc->pc_offset,
275*1f0e72f1Sriastradh pc->pc_cookie, ci);
276*1f0e72f1Sriastradh mutex_enter(&percpu_allocation.lock);
277*1f0e72f1Sriastradh }
278*1f0e72f1Sriastradh KASSERT(percpu_allocation.busy == curlwp);
279*1f0e72f1Sriastradh percpu_allocation.busy = NULL;
280*1f0e72f1Sriastradh cv_broadcast(&percpu_allocation.cv);
281*1f0e72f1Sriastradh mutex_exit(&percpu_allocation.lock);
282ea8e7591Syamt }
283ea8e7591Syamt }
284ea8e7591Syamt
285ea8e7591Syamt /*
286ea8e7591Syamt * percpu_alloc: allocate percpu storage
287ea8e7591Syamt *
288ea8e7591Syamt * => called in thread context.
289ea8e7591Syamt * => considered as an expensive and rare operation.
2902c871b80Syamt * => allocated storage is initialized with zeros.
291ea8e7591Syamt */
292ea8e7591Syamt
293ea8e7591Syamt percpu_t *
percpu_alloc(size_t size)294ea8e7591Syamt percpu_alloc(size_t size)
295ea8e7591Syamt {
296d92a26fbSriastradh
297d92a26fbSriastradh return percpu_create(size, NULL, NULL, NULL);
298d92a26fbSriastradh }
299d92a26fbSriastradh
300d92a26fbSriastradh /*
301d92a26fbSriastradh * percpu_create: allocate percpu storage and associate ctor/dtor with it
302d92a26fbSriastradh *
303d92a26fbSriastradh * => called in thread context.
304d92a26fbSriastradh * => considered as an expensive and rare operation.
305d92a26fbSriastradh * => allocated storage is initialized by ctor, or zeros if ctor is null
306d92a26fbSriastradh * => percpu_free will call dtor first, if dtor is nonnull
307d92a26fbSriastradh * => ctor or dtor may sleep, even on allocation
308d92a26fbSriastradh */
309d92a26fbSriastradh
310d92a26fbSriastradh percpu_t *
percpu_create(size_t size,percpu_callback_t ctor,percpu_callback_t dtor,void * cookie)311d92a26fbSriastradh percpu_create(size_t size, percpu_callback_t ctor, percpu_callback_t dtor,
312d92a26fbSriastradh void *cookie)
313d92a26fbSriastradh {
31478b0e183Sdyoung vmem_addr_t offset;
315ea8e7591Syamt percpu_t *pc;
316ea8e7591Syamt
317a67bae0bSyamt ASSERT_SLEEPABLE();
3181f0e1671Schs (void)vmem_alloc(percpu_offset_arena, size, VM_SLEEP | VM_BESTFIT,
3191f0e1671Schs &offset);
320d92a26fbSriastradh
321d92a26fbSriastradh pc = kmem_alloc(sizeof(*pc), KM_SLEEP);
322d92a26fbSriastradh pc->pc_offset = offset;
323d92a26fbSriastradh pc->pc_size = size;
324*1f0e72f1Sriastradh pc->pc_ctor = ctor;
325d92a26fbSriastradh pc->pc_dtor = dtor;
326d92a26fbSriastradh pc->pc_cookie = cookie;
327d92a26fbSriastradh
328d92a26fbSriastradh if (ctor) {
329d92a26fbSriastradh CPU_INFO_ITERATOR cii;
330d92a26fbSriastradh struct cpu_info *ci;
331d92a26fbSriastradh void *buf;
332d92a26fbSriastradh
333*1f0e72f1Sriastradh /*
334*1f0e72f1Sriastradh * Wait until nobody is using the list of percpus with
335*1f0e72f1Sriastradh * constructors.
336*1f0e72f1Sriastradh */
337*1f0e72f1Sriastradh mutex_enter(&percpu_allocation.lock);
338*1f0e72f1Sriastradh while (percpu_allocation.busy)
339*1f0e72f1Sriastradh cv_wait(&percpu_allocation.cv,
340*1f0e72f1Sriastradh &percpu_allocation.lock);
341*1f0e72f1Sriastradh percpu_allocation.busy = curlwp;
342*1f0e72f1Sriastradh mutex_exit(&percpu_allocation.lock);
343*1f0e72f1Sriastradh
344*1f0e72f1Sriastradh /*
345*1f0e72f1Sriastradh * Run the constructor for all CPUs. We use a
346*1f0e72f1Sriastradh * temporary buffer wo that we need not hold the
347*1f0e72f1Sriastradh * percpu_swap_lock while running the constructor.
348*1f0e72f1Sriastradh */
349d92a26fbSriastradh buf = kmem_alloc(size, KM_SLEEP);
350d92a26fbSriastradh for (CPU_INFO_FOREACH(cii, ci)) {
351d92a26fbSriastradh memset(buf, 0, size);
352d92a26fbSriastradh (*ctor)(buf, cookie, ci);
353d92a26fbSriastradh percpu_traverse_enter();
354d92a26fbSriastradh memcpy(percpu_getptr_remote(pc, ci), buf, size);
355d92a26fbSriastradh percpu_traverse_exit();
356d92a26fbSriastradh }
357d92a26fbSriastradh explicit_memset(buf, 0, size);
358d92a26fbSriastradh kmem_free(buf, size);
359*1f0e72f1Sriastradh
360*1f0e72f1Sriastradh /*
361*1f0e72f1Sriastradh * Insert the percpu into the list of percpus with
362*1f0e72f1Sriastradh * constructors. We are now done using the list, so it
363*1f0e72f1Sriastradh * is safe for concurrent percpu_create or concurrent
364*1f0e72f1Sriastradh * percpu_init_cpu to run.
365*1f0e72f1Sriastradh */
366*1f0e72f1Sriastradh mutex_enter(&percpu_allocation.lock);
367*1f0e72f1Sriastradh KASSERT(percpu_allocation.busy == curlwp);
368*1f0e72f1Sriastradh percpu_allocation.busy = NULL;
369*1f0e72f1Sriastradh cv_broadcast(&percpu_allocation.cv);
370*1f0e72f1Sriastradh LIST_INSERT_HEAD(&percpu_allocation.ctor_list, pc, pc_list);
371*1f0e72f1Sriastradh mutex_exit(&percpu_allocation.lock);
372d92a26fbSriastradh } else {
373ea8e7591Syamt percpu_zero(pc, size);
374d92a26fbSriastradh }
375d92a26fbSriastradh
376ea8e7591Syamt return pc;
377ea8e7591Syamt }
378ea8e7591Syamt
379ea8e7591Syamt /*
380582ad655Syamt * percpu_free: free percpu storage
381ea8e7591Syamt *
382ea8e7591Syamt * => called in thread context.
383ea8e7591Syamt * => considered as an expensive and rare operation.
384ea8e7591Syamt */
385ea8e7591Syamt
386ea8e7591Syamt void
percpu_free(percpu_t * pc,size_t size)387ea8e7591Syamt percpu_free(percpu_t *pc, size_t size)
388ea8e7591Syamt {
389ea8e7591Syamt
390a67bae0bSyamt ASSERT_SLEEPABLE();
391d92a26fbSriastradh KASSERT(size == pc->pc_size);
392d92a26fbSriastradh
393*1f0e72f1Sriastradh /*
394*1f0e72f1Sriastradh * If there's a constructor, take the percpu off the list of
395*1f0e72f1Sriastradh * percpus with constructors, but first wait until nobody is
396*1f0e72f1Sriastradh * using the list.
397*1f0e72f1Sriastradh */
398*1f0e72f1Sriastradh if (pc->pc_ctor) {
399*1f0e72f1Sriastradh mutex_enter(&percpu_allocation.lock);
400*1f0e72f1Sriastradh while (percpu_allocation.busy)
401*1f0e72f1Sriastradh cv_wait(&percpu_allocation.cv,
402*1f0e72f1Sriastradh &percpu_allocation.lock);
403*1f0e72f1Sriastradh LIST_REMOVE(pc, pc_list);
404*1f0e72f1Sriastradh mutex_exit(&percpu_allocation.lock);
405*1f0e72f1Sriastradh }
406*1f0e72f1Sriastradh
407*1f0e72f1Sriastradh /* If there's a destructor, run it now for all CPUs. */
408d92a26fbSriastradh if (pc->pc_dtor) {
409d92a26fbSriastradh CPU_INFO_ITERATOR cii;
410d92a26fbSriastradh struct cpu_info *ci;
411d92a26fbSriastradh void *buf;
412d92a26fbSriastradh
413d92a26fbSriastradh buf = kmem_alloc(size, KM_SLEEP);
414d92a26fbSriastradh for (CPU_INFO_FOREACH(cii, ci)) {
415d92a26fbSriastradh percpu_traverse_enter();
416d92a26fbSriastradh memcpy(buf, percpu_getptr_remote(pc, ci), size);
417d92a26fbSriastradh explicit_memset(percpu_getptr_remote(pc, ci), 0, size);
418d92a26fbSriastradh percpu_traverse_exit();
419d92a26fbSriastradh (*pc->pc_dtor)(buf, pc->pc_cookie, ci);
420d92a26fbSriastradh }
421d92a26fbSriastradh explicit_memset(buf, 0, size);
422d92a26fbSriastradh kmem_free(buf, size);
423d92a26fbSriastradh }
424d92a26fbSriastradh
425ea8e7591Syamt vmem_free(percpu_offset_arena, (vmem_addr_t)percpu_offset(pc), size);
426d92a26fbSriastradh kmem_free(pc, sizeof(*pc));
427ea8e7591Syamt }
428ea8e7591Syamt
429ea8e7591Syamt /*
4300cfa6e74Sthorpej * percpu_getref:
431ea8e7591Syamt *
432ea8e7591Syamt * => safe to be used in either thread or interrupt context
4330cfa6e74Sthorpej * => disables preemption; must be bracketed with a percpu_putref()
434ea8e7591Syamt */
435ea8e7591Syamt
436ea8e7591Syamt void *
percpu_getref(percpu_t * pc)4370cfa6e74Sthorpej percpu_getref(percpu_t *pc)
438ea8e7591Syamt {
439ea8e7591Syamt
440fb969037Suebayasi kpreempt_disable();
441ea8e7591Syamt return percpu_getptr_remote(pc, curcpu());
442ea8e7591Syamt }
443ea8e7591Syamt
444ea8e7591Syamt /*
4450cfa6e74Sthorpej * percpu_putref:
4460cfa6e74Sthorpej *
4470cfa6e74Sthorpej * => drops the preemption-disabled count after caller is done with per-cpu
4480cfa6e74Sthorpej * data
4490cfa6e74Sthorpej */
4500cfa6e74Sthorpej
4510cfa6e74Sthorpej void
percpu_putref(percpu_t * pc)4520cfa6e74Sthorpej percpu_putref(percpu_t *pc)
4530cfa6e74Sthorpej {
4540cfa6e74Sthorpej
455fb969037Suebayasi kpreempt_enable();
4560cfa6e74Sthorpej }
4570cfa6e74Sthorpej
4580cfa6e74Sthorpej /*
459ea8e7591Syamt * percpu_traverse_enter, percpu_traverse_exit, percpu_getptr_remote:
460ea8e7591Syamt * helpers to access remote cpu's percpu data.
461ea8e7591Syamt *
462ea8e7591Syamt * => called in thread context.
4632c871b80Syamt * => percpu_traverse_enter can block low-priority xcalls.
464ea8e7591Syamt * => typical usage would be:
465ea8e7591Syamt *
466ea8e7591Syamt * sum = 0;
467ea8e7591Syamt * percpu_traverse_enter();
468ea8e7591Syamt * for (CPU_INFO_FOREACH(cii, ci)) {
469ea8e7591Syamt * unsigned int *p = percpu_getptr_remote(pc, ci);
470ea8e7591Syamt * sum += *p;
471ea8e7591Syamt * }
472ea8e7591Syamt * percpu_traverse_exit();
473ea8e7591Syamt */
474ea8e7591Syamt
475ea8e7591Syamt void
percpu_traverse_enter(void)476ea8e7591Syamt percpu_traverse_enter(void)
477ea8e7591Syamt {
478ea8e7591Syamt
479a67bae0bSyamt ASSERT_SLEEPABLE();
480ea8e7591Syamt rw_enter(&percpu_swap_lock, RW_READER);
481ea8e7591Syamt }
482ea8e7591Syamt
483ea8e7591Syamt void
percpu_traverse_exit(void)484ea8e7591Syamt percpu_traverse_exit(void)
485ea8e7591Syamt {
486ea8e7591Syamt
487ea8e7591Syamt rw_exit(&percpu_swap_lock);
488ea8e7591Syamt }
489ea8e7591Syamt
490ea8e7591Syamt void *
percpu_getptr_remote(percpu_t * pc,struct cpu_info * ci)491ea8e7591Syamt percpu_getptr_remote(percpu_t *pc, struct cpu_info *ci)
492ea8e7591Syamt {
493ea8e7591Syamt
494ea8e7591Syamt return &((char *)cpu_percpu(ci)->pcc_data)[percpu_offset(pc)];
495ea8e7591Syamt }
496ea8e7591Syamt
497ea8e7591Syamt /*
498ea8e7591Syamt * percpu_foreach: call the specified callback function for each cpus.
499ea8e7591Syamt *
500f7c4d5efSthorpej * => must be called from thread context.
501f7c4d5efSthorpej * => callback executes on **current** CPU (or, really, arbitrary CPU,
502f7c4d5efSthorpej * in case of preemption)
503ea8e7591Syamt * => caller should not rely on the cpu iteration order.
5042c871b80Syamt * => the callback function should be minimum because it is executed with
5052c871b80Syamt * holding a global lock, which can block low-priority xcalls.
5062c871b80Syamt * eg. it's illegal for a callback function to sleep for memory allocation.
507ea8e7591Syamt */
508ea8e7591Syamt void
percpu_foreach(percpu_t * pc,percpu_callback_t cb,void * arg)509ea8e7591Syamt percpu_foreach(percpu_t *pc, percpu_callback_t cb, void *arg)
510ea8e7591Syamt {
511ea8e7591Syamt CPU_INFO_ITERATOR cii;
512ea8e7591Syamt struct cpu_info *ci;
513ea8e7591Syamt
514ea8e7591Syamt percpu_traverse_enter();
515ea8e7591Syamt for (CPU_INFO_FOREACH(cii, ci)) {
5162c871b80Syamt (*cb)(percpu_getptr_remote(pc, ci), arg, ci);
517ea8e7591Syamt }
518ea8e7591Syamt percpu_traverse_exit();
519ea8e7591Syamt }
520f7c4d5efSthorpej
521f7c4d5efSthorpej struct percpu_xcall_ctx {
522f7c4d5efSthorpej percpu_callback_t ctx_cb;
523f7c4d5efSthorpej void *ctx_arg;
524f7c4d5efSthorpej };
525f7c4d5efSthorpej
526f7c4d5efSthorpej static void
percpu_xcfunc(void * const v1,void * const v2)527f7c4d5efSthorpej percpu_xcfunc(void * const v1, void * const v2)
528f7c4d5efSthorpej {
529f7c4d5efSthorpej percpu_t * const pc = v1;
530f7c4d5efSthorpej struct percpu_xcall_ctx * const ctx = v2;
531f7c4d5efSthorpej
532f7c4d5efSthorpej (*ctx->ctx_cb)(percpu_getref(pc), ctx->ctx_arg, curcpu());
533f7c4d5efSthorpej percpu_putref(pc);
534f7c4d5efSthorpej }
535f7c4d5efSthorpej
536f7c4d5efSthorpej /*
537f7c4d5efSthorpej * percpu_foreach_xcall: call the specified callback function for each
538f7c4d5efSthorpej * cpu. This version uses an xcall to run the callback on each cpu.
539f7c4d5efSthorpej *
540f7c4d5efSthorpej * => must be called from thread context.
541f7c4d5efSthorpej * => callback executes on **remote** CPU in soft-interrupt context
542f7c4d5efSthorpej * (at the specified soft interrupt priority).
543f7c4d5efSthorpej * => caller should not rely on the cpu iteration order.
544f7c4d5efSthorpej * => the callback function should be minimum because it may be
545f7c4d5efSthorpej * executed in soft-interrupt context. eg. it's illegal for
546f7c4d5efSthorpej * a callback function to sleep for memory allocation.
547f7c4d5efSthorpej */
548f7c4d5efSthorpej void
percpu_foreach_xcall(percpu_t * pc,u_int xcflags,percpu_callback_t cb,void * arg)549f7c4d5efSthorpej percpu_foreach_xcall(percpu_t *pc, u_int xcflags, percpu_callback_t cb,
550f7c4d5efSthorpej void *arg)
551f7c4d5efSthorpej {
552f7c4d5efSthorpej struct percpu_xcall_ctx ctx = {
553f7c4d5efSthorpej .ctx_cb = cb,
554f7c4d5efSthorpej .ctx_arg = arg,
555f7c4d5efSthorpej };
556f7c4d5efSthorpej CPU_INFO_ITERATOR cii;
557f7c4d5efSthorpej struct cpu_info *ci;
558f7c4d5efSthorpej
559f7c4d5efSthorpej for (CPU_INFO_FOREACH(cii, ci)) {
560f7c4d5efSthorpej xc_wait(xc_unicast(xcflags, percpu_xcfunc, pc, &ctx, ci));
561f7c4d5efSthorpej }
562f7c4d5efSthorpej }
563