xref: /netbsd-src/sys/kern/subr_kobj.c (revision a536ee5124e62c9a0051a252f7833dc8f50f44c9)
1 /*	$NetBSD: subr_kobj.c,v 1.45 2012/12/30 20:52:20 pooka Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software developed for The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1998-2000 Doug Rabson
34  * Copyright (c) 2004 Peter Wemm
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  */
58 
59 /*
60  * Kernel loader for ELF objects.
61  *
62  * TODO: adjust kmem_alloc() calls to avoid needless fragmentation.
63  */
64 
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: subr_kobj.c,v 1.45 2012/12/30 20:52:20 pooka Exp $");
67 
68 #include "opt_modular.h"
69 
70 #include <sys/kobj_impl.h>
71 
72 #ifdef MODULAR
73 
74 #include <sys/param.h>
75 #include <sys/kernel.h>
76 #include <sys/kmem.h>
77 #include <sys/proc.h>
78 #include <sys/ksyms.h>
79 #include <sys/module.h>
80 
81 #include <uvm/uvm_extern.h>
82 
83 static int	kobj_relocate(kobj_t, bool);
84 static int	kobj_checksyms(kobj_t, bool);
85 static void	kobj_error(const char *, int, kobj_t, const char *, ...)
86     __printflike(4, 5);
87 static void	kobj_jettison(kobj_t);
88 static void	kobj_free(kobj_t, void *, size_t);
89 static void	kobj_close(kobj_t);
90 static int	kobj_read_mem(kobj_t, void **, size_t, off_t, bool);
91 static void	kobj_close_mem(kobj_t);
92 
93 extern struct vm_map *module_map;
94 
95 /*
96  * kobj_load_mem:
97  *
98  *	Load an object already resident in memory.  If size is not -1,
99  *	the complete size of the object is known.
100  */
101 int
102 kobj_load_mem(kobj_t *kop, const char *name, void *base, ssize_t size)
103 {
104 	kobj_t ko;
105 
106 	ko = kmem_zalloc(sizeof(*ko), KM_SLEEP);
107 	if (ko == NULL) {
108 		return ENOMEM;
109 	}
110 
111 	ko->ko_type = KT_MEMORY;
112 	kobj_setname(ko, name);
113 	ko->ko_source = base;
114 	ko->ko_memsize = size;
115 	ko->ko_read = kobj_read_mem;
116 	ko->ko_close = kobj_close_mem;
117 
118 	*kop = ko;
119 	return kobj_load(ko);
120 }
121 
122 /*
123  * kobj_close:
124  *
125  *	Close an open ELF object.
126  */
127 static void
128 kobj_close(kobj_t ko)
129 {
130 
131 	if (ko->ko_source == NULL) {
132 		return;
133 	}
134 
135 	ko->ko_close(ko);
136 	ko->ko_source = NULL;
137 }
138 
139 static void
140 kobj_close_mem(kobj_t ko)
141 {
142 
143 	return;
144 }
145 
146 /*
147  * kobj_load:
148  *
149  *	Load an ELF object and prepare to link into the running kernel
150  *	image.
151  */
152 int
153 kobj_load(kobj_t ko)
154 {
155 	Elf_Ehdr *hdr;
156 	Elf_Shdr *shdr;
157 	Elf_Sym *es;
158 	vaddr_t mapbase;
159 	size_t mapsize;
160 	int error;
161 	int symtabindex;
162 	int symstrindex;
163 	int nsym;
164 	int pb, rl, ra;
165 	int alignmask;
166 	int i, j;
167 	void *addr;
168 
169 	KASSERT(ko->ko_type != KT_UNSET);
170 	KASSERT(ko->ko_source != NULL);
171 
172 	shdr = NULL;
173 	mapsize = 0;
174 	error = 0;
175 	hdr = NULL;
176 
177 	/*
178 	 * Read the elf header from the file.
179 	 */
180 	error = ko->ko_read(ko, (void **)&hdr, sizeof(*hdr), 0, true);
181 	if (error != 0) {
182 		kobj_error(__func__, __LINE__, ko, "read failed %d", error);
183 		goto out;
184 	}
185 	if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0) {
186 		kobj_error(__func__, __LINE__, ko, "not an ELF object");
187 		error = ENOEXEC;
188 		goto out;
189 	}
190 
191 	if (hdr->e_ident[EI_VERSION] != EV_CURRENT ||
192 	    hdr->e_version != EV_CURRENT) {
193 		kobj_error(__func__, __LINE__, ko,
194 		    "unsupported file version %d", hdr->e_ident[EI_VERSION]);
195 		error = ENOEXEC;
196 		goto out;
197 	}
198 	if (hdr->e_type != ET_REL) {
199 		kobj_error(__func__, __LINE__, ko, "unsupported file type %d",
200 		    hdr->e_type);
201 		error = ENOEXEC;
202 		goto out;
203 	}
204 	switch (hdr->e_machine) {
205 #if ELFSIZE == 32
206 	ELF32_MACHDEP_ID_CASES
207 #elif ELFSIZE == 64
208 	ELF64_MACHDEP_ID_CASES
209 #else
210 #error not defined
211 #endif
212 	default:
213 		kobj_error(__func__, __LINE__, ko, "unsupported machine %d",
214 		    hdr->e_machine);
215 		error = ENOEXEC;
216 		goto out;
217 	}
218 
219 	ko->ko_nprogtab = 0;
220 	ko->ko_shdr = 0;
221 	ko->ko_nrel = 0;
222 	ko->ko_nrela = 0;
223 
224 	/*
225 	 * Allocate and read in the section header.
226 	 */
227 	ko->ko_shdrsz = hdr->e_shnum * hdr->e_shentsize;
228 	if (ko->ko_shdrsz == 0 || hdr->e_shoff == 0 ||
229 	    hdr->e_shentsize != sizeof(Elf_Shdr)) {
230 		kobj_error(__func__, __LINE__, ko, "bad sizes");
231 		error = ENOEXEC;
232 		goto out;
233 	}
234 	error = ko->ko_read(ko, (void **)&shdr, ko->ko_shdrsz, hdr->e_shoff,
235 	    true);
236 	if (error != 0) {
237 		kobj_error(__func__, __LINE__, ko, "read failed %d", error);
238 		goto out;
239 	}
240 	ko->ko_shdr = shdr;
241 
242 	/*
243 	 * Scan the section header for information and table sizing.
244 	 */
245 	nsym = 0;
246 	symtabindex = -1;
247 	symstrindex = -1;
248 	for (i = 0; i < hdr->e_shnum; i++) {
249 		switch (shdr[i].sh_type) {
250 		case SHT_PROGBITS:
251 		case SHT_NOBITS:
252 			ko->ko_nprogtab++;
253 			break;
254 		case SHT_SYMTAB:
255 			nsym++;
256 			symtabindex = i;
257 			symstrindex = shdr[i].sh_link;
258 			break;
259 		case SHT_REL:
260 			ko->ko_nrel++;
261 			break;
262 		case SHT_RELA:
263 			ko->ko_nrela++;
264 			break;
265 		case SHT_STRTAB:
266 			break;
267 		}
268 	}
269 	if (ko->ko_nprogtab == 0) {
270 		kobj_error(__func__, __LINE__, ko, "file has no contents");
271 		error = ENOEXEC;
272 		goto out;
273 	}
274 	if (nsym != 1) {
275 		/* Only allow one symbol table for now */
276 		kobj_error(__func__, __LINE__, ko,
277 		    "file has no valid symbol table");
278 		error = ENOEXEC;
279 		goto out;
280 	}
281 	if (symstrindex < 0 || symstrindex > hdr->e_shnum ||
282 	    shdr[symstrindex].sh_type != SHT_STRTAB) {
283 		kobj_error(__func__, __LINE__, ko,
284 		    "file has invalid symbol strings");
285 		error = ENOEXEC;
286 		goto out;
287 	}
288 
289 	/*
290 	 * Allocate space for tracking the load chunks.
291 	 */
292 	if (ko->ko_nprogtab != 0) {
293 		ko->ko_progtab = kmem_zalloc(ko->ko_nprogtab *
294 		    sizeof(*ko->ko_progtab), KM_SLEEP);
295 		if (ko->ko_progtab == NULL) {
296 			error = ENOMEM;
297 			kobj_error(__func__, __LINE__, ko, "out of memory");
298 			goto out;
299 		}
300 	}
301 	if (ko->ko_nrel != 0) {
302 		ko->ko_reltab = kmem_zalloc(ko->ko_nrel *
303 		    sizeof(*ko->ko_reltab), KM_SLEEP);
304 		if (ko->ko_reltab == NULL) {
305 			error = ENOMEM;
306 			kobj_error(__func__, __LINE__, ko, "out of memory");
307 			goto out;
308 		}
309 	}
310 	if (ko->ko_nrela != 0) {
311 		ko->ko_relatab = kmem_zalloc(ko->ko_nrela *
312 		    sizeof(*ko->ko_relatab), KM_SLEEP);
313 		if (ko->ko_relatab == NULL) {
314 			error = ENOMEM;
315 			kobj_error(__func__, __LINE__, ko, "out of memory");
316 			goto out;
317 		}
318 	}
319 	if (symtabindex == -1) {
320 		kobj_error(__func__, __LINE__, ko, "lost symbol table index");
321 		goto out;
322 	}
323 
324 	/*
325 	 * Allocate space for and load the symbol table.
326 	 */
327 	ko->ko_symcnt = shdr[symtabindex].sh_size / sizeof(Elf_Sym);
328 	if (ko->ko_symcnt == 0) {
329 		kobj_error(__func__, __LINE__, ko, "no symbol table");
330 		goto out;
331 	}
332 	error = ko->ko_read(ko, (void **)&ko->ko_symtab,
333 	    ko->ko_symcnt * sizeof(Elf_Sym),
334 	    shdr[symtabindex].sh_offset, true);
335 	if (error != 0) {
336 		kobj_error(__func__, __LINE__, ko, "read failed %d", error);
337 		goto out;
338 	}
339 
340 	/*
341 	 * Allocate space for and load the symbol strings.
342 	 */
343 	ko->ko_strtabsz = shdr[symstrindex].sh_size;
344 	if (ko->ko_strtabsz == 0) {
345 		kobj_error(__func__, __LINE__, ko, "no symbol strings");
346 		goto out;
347 	}
348 	error = ko->ko_read(ko, (void *)&ko->ko_strtab, ko->ko_strtabsz,
349 	    shdr[symstrindex].sh_offset, true);
350 	if (error != 0) {
351 		kobj_error(__func__, __LINE__, ko, "read failed %d", error);
352 		goto out;
353 	}
354 
355 	/*
356 	 * Adjust module symbol namespace, if necessary (e.g. with rump)
357 	 */
358 	error = kobj_renamespace(ko->ko_symtab, ko->ko_symcnt,
359 	    &ko->ko_strtab, &ko->ko_strtabsz);
360 	if (error != 0) {
361 		kobj_error(__func__, __LINE__, ko, "renamespace failed %d",
362 		    error);
363 		goto out;
364 	}
365 
366 	/*
367 	 * Do we have a string table for the section names?
368 	 */
369 	if (hdr->e_shstrndx != 0 && shdr[hdr->e_shstrndx].sh_size != 0 &&
370 	    shdr[hdr->e_shstrndx].sh_type == SHT_STRTAB) {
371 		ko->ko_shstrtabsz = shdr[hdr->e_shstrndx].sh_size;
372 		error = ko->ko_read(ko, (void **)&ko->ko_shstrtab,
373 		    shdr[hdr->e_shstrndx].sh_size,
374 		    shdr[hdr->e_shstrndx].sh_offset, true);
375 		if (error != 0) {
376 			kobj_error(__func__, __LINE__, ko, "read failed %d",
377 			    error);
378 			goto out;
379 		}
380 	}
381 
382 	/*
383 	 * Size up code/data(progbits) and bss(nobits).
384 	 */
385 	alignmask = 0;
386 	mapbase = 0;
387 	for (i = 0; i < hdr->e_shnum; i++) {
388 		switch (shdr[i].sh_type) {
389 		case SHT_PROGBITS:
390 		case SHT_NOBITS:
391 			if (mapbase == 0)
392 				mapbase = shdr[i].sh_offset;
393 			alignmask = shdr[i].sh_addralign - 1;
394 			mapsize += alignmask;
395 			mapsize &= ~alignmask;
396 			mapsize += shdr[i].sh_size;
397 			break;
398 		}
399 	}
400 
401 	/*
402 	 * We know how much space we need for the text/data/bss/etc.
403 	 * This stuff needs to be in a single chunk so that profiling etc
404 	 * can get the bounds and gdb can associate offsets with modules.
405 	 */
406 	if (mapsize == 0) {
407 		kobj_error(__func__, __LINE__, ko, "no text/data/bss");
408 		goto out;
409 	}
410 	if (ko->ko_type == KT_MEMORY) {
411 		mapbase += (vaddr_t)ko->ko_source;
412 	} else {
413 		mapbase = uvm_km_alloc(module_map, round_page(mapsize),
414 		    0, UVM_KMF_WIRED | UVM_KMF_EXEC);
415 		if (mapbase == 0) {
416 			kobj_error(__func__, __LINE__, ko, "out of memory");
417 			error = ENOMEM;
418 			goto out;
419 		}
420 	}
421 	ko->ko_address = mapbase;
422 	ko->ko_size = mapsize;
423 
424 	/*
425 	 * Now load code/data(progbits), zero bss(nobits), allocate space
426 	 * for and load relocs
427 	 */
428 	pb = 0;
429 	rl = 0;
430 	ra = 0;
431 	alignmask = 0;
432 	for (i = 0; i < hdr->e_shnum; i++) {
433 		switch (shdr[i].sh_type) {
434 		case SHT_PROGBITS:
435 		case SHT_NOBITS:
436 			alignmask = shdr[i].sh_addralign - 1;
437 			if (ko->ko_type == KT_MEMORY) {
438 				addr = (void *)(shdr[i].sh_offset +
439 				    (vaddr_t)ko->ko_source);
440 				if (((vaddr_t)addr & alignmask) != 0) {
441 					kobj_error(__func__, __LINE__, ko,
442 					    "section %d not aligned",
443 					    i);
444 					goto out;
445 				}
446 			} else {
447 				mapbase += alignmask;
448 				mapbase &= ~alignmask;
449 				addr = (void *)mapbase;
450 				mapbase += shdr[i].sh_size;
451 			}
452 			ko->ko_progtab[pb].addr = addr;
453 			if (shdr[i].sh_type == SHT_PROGBITS) {
454 				ko->ko_progtab[pb].name = "<<PROGBITS>>";
455 				error = ko->ko_read(ko, &addr,
456 				    shdr[i].sh_size, shdr[i].sh_offset, false);
457 				if (error != 0) {
458 					kobj_error(__func__, __LINE__, ko,
459 					    "read failed %d", error);
460 					goto out;
461 				}
462 			} else if (ko->ko_type == KT_MEMORY &&
463 			    shdr[i].sh_size != 0) {
464 			    	kobj_error(__func__, __LINE__, ko,
465 				    "non-loadable BSS "
466 				    "section in pre-loaded module");
467 				error = EINVAL;
468 			    	goto out;
469 			} else {
470 				ko->ko_progtab[pb].name = "<<NOBITS>>";
471 				memset(addr, 0, shdr[i].sh_size);
472 			}
473 			ko->ko_progtab[pb].size = shdr[i].sh_size;
474 			ko->ko_progtab[pb].sec = i;
475 			if (ko->ko_shstrtab != NULL && shdr[i].sh_name != 0) {
476 				ko->ko_progtab[pb].name =
477 				    ko->ko_shstrtab + shdr[i].sh_name;
478 			}
479 
480 			/* Update all symbol values with the offset. */
481 			for (j = 0; j < ko->ko_symcnt; j++) {
482 				es = &ko->ko_symtab[j];
483 				if (es->st_shndx != i) {
484 					continue;
485 				}
486 				es->st_value += (Elf_Addr)addr;
487 			}
488 			pb++;
489 			break;
490 		case SHT_REL:
491 			ko->ko_reltab[rl].size = shdr[i].sh_size;
492 			ko->ko_reltab[rl].size -=
493 			    shdr[i].sh_size % sizeof(Elf_Rel);
494 			if (ko->ko_reltab[rl].size != 0) {
495 				ko->ko_reltab[rl].nrel =
496 				    shdr[i].sh_size / sizeof(Elf_Rel);
497 				ko->ko_reltab[rl].sec = shdr[i].sh_info;
498 				error = ko->ko_read(ko,
499 				    (void **)&ko->ko_reltab[rl].rel,
500 				    ko->ko_reltab[rl].size,
501 				    shdr[i].sh_offset, true);
502 				if (error != 0) {
503 					kobj_error(__func__, __LINE__, ko,
504 					    "read failed %d", error);
505 					goto out;
506 				}
507 			}
508 			rl++;
509 			break;
510 		case SHT_RELA:
511 			ko->ko_relatab[ra].size = shdr[i].sh_size;
512 			ko->ko_relatab[ra].size -=
513 			    shdr[i].sh_size % sizeof(Elf_Rela);
514 			if (ko->ko_relatab[ra].size != 0) {
515 				ko->ko_relatab[ra].nrela =
516 				    shdr[i].sh_size / sizeof(Elf_Rela);
517 				ko->ko_relatab[ra].sec = shdr[i].sh_info;
518 				error = ko->ko_read(ko,
519 				    (void **)&ko->ko_relatab[ra].rela,
520 				    shdr[i].sh_size,
521 				    shdr[i].sh_offset, true);
522 				if (error != 0) {
523 					kobj_error(__func__, __LINE__, ko,
524 					    "read failed %d", error);
525 					goto out;
526 				}
527 			}
528 			ra++;
529 			break;
530 		default:
531 			break;
532 		}
533 	}
534 	if (pb != ko->ko_nprogtab) {
535 		panic("lost progbits");
536 	}
537 	if (rl != ko->ko_nrel) {
538 		panic("lost rel");
539 	}
540 	if (ra != ko->ko_nrela) {
541 		panic("lost rela");
542 	}
543 	if (ko->ko_type != KT_MEMORY && mapbase != ko->ko_address + mapsize) {
544 		panic("mapbase 0x%lx != address %lx + mapsize %ld (0x%lx)\n",
545 		    (long)mapbase, (long)ko->ko_address, (long)mapsize,
546 		    (long)ko->ko_address + mapsize);
547 	}
548 
549 	/*
550 	 * Perform local relocations only.  Relocations relating to global
551 	 * symbols will be done by kobj_affix().
552 	 */
553 	error = kobj_checksyms(ko, false);
554 	if (error == 0) {
555 		error = kobj_relocate(ko, true);
556 	}
557  out:
558 	if (hdr != NULL) {
559 		kobj_free(ko, hdr, sizeof(*hdr));
560 	}
561 	kobj_close(ko);
562 	if (error != 0) {
563 		kobj_unload(ko);
564 	}
565 
566 	return error;
567 }
568 
569 /*
570  * kobj_unload:
571  *
572  *	Unload an object previously loaded by kobj_load().
573  */
574 void
575 kobj_unload(kobj_t ko)
576 {
577 	int error;
578 
579 	kobj_close(ko);
580 	kobj_jettison(ko);
581 
582 	/*
583 	 * Notify MD code that a module has been unloaded.
584 	 */
585 	if (ko->ko_loaded) {
586 		error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
587 		    false);
588 		if (error != 0)
589 			kobj_error(__func__, __LINE__, ko,
590 			    "machine dependent deinit failed %d", error);
591 	}
592 	if (ko->ko_address != 0 && ko->ko_type != KT_MEMORY) {
593 		uvm_km_free(module_map, ko->ko_address, round_page(ko->ko_size),
594 		    UVM_KMF_WIRED);
595 	}
596 	if (ko->ko_ksyms == true) {
597 		ksyms_modunload(ko->ko_name);
598 	}
599 	if (ko->ko_symtab != NULL) {
600 		kobj_free(ko, ko->ko_symtab, ko->ko_symcnt * sizeof(Elf_Sym));
601 	}
602 	if (ko->ko_strtab != NULL) {
603 		kobj_free(ko, ko->ko_strtab, ko->ko_strtabsz);
604 	}
605 	if (ko->ko_progtab != NULL) {
606 		kobj_free(ko, ko->ko_progtab, ko->ko_nprogtab *
607 		    sizeof(*ko->ko_progtab));
608 		ko->ko_progtab = NULL;
609 	}
610 	if (ko->ko_shstrtab) {
611 		kobj_free(ko, ko->ko_shstrtab, ko->ko_shstrtabsz);
612 		ko->ko_shstrtab = NULL;
613 	}
614 
615 	kmem_free(ko, sizeof(*ko));
616 }
617 
618 /*
619  * kobj_stat:
620  *
621  *	Return size and load address of an object.
622  */
623 int
624 kobj_stat(kobj_t ko, vaddr_t *address, size_t *size)
625 {
626 
627 	if (address != NULL) {
628 		*address = ko->ko_address;
629 	}
630 	if (size != NULL) {
631 		*size = ko->ko_size;
632 	}
633 	return 0;
634 }
635 
636 /*
637  * kobj_affix:
638  *
639  *	Set an object's name and perform global relocs.  May only be
640  *	called after the module and any requisite modules are loaded.
641  */
642 int
643 kobj_affix(kobj_t ko, const char *name)
644 {
645 	int error;
646 
647 	KASSERT(ko->ko_ksyms == false);
648 	KASSERT(ko->ko_loaded == false);
649 
650 	kobj_setname(ko, name);
651 
652 	/* Cache addresses of undefined symbols. */
653 	error = kobj_checksyms(ko, true);
654 
655 	/* Now do global relocations. */
656 	if (error == 0)
657 		error = kobj_relocate(ko, false);
658 
659 	/*
660 	 * Now that we know the name, register the symbol table.
661 	 * Do after global relocations because ksyms will pack
662 	 * the table.
663 	 */
664 	if (error == 0) {
665 		ksyms_modload(ko->ko_name, ko->ko_symtab, ko->ko_symcnt *
666 		    sizeof(Elf_Sym), ko->ko_strtab, ko->ko_strtabsz);
667 		ko->ko_ksyms = true;
668 	}
669 
670 	/* Jettison unneeded memory post-link. */
671 	kobj_jettison(ko);
672 
673 	/*
674 	 * Notify MD code that a module has been loaded.
675 	 *
676 	 * Most architectures use this opportunity to flush their caches.
677 	 */
678 	if (error == 0) {
679 		error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
680 		    true);
681 		if (error != 0)
682 			kobj_error(__func__, __LINE__, ko,
683 			    "machine dependent init failed %d", error);
684 		ko->ko_loaded = true;
685 	}
686 
687 	/* If there was an error, destroy the whole object. */
688 	if (error != 0) {
689 		kobj_unload(ko);
690 	}
691 
692 	return error;
693 }
694 
695 /*
696  * kobj_find_section:
697  *
698  *	Given a section name, search the loaded object and return
699  *	virtual address if present and loaded.
700  */
701 int
702 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
703 {
704 	int i;
705 
706 	KASSERT(ko->ko_progtab != NULL);
707 
708 	for (i = 0; i < ko->ko_nprogtab; i++) {
709 		if (strcmp(ko->ko_progtab[i].name, name) == 0) {
710 			if (addr != NULL) {
711 				*addr = ko->ko_progtab[i].addr;
712 			}
713 			if (size != NULL) {
714 				*size = ko->ko_progtab[i].size;
715 			}
716 			return 0;
717 		}
718 	}
719 
720 	return ENOENT;
721 }
722 
723 /*
724  * kobj_jettison:
725  *
726  *	Release object data not needed after performing relocations.
727  */
728 static void
729 kobj_jettison(kobj_t ko)
730 {
731 	int i;
732 
733 	if (ko->ko_reltab != NULL) {
734 		for (i = 0; i < ko->ko_nrel; i++) {
735 			if (ko->ko_reltab[i].rel) {
736 				kobj_free(ko, ko->ko_reltab[i].rel,
737 				    ko->ko_reltab[i].size);
738 			}
739 		}
740 		kobj_free(ko, ko->ko_reltab, ko->ko_nrel *
741 		    sizeof(*ko->ko_reltab));
742 		ko->ko_reltab = NULL;
743 		ko->ko_nrel = 0;
744 	}
745 	if (ko->ko_relatab != NULL) {
746 		for (i = 0; i < ko->ko_nrela; i++) {
747 			if (ko->ko_relatab[i].rela) {
748 				kobj_free(ko, ko->ko_relatab[i].rela,
749 				    ko->ko_relatab[i].size);
750 			}
751 		}
752 		kobj_free(ko, ko->ko_relatab, ko->ko_nrela *
753 		    sizeof(*ko->ko_relatab));
754 		ko->ko_relatab = NULL;
755 		ko->ko_nrela = 0;
756 	}
757 	if (ko->ko_shdr != NULL) {
758 		kobj_free(ko, ko->ko_shdr, ko->ko_shdrsz);
759 		ko->ko_shdr = NULL;
760 	}
761 }
762 
763 /*
764  * kobj_sym_lookup:
765  *
766  *	Symbol lookup function to be used when the symbol index
767  *	is known (ie during relocation).
768  */
769 uintptr_t
770 kobj_sym_lookup(kobj_t ko, uintptr_t symidx)
771 {
772 	const Elf_Sym *sym;
773 	const char *symbol;
774 
775 	/* Don't even try to lookup the symbol if the index is bogus. */
776 	if (symidx >= ko->ko_symcnt)
777 		return 0;
778 
779 	sym = ko->ko_symtab + symidx;
780 
781 	/* Quick answer if there is a definition included. */
782 	if (sym->st_shndx != SHN_UNDEF) {
783 		return (uintptr_t)sym->st_value;
784 	}
785 
786 	/* If we get here, then it is undefined and needs a lookup. */
787 	switch (ELF_ST_BIND(sym->st_info)) {
788 	case STB_LOCAL:
789 		/* Local, but undefined? huh? */
790 		kobj_error(__func__, __LINE__, ko, "local symbol undefined");
791 		return 0;
792 
793 	case STB_GLOBAL:
794 		/* Relative to Data or Function name */
795 		symbol = ko->ko_strtab + sym->st_name;
796 
797 		/* Force a lookup failure if the symbol name is bogus. */
798 		if (*symbol == 0) {
799 			kobj_error(__func__, __LINE__, ko, "bad symbol name");
800 			return 0;
801 		}
802 
803 		return (uintptr_t)sym->st_value;
804 
805 	case STB_WEAK:
806 		kobj_error(__func__, __LINE__, ko,
807 		    "weak symbols not supported");
808 		return 0;
809 
810 	default:
811 		return 0;
812 	}
813 }
814 
815 /*
816  * kobj_findbase:
817  *
818  *	Return base address of the given section.
819  */
820 static uintptr_t
821 kobj_findbase(kobj_t ko, int sec)
822 {
823 	int i;
824 
825 	for (i = 0; i < ko->ko_nprogtab; i++) {
826 		if (sec == ko->ko_progtab[i].sec) {
827 			return (uintptr_t)ko->ko_progtab[i].addr;
828 		}
829 	}
830 	return 0;
831 }
832 
833 /*
834  * kobj_checksyms:
835  *
836  *	Scan symbol table for duplicates or resolve references to
837  *	exernal symbols.
838  */
839 static int
840 kobj_checksyms(kobj_t ko, bool undefined)
841 {
842 	unsigned long rval;
843 	Elf_Sym *sym, *ms;
844 	const char *name;
845 	int error;
846 
847 	error = 0;
848 
849 	for (ms = (sym = ko->ko_symtab) + ko->ko_symcnt; sym < ms; sym++) {
850 		/* Check validity of the symbol. */
851 		if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL ||
852 		    sym->st_name == 0)
853 			continue;
854 		if (undefined != (sym->st_shndx == SHN_UNDEF)) {
855 			continue;
856 		}
857 
858 		/*
859 		 * Look it up.  Don't need to lock, as it is known that
860 		 * the symbol tables aren't going to change (we hold
861 		 * module_lock).
862 		 */
863 		name = ko->ko_strtab + sym->st_name;
864 		if (ksyms_getval_unlocked(NULL, name, &rval,
865 		    KSYMS_EXTERN) != 0) {
866 			if (undefined) {
867 				kobj_error(__func__, __LINE__, ko,
868 				    "symbol `%s' not found", name);
869 				error = ENOEXEC;
870 			}
871 			continue;
872 		}
873 
874 		/* Save values of undefined globals. */
875 		if (undefined) {
876 			sym->st_value = (Elf_Addr)rval;
877 			continue;
878 		}
879 
880 		/* Check (and complain) about differing values. */
881 		if (sym->st_value == rval) {
882 			continue;
883 		}
884 		if (strcmp(name, "_bss_start") == 0 ||
885 		    strcmp(name, "__bss_start") == 0 ||
886 		    strcmp(name, "_bss_end__") == 0 ||
887 		    strcmp(name, "__bss_end__") == 0 ||
888 		    strcmp(name, "_edata") == 0 ||
889 		    strcmp(name, "_end") == 0 ||
890 		    strcmp(name, "__end") == 0 ||
891 		    strcmp(name, "__end__") == 0 ||
892 		    strncmp(name, "__start_link_set_", 17) == 0 ||
893 		    strncmp(name, "__stop_link_set_", 16)) {
894 		    	continue;
895 		}
896 		kobj_error(__func__, __LINE__, ko,
897 		    "global symbol `%s' redefined", name);
898 		error = ENOEXEC;
899 	}
900 
901 	return error;
902 }
903 
904 /*
905  * kobj_relocate:
906  *
907  *	Resolve relocations for the loaded object.
908  */
909 static int
910 kobj_relocate(kobj_t ko, bool local)
911 {
912 	const Elf_Rel *rellim;
913 	const Elf_Rel *rel;
914 	const Elf_Rela *relalim;
915 	const Elf_Rela *rela;
916 	const Elf_Sym *sym;
917 	uintptr_t base;
918 	int i, error;
919 	uintptr_t symidx;
920 
921 	/*
922 	 * Perform relocations without addend if there are any.
923 	 */
924 	for (i = 0; i < ko->ko_nrel; i++) {
925 		rel = ko->ko_reltab[i].rel;
926 		if (rel == NULL) {
927 			continue;
928 		}
929 		rellim = rel + ko->ko_reltab[i].nrel;
930 		base = kobj_findbase(ko, ko->ko_reltab[i].sec);
931 		if (base == 0) {
932 			panic("lost base for e_reltab");
933 		}
934 		for (; rel < rellim; rel++) {
935 			symidx = ELF_R_SYM(rel->r_info);
936 			if (symidx >= ko->ko_symcnt) {
937 				continue;
938 			}
939 			sym = ko->ko_symtab + symidx;
940 			if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
941 				continue;
942 			}
943 			error = kobj_reloc(ko, base, rel, false, local);
944 			if (error != 0) {
945 				return ENOENT;
946 			}
947 		}
948 	}
949 
950 	/*
951 	 * Perform relocations with addend if there are any.
952 	 */
953 	for (i = 0; i < ko->ko_nrela; i++) {
954 		rela = ko->ko_relatab[i].rela;
955 		if (rela == NULL) {
956 			continue;
957 		}
958 		relalim = rela + ko->ko_relatab[i].nrela;
959 		base = kobj_findbase(ko, ko->ko_relatab[i].sec);
960 		if (base == 0) {
961 			panic("lost base for e_relatab");
962 		}
963 		for (; rela < relalim; rela++) {
964 			symidx = ELF_R_SYM(rela->r_info);
965 			if (symidx >= ko->ko_symcnt) {
966 				continue;
967 			}
968 			sym = ko->ko_symtab + symidx;
969 			if (local != (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) {
970 				continue;
971 			}
972 			error = kobj_reloc(ko, base, rela, true, local);
973 			if (error != 0) {
974 				return ENOENT;
975 			}
976 		}
977 	}
978 
979 	return 0;
980 }
981 
982 /*
983  * kobj_error:
984  *
985  *	Utility function: log an error.
986  */
987 static void
988 kobj_error(const char *fname, int lnum, kobj_t ko, const char *fmt, ...)
989 {
990 	va_list ap;
991 
992 	printf("%s, %d: [%s]: linker error: ", fname, lnum, ko->ko_name);
993 	va_start(ap, fmt);
994 	vprintf(fmt, ap);
995 	va_end(ap);
996 	printf("\n");
997 }
998 
999 static int
1000 kobj_read_mem(kobj_t ko, void **basep, size_t size, off_t off,
1001     bool allocate)
1002 {
1003 	void *base = *basep;
1004 	int error;
1005 
1006 	if (ko->ko_memsize != -1 && off + size > ko->ko_memsize) {
1007 		kobj_error(__func__, __LINE__, ko, "preloaded object short");
1008 		error = EINVAL;
1009 		base = NULL;
1010 	} else if (allocate) {
1011 		base = (uint8_t *)ko->ko_source + off;
1012 		error = 0;
1013 	} else if ((uint8_t *)base != (uint8_t *)ko->ko_source + off) {
1014 		kobj_error(__func__, __LINE__, ko, "object not aligned");
1015 		kobj_error(__func__, __LINE__, ko, "source=%p base=%p off=%d "
1016 		    "size=%zu", ko->ko_source, base, (int)off, size);
1017 		error = EINVAL;
1018 	} else {
1019 		/* Nothing to do.  Loading in-situ. */
1020 		error = 0;
1021 	}
1022 
1023 	if (allocate)
1024 		*basep = base;
1025 
1026 	return error;
1027 }
1028 
1029 /*
1030  * kobj_free:
1031  *
1032  *	Utility function: free memory if it was allocated from the heap.
1033  */
1034 static void
1035 kobj_free(kobj_t ko, void *base, size_t size)
1036 {
1037 
1038 	if (ko->ko_type != KT_MEMORY)
1039 		kmem_free(base, size);
1040 }
1041 
1042 extern char module_base[];
1043 
1044 void
1045 kobj_setname(kobj_t ko, const char *name)
1046 {
1047 	const char *d = name, *dots = "";
1048 	size_t len, dlen;
1049 
1050 	for (char *s = module_base; *d == *s; d++, s++)
1051 		continue;
1052 
1053 	if (d == name)
1054 		name = "";
1055 	else
1056 		name = "%M";
1057 	dlen = strlen(d);
1058 	len = dlen + strlen(name);
1059 	if (len >= sizeof(ko->ko_name)) {
1060 		len = (len - sizeof(ko->ko_name)) + 5; /* dots + NUL */
1061 		if (dlen >= len) {
1062 			d += len;
1063 			dots = "/...";
1064 		}
1065 	}
1066 	snprintf(ko->ko_name, sizeof(ko->ko_name), "%s%s%s", name, dots, d);
1067 }
1068 
1069 #else	/* MODULAR */
1070 
1071 int
1072 kobj_load_mem(kobj_t *kop, const char *name, void *base, ssize_t size)
1073 {
1074 
1075 	return ENOSYS;
1076 }
1077 
1078 void
1079 kobj_unload(kobj_t ko)
1080 {
1081 
1082 	panic("not modular");
1083 }
1084 
1085 int
1086 kobj_stat(kobj_t ko, vaddr_t *base, size_t *size)
1087 {
1088 
1089 	return ENOSYS;
1090 }
1091 
1092 int
1093 kobj_affix(kobj_t ko, const char *name)
1094 {
1095 
1096 	panic("not modular");
1097 }
1098 
1099 int
1100 kobj_find_section(kobj_t ko, const char *name, void **addr, size_t *size)
1101 {
1102 
1103 	panic("not modular");
1104 }
1105 
1106 void
1107 kobj_setname(kobj_t ko, const char *name)
1108 {
1109 
1110 	panic("not modular");
1111 }
1112 
1113 #endif	/* MODULAR */
1114