xref: /netbsd-src/sys/kern/subr_kobj.c (revision aad9773e38ed2370a628a6416e098f9008fc10a7)
1 /*	$NetBSD: subr_kobj.c,v 1.50 2014/07/16 13:26:33 maxv Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software developed for The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1998-2000 Doug Rabson
34  * Copyright (c) 2004 Peter Wemm
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  */
58 
59 /*
60  * Kernel loader for ELF objects.
61  *
62  * TODO: adjust kmem_alloc() calls to avoid needless fragmentation.
63  */
64 
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: subr_kobj.c,v 1.50 2014/07/16 13:26:33 maxv Exp $");
67 
68 #include "opt_modular.h"
69 
70 #include <sys/kobj_impl.h>
71 
72 #ifdef MODULAR
73 
74 #include <sys/param.h>
75 #include <sys/kernel.h>
76 #include <sys/kmem.h>
77 #include <sys/proc.h>
78 #include <sys/ksyms.h>
79 #include <sys/module.h>
80 
81 #include <uvm/uvm_extern.h>
82 
83 #define kobj_error(_kobj, ...) \
84 	kobj_out(__func__, __LINE__, _kobj, __VA_ARGS__)
85 
86 static int	kobj_relocate(kobj_t, bool);
87 static int	kobj_checksyms(kobj_t, bool);
88 static void	kobj_out(const char *, int, kobj_t, const char *, ...)
89     __printflike(4, 5);
90 static void	kobj_jettison(kobj_t);
91 static void	kobj_free(kobj_t, void *, size_t);
92 static void	kobj_close(kobj_t);
93 static int	kobj_read_mem(kobj_t, void **, size_t, off_t, bool);
94 static void	kobj_close_mem(kobj_t);
95 
96 extern struct vm_map *module_map;
97 
98 /*
99  * kobj_load_mem:
100  *
101  *	Load an object already resident in memory.  If size is not -1,
102  *	the complete size of the object is known.
103  */
104 int
105 kobj_load_mem(kobj_t *kop, const char *name, void *base, ssize_t size)
106 {
107 	kobj_t ko;
108 
109 	ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
110 	if (ko == NULL) {
111 		return ENOMEM;
112 	}
113 
114 	ko->ko_type = KT_MEMORY;
115 	kobj_setname(ko, name);
116 	ko->ko_source = base;
117 	ko->ko_memsize = size;
118 	ko->ko_read = kobj_read_mem;
119 	ko->ko_close = kobj_close_mem;
120 
121 	*kop = ko;
122 	return kobj_load(ko);
123 }
124 
125 /*
126  * kobj_close:
127  *
128  *	Close an open ELF object.
129  */
130 static void
131 kobj_close(kobj_t ko)
132 {
133 
134 	if (ko->ko_source == NULL) {
135 		return;
136 	}
137 
138 	ko->ko_close(ko);
139 	ko->ko_source = NULL;
140 }
141 
142 static void
143 kobj_close_mem(kobj_t ko)
144 {
145 
146 	return;
147 }
148 
149 /*
150  * kobj_load:
151  *
152  *	Load an ELF object and prepare to link into the running kernel
153  *	image.
154  */
155 int
156 kobj_load(kobj_t ko)
157 {
158 	Elf_Ehdr *hdr;
159 	Elf_Shdr *shdr;
160 	Elf_Sym *es;
161 	vaddr_t mapbase;
162 	size_t mapsize;
163 	int error;
164 	int symtabindex;
165 	int symstrindex;
166 	int nsym;
167 	int pb, rl, ra;
168 	int alignmask;
169 	int i, j;
170 	void *addr;
171 
172 	KASSERT(ko->ko_type != KT_UNSET);
173 	KASSERT(ko->ko_source != NULL);
174 
175 	shdr = NULL;
176 	error = 0;
177 	hdr = NULL;
178 
179 	/*
180 	 * Read the elf header from the file.
181 	 */
182 	error = ko->ko_read(ko, (void **)&hdr, sizeof(*hdr), 0, true);
183 	if (error != 0) {
184 		kobj_error(ko, "read failed %d", error);
185 		goto out;
186 	}
187 	if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0) {
188 		kobj_error(ko, "not an ELF object");
189 		error = ENOEXEC;
190 		goto out;
191 	}
192 
193 	if (hdr->e_ident[EI_VERSION] != EV_CURRENT ||
194 	    hdr->e_version != EV_CURRENT) {
195 		kobj_error(ko, "unsupported file version %d",
196 		    hdr->e_ident[EI_VERSION]);
197 		error = ENOEXEC;
198 		goto out;
199 	}
200 	if (hdr->e_type != ET_REL) {
201 		kobj_error(ko, "unsupported file type %d", hdr->e_type);
202 		error = ENOEXEC;
203 		goto out;
204 	}
205 	switch (hdr->e_machine) {
206 #if ELFSIZE == 32
207 	ELF32_MACHDEP_ID_CASES
208 #elif ELFSIZE == 64
209 	ELF64_MACHDEP_ID_CASES
210 #else
211 #error not defined
212 #endif
213 	default:
214 		kobj_error(ko, "unsupported machine %d", hdr->e_machine);
215 		error = ENOEXEC;
216 		goto out;
217 	}
218 
219 	ko->ko_nprogtab = 0;
220 	ko->ko_shdr = 0;
221 	ko->ko_nrel = 0;
222 	ko->ko_nrela = 0;
223 
224 	/*
225 	 * Allocate and read in the section header.
226 	 */
227 	if (hdr->e_shnum == 0 || hdr->e_shnum > ELF_MAXSHNUM ||
228 	    hdr->e_shoff == 0 || hdr->e_shentsize != sizeof(Elf_Shdr)) {
229 		kobj_error(ko, "bad sizes");
230 		error = ENOEXEC;
231 		goto out;
232 	}
233 	ko->ko_shdrsz = hdr->e_shnum * sizeof(Elf_Shdr);
234 	error = ko->ko_read(ko, (void **)&shdr, ko->ko_shdrsz, hdr->e_shoff,
235 	    true);
236 	if (error != 0) {
237 		kobj_error(ko, "read failed %d", error);
238 		goto out;
239 	}
240 	ko->ko_shdr = shdr;
241 
242 	/*
243 	 * Scan the section header for information and table sizing.
244 	 */
245 	nsym = 0;
246 	symtabindex = symstrindex = -1;
247 	for (i = 0; i < hdr->e_shnum; i++) {
248 		switch (shdr[i].sh_type) {
249 		case SHT_PROGBITS:
250 		case SHT_NOBITS:
251 			ko->ko_nprogtab++;
252 			break;
253 		case SHT_SYMTAB:
254 			nsym++;
255 			symtabindex = i;
256 			symstrindex = shdr[i].sh_link;
257 			break;
258 		case SHT_REL:
259 			if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
260 				continue;
261 			ko->ko_nrel++;
262 			break;
263 		case SHT_RELA:
264 			if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
265 				continue;
266 			ko->ko_nrela++;
267 			break;
268 		case SHT_STRTAB:
269 			break;
270 		}
271 	}
272 	if (ko->ko_nprogtab == 0) {
273 		kobj_error(ko, "file has no contents");
274 		error = ENOEXEC;
275 		goto out;
276 	}
277 	if (nsym != 1) {
278 		/* Only allow one symbol table for now */
279 		kobj_error(ko, "file has no valid symbol table");
280 		error = ENOEXEC;
281 		goto out;
282 	}
283 	KASSERT(symtabindex != -1);
284 	KASSERT(symstrindex != -1);
285 
286 	if (symstrindex == SHN_UNDEF || symstrindex >= hdr->e_shnum ||
287 	    shdr[symstrindex].sh_type != SHT_STRTAB) {
288 		kobj_error(ko, "file has invalid symbol strings");
289 		error = ENOEXEC;
290 		goto out;
291 	}
292 
293 	/*
294 	 * Allocate space for tracking the load chunks.
295 	 */
296 	if (ko->ko_nprogtab != 0) {
297 		ko->ko_progtab = kmem_zalloc(ko->ko_nprogtab *
298 		    sizeof(*ko->ko_progtab), KM_SLEEP);
299 		if (ko->ko_progtab == NULL) {
300 			error = ENOMEM;
301 			kobj_error(ko, "out of memory");
302 			goto out;
303 		}
304 	}
305 	if (ko->ko_nrel != 0) {
306 		ko->ko_reltab = kmem_zalloc(ko->ko_nrel *
307 		    sizeof(*ko->ko_reltab), KM_SLEEP);
308 		if (ko->ko_reltab == NULL) {
309 			error = ENOMEM;
310 			kobj_error(ko, "out of memory");
311 			goto out;
312 		}
313 	}
314 	if (ko->ko_nrela != 0) {
315 		ko->ko_relatab = kmem_zalloc(ko->ko_nrela *
316 		    sizeof(*ko->ko_relatab), KM_SLEEP);
317 		if (ko->ko_relatab == NULL) {
318 			error = ENOMEM;
319 			kobj_error(ko, "out of memory");
320 			goto out;
321 		}
322 	}
323 
324 	/*
325 	 * Allocate space for and load the symbol table.
326 	 */
327 	ko->ko_symcnt = shdr[symtabindex].sh_size / sizeof(Elf_Sym);
328 	if (ko->ko_symcnt == 0) {
329 		kobj_error(ko, "no symbol table");
330 		error = ENOEXEC;
331 		goto out;
332 	}
333 	error = ko->ko_read(ko, (void **)&ko->ko_symtab,
334 	    ko->ko_symcnt * sizeof(Elf_Sym),
335 	    shdr[symtabindex].sh_offset, true);
336 	if (error != 0) {
337 		kobj_error(ko, "read failed %d", error);
338 		goto out;
339 	}
340 
341 	/*
342 	 * Allocate space for and load the symbol strings.
343 	 */
344 	ko->ko_strtabsz = shdr[symstrindex].sh_size;
345 	if (ko->ko_strtabsz == 0) {
346 		kobj_error(ko, "no symbol strings");
347 		error = ENOEXEC;
348 		goto out;
349 	}
350 	error = ko->ko_read(ko, (void *)&ko->ko_strtab, ko->ko_strtabsz,
351 	    shdr[symstrindex].sh_offset, true);
352 	if (error != 0) {
353 		kobj_error(ko, "read failed %d", error);
354 		goto out;
355 	}
356 
357 	/*
358 	 * Adjust module symbol namespace, if necessary (e.g. with rump)
359 	 */
360 	error = kobj_renamespace(ko->ko_symtab, ko->ko_symcnt,
361 	    &ko->ko_strtab, &ko->ko_strtabsz);
362 	if (error != 0) {
363 		kobj_error(ko, "renamespace failed %d", error);
364 		goto out;
365 	}
366 
367 	/*
368 	 * Do we have a string table for the section names?
369 	 */
370 	if (hdr->e_shstrndx != SHN_UNDEF) {
371 		if (hdr->e_shstrndx >= hdr->e_shnum) {
372 			kobj_error(ko, "bad shstrndx");
373 			error = ENOEXEC;
374 			goto out;
375 		}
376 		if (shdr[hdr->e_shstrndx].sh_size != 0 &&
377 		    shdr[hdr->e_shstrndx].sh_type == SHT_STRTAB) {
378 			ko->ko_shstrtabsz = shdr[hdr->e_shstrndx].sh_size;
379 			error = ko->ko_read(ko, (void **)&ko->ko_shstrtab,
380 			    shdr[hdr->e_shstrndx].sh_size,
381 			    shdr[hdr->e_shstrndx].sh_offset, true);
382 			if (error != 0) {
383 				kobj_error(ko, "read failed %d", error);
384 				goto out;
385 			}
386 		}
387 	}
388 
389 	/*
390 	 * Size up code/data(progbits) and bss(nobits).
391 	 */
392 	alignmask = 0;
393 	mapbase = 0;
394 	mapsize = 0;
395 	for (i = 0; i < hdr->e_shnum; i++) {
396 		switch (shdr[i].sh_type) {
397 		case SHT_PROGBITS:
398 		case SHT_NOBITS:
399 			if (mapbase == 0)
400 				mapbase = shdr[i].sh_offset;
401 			alignmask = shdr[i].sh_addralign - 1;
402 			mapsize += alignmask;
403 			mapsize &= ~alignmask;
404 			mapsize += shdr[i].sh_size;
405 			break;
406 		}
407 	}
408 
409 	/*
410 	 * We know how much space we need for the text/data/bss/etc.
411 	 * This stuff needs to be in a single chunk so that profiling etc
412 	 * can get the bounds and gdb can associate offsets with modules.
413 	 */
414 	if (mapsize == 0) {
415 		kobj_error(ko, "no text/data/bss");
416 		error = ENOEXEC;
417 		goto out;
418 	}
419 	if (ko->ko_type == KT_MEMORY) {
420 		mapbase += (vaddr_t)ko->ko_source;
421 	} else {
422 		mapbase = uvm_km_alloc(module_map, round_page(mapsize),
423 		    0, UVM_KMF_WIRED | UVM_KMF_EXEC);
424 		if (mapbase == 0) {
425 			kobj_error(ko, "out of memory");
426 			error = ENOMEM;
427 			goto out;
428 		}
429 	}
430 	ko->ko_address = mapbase;
431 	ko->ko_size = mapsize;
432 
433 	/*
434 	 * Now load code/data(progbits), zero bss(nobits), allocate space
435 	 * for and load relocs
436 	 */
437 	pb = 0;
438 	rl = 0;
439 	ra = 0;
440 	alignmask = 0;
441 	for (i = 0; i < hdr->e_shnum; i++) {
442 		switch (shdr[i].sh_type) {
443 		case SHT_PROGBITS:
444 		case SHT_NOBITS:
445 			alignmask = shdr[i].sh_addralign - 1;
446 			if (ko->ko_type == KT_MEMORY) {
447 				addr = (void *)(shdr[i].sh_offset +
448 				    (vaddr_t)ko->ko_source);
449 				if (((vaddr_t)addr & alignmask) != 0) {
450 					kobj_error(ko,
451 					    "section %d not aligned", i);
452 					error = ENOEXEC;
453 					goto out;
454 				}
455 			} else {
456 				mapbase += alignmask;
457 				mapbase &= ~alignmask;
458 				addr = (void *)mapbase;
459 				mapbase += shdr[i].sh_size;
460 			}
461 			ko->ko_progtab[pb].addr = addr;
462 			if (shdr[i].sh_type == SHT_PROGBITS) {
463 				ko->ko_progtab[pb].name = "<<PROGBITS>>";
464 				error = ko->ko_read(ko, &addr,
465 				    shdr[i].sh_size, shdr[i].sh_offset, false);
466 				if (error != 0) {
467 					kobj_error(ko, "read failed %d", error);
468 					goto out;
469 				}
470 			} else if (ko->ko_type == KT_MEMORY &&
471 			    shdr[i].sh_size != 0) {
472 				kobj_error(ko, "non-loadable BSS "
473 				    "section in pre-loaded module");
474 				error = ENOEXEC;
475 				goto out;
476 			} else {
477 				ko->ko_progtab[pb].name = "<<NOBITS>>";
478 				memset(addr, 0, shdr[i].sh_size);
479 			}
480 			ko->ko_progtab[pb].size = shdr[i].sh_size;
481 			ko->ko_progtab[pb].sec = i;
482 			if (ko->ko_shstrtab != NULL && shdr[i].sh_name != 0) {
483 				ko->ko_progtab[pb].name =
484 				    ko->ko_shstrtab + shdr[i].sh_name;
485 			}
486 
487 			/* Update all symbol values with the offset. */
488 			for (j = 0; j < ko->ko_symcnt; j++) {
489 				es = &ko->ko_symtab[j];
490 				if (es->st_shndx != i) {
491 					continue;
492 				}
493 				es->st_value += (Elf_Addr)addr;
494 			}
495 			pb++;
496 			break;
497 		case SHT_REL:
498 			if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
499 				break;
500 			ko->ko_reltab[rl].size = shdr[i].sh_size;
501 			ko->ko_reltab[rl].size -=
502 			    shdr[i].sh_size % sizeof(Elf_Rel);
503 			if (ko->ko_reltab[rl].size != 0) {
504 				ko->ko_reltab[rl].nrel =
505 				    shdr[i].sh_size / sizeof(Elf_Rel);
506 				ko->ko_reltab[rl].sec = shdr[i].sh_info;
507 				error = ko->ko_read(ko,
508 				    (void **)&ko->ko_reltab[rl].rel,
509 				    ko->ko_reltab[rl].size,
510 				    shdr[i].sh_offset, true);
511 				if (error != 0) {
512 					kobj_error(ko, "read failed %d",
513 					    error);
514 					goto out;
515 				}
516 			}
517 			rl++;
518 			break;
519 		case SHT_RELA:
520 			if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
521 				break;
522 			ko->ko_relatab[ra].size = shdr[i].sh_size;
523 			ko->ko_relatab[ra].size -=
524 			    shdr[i].sh_size % sizeof(Elf_Rela);
525 			if (ko->ko_relatab[ra].size != 0) {
526 				ko->ko_relatab[ra].nrela =
527 				    shdr[i].sh_size / sizeof(Elf_Rela);
528 				ko->ko_relatab[ra].sec = shdr[i].sh_info;
529 				error = ko->ko_read(ko,
530 				    (void **)&ko->ko_relatab[ra].rela,
531 				    shdr[i].sh_size,
532 				    shdr[i].sh_offset, true);
533 				if (error != 0) {
534 					kobj_error(ko, "read failed %d", error);
535 					goto out;
536 				}
537 			}
538 			ra++;
539 			break;
540 		default:
541 			break;
542 		}
543 	}
544 	if (pb != ko->ko_nprogtab) {
545 		panic("%s:%d: %s: lost progbits", __func__, __LINE__,
546 		   ko->ko_name);
547 	}
548 	if (rl != ko->ko_nrel) {
549 		panic("%s:%d: %s: lost rel", __func__, __LINE__,
550 		   ko->ko_name);
551 	}
552 	if (ra != ko->ko_nrela) {
553 		panic("%s:%d: %s: lost rela", __func__, __LINE__,
554 		   ko->ko_name);
555 	}
556 	if (ko->ko_type != KT_MEMORY && mapbase != ko->ko_address + mapsize) {
557 		panic("%s:%d: %s: "
558 		    "mapbase 0x%lx != address %lx + mapsize %ld (0x%lx)\n",
559 		    __func__, __LINE__, ko->ko_name,
560 		    (long)mapbase, (long)ko->ko_address, (long)mapsize,
561 		    (long)ko->ko_address + mapsize);
562 	}
563 
564 	/*
565 	 * Perform local relocations only.  Relocations relating to global
566 	 * symbols will be done by kobj_affix().
567 	 */
568 	error = kobj_checksyms(ko, false);
569 	if (error == 0) {
570 		error = kobj_relocate(ko, true);
571 	}
572  out:
573 	if (hdr != NULL) {
574 		kobj_free(ko, hdr, sizeof(*hdr));
575 	}
576 	kobj_close(ko);
577 	if (error != 0) {
578 		kobj_unload(ko);
579 	}
580 
581 	return error;
582 }
583 
584 /*
585  * kobj_unload:
586  *
587  *	Unload an object previously loaded by kobj_load().
588  */
589 void
590 kobj_unload(kobj_t ko)
591 {
592 	int error;
593 
594 	kobj_close(ko);
595 	kobj_jettison(ko);
596 
597 	/*
598 	 * Notify MD code that a module has been unloaded.
599 	 */
600 	if (ko->ko_loaded) {
601 		error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
602 		    false);
603 		if (error != 0)
604 			kobj_error(ko, "machine dependent deinit failed %d",
605 			    error);
606 	}
607 	if (ko->ko_address != 0 && ko->ko_type != KT_MEMORY) {
608 		uvm_km_free(module_map, ko->ko_address, round_page(ko->ko_size),
609 		    UVM_KMF_WIRED);
610 	}
611 	if (ko->ko_ksyms == true) {
612 		ksyms_modunload(ko->ko_name);
613 	}
614 	if (ko->ko_symtab != NULL) {
615 		kobj_free(ko, ko->ko_symtab, ko->ko_symcnt * sizeof(Elf_Sym));
616 	}
617 	if (ko->ko_strtab != NULL) {
618 		kobj_free(ko, ko->ko_strtab, ko->ko_strtabsz);
619 	}
620 	if (ko->ko_progtab != NULL) {
621 		kobj_free(ko, ko->ko_progtab, ko->ko_nprogtab *
622 		    sizeof(*ko->ko_progtab));
623 		ko->ko_progtab = NULL;
624 	}
625 	if (ko->ko_shstrtab) {
626 		kobj_free(ko, ko->ko_shstrtab, ko->ko_shstrtabsz);
627 		ko->ko_shstrtab = NULL;
628 	}
629 
630 	kmem_free(ko, sizeof(*ko));
631 }
632 
633 /*
634  * kobj_stat:
635  *
636  *	Return size and load address of an object.
637  */
638 int
639 kobj_stat(kobj_t ko, vaddr_t *address, size_t *size)
640 {
641 
642 	if (address != NULL) {
643 		*address = ko->ko_address;
644 	}
645 	if (size != NULL) {
646 		*size = ko->ko_size;
647 	}
648 	return 0;
649 }
650 
651 /*
652  * kobj_affix:
653  *
654  *	Set an object's name and perform global relocs.  May only be
655  *	called after the module and any requisite modules are loaded.
656  */
657 int
658 kobj_affix(kobj_t ko, const char *name)
659 {
660 	int error;
661 
662 	KASSERT(ko->ko_ksyms == false);
663 	KASSERT(ko->ko_loaded == false);
664 
665 	kobj_setname(ko, name);
666 
667 	/* Cache addresses of undefined symbols. */
668 	error = kobj_checksyms(ko, true);
669 
670 	/* Now do global relocations. */
671 	if (error == 0)
672 		error = kobj_relocate(ko, false);
673 
674 	/*
675 	 * Now that we know the name, register the symbol table.
676 	 * Do after global relocations because ksyms will pack
677 	 * the table.
678 	 */
679 	if (error == 0) {
680 		ksyms_modload(ko->ko_name, ko->ko_symtab, ko->ko_symcnt *
681 		    sizeof(Elf_Sym), ko->ko_strtab, ko->ko_strtabsz);
682 		ko->ko_ksyms = true;
683 	}
684 
685 	/* Jettison unneeded memory post-link. */
686 	kobj_jettison(ko);
687 
688 	/*
689 	 * Notify MD code that a module has been loaded.
690 	 *
691 	 * Most architectures use this opportunity to flush their caches.
692 	 */
693 	if (error == 0) {
694 		error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
695 		    true);
696 		if (error != 0)
697 			kobj_error(ko, "machine dependent init failed %d",
698 			    error);
699 		ko->ko_loaded = true;
700 	}
701 
702 	/* If there was an error, destroy the whole object. */
703 	if (error != 0) {
704 		kobj_unload(ko);
705 	}
706 
707 	return error;
708 }
709 
710 /*
711  * kobj_find_section:
712  *
713  *	Given a section name, search the loaded object and return
714  *	virtual address if present and loaded.
715  */
716 int
717 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
718 {
719 	int i;
720 
721 	KASSERT(ko->ko_progtab != NULL);
722 
723 	for (i = 0; i < ko->ko_nprogtab; i++) {
724 		if (strcmp(ko->ko_progtab[i].name, name) == 0) {
725 			if (addr != NULL) {
726 				*addr = ko->ko_progtab[i].addr;
727 			}
728 			if (size != NULL) {
729 				*size = ko->ko_progtab[i].size;
730 			}
731 			return 0;
732 		}
733 	}
734 
735 	return ENOENT;
736 }
737 
738 /*
739  * kobj_jettison:
740  *
741  *	Release object data not needed after performing relocations.
742  */
743 static void
744 kobj_jettison(kobj_t ko)
745 {
746 	int i;
747 
748 	if (ko->ko_reltab != NULL) {
749 		for (i = 0; i < ko->ko_nrel; i++) {
750 			if (ko->ko_reltab[i].rel) {
751 				kobj_free(ko, ko->ko_reltab[i].rel,
752 				    ko->ko_reltab[i].size);
753 			}
754 		}
755 		kobj_free(ko, ko->ko_reltab, ko->ko_nrel *
756 		    sizeof(*ko->ko_reltab));
757 		ko->ko_reltab = NULL;
758 		ko->ko_nrel = 0;
759 	}
760 	if (ko->ko_relatab != NULL) {
761 		for (i = 0; i < ko->ko_nrela; i++) {
762 			if (ko->ko_relatab[i].rela) {
763 				kobj_free(ko, ko->ko_relatab[i].rela,
764 				    ko->ko_relatab[i].size);
765 			}
766 		}
767 		kobj_free(ko, ko->ko_relatab, ko->ko_nrela *
768 		    sizeof(*ko->ko_relatab));
769 		ko->ko_relatab = NULL;
770 		ko->ko_nrela = 0;
771 	}
772 	if (ko->ko_shdr != NULL) {
773 		kobj_free(ko, ko->ko_shdr, ko->ko_shdrsz);
774 		ko->ko_shdr = NULL;
775 	}
776 }
777 
778 /*
779  * kobj_sym_lookup:
780  *
781  *	Symbol lookup function to be used when the symbol index
782  *	is known (ie during relocation).
783  */
784 uintptr_t
785 kobj_sym_lookup(kobj_t ko, uintptr_t symidx)
786 {
787 	const Elf_Sym *sym;
788 	const char *symbol;
789 
790 	/* Don't even try to lookup the symbol if the index is bogus. */
791 	if (symidx >= ko->ko_symcnt)
792 		return 0;
793 
794 	sym = ko->ko_symtab + symidx;
795 
796 	/* Quick answer if there is a definition included. */
797 	if (sym->st_shndx != SHN_UNDEF) {
798 		return (uintptr_t)sym->st_value;
799 	}
800 
801 	/* If we get here, then it is undefined and needs a lookup. */
802 	switch (ELF_ST_BIND(sym->st_info)) {
803 	case STB_LOCAL:
804 		/* Local, but undefined? huh? */
805 		kobj_error(ko, "local symbol undefined");
806 		return 0;
807 
808 	case STB_GLOBAL:
809 		/* Relative to Data or Function name */
810 		symbol = ko->ko_strtab + sym->st_name;
811 
812 		/* Force a lookup failure if the symbol name is bogus. */
813 		if (*symbol == 0) {
814 			kobj_error(ko, "bad symbol name");
815 			return 0;
816 		}
817 
818 		return (uintptr_t)sym->st_value;
819 
820 	case STB_WEAK:
821 		kobj_error(ko, "weak symbols not supported");
822 		return 0;
823 
824 	default:
825 		return 0;
826 	}
827 }
828 
829 /*
830  * kobj_findbase:
831  *
832  *	Return base address of the given section.
833  */
834 static uintptr_t
835 kobj_findbase(kobj_t ko, int sec)
836 {
837 	int i;
838 
839 	for (i = 0; i < ko->ko_nprogtab; i++) {
840 		if (sec == ko->ko_progtab[i].sec) {
841 			return (uintptr_t)ko->ko_progtab[i].addr;
842 		}
843 	}
844 	return 0;
845 }
846 
847 /*
848  * kobj_checksyms:
849  *
850  *	Scan symbol table for duplicates or resolve references to
851  *	exernal symbols.
852  */
853 static int
854 kobj_checksyms(kobj_t ko, bool undefined)
855 {
856 	unsigned long rval;
857 	Elf_Sym *sym, *ms;
858 	const char *name;
859 	int error;
860 
861 	error = 0;
862 
863 	for (ms = (sym = ko->ko_symtab) + ko->ko_symcnt; sym < ms; sym++) {
864 		/* Check validity of the symbol. */
865 		if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL ||
866 		    sym->st_name == 0)
867 			continue;
868 		if (undefined != (sym->st_shndx == SHN_UNDEF)) {
869 			continue;
870 		}
871 
872 		/*
873 		 * Look it up.  Don't need to lock, as it is known that
874 		 * the symbol tables aren't going to change (we hold
875 		 * module_lock).
876 		 */
877 		name = ko->ko_strtab + sym->st_name;
878 		if (ksyms_getval_unlocked(NULL, name, &rval,
879 		    KSYMS_EXTERN) != 0) {
880 			if (undefined) {
881 				kobj_error(ko, "symbol `%s' not found",
882 				    name);
883 				error = ENOEXEC;
884 			}
885 			continue;
886 		}
887 
888 		/* Save values of undefined globals. */
889 		if (undefined) {
890 			sym->st_value = (Elf_Addr)rval;
891 			continue;
892 		}
893 
894 		/* Check (and complain) about differing values. */
895 		if (sym->st_value == rval) {
896 			continue;
897 		}
898 		if (strcmp(name, "_bss_start") == 0 ||
899 		    strcmp(name, "__bss_start") == 0 ||
900 		    strcmp(name, "_bss_end__") == 0 ||
901 		    strcmp(name, "__bss_end__") == 0 ||
902 		    strcmp(name, "_edata") == 0 ||
903 		    strcmp(name, "_end") == 0 ||
904 		    strcmp(name, "__end") == 0 ||
905 		    strcmp(name, "__end__") == 0 ||
906 		    strncmp(name, "__start_link_set_", 17) == 0 ||
907 		    strncmp(name, "__stop_link_set_", 16)) {
908 		    	continue;
909 		}
910 		kobj_error(ko, "global symbol `%s' redefined",
911 		    name);
912 		error = ENOEXEC;
913 	}
914 
915 	return error;
916 }
917 
918 /*
919  * kobj_relocate:
920  *
921  *	Resolve relocations for the loaded object.
922  */
923 static int
924 kobj_relocate(kobj_t ko, bool local)
925 {
926 	const Elf_Rel *rellim;
927 	const Elf_Rel *rel;
928 	const Elf_Rela *relalim;
929 	const Elf_Rela *rela;
930 	const Elf_Sym *sym;
931 	uintptr_t base;
932 	int i, error;
933 	uintptr_t symidx;
934 
935 	/*
936 	 * Perform relocations without addend if there are any.
937 	 */
938 	for (i = 0; i < ko->ko_nrel; i++) {
939 		rel = ko->ko_reltab[i].rel;
940 		if (rel == NULL) {
941 			continue;
942 		}
943 		rellim = rel + ko->ko_reltab[i].nrel;
944 		base = kobj_findbase(ko, ko->ko_reltab[i].sec);
945 		if (base == 0) {
946 			panic("%s:%d: %s: lost base for e_reltab[%d] sec %d",
947 			   __func__, __LINE__, ko->ko_name, i,
948 			   ko->ko_reltab[i].sec);
949 		}
950 		for (; rel < rellim; rel++) {
951 			symidx = ELF_R_SYM(rel->r_info);
952 			if (symidx >= ko->ko_symcnt) {
953 				continue;
954 			}
955 			sym = ko->ko_symtab + symidx;
956 			if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
957 				continue;
958 			}
959 			error = kobj_reloc(ko, base, rel, false, local);
960 			if (error != 0) {
961 				return ENOENT;
962 			}
963 		}
964 	}
965 
966 	/*
967 	 * Perform relocations with addend if there are any.
968 	 */
969 	for (i = 0; i < ko->ko_nrela; i++) {
970 		rela = ko->ko_relatab[i].rela;
971 		if (rela == NULL) {
972 			continue;
973 		}
974 		relalim = rela + ko->ko_relatab[i].nrela;
975 		base = kobj_findbase(ko, ko->ko_relatab[i].sec);
976 		if (base == 0) {
977 			panic("%s:%d: %s: lost base for e_relatab[%d] sec %d",
978 			   __func__, __LINE__, ko->ko_name, i,
979 			   ko->ko_relatab[i].sec);
980 		}
981 		for (; rela < relalim; rela++) {
982 			symidx = ELF_R_SYM(rela->r_info);
983 			if (symidx >= ko->ko_symcnt) {
984 				continue;
985 			}
986 			sym = ko->ko_symtab + symidx;
987 			if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
988 				continue;
989 			}
990 			error = kobj_reloc(ko, base, rela, true, local);
991 			if (error != 0) {
992 				return ENOENT;
993 			}
994 		}
995 	}
996 
997 	return 0;
998 }
999 
1000 /*
1001  * kobj_out:
1002  *
1003  *	Utility function: log an error.
1004  */
1005 static void
1006 kobj_out(const char *fname, int lnum, kobj_t ko, const char *fmt, ...)
1007 {
1008 	va_list ap;
1009 
1010 	printf("%s, %d: [%s]: linker error: ", fname, lnum, ko->ko_name);
1011 	va_start(ap, fmt);
1012 	vprintf(fmt, ap);
1013 	va_end(ap);
1014 	printf("\n");
1015 }
1016 
1017 static int
1018 kobj_read_mem(kobj_t ko, void **basep, size_t size, off_t off,
1019     bool allocate)
1020 {
1021 	void *base = *basep;
1022 	int error;
1023 
1024 	if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1025 		kobj_error(ko, "preloaded object short");
1026 		error = EINVAL;
1027 		base = NULL;
1028 	} else if (allocate) {
1029 		base = (uint8_t *)ko->ko_source + off;
1030 		error = 0;
1031 	} else if ((uint8_t *)base != (uint8_t *)ko->ko_source + off) {
1032 		kobj_error(ko, "object not aligned");
1033 		kobj_error(ko, "source=%p base=%p off=%d "
1034 		    "size=%zu", ko->ko_source, base, (int)off, size);
1035 		error = EINVAL;
1036 	} else {
1037 		/* Nothing to do.  Loading in-situ. */
1038 		error = 0;
1039 	}
1040 
1041 	if (allocate)
1042 		*basep = base;
1043 
1044 	return error;
1045 }
1046 
1047 /*
1048  * kobj_free:
1049  *
1050  *	Utility function: free memory if it was allocated from the heap.
1051  */
1052 static void
1053 kobj_free(kobj_t ko, void *base, size_t size)
1054 {
1055 
1056 	if (ko->ko_type != KT_MEMORY)
1057 		kmem_free(base, size);
1058 }
1059 
1060 extern char module_base[];
1061 
1062 void
1063 kobj_setname(kobj_t ko, const char *name)
1064 {
1065 	const char *d = name, *dots = "";
1066 	size_t len, dlen;
1067 
1068 	for (char *s = module_base; *d == *s; d++, s++)
1069 		continue;
1070 
1071 	if (d == name)
1072 		name = "";
1073 	else
1074 		name = "%M";
1075 	dlen = strlen(d);
1076 	len = dlen + strlen(name);
1077 	if (len >= sizeof(ko->ko_name)) {
1078 		len = (len - sizeof(ko->ko_name)) + 5; /* dots + NUL */
1079 		if (dlen >= len) {
1080 			d += len;
1081 			dots = "/...";
1082 		}
1083 	}
1084 	snprintf(ko->ko_name, sizeof(ko->ko_name), "%s%s%s", name, dots, d);
1085 }
1086 
1087 #else	/* MODULAR */
1088 
1089 int
1090 kobj_load_mem(kobj_t *kop, const char *name, void *base, ssize_t size)
1091 {
1092 
1093 	return ENOSYS;
1094 }
1095 
1096 void
1097 kobj_unload(kobj_t ko)
1098 {
1099 
1100 	panic("not modular");
1101 }
1102 
1103 int
1104 kobj_stat(kobj_t ko, vaddr_t *base, size_t *size)
1105 {
1106 
1107 	return ENOSYS;
1108 }
1109 
1110 int
1111 kobj_affix(kobj_t ko, const char *name)
1112 {
1113 
1114 	panic("not modular");
1115 }
1116 
1117 int
1118 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
1119 {
1120 
1121 	panic("not modular");
1122 }
1123 
1124 void
1125 kobj_setname(kobj_t ko, const char *name)
1126 {
1127 
1128 	panic("not modular");
1129 }
1130 
1131 #endif	/* MODULAR */
1132