xref: /netbsd-src/sys/kern/subr_ipi.c (revision deb6f0161a9109e7de9b519dc8dfb9478668dcdd)
1 /*	$NetBSD: subr_ipi.c,v 1.3 2015/01/18 23:16:35 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 2014 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Mindaugas Rasiukevicius.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Inter-processor interrupt (IPI) interface: asynchronous IPIs to
34  * invoke functions with a constant argument and synchronous IPIs
35  * with the cross-call support.
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: subr_ipi.c,v 1.3 2015/01/18 23:16:35 rmind Exp $");
40 
41 #include <sys/param.h>
42 #include <sys/types.h>
43 
44 #include <sys/atomic.h>
45 #include <sys/evcnt.h>
46 #include <sys/cpu.h>
47 #include <sys/ipi.h>
48 #include <sys/intr.h>
49 #include <sys/kcpuset.h>
50 #include <sys/kmem.h>
51 #include <sys/lock.h>
52 #include <sys/mutex.h>
53 
54 /*
55  * An array of the IPI handlers used for asynchronous invocation.
56  * The lock protects the slot allocation.
57  */
58 
59 typedef struct {
60 	ipi_func_t	func;
61 	void *		arg;
62 } ipi_intr_t;
63 
64 static kmutex_t		ipi_mngmt_lock;
65 static ipi_intr_t	ipi_intrs[IPI_MAXREG]	__cacheline_aligned;
66 
67 /*
68  * Per-CPU mailbox for IPI messages: it is a single cache line storing
69  * up to IPI_MSG_MAX messages.  This interface is built on top of the
70  * synchronous IPIs.
71  */
72 
73 #define	IPI_MSG_SLOTS	(CACHE_LINE_SIZE / sizeof(ipi_msg_t *))
74 #define	IPI_MSG_MAX	IPI_MSG_SLOTS
75 
76 typedef struct {
77 	ipi_msg_t *	msg[IPI_MSG_SLOTS];
78 } ipi_mbox_t;
79 
80 
81 /* Mailboxes for the synchronous IPIs. */
82 static ipi_mbox_t *	ipi_mboxes	__read_mostly;
83 static struct evcnt	ipi_mboxfull_ev	__cacheline_aligned;
84 static void		ipi_msg_cpu_handler(void *);
85 
86 /* Handler for the synchronous IPIs - it must be zero. */
87 #define	IPI_SYNCH_ID	0
88 
89 #ifndef MULTIPROCESSOR
90 #define	cpu_ipi(ci)	KASSERT(ci == NULL)
91 #endif
92 
93 void
94 ipi_sysinit(void)
95 {
96 	const size_t len = ncpu * sizeof(ipi_mbox_t);
97 
98 	/* Initialise the per-CPU bit fields. */
99 	for (u_int i = 0; i < ncpu; i++) {
100 		struct cpu_info *ci = cpu_lookup(i);
101 		memset(&ci->ci_ipipend, 0, sizeof(ci->ci_ipipend));
102 	}
103 	mutex_init(&ipi_mngmt_lock, MUTEX_DEFAULT, IPL_NONE);
104 	memset(ipi_intrs, 0, sizeof(ipi_intrs));
105 
106 	/* Allocate per-CPU IPI mailboxes. */
107 	ipi_mboxes = kmem_zalloc(len, KM_SLEEP);
108 	KASSERT(ipi_mboxes != NULL);
109 
110 	/*
111 	 * Register the handler for synchronous IPIs.  This mechanism
112 	 * is built on top of the asynchronous interface.  Slot zero is
113 	 * reserved permanently; it is also handy to use zero as a failure
114 	 * for other registers (as it is potentially less error-prone).
115 	 */
116 	ipi_intrs[IPI_SYNCH_ID].func = ipi_msg_cpu_handler;
117 
118 	evcnt_attach_dynamic(&ipi_mboxfull_ev, EVCNT_TYPE_MISC, NULL,
119 	   "ipi", "full");
120 }
121 
122 /*
123  * ipi_register: register an asynchronous IPI handler.
124  *
125  * => Returns IPI ID which is greater than zero; on failure - zero.
126  */
127 u_int
128 ipi_register(ipi_func_t func, void *arg)
129 {
130 	mutex_enter(&ipi_mngmt_lock);
131 	for (u_int i = 0; i < IPI_MAXREG; i++) {
132 		if (ipi_intrs[i].func == NULL) {
133 			/* Register the function. */
134 			ipi_intrs[i].func = func;
135 			ipi_intrs[i].arg = arg;
136 			mutex_exit(&ipi_mngmt_lock);
137 
138 			KASSERT(i != IPI_SYNCH_ID);
139 			return i;
140 		}
141 	}
142 	mutex_exit(&ipi_mngmt_lock);
143 	printf("WARNING: ipi_register: table full, increase IPI_MAXREG\n");
144 	return 0;
145 }
146 
147 /*
148  * ipi_unregister: release the IPI handler given the ID.
149  */
150 void
151 ipi_unregister(u_int ipi_id)
152 {
153 	ipi_msg_t ipimsg = { .func = (ipi_func_t)nullop };
154 
155 	KASSERT(ipi_id != IPI_SYNCH_ID);
156 	KASSERT(ipi_id < IPI_MAXREG);
157 
158 	/* Release the slot. */
159 	mutex_enter(&ipi_mngmt_lock);
160 	KASSERT(ipi_intrs[ipi_id].func != NULL);
161 	ipi_intrs[ipi_id].func = NULL;
162 
163 	/* Ensure that there are no IPIs in flight. */
164 	kpreempt_disable();
165 	ipi_broadcast(&ipimsg);
166 	ipi_wait(&ipimsg);
167 	kpreempt_enable();
168 	mutex_exit(&ipi_mngmt_lock);
169 }
170 
171 /*
172  * ipi_trigger: asynchronously send an IPI to the specified CPU.
173  */
174 void
175 ipi_trigger(u_int ipi_id, struct cpu_info *ci)
176 {
177 	const u_int i = ipi_id >> IPI_BITW_SHIFT;
178 	const uint32_t bitm = 1U << (ipi_id & IPI_BITW_MASK);
179 
180 	KASSERT(ipi_id < IPI_MAXREG);
181 	KASSERT(kpreempt_disabled());
182 	KASSERT(curcpu() != ci);
183 
184 	/* Mark as pending and send an IPI. */
185 	if (membar_consumer(), (ci->ci_ipipend[i] & bitm) == 0) {
186 		atomic_or_32(&ci->ci_ipipend[i], bitm);
187 		cpu_ipi(ci);
188 	}
189 }
190 
191 /*
192  * ipi_trigger_multi: same as ipi_trigger() but sends to the multiple
193  * CPUs given the target CPU set.
194  */
195 void
196 ipi_trigger_multi(u_int ipi_id, const kcpuset_t *target)
197 {
198 	const cpuid_t selfid = cpu_index(curcpu());
199 	CPU_INFO_ITERATOR cii;
200 	struct cpu_info *ci;
201 
202 	KASSERT(kpreempt_disabled());
203 	KASSERT(target != NULL);
204 
205 	for (CPU_INFO_FOREACH(cii, ci)) {
206 		const cpuid_t cpuid = cpu_index(ci);
207 
208 		if (!kcpuset_isset(target, cpuid) || cpuid == selfid) {
209 			continue;
210 		}
211 		ipi_trigger(ipi_id, ci);
212 	}
213 	if (kcpuset_isset(target, selfid)) {
214 		int s = splhigh();
215 		ipi_cpu_handler();
216 		splx(s);
217 	}
218 }
219 
220 /*
221  * put_msg: insert message into the mailbox.
222  */
223 static inline void
224 put_msg(ipi_mbox_t *mbox, ipi_msg_t *msg)
225 {
226 	int count = SPINLOCK_BACKOFF_MIN;
227 again:
228 	for (u_int i = 0; i < IPI_MSG_MAX; i++) {
229 		if (__predict_true(mbox->msg[i] == NULL) &&
230 		    atomic_cas_ptr(&mbox->msg[i], NULL, msg) == NULL) {
231 			return;
232 		}
233 	}
234 
235 	/* All slots are full: we have to spin-wait. */
236 	ipi_mboxfull_ev.ev_count++;
237 	SPINLOCK_BACKOFF(count);
238 	goto again;
239 }
240 
241 /*
242  * ipi_cpu_handler: the IPI handler.
243  */
244 void
245 ipi_cpu_handler(void)
246 {
247 	struct cpu_info * const ci = curcpu();
248 
249 	/*
250 	 * Handle asynchronous IPIs: inspect per-CPU bit field, extract
251 	 * IPI ID numbers and execute functions in those slots.
252 	 */
253 	for (u_int i = 0; i < IPI_BITWORDS; i++) {
254 		uint32_t pending, bit;
255 
256 		if (ci->ci_ipipend[i] == 0) {
257 			continue;
258 		}
259 		pending = atomic_swap_32(&ci->ci_ipipend[i], 0);
260 #ifndef __HAVE_ATOMIC_AS_MEMBAR
261 		membar_producer();
262 #endif
263 		while ((bit = ffs(pending)) != 0) {
264 			const u_int ipi_id = (i << IPI_BITW_SHIFT) | --bit;
265 			ipi_intr_t *ipi_hdl = &ipi_intrs[ipi_id];
266 
267 			pending &= ~(1U << bit);
268 			KASSERT(ipi_hdl->func != NULL);
269 			ipi_hdl->func(ipi_hdl->arg);
270 		}
271 	}
272 }
273 
274 /*
275  * ipi_msg_cpu_handler: handle synchronous IPIs - iterate mailbox,
276  * execute the passed functions and acknowledge the messages.
277  */
278 static void
279 ipi_msg_cpu_handler(void *arg __unused)
280 {
281 	const struct cpu_info * const ci = curcpu();
282 	ipi_mbox_t *mbox = &ipi_mboxes[cpu_index(ci)];
283 
284 	for (u_int i = 0; i < IPI_MSG_MAX; i++) {
285 		ipi_msg_t *msg;
286 
287 		/* Get the message. */
288 		if ((msg = mbox->msg[i]) == NULL) {
289 			continue;
290 		}
291 		mbox->msg[i] = NULL;
292 
293 		/* Execute the handler. */
294 		KASSERT(msg->func);
295 		msg->func(msg->arg);
296 
297 		/* Ack the request. */
298 		atomic_dec_uint(&msg->_pending);
299 	}
300 }
301 
302 /*
303  * ipi_unicast: send an IPI to a single CPU.
304  *
305  * => The CPU must be remote; must not be local.
306  * => The caller must ipi_wait() on the message for completion.
307  */
308 void
309 ipi_unicast(ipi_msg_t *msg, struct cpu_info *ci)
310 {
311 	const cpuid_t id = cpu_index(ci);
312 
313 	KASSERT(msg->func != NULL);
314 	KASSERT(kpreempt_disabled());
315 	KASSERT(curcpu() != ci);
316 
317 	msg->_pending = 1;
318 	membar_producer();
319 
320 	put_msg(&ipi_mboxes[id], msg);
321 	ipi_trigger(IPI_SYNCH_ID, ci);
322 }
323 
324 /*
325  * ipi_multicast: send an IPI to each CPU in the specified set.
326  *
327  * => The caller must ipi_wait() on the message for completion.
328  */
329 void
330 ipi_multicast(ipi_msg_t *msg, const kcpuset_t *target)
331 {
332 	const struct cpu_info * const self = curcpu();
333 	CPU_INFO_ITERATOR cii;
334 	struct cpu_info *ci;
335 	u_int local;
336 
337 	KASSERT(msg->func != NULL);
338 	KASSERT(kpreempt_disabled());
339 
340 	local = !!kcpuset_isset(target, cpu_index(self));
341 	msg->_pending = kcpuset_countset(target) - local;
342 	membar_producer();
343 
344 	for (CPU_INFO_FOREACH(cii, ci)) {
345 		cpuid_t id;
346 
347 		if (__predict_false(ci == self)) {
348 			continue;
349 		}
350 		id = cpu_index(ci);
351 		if (!kcpuset_isset(target, id)) {
352 			continue;
353 		}
354 		put_msg(&ipi_mboxes[id], msg);
355 		ipi_trigger(IPI_SYNCH_ID, ci);
356 	}
357 	if (local) {
358 		msg->func(msg->arg);
359 	}
360 }
361 
362 /*
363  * ipi_broadcast: send an IPI to all CPUs.
364  *
365  * => The caller must ipi_wait() on the message for completion.
366  */
367 void
368 ipi_broadcast(ipi_msg_t *msg)
369 {
370 	const struct cpu_info * const self = curcpu();
371 	CPU_INFO_ITERATOR cii;
372 	struct cpu_info *ci;
373 
374 	KASSERT(msg->func != NULL);
375 	KASSERT(kpreempt_disabled());
376 
377 	msg->_pending = ncpu - 1;
378 	membar_producer();
379 
380 	/* Broadcast IPIs for remote CPUs. */
381 	for (CPU_INFO_FOREACH(cii, ci)) {
382 		cpuid_t id;
383 
384 		if (__predict_false(ci == self)) {
385 			continue;
386 		}
387 		id = cpu_index(ci);
388 		put_msg(&ipi_mboxes[id], msg);
389 		ipi_trigger(IPI_SYNCH_ID, ci);
390 	}
391 
392 	/* Finally, execute locally. */
393 	msg->func(msg->arg);
394 }
395 
396 /*
397  * ipi_wait: spin-wait until the message is processed.
398  */
399 void
400 ipi_wait(ipi_msg_t *msg)
401 {
402 	int count = SPINLOCK_BACKOFF_MIN;
403 
404 	while (msg->_pending) {
405 		KASSERT(msg->_pending < ncpu);
406 		SPINLOCK_BACKOFF(count);
407 	}
408 }
409