1 /* $NetBSD: subr_autoconf.c,v 1.313 2023/05/23 08:16:43 riastradh Exp $ */ 2 3 /* 4 * Copyright (c) 1996, 2000 Christopher G. Demetriou 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed for the 18 * NetBSD Project. See http://www.NetBSD.org/ for 19 * information about NetBSD. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )-- 35 */ 36 37 /* 38 * Copyright (c) 1992, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * This software was developed by the Computer Systems Engineering group 42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 43 * contributed to Berkeley. 44 * 45 * All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Lawrence Berkeley Laboratories. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. Neither the name of the University nor the names of its contributors 59 * may be used to endorse or promote products derived from this software 60 * without specific prior written permission. 61 * 62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 72 * SUCH DAMAGE. 73 * 74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL) 75 * 76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94 77 */ 78 79 #include <sys/cdefs.h> 80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.313 2023/05/23 08:16:43 riastradh Exp $"); 81 82 #ifdef _KERNEL_OPT 83 #include "opt_ddb.h" 84 #include "drvctl.h" 85 #endif 86 87 #include <sys/param.h> 88 #include <sys/device.h> 89 #include <sys/device_impl.h> 90 #include <sys/disklabel.h> 91 #include <sys/conf.h> 92 #include <sys/kauth.h> 93 #include <sys/kmem.h> 94 #include <sys/systm.h> 95 #include <sys/kernel.h> 96 #include <sys/errno.h> 97 #include <sys/proc.h> 98 #include <sys/reboot.h> 99 #include <sys/kthread.h> 100 #include <sys/buf.h> 101 #include <sys/dirent.h> 102 #include <sys/mount.h> 103 #include <sys/namei.h> 104 #include <sys/unistd.h> 105 #include <sys/fcntl.h> 106 #include <sys/lockf.h> 107 #include <sys/callout.h> 108 #include <sys/devmon.h> 109 #include <sys/cpu.h> 110 #include <sys/sysctl.h> 111 #include <sys/stdarg.h> 112 #include <sys/localcount.h> 113 114 #include <sys/disk.h> 115 116 #include <sys/rndsource.h> 117 118 #include <machine/limits.h> 119 120 /* 121 * Autoconfiguration subroutines. 122 */ 123 124 /* 125 * Device autoconfiguration timings are mixed into the entropy pool. 126 */ 127 static krndsource_t rnd_autoconf_source; 128 129 /* 130 * ioconf.c exports exactly two names: cfdata and cfroots. All system 131 * devices and drivers are found via these tables. 132 */ 133 extern struct cfdata cfdata[]; 134 extern const short cfroots[]; 135 136 /* 137 * List of all cfdriver structures. We use this to detect duplicates 138 * when other cfdrivers are loaded. 139 */ 140 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers); 141 extern struct cfdriver * const cfdriver_list_initial[]; 142 143 /* 144 * Initial list of cfattach's. 145 */ 146 extern const struct cfattachinit cfattachinit[]; 147 148 /* 149 * List of cfdata tables. We always have one such list -- the one 150 * built statically when the kernel was configured. 151 */ 152 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables); 153 static struct cftable initcftable; 154 155 #define ROOT ((device_t)NULL) 156 157 struct matchinfo { 158 cfsubmatch_t fn; 159 device_t parent; 160 const int *locs; 161 void *aux; 162 struct cfdata *match; 163 int pri; 164 }; 165 166 struct alldevs_foray { 167 int af_s; 168 struct devicelist af_garbage; 169 }; 170 171 /* 172 * Internal version of the cfargs structure; all versions are 173 * canonicalized to this. 174 */ 175 struct cfargs_internal { 176 union { 177 cfsubmatch_t submatch;/* submatch function (direct config) */ 178 cfsearch_t search; /* search function (indirect config) */ 179 }; 180 const char * iattr; /* interface attribute */ 181 const int * locators; /* locators array */ 182 devhandle_t devhandle; /* devhandle_t (by value) */ 183 }; 184 185 static char *number(char *, int); 186 static void mapply(struct matchinfo *, cfdata_t); 187 static void config_devdelete(device_t); 188 static void config_devunlink(device_t, struct devicelist *); 189 static void config_makeroom(int, struct cfdriver *); 190 static void config_devlink(device_t); 191 static void config_alldevs_enter(struct alldevs_foray *); 192 static void config_alldevs_exit(struct alldevs_foray *); 193 static void config_add_attrib_dict(device_t); 194 static device_t config_attach_internal(device_t, cfdata_t, void *, 195 cfprint_t, const struct cfargs_internal *); 196 197 static void config_collect_garbage(struct devicelist *); 198 static void config_dump_garbage(struct devicelist *); 199 200 static void pmflock_debug(device_t, const char *, int); 201 202 static device_t deviter_next1(deviter_t *); 203 static void deviter_reinit(deviter_t *); 204 205 struct deferred_config { 206 TAILQ_ENTRY(deferred_config) dc_queue; 207 device_t dc_dev; 208 void (*dc_func)(device_t); 209 }; 210 211 TAILQ_HEAD(deferred_config_head, deferred_config); 212 213 static struct deferred_config_head deferred_config_queue = 214 TAILQ_HEAD_INITIALIZER(deferred_config_queue); 215 static struct deferred_config_head interrupt_config_queue = 216 TAILQ_HEAD_INITIALIZER(interrupt_config_queue); 217 static int interrupt_config_threads = 8; 218 static struct deferred_config_head mountroot_config_queue = 219 TAILQ_HEAD_INITIALIZER(mountroot_config_queue); 220 static int mountroot_config_threads = 2; 221 static lwp_t **mountroot_config_lwpids; 222 static size_t mountroot_config_lwpids_size; 223 bool root_is_mounted = false; 224 225 static void config_process_deferred(struct deferred_config_head *, device_t); 226 227 /* Hooks to finalize configuration once all real devices have been found. */ 228 struct finalize_hook { 229 TAILQ_ENTRY(finalize_hook) f_list; 230 int (*f_func)(device_t); 231 device_t f_dev; 232 }; 233 static TAILQ_HEAD(, finalize_hook) config_finalize_list = 234 TAILQ_HEAD_INITIALIZER(config_finalize_list); 235 static int config_finalize_done; 236 237 /* list of all devices */ 238 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs); 239 static kmutex_t alldevs_lock __cacheline_aligned; 240 static devgen_t alldevs_gen = 1; 241 static int alldevs_nread = 0; 242 static int alldevs_nwrite = 0; 243 static bool alldevs_garbage = false; 244 245 static struct devicelist config_pending = 246 TAILQ_HEAD_INITIALIZER(config_pending); 247 static kmutex_t config_misc_lock; 248 static kcondvar_t config_misc_cv; 249 250 static bool detachall = false; 251 252 #define STREQ(s1, s2) \ 253 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0) 254 255 static bool config_initialized = false; /* config_init() has been called. */ 256 257 static int config_do_twiddle; 258 static callout_t config_twiddle_ch; 259 260 static void sysctl_detach_setup(struct sysctllog **); 261 262 int no_devmon_insert(const char *, prop_dictionary_t); 263 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert; 264 265 typedef int (*cfdriver_fn)(struct cfdriver *); 266 static int 267 frob_cfdrivervec(struct cfdriver * const *cfdriverv, 268 cfdriver_fn drv_do, cfdriver_fn drv_undo, 269 const char *style, bool dopanic) 270 { 271 void (*pr)(const char *, ...) __printflike(1, 2) = 272 dopanic ? panic : printf; 273 int i, error = 0, e2 __diagused; 274 275 for (i = 0; cfdriverv[i] != NULL; i++) { 276 if ((error = drv_do(cfdriverv[i])) != 0) { 277 pr("configure: `%s' driver %s failed: %d", 278 cfdriverv[i]->cd_name, style, error); 279 goto bad; 280 } 281 } 282 283 KASSERT(error == 0); 284 return 0; 285 286 bad: 287 printf("\n"); 288 for (i--; i >= 0; i--) { 289 e2 = drv_undo(cfdriverv[i]); 290 KASSERT(e2 == 0); 291 } 292 293 return error; 294 } 295 296 typedef int (*cfattach_fn)(const char *, struct cfattach *); 297 static int 298 frob_cfattachvec(const struct cfattachinit *cfattachv, 299 cfattach_fn att_do, cfattach_fn att_undo, 300 const char *style, bool dopanic) 301 { 302 const struct cfattachinit *cfai = NULL; 303 void (*pr)(const char *, ...) __printflike(1, 2) = 304 dopanic ? panic : printf; 305 int j = 0, error = 0, e2 __diagused; 306 307 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) { 308 for (j = 0; cfai->cfai_list[j] != NULL; j++) { 309 if ((error = att_do(cfai->cfai_name, 310 cfai->cfai_list[j])) != 0) { 311 pr("configure: attachment `%s' " 312 "of `%s' driver %s failed: %d", 313 cfai->cfai_list[j]->ca_name, 314 cfai->cfai_name, style, error); 315 goto bad; 316 } 317 } 318 } 319 320 KASSERT(error == 0); 321 return 0; 322 323 bad: 324 /* 325 * Rollback in reverse order. dunno if super-important, but 326 * do that anyway. Although the code looks a little like 327 * someone did a little integration (in the math sense). 328 */ 329 printf("\n"); 330 if (cfai) { 331 bool last; 332 333 for (last = false; last == false; ) { 334 if (cfai == &cfattachv[0]) 335 last = true; 336 for (j--; j >= 0; j--) { 337 e2 = att_undo(cfai->cfai_name, 338 cfai->cfai_list[j]); 339 KASSERT(e2 == 0); 340 } 341 if (!last) { 342 cfai--; 343 for (j = 0; cfai->cfai_list[j] != NULL; j++) 344 ; 345 } 346 } 347 } 348 349 return error; 350 } 351 352 /* 353 * Initialize the autoconfiguration data structures. Normally this 354 * is done by configure(), but some platforms need to do this very 355 * early (to e.g. initialize the console). 356 */ 357 void 358 config_init(void) 359 { 360 361 KASSERT(config_initialized == false); 362 363 mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM); 364 365 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE); 366 cv_init(&config_misc_cv, "cfgmisc"); 367 368 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE); 369 370 frob_cfdrivervec(cfdriver_list_initial, 371 config_cfdriver_attach, NULL, "bootstrap", true); 372 frob_cfattachvec(cfattachinit, 373 config_cfattach_attach, NULL, "bootstrap", true); 374 375 initcftable.ct_cfdata = cfdata; 376 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list); 377 378 rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN, 379 RND_FLAG_COLLECT_TIME); 380 381 config_initialized = true; 382 } 383 384 /* 385 * Init or fini drivers and attachments. Either all or none 386 * are processed (via rollback). It would be nice if this were 387 * atomic to outside consumers, but with the current state of 388 * locking ... 389 */ 390 int 391 config_init_component(struct cfdriver * const *cfdriverv, 392 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 393 { 394 int error; 395 396 KERNEL_LOCK(1, NULL); 397 398 if ((error = frob_cfdrivervec(cfdriverv, 399 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0) 400 goto out; 401 if ((error = frob_cfattachvec(cfattachv, 402 config_cfattach_attach, config_cfattach_detach, 403 "init", false)) != 0) { 404 frob_cfdrivervec(cfdriverv, 405 config_cfdriver_detach, NULL, "init rollback", true); 406 goto out; 407 } 408 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) { 409 frob_cfattachvec(cfattachv, 410 config_cfattach_detach, NULL, "init rollback", true); 411 frob_cfdrivervec(cfdriverv, 412 config_cfdriver_detach, NULL, "init rollback", true); 413 goto out; 414 } 415 416 /* Success! */ 417 error = 0; 418 419 out: KERNEL_UNLOCK_ONE(NULL); 420 return error; 421 } 422 423 int 424 config_fini_component(struct cfdriver * const *cfdriverv, 425 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 426 { 427 int error; 428 429 KERNEL_LOCK(1, NULL); 430 431 if ((error = config_cfdata_detach(cfdatav)) != 0) 432 goto out; 433 if ((error = frob_cfattachvec(cfattachv, 434 config_cfattach_detach, config_cfattach_attach, 435 "fini", false)) != 0) { 436 if (config_cfdata_attach(cfdatav, 0) != 0) 437 panic("config_cfdata fini rollback failed"); 438 goto out; 439 } 440 if ((error = frob_cfdrivervec(cfdriverv, 441 config_cfdriver_detach, config_cfdriver_attach, 442 "fini", false)) != 0) { 443 frob_cfattachvec(cfattachv, 444 config_cfattach_attach, NULL, "fini rollback", true); 445 if (config_cfdata_attach(cfdatav, 0) != 0) 446 panic("config_cfdata fini rollback failed"); 447 goto out; 448 } 449 450 /* Success! */ 451 error = 0; 452 453 out: KERNEL_UNLOCK_ONE(NULL); 454 return error; 455 } 456 457 void 458 config_init_mi(void) 459 { 460 461 if (!config_initialized) 462 config_init(); 463 464 sysctl_detach_setup(NULL); 465 } 466 467 void 468 config_deferred(device_t dev) 469 { 470 471 KASSERT(KERNEL_LOCKED_P()); 472 473 config_process_deferred(&deferred_config_queue, dev); 474 config_process_deferred(&interrupt_config_queue, dev); 475 config_process_deferred(&mountroot_config_queue, dev); 476 } 477 478 static void 479 config_interrupts_thread(void *cookie) 480 { 481 struct deferred_config *dc; 482 device_t dev; 483 484 mutex_enter(&config_misc_lock); 485 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) { 486 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue); 487 mutex_exit(&config_misc_lock); 488 489 dev = dc->dc_dev; 490 (*dc->dc_func)(dev); 491 if (!device_pmf_is_registered(dev)) 492 aprint_debug_dev(dev, 493 "WARNING: power management not supported\n"); 494 config_pending_decr(dev); 495 kmem_free(dc, sizeof(*dc)); 496 497 mutex_enter(&config_misc_lock); 498 } 499 mutex_exit(&config_misc_lock); 500 501 kthread_exit(0); 502 } 503 504 void 505 config_create_interruptthreads(void) 506 { 507 int i; 508 509 for (i = 0; i < interrupt_config_threads; i++) { 510 (void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL, 511 config_interrupts_thread, NULL, NULL, "configintr"); 512 } 513 } 514 515 static void 516 config_mountroot_thread(void *cookie) 517 { 518 struct deferred_config *dc; 519 520 mutex_enter(&config_misc_lock); 521 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) { 522 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue); 523 mutex_exit(&config_misc_lock); 524 525 (*dc->dc_func)(dc->dc_dev); 526 kmem_free(dc, sizeof(*dc)); 527 528 mutex_enter(&config_misc_lock); 529 } 530 mutex_exit(&config_misc_lock); 531 532 kthread_exit(0); 533 } 534 535 void 536 config_create_mountrootthreads(void) 537 { 538 int i; 539 540 if (!root_is_mounted) 541 root_is_mounted = true; 542 543 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) * 544 mountroot_config_threads; 545 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size, 546 KM_NOSLEEP); 547 KASSERT(mountroot_config_lwpids); 548 for (i = 0; i < mountroot_config_threads; i++) { 549 mountroot_config_lwpids[i] = 0; 550 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */, 551 NULL, config_mountroot_thread, NULL, 552 &mountroot_config_lwpids[i], 553 "configroot"); 554 } 555 } 556 557 void 558 config_finalize_mountroot(void) 559 { 560 int i, error; 561 562 for (i = 0; i < mountroot_config_threads; i++) { 563 if (mountroot_config_lwpids[i] == 0) 564 continue; 565 566 error = kthread_join(mountroot_config_lwpids[i]); 567 if (error) 568 printf("%s: thread %x joined with error %d\n", 569 __func__, i, error); 570 } 571 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size); 572 } 573 574 /* 575 * Announce device attach/detach to userland listeners. 576 */ 577 578 int 579 no_devmon_insert(const char *name, prop_dictionary_t p) 580 { 581 582 return ENODEV; 583 } 584 585 static void 586 devmon_report_device(device_t dev, bool isattach) 587 { 588 prop_dictionary_t ev, dict = device_properties(dev); 589 const char *parent; 590 const char *what; 591 const char *where; 592 device_t pdev = device_parent(dev); 593 594 /* If currently no drvctl device, just return */ 595 if (devmon_insert_vec == no_devmon_insert) 596 return; 597 598 ev = prop_dictionary_create(); 599 if (ev == NULL) 600 return; 601 602 what = (isattach ? "device-attach" : "device-detach"); 603 parent = (pdev == NULL ? "root" : device_xname(pdev)); 604 if (prop_dictionary_get_string(dict, "location", &where)) { 605 prop_dictionary_set_string(ev, "location", where); 606 aprint_debug("ev: %s %s at %s in [%s]\n", 607 what, device_xname(dev), parent, where); 608 } 609 if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) || 610 !prop_dictionary_set_string(ev, "parent", parent)) { 611 prop_object_release(ev); 612 return; 613 } 614 615 if ((*devmon_insert_vec)(what, ev) != 0) 616 prop_object_release(ev); 617 } 618 619 /* 620 * Add a cfdriver to the system. 621 */ 622 int 623 config_cfdriver_attach(struct cfdriver *cd) 624 { 625 struct cfdriver *lcd; 626 627 /* Make sure this driver isn't already in the system. */ 628 LIST_FOREACH(lcd, &allcfdrivers, cd_list) { 629 if (STREQ(lcd->cd_name, cd->cd_name)) 630 return EEXIST; 631 } 632 633 LIST_INIT(&cd->cd_attach); 634 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list); 635 636 return 0; 637 } 638 639 /* 640 * Remove a cfdriver from the system. 641 */ 642 int 643 config_cfdriver_detach(struct cfdriver *cd) 644 { 645 struct alldevs_foray af; 646 int i, rc = 0; 647 648 config_alldevs_enter(&af); 649 /* Make sure there are no active instances. */ 650 for (i = 0; i < cd->cd_ndevs; i++) { 651 if (cd->cd_devs[i] != NULL) { 652 rc = EBUSY; 653 break; 654 } 655 } 656 config_alldevs_exit(&af); 657 658 if (rc != 0) 659 return rc; 660 661 /* ...and no attachments loaded. */ 662 if (LIST_EMPTY(&cd->cd_attach) == 0) 663 return EBUSY; 664 665 LIST_REMOVE(cd, cd_list); 666 667 KASSERT(cd->cd_devs == NULL); 668 669 return 0; 670 } 671 672 /* 673 * Look up a cfdriver by name. 674 */ 675 struct cfdriver * 676 config_cfdriver_lookup(const char *name) 677 { 678 struct cfdriver *cd; 679 680 LIST_FOREACH(cd, &allcfdrivers, cd_list) { 681 if (STREQ(cd->cd_name, name)) 682 return cd; 683 } 684 685 return NULL; 686 } 687 688 /* 689 * Add a cfattach to the specified driver. 690 */ 691 int 692 config_cfattach_attach(const char *driver, struct cfattach *ca) 693 { 694 struct cfattach *lca; 695 struct cfdriver *cd; 696 697 cd = config_cfdriver_lookup(driver); 698 if (cd == NULL) 699 return ESRCH; 700 701 /* Make sure this attachment isn't already on this driver. */ 702 LIST_FOREACH(lca, &cd->cd_attach, ca_list) { 703 if (STREQ(lca->ca_name, ca->ca_name)) 704 return EEXIST; 705 } 706 707 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list); 708 709 return 0; 710 } 711 712 /* 713 * Remove a cfattach from the specified driver. 714 */ 715 int 716 config_cfattach_detach(const char *driver, struct cfattach *ca) 717 { 718 struct alldevs_foray af; 719 struct cfdriver *cd; 720 device_t dev; 721 int i, rc = 0; 722 723 cd = config_cfdriver_lookup(driver); 724 if (cd == NULL) 725 return ESRCH; 726 727 config_alldevs_enter(&af); 728 /* Make sure there are no active instances. */ 729 for (i = 0; i < cd->cd_ndevs; i++) { 730 if ((dev = cd->cd_devs[i]) == NULL) 731 continue; 732 if (dev->dv_cfattach == ca) { 733 rc = EBUSY; 734 break; 735 } 736 } 737 config_alldevs_exit(&af); 738 739 if (rc != 0) 740 return rc; 741 742 LIST_REMOVE(ca, ca_list); 743 744 return 0; 745 } 746 747 /* 748 * Look up a cfattach by name. 749 */ 750 static struct cfattach * 751 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname) 752 { 753 struct cfattach *ca; 754 755 LIST_FOREACH(ca, &cd->cd_attach, ca_list) { 756 if (STREQ(ca->ca_name, atname)) 757 return ca; 758 } 759 760 return NULL; 761 } 762 763 /* 764 * Look up a cfattach by driver/attachment name. 765 */ 766 struct cfattach * 767 config_cfattach_lookup(const char *name, const char *atname) 768 { 769 struct cfdriver *cd; 770 771 cd = config_cfdriver_lookup(name); 772 if (cd == NULL) 773 return NULL; 774 775 return config_cfattach_lookup_cd(cd, atname); 776 } 777 778 /* 779 * Apply the matching function and choose the best. This is used 780 * a few times and we want to keep the code small. 781 */ 782 static void 783 mapply(struct matchinfo *m, cfdata_t cf) 784 { 785 int pri; 786 787 if (m->fn != NULL) { 788 pri = (*m->fn)(m->parent, cf, m->locs, m->aux); 789 } else { 790 pri = config_match(m->parent, cf, m->aux); 791 } 792 if (pri > m->pri) { 793 m->match = cf; 794 m->pri = pri; 795 } 796 } 797 798 int 799 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux) 800 { 801 const struct cfiattrdata *ci; 802 const struct cflocdesc *cl; 803 int nlocs, i; 804 805 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 806 KASSERT(ci); 807 nlocs = ci->ci_loclen; 808 KASSERT(!nlocs || locs); 809 for (i = 0; i < nlocs; i++) { 810 cl = &ci->ci_locdesc[i]; 811 if (cl->cld_defaultstr != NULL && 812 cf->cf_loc[i] == cl->cld_default) 813 continue; 814 if (cf->cf_loc[i] == locs[i]) 815 continue; 816 return 0; 817 } 818 819 return config_match(parent, cf, aux); 820 } 821 822 /* 823 * Helper function: check whether the driver supports the interface attribute 824 * and return its descriptor structure. 825 */ 826 static const struct cfiattrdata * 827 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia) 828 { 829 const struct cfiattrdata * const *cpp; 830 831 if (cd->cd_attrs == NULL) 832 return 0; 833 834 for (cpp = cd->cd_attrs; *cpp; cpp++) { 835 if (STREQ((*cpp)->ci_name, ia)) { 836 /* Match. */ 837 return *cpp; 838 } 839 } 840 return 0; 841 } 842 843 static int __diagused 844 cfdriver_iattr_count(const struct cfdriver *cd) 845 { 846 const struct cfiattrdata * const *cpp; 847 int i; 848 849 if (cd->cd_attrs == NULL) 850 return 0; 851 852 for (i = 0, cpp = cd->cd_attrs; *cpp; cpp++) { 853 i++; 854 } 855 return i; 856 } 857 858 /* 859 * Lookup an interface attribute description by name. 860 * If the driver is given, consider only its supported attributes. 861 */ 862 const struct cfiattrdata * 863 cfiattr_lookup(const char *name, const struct cfdriver *cd) 864 { 865 const struct cfdriver *d; 866 const struct cfiattrdata *ia; 867 868 if (cd) 869 return cfdriver_get_iattr(cd, name); 870 871 LIST_FOREACH(d, &allcfdrivers, cd_list) { 872 ia = cfdriver_get_iattr(d, name); 873 if (ia) 874 return ia; 875 } 876 return 0; 877 } 878 879 /* 880 * Determine if `parent' is a potential parent for a device spec based 881 * on `cfp'. 882 */ 883 static int 884 cfparent_match(const device_t parent, const struct cfparent *cfp) 885 { 886 struct cfdriver *pcd; 887 888 /* We don't match root nodes here. */ 889 if (cfp == NULL) 890 return 0; 891 892 pcd = parent->dv_cfdriver; 893 KASSERT(pcd != NULL); 894 895 /* 896 * First, ensure this parent has the correct interface 897 * attribute. 898 */ 899 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr)) 900 return 0; 901 902 /* 903 * If no specific parent device instance was specified (i.e. 904 * we're attaching to the attribute only), we're done! 905 */ 906 if (cfp->cfp_parent == NULL) 907 return 1; 908 909 /* 910 * Check the parent device's name. 911 */ 912 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0) 913 return 0; /* not the same parent */ 914 915 /* 916 * Make sure the unit number matches. 917 */ 918 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */ 919 cfp->cfp_unit == parent->dv_unit) 920 return 1; 921 922 /* Unit numbers don't match. */ 923 return 0; 924 } 925 926 /* 927 * Helper for config_cfdata_attach(): check all devices whether it could be 928 * parent any attachment in the config data table passed, and rescan. 929 */ 930 static void 931 rescan_with_cfdata(const struct cfdata *cf) 932 { 933 device_t d; 934 const struct cfdata *cf1; 935 deviter_t di; 936 937 KASSERT(KERNEL_LOCKED_P()); 938 939 /* 940 * "alldevs" is likely longer than a modules's cfdata, so make it 941 * the outer loop. 942 */ 943 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) { 944 945 if (!(d->dv_cfattach->ca_rescan)) 946 continue; 947 948 for (cf1 = cf; cf1->cf_name; cf1++) { 949 950 if (!cfparent_match(d, cf1->cf_pspec)) 951 continue; 952 953 (*d->dv_cfattach->ca_rescan)(d, 954 cfdata_ifattr(cf1), cf1->cf_loc); 955 956 config_deferred(d); 957 } 958 } 959 deviter_release(&di); 960 } 961 962 /* 963 * Attach a supplemental config data table and rescan potential 964 * parent devices if required. 965 */ 966 int 967 config_cfdata_attach(cfdata_t cf, int scannow) 968 { 969 struct cftable *ct; 970 971 KERNEL_LOCK(1, NULL); 972 973 ct = kmem_alloc(sizeof(*ct), KM_SLEEP); 974 ct->ct_cfdata = cf; 975 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list); 976 977 if (scannow) 978 rescan_with_cfdata(cf); 979 980 KERNEL_UNLOCK_ONE(NULL); 981 982 return 0; 983 } 984 985 /* 986 * Helper for config_cfdata_detach: check whether a device is 987 * found through any attachment in the config data table. 988 */ 989 static int 990 dev_in_cfdata(device_t d, cfdata_t cf) 991 { 992 const struct cfdata *cf1; 993 994 for (cf1 = cf; cf1->cf_name; cf1++) 995 if (d->dv_cfdata == cf1) 996 return 1; 997 998 return 0; 999 } 1000 1001 /* 1002 * Detach a supplemental config data table. Detach all devices found 1003 * through that table (and thus keeping references to it) before. 1004 */ 1005 int 1006 config_cfdata_detach(cfdata_t cf) 1007 { 1008 device_t d; 1009 int error = 0; 1010 struct cftable *ct; 1011 deviter_t di; 1012 1013 KERNEL_LOCK(1, NULL); 1014 1015 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL; 1016 d = deviter_next(&di)) { 1017 if (!dev_in_cfdata(d, cf)) 1018 continue; 1019 if ((error = config_detach(d, 0)) != 0) 1020 break; 1021 } 1022 deviter_release(&di); 1023 if (error) { 1024 aprint_error_dev(d, "unable to detach instance\n"); 1025 goto out; 1026 } 1027 1028 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1029 if (ct->ct_cfdata == cf) { 1030 TAILQ_REMOVE(&allcftables, ct, ct_list); 1031 kmem_free(ct, sizeof(*ct)); 1032 error = 0; 1033 goto out; 1034 } 1035 } 1036 1037 /* not found -- shouldn't happen */ 1038 error = EINVAL; 1039 1040 out: KERNEL_UNLOCK_ONE(NULL); 1041 return error; 1042 } 1043 1044 /* 1045 * Invoke the "match" routine for a cfdata entry on behalf of 1046 * an external caller, usually a direct config "submatch" routine. 1047 */ 1048 int 1049 config_match(device_t parent, cfdata_t cf, void *aux) 1050 { 1051 struct cfattach *ca; 1052 1053 KASSERT(KERNEL_LOCKED_P()); 1054 1055 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); 1056 if (ca == NULL) { 1057 /* No attachment for this entry, oh well. */ 1058 return 0; 1059 } 1060 1061 return (*ca->ca_match)(parent, cf, aux); 1062 } 1063 1064 /* 1065 * Invoke the "probe" routine for a cfdata entry on behalf of 1066 * an external caller, usually an indirect config "search" routine. 1067 */ 1068 int 1069 config_probe(device_t parent, cfdata_t cf, void *aux) 1070 { 1071 /* 1072 * This is currently a synonym for config_match(), but this 1073 * is an implementation detail; "match" and "probe" routines 1074 * have different behaviors. 1075 * 1076 * XXX config_probe() should return a bool, because there is 1077 * XXX no match score for probe -- it's either there or it's 1078 * XXX not, but some ports abuse the return value as a way 1079 * XXX to attach "critical" devices before "non-critical" 1080 * XXX devices. 1081 */ 1082 return config_match(parent, cf, aux); 1083 } 1084 1085 static struct cfargs_internal * 1086 cfargs_canonicalize(const struct cfargs * const cfargs, 1087 struct cfargs_internal * const store) 1088 { 1089 struct cfargs_internal *args = store; 1090 1091 memset(args, 0, sizeof(*args)); 1092 1093 /* If none specified, are all-NULL pointers are good. */ 1094 if (cfargs == NULL) { 1095 return args; 1096 } 1097 1098 /* 1099 * Only one arguments version is recognized at this time. 1100 */ 1101 if (cfargs->cfargs_version != CFARGS_VERSION) { 1102 panic("cfargs_canonicalize: unknown version %lu\n", 1103 (unsigned long)cfargs->cfargs_version); 1104 } 1105 1106 /* 1107 * submatch and search are mutually-exclusive. 1108 */ 1109 if (cfargs->submatch != NULL && cfargs->search != NULL) { 1110 panic("cfargs_canonicalize: submatch and search are " 1111 "mutually-exclusive"); 1112 } 1113 if (cfargs->submatch != NULL) { 1114 args->submatch = cfargs->submatch; 1115 } else if (cfargs->search != NULL) { 1116 args->search = cfargs->search; 1117 } 1118 1119 args->iattr = cfargs->iattr; 1120 args->locators = cfargs->locators; 1121 args->devhandle = cfargs->devhandle; 1122 1123 return args; 1124 } 1125 1126 /* 1127 * Iterate over all potential children of some device, calling the given 1128 * function (default being the child's match function) for each one. 1129 * Nonzero returns are matches; the highest value returned is considered 1130 * the best match. Return the `found child' if we got a match, or NULL 1131 * otherwise. The `aux' pointer is simply passed on through. 1132 * 1133 * Note that this function is designed so that it can be used to apply 1134 * an arbitrary function to all potential children (its return value 1135 * can be ignored). 1136 */ 1137 static cfdata_t 1138 config_search_internal(device_t parent, void *aux, 1139 const struct cfargs_internal * const args) 1140 { 1141 struct cftable *ct; 1142 cfdata_t cf; 1143 struct matchinfo m; 1144 1145 KASSERT(config_initialized); 1146 KASSERTMSG((!args->iattr || 1147 cfdriver_get_iattr(parent->dv_cfdriver, args->iattr)), 1148 "%s searched for child at interface attribute %s," 1149 " but device %s(4) has no such interface attribute in config(5)", 1150 device_xname(parent), args->iattr, 1151 parent->dv_cfdriver->cd_name); 1152 KASSERTMSG((args->iattr || 1153 cfdriver_iattr_count(parent->dv_cfdriver) < 2), 1154 "%s searched for child without interface attribute," 1155 " needed to disambiguate among the %d declared for in %s(4)" 1156 " in config(5)", 1157 device_xname(parent), 1158 cfdriver_iattr_count(parent->dv_cfdriver), 1159 parent->dv_cfdriver->cd_name); 1160 1161 m.fn = args->submatch; /* N.B. union */ 1162 m.parent = parent; 1163 m.locs = args->locators; 1164 m.aux = aux; 1165 m.match = NULL; 1166 m.pri = 0; 1167 1168 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1169 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1170 1171 /* We don't match root nodes here. */ 1172 if (!cf->cf_pspec) 1173 continue; 1174 1175 /* 1176 * Skip cf if no longer eligible, otherwise scan 1177 * through parents for one matching `parent', and 1178 * try match function. 1179 */ 1180 if (cf->cf_fstate == FSTATE_FOUND) 1181 continue; 1182 if (cf->cf_fstate == FSTATE_DNOTFOUND || 1183 cf->cf_fstate == FSTATE_DSTAR) 1184 continue; 1185 1186 /* 1187 * If an interface attribute was specified, 1188 * consider only children which attach to 1189 * that attribute. 1190 */ 1191 if (args->iattr != NULL && 1192 !STREQ(args->iattr, cfdata_ifattr(cf))) 1193 continue; 1194 1195 if (cfparent_match(parent, cf->cf_pspec)) 1196 mapply(&m, cf); 1197 } 1198 } 1199 rnd_add_uint32(&rnd_autoconf_source, 0); 1200 return m.match; 1201 } 1202 1203 cfdata_t 1204 config_search(device_t parent, void *aux, const struct cfargs *cfargs) 1205 { 1206 cfdata_t cf; 1207 struct cfargs_internal store; 1208 1209 cf = config_search_internal(parent, aux, 1210 cfargs_canonicalize(cfargs, &store)); 1211 1212 return cf; 1213 } 1214 1215 /* 1216 * Find the given root device. 1217 * This is much like config_search, but there is no parent. 1218 * Don't bother with multiple cfdata tables; the root node 1219 * must always be in the initial table. 1220 */ 1221 cfdata_t 1222 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux) 1223 { 1224 cfdata_t cf; 1225 const short *p; 1226 struct matchinfo m; 1227 1228 m.fn = fn; 1229 m.parent = ROOT; 1230 m.aux = aux; 1231 m.match = NULL; 1232 m.pri = 0; 1233 m.locs = 0; 1234 /* 1235 * Look at root entries for matching name. We do not bother 1236 * with found-state here since only one root should ever be 1237 * searched (and it must be done first). 1238 */ 1239 for (p = cfroots; *p >= 0; p++) { 1240 cf = &cfdata[*p]; 1241 if (strcmp(cf->cf_name, rootname) == 0) 1242 mapply(&m, cf); 1243 } 1244 return m.match; 1245 } 1246 1247 static const char * const msgs[] = { 1248 [QUIET] = "", 1249 [UNCONF] = " not configured\n", 1250 [UNSUPP] = " unsupported\n", 1251 }; 1252 1253 /* 1254 * The given `aux' argument describes a device that has been found 1255 * on the given parent, but not necessarily configured. Locate the 1256 * configuration data for that device (using the submatch function 1257 * provided, or using candidates' cd_match configuration driver 1258 * functions) and attach it, and return its device_t. If the device was 1259 * not configured, call the given `print' function and return NULL. 1260 */ 1261 device_t 1262 config_found_acquire(device_t parent, void *aux, cfprint_t print, 1263 const struct cfargs * const cfargs) 1264 { 1265 cfdata_t cf; 1266 struct cfargs_internal store; 1267 const struct cfargs_internal * const args = 1268 cfargs_canonicalize(cfargs, &store); 1269 device_t dev; 1270 1271 KERNEL_LOCK(1, NULL); 1272 1273 cf = config_search_internal(parent, aux, args); 1274 if (cf != NULL) { 1275 dev = config_attach_internal(parent, cf, aux, print, args); 1276 goto out; 1277 } 1278 1279 if (print) { 1280 if (config_do_twiddle && cold) 1281 twiddle(); 1282 1283 const int pret = (*print)(aux, device_xname(parent)); 1284 KASSERT(pret >= 0); 1285 KASSERT(pret < __arraycount(msgs)); 1286 KASSERT(msgs[pret] != NULL); 1287 aprint_normal("%s", msgs[pret]); 1288 } 1289 1290 dev = NULL; 1291 1292 out: KERNEL_UNLOCK_ONE(NULL); 1293 return dev; 1294 } 1295 1296 /* 1297 * config_found(parent, aux, print, cfargs) 1298 * 1299 * Legacy entry point for callers whose use of the returned 1300 * device_t is not delimited by device_release. 1301 * 1302 * The caller is required to hold the kernel lock as a fragile 1303 * defence against races. 1304 * 1305 * Callers should ignore the return value or be converted to 1306 * config_found_acquire with a matching device_release once they 1307 * have finished with the returned device_t. 1308 */ 1309 device_t 1310 config_found(device_t parent, void *aux, cfprint_t print, 1311 const struct cfargs * const cfargs) 1312 { 1313 device_t dev; 1314 1315 KASSERT(KERNEL_LOCKED_P()); 1316 1317 dev = config_found_acquire(parent, aux, print, cfargs); 1318 if (dev == NULL) 1319 return NULL; 1320 device_release(dev); 1321 1322 return dev; 1323 } 1324 1325 /* 1326 * As above, but for root devices. 1327 */ 1328 device_t 1329 config_rootfound(const char *rootname, void *aux) 1330 { 1331 cfdata_t cf; 1332 device_t dev = NULL; 1333 1334 KERNEL_LOCK(1, NULL); 1335 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL) 1336 dev = config_attach(ROOT, cf, aux, NULL, CFARGS_NONE); 1337 else 1338 aprint_error("root device %s not configured\n", rootname); 1339 KERNEL_UNLOCK_ONE(NULL); 1340 return dev; 1341 } 1342 1343 /* just like sprintf(buf, "%d") except that it works from the end */ 1344 static char * 1345 number(char *ep, int n) 1346 { 1347 1348 *--ep = 0; 1349 while (n >= 10) { 1350 *--ep = (n % 10) + '0'; 1351 n /= 10; 1352 } 1353 *--ep = n + '0'; 1354 return ep; 1355 } 1356 1357 /* 1358 * Expand the size of the cd_devs array if necessary. 1359 * 1360 * The caller must hold alldevs_lock. config_makeroom() may release and 1361 * re-acquire alldevs_lock, so callers should re-check conditions such 1362 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom() 1363 * returns. 1364 */ 1365 static void 1366 config_makeroom(int n, struct cfdriver *cd) 1367 { 1368 int ondevs, nndevs; 1369 device_t *osp, *nsp; 1370 1371 KASSERT(mutex_owned(&alldevs_lock)); 1372 alldevs_nwrite++; 1373 1374 /* XXX arithmetic overflow */ 1375 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs) 1376 ; 1377 1378 while (n >= cd->cd_ndevs) { 1379 /* 1380 * Need to expand the array. 1381 */ 1382 ondevs = cd->cd_ndevs; 1383 osp = cd->cd_devs; 1384 1385 /* 1386 * Release alldevs_lock around allocation, which may 1387 * sleep. 1388 */ 1389 mutex_exit(&alldevs_lock); 1390 nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP); 1391 mutex_enter(&alldevs_lock); 1392 1393 /* 1394 * If another thread moved the array while we did 1395 * not hold alldevs_lock, try again. 1396 */ 1397 if (cd->cd_devs != osp || cd->cd_ndevs != ondevs) { 1398 mutex_exit(&alldevs_lock); 1399 kmem_free(nsp, sizeof(device_t) * nndevs); 1400 mutex_enter(&alldevs_lock); 1401 continue; 1402 } 1403 1404 memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs)); 1405 if (ondevs != 0) 1406 memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs); 1407 1408 cd->cd_ndevs = nndevs; 1409 cd->cd_devs = nsp; 1410 if (ondevs != 0) { 1411 mutex_exit(&alldevs_lock); 1412 kmem_free(osp, sizeof(device_t) * ondevs); 1413 mutex_enter(&alldevs_lock); 1414 } 1415 } 1416 KASSERT(mutex_owned(&alldevs_lock)); 1417 alldevs_nwrite--; 1418 } 1419 1420 /* 1421 * Put dev into the devices list. 1422 */ 1423 static void 1424 config_devlink(device_t dev) 1425 { 1426 1427 mutex_enter(&alldevs_lock); 1428 1429 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev); 1430 1431 dev->dv_add_gen = alldevs_gen; 1432 /* It is safe to add a device to the tail of the list while 1433 * readers and writers are in the list. 1434 */ 1435 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); 1436 mutex_exit(&alldevs_lock); 1437 } 1438 1439 static void 1440 config_devfree(device_t dev) 1441 { 1442 1443 KASSERT(dev->dv_flags & DVF_PRIV_ALLOC); 1444 KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending); 1445 1446 if (dev->dv_cfattach->ca_devsize > 0) 1447 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize); 1448 kmem_free(dev, sizeof(*dev)); 1449 } 1450 1451 /* 1452 * Caller must hold alldevs_lock. 1453 */ 1454 static void 1455 config_devunlink(device_t dev, struct devicelist *garbage) 1456 { 1457 struct device_garbage *dg = &dev->dv_garbage; 1458 cfdriver_t cd = device_cfdriver(dev); 1459 int i; 1460 1461 KASSERT(mutex_owned(&alldevs_lock)); 1462 KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending); 1463 1464 /* Unlink from device list. Link to garbage list. */ 1465 TAILQ_REMOVE(&alldevs, dev, dv_list); 1466 TAILQ_INSERT_TAIL(garbage, dev, dv_list); 1467 1468 /* Remove from cfdriver's array. */ 1469 cd->cd_devs[dev->dv_unit] = NULL; 1470 1471 /* 1472 * If the device now has no units in use, unlink its softc array. 1473 */ 1474 for (i = 0; i < cd->cd_ndevs; i++) { 1475 if (cd->cd_devs[i] != NULL) 1476 break; 1477 } 1478 /* Nothing found. Unlink, now. Deallocate, later. */ 1479 if (i == cd->cd_ndevs) { 1480 dg->dg_ndevs = cd->cd_ndevs; 1481 dg->dg_devs = cd->cd_devs; 1482 cd->cd_devs = NULL; 1483 cd->cd_ndevs = 0; 1484 } 1485 } 1486 1487 static void 1488 config_devdelete(device_t dev) 1489 { 1490 struct device_garbage *dg = &dev->dv_garbage; 1491 device_lock_t dvl = device_getlock(dev); 1492 1493 KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending); 1494 1495 if (dg->dg_devs != NULL) 1496 kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs); 1497 1498 localcount_fini(dev->dv_localcount); 1499 kmem_free(dev->dv_localcount, sizeof(*dev->dv_localcount)); 1500 1501 cv_destroy(&dvl->dvl_cv); 1502 mutex_destroy(&dvl->dvl_mtx); 1503 1504 KASSERT(dev->dv_properties != NULL); 1505 prop_object_release(dev->dv_properties); 1506 1507 if (dev->dv_activity_handlers) 1508 panic("%s with registered handlers", __func__); 1509 1510 if (dev->dv_locators) { 1511 size_t amount = *--dev->dv_locators; 1512 kmem_free(dev->dv_locators, amount); 1513 } 1514 1515 config_devfree(dev); 1516 } 1517 1518 static int 1519 config_unit_nextfree(cfdriver_t cd, cfdata_t cf) 1520 { 1521 int unit = cf->cf_unit; 1522 1523 KASSERT(mutex_owned(&alldevs_lock)); 1524 1525 if (unit < 0) 1526 return -1; 1527 if (cf->cf_fstate == FSTATE_STAR) { 1528 for (; unit < cd->cd_ndevs; unit++) 1529 if (cd->cd_devs[unit] == NULL) 1530 break; 1531 /* 1532 * unit is now the unit of the first NULL device pointer, 1533 * or max(cd->cd_ndevs,cf->cf_unit). 1534 */ 1535 } else { 1536 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL) 1537 unit = -1; 1538 } 1539 return unit; 1540 } 1541 1542 static int 1543 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf) 1544 { 1545 struct alldevs_foray af; 1546 int unit; 1547 1548 config_alldevs_enter(&af); 1549 for (;;) { 1550 unit = config_unit_nextfree(cd, cf); 1551 if (unit == -1) 1552 break; 1553 if (unit < cd->cd_ndevs) { 1554 cd->cd_devs[unit] = dev; 1555 dev->dv_unit = unit; 1556 break; 1557 } 1558 config_makeroom(unit, cd); 1559 } 1560 config_alldevs_exit(&af); 1561 1562 return unit; 1563 } 1564 1565 static device_t 1566 config_devalloc(const device_t parent, const cfdata_t cf, 1567 const struct cfargs_internal * const args) 1568 { 1569 cfdriver_t cd; 1570 cfattach_t ca; 1571 size_t lname, lunit; 1572 const char *xunit; 1573 int myunit; 1574 char num[10]; 1575 device_t dev; 1576 void *dev_private; 1577 const struct cfiattrdata *ia; 1578 device_lock_t dvl; 1579 1580 cd = config_cfdriver_lookup(cf->cf_name); 1581 if (cd == NULL) 1582 return NULL; 1583 1584 ca = config_cfattach_lookup_cd(cd, cf->cf_atname); 1585 if (ca == NULL) 1586 return NULL; 1587 1588 /* get memory for all device vars */ 1589 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC); 1590 if (ca->ca_devsize > 0) { 1591 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP); 1592 } else { 1593 dev_private = NULL; 1594 } 1595 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP); 1596 1597 dev->dv_handle = args->devhandle; 1598 1599 dev->dv_class = cd->cd_class; 1600 dev->dv_cfdata = cf; 1601 dev->dv_cfdriver = cd; 1602 dev->dv_cfattach = ca; 1603 dev->dv_activity_count = 0; 1604 dev->dv_activity_handlers = NULL; 1605 dev->dv_private = dev_private; 1606 dev->dv_flags = ca->ca_flags; /* inherit flags from class */ 1607 dev->dv_attaching = curlwp; 1608 1609 myunit = config_unit_alloc(dev, cd, cf); 1610 if (myunit == -1) { 1611 config_devfree(dev); 1612 return NULL; 1613 } 1614 1615 /* compute length of name and decimal expansion of unit number */ 1616 lname = strlen(cd->cd_name); 1617 xunit = number(&num[sizeof(num)], myunit); 1618 lunit = &num[sizeof(num)] - xunit; 1619 if (lname + lunit > sizeof(dev->dv_xname)) 1620 panic("config_devalloc: device name too long"); 1621 1622 dvl = device_getlock(dev); 1623 1624 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE); 1625 cv_init(&dvl->dvl_cv, "pmfsusp"); 1626 1627 memcpy(dev->dv_xname, cd->cd_name, lname); 1628 memcpy(dev->dv_xname + lname, xunit, lunit); 1629 dev->dv_parent = parent; 1630 if (parent != NULL) 1631 dev->dv_depth = parent->dv_depth + 1; 1632 else 1633 dev->dv_depth = 0; 1634 dev->dv_flags |= DVF_ACTIVE; /* always initially active */ 1635 if (args->locators) { 1636 KASSERT(parent); /* no locators at root */ 1637 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 1638 dev->dv_locators = 1639 kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP); 1640 *dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1); 1641 memcpy(dev->dv_locators, args->locators, 1642 sizeof(int) * ia->ci_loclen); 1643 } 1644 dev->dv_properties = prop_dictionary_create(); 1645 KASSERT(dev->dv_properties != NULL); 1646 1647 prop_dictionary_set_string_nocopy(dev->dv_properties, 1648 "device-driver", dev->dv_cfdriver->cd_name); 1649 prop_dictionary_set_uint16(dev->dv_properties, 1650 "device-unit", dev->dv_unit); 1651 if (parent != NULL) { 1652 prop_dictionary_set_string(dev->dv_properties, 1653 "device-parent", device_xname(parent)); 1654 } 1655 1656 dev->dv_localcount = kmem_zalloc(sizeof(*dev->dv_localcount), 1657 KM_SLEEP); 1658 localcount_init(dev->dv_localcount); 1659 1660 if (dev->dv_cfdriver->cd_attrs != NULL) 1661 config_add_attrib_dict(dev); 1662 1663 return dev; 1664 } 1665 1666 /* 1667 * Create an array of device attach attributes and add it 1668 * to the device's dv_properties dictionary. 1669 * 1670 * <key>interface-attributes</key> 1671 * <array> 1672 * <dict> 1673 * <key>attribute-name</key> 1674 * <string>foo</string> 1675 * <key>locators</key> 1676 * <array> 1677 * <dict> 1678 * <key>loc-name</key> 1679 * <string>foo-loc1</string> 1680 * </dict> 1681 * <dict> 1682 * <key>loc-name</key> 1683 * <string>foo-loc2</string> 1684 * <key>default</key> 1685 * <string>foo-loc2-default</string> 1686 * </dict> 1687 * ... 1688 * </array> 1689 * </dict> 1690 * ... 1691 * </array> 1692 */ 1693 1694 static void 1695 config_add_attrib_dict(device_t dev) 1696 { 1697 int i, j; 1698 const struct cfiattrdata *ci; 1699 prop_dictionary_t attr_dict, loc_dict; 1700 prop_array_t attr_array, loc_array; 1701 1702 if ((attr_array = prop_array_create()) == NULL) 1703 return; 1704 1705 for (i = 0; ; i++) { 1706 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL) 1707 break; 1708 if ((attr_dict = prop_dictionary_create()) == NULL) 1709 break; 1710 prop_dictionary_set_string_nocopy(attr_dict, "attribute-name", 1711 ci->ci_name); 1712 1713 /* Create an array of the locator names and defaults */ 1714 1715 if (ci->ci_loclen != 0 && 1716 (loc_array = prop_array_create()) != NULL) { 1717 for (j = 0; j < ci->ci_loclen; j++) { 1718 loc_dict = prop_dictionary_create(); 1719 if (loc_dict == NULL) 1720 continue; 1721 prop_dictionary_set_string_nocopy(loc_dict, 1722 "loc-name", ci->ci_locdesc[j].cld_name); 1723 if (ci->ci_locdesc[j].cld_defaultstr != NULL) 1724 prop_dictionary_set_string_nocopy( 1725 loc_dict, "default", 1726 ci->ci_locdesc[j].cld_defaultstr); 1727 prop_array_set(loc_array, j, loc_dict); 1728 prop_object_release(loc_dict); 1729 } 1730 prop_dictionary_set_and_rel(attr_dict, "locators", 1731 loc_array); 1732 } 1733 prop_array_add(attr_array, attr_dict); 1734 prop_object_release(attr_dict); 1735 } 1736 if (i == 0) 1737 prop_object_release(attr_array); 1738 else 1739 prop_dictionary_set_and_rel(dev->dv_properties, 1740 "interface-attributes", attr_array); 1741 1742 return; 1743 } 1744 1745 /* 1746 * Attach a found device. 1747 * 1748 * Returns the device referenced, to be released with device_release. 1749 */ 1750 static device_t 1751 config_attach_internal(device_t parent, cfdata_t cf, void *aux, cfprint_t print, 1752 const struct cfargs_internal * const args) 1753 { 1754 device_t dev; 1755 struct cftable *ct; 1756 const char *drvname; 1757 bool deferred; 1758 1759 KASSERT(KERNEL_LOCKED_P()); 1760 1761 dev = config_devalloc(parent, cf, args); 1762 if (!dev) 1763 panic("config_attach: allocation of device softc failed"); 1764 1765 /* XXX redundant - see below? */ 1766 if (cf->cf_fstate != FSTATE_STAR) { 1767 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1768 cf->cf_fstate = FSTATE_FOUND; 1769 } 1770 1771 config_devlink(dev); 1772 1773 if (config_do_twiddle && cold) 1774 twiddle(); 1775 else 1776 aprint_naive("Found "); 1777 /* 1778 * We want the next two printfs for normal, verbose, and quiet, 1779 * but not silent (in which case, we're twiddling, instead). 1780 */ 1781 if (parent == ROOT) { 1782 aprint_naive("%s (root)", device_xname(dev)); 1783 aprint_normal("%s (root)", device_xname(dev)); 1784 } else { 1785 aprint_naive("%s at %s", device_xname(dev), 1786 device_xname(parent)); 1787 aprint_normal("%s at %s", device_xname(dev), 1788 device_xname(parent)); 1789 if (print) 1790 (void) (*print)(aux, NULL); 1791 } 1792 1793 /* 1794 * Before attaching, clobber any unfound devices that are 1795 * otherwise identical. 1796 * XXX code above is redundant? 1797 */ 1798 drvname = dev->dv_cfdriver->cd_name; 1799 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1800 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1801 if (STREQ(cf->cf_name, drvname) && 1802 cf->cf_unit == dev->dv_unit) { 1803 if (cf->cf_fstate == FSTATE_NOTFOUND) 1804 cf->cf_fstate = FSTATE_FOUND; 1805 } 1806 } 1807 } 1808 device_register(dev, aux); 1809 1810 /* Let userland know */ 1811 devmon_report_device(dev, true); 1812 1813 /* 1814 * Prevent detach until the driver's attach function, and all 1815 * deferred actions, have finished. 1816 */ 1817 config_pending_incr(dev); 1818 1819 /* 1820 * Prevent concurrent detach from destroying the device_t until 1821 * the caller has released the device. 1822 */ 1823 device_acquire(dev); 1824 1825 /* Call the driver's attach function. */ 1826 (*dev->dv_cfattach->ca_attach)(parent, dev, aux); 1827 1828 /* 1829 * Allow other threads to acquire references to the device now 1830 * that the driver's attach function is done. 1831 */ 1832 mutex_enter(&config_misc_lock); 1833 KASSERT(dev->dv_attaching == curlwp); 1834 dev->dv_attaching = NULL; 1835 cv_broadcast(&config_misc_cv); 1836 mutex_exit(&config_misc_lock); 1837 1838 /* 1839 * Synchronous parts of attach are done. Allow detach, unless 1840 * the driver's attach function scheduled deferred actions. 1841 */ 1842 config_pending_decr(dev); 1843 1844 mutex_enter(&config_misc_lock); 1845 deferred = (dev->dv_pending != 0); 1846 mutex_exit(&config_misc_lock); 1847 1848 if (!deferred && !device_pmf_is_registered(dev)) 1849 aprint_debug_dev(dev, 1850 "WARNING: power management not supported\n"); 1851 1852 config_process_deferred(&deferred_config_queue, dev); 1853 1854 device_register_post_config(dev, aux); 1855 rnd_add_uint32(&rnd_autoconf_source, 0); 1856 return dev; 1857 } 1858 1859 device_t 1860 config_attach_acquire(device_t parent, cfdata_t cf, void *aux, cfprint_t print, 1861 const struct cfargs *cfargs) 1862 { 1863 struct cfargs_internal store; 1864 device_t dev; 1865 1866 KERNEL_LOCK(1, NULL); 1867 dev = config_attach_internal(parent, cf, aux, print, 1868 cfargs_canonicalize(cfargs, &store)); 1869 KERNEL_UNLOCK_ONE(NULL); 1870 1871 return dev; 1872 } 1873 1874 /* 1875 * config_attach(parent, cf, aux, print, cfargs) 1876 * 1877 * Legacy entry point for callers whose use of the returned 1878 * device_t is not delimited by device_release. 1879 * 1880 * The caller is required to hold the kernel lock as a fragile 1881 * defence against races. 1882 * 1883 * Callers should ignore the return value or be converted to 1884 * config_attach_acquire with a matching device_release once they 1885 * have finished with the returned device_t. 1886 */ 1887 device_t 1888 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print, 1889 const struct cfargs *cfargs) 1890 { 1891 device_t dev; 1892 1893 KASSERT(KERNEL_LOCKED_P()); 1894 1895 dev = config_attach_acquire(parent, cf, aux, print, cfargs); 1896 if (dev == NULL) 1897 return NULL; 1898 device_release(dev); 1899 1900 return dev; 1901 } 1902 1903 /* 1904 * As above, but for pseudo-devices. Pseudo-devices attached in this 1905 * way are silently inserted into the device tree, and their children 1906 * attached. 1907 * 1908 * Note that because pseudo-devices are attached silently, any information 1909 * the attach routine wishes to print should be prefixed with the device 1910 * name by the attach routine. 1911 */ 1912 device_t 1913 config_attach_pseudo_acquire(cfdata_t cf, void *aux) 1914 { 1915 device_t dev; 1916 1917 KERNEL_LOCK(1, NULL); 1918 1919 struct cfargs_internal args = { }; 1920 dev = config_devalloc(ROOT, cf, &args); 1921 if (!dev) 1922 goto out; 1923 1924 /* XXX mark busy in cfdata */ 1925 1926 if (cf->cf_fstate != FSTATE_STAR) { 1927 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1928 cf->cf_fstate = FSTATE_FOUND; 1929 } 1930 1931 config_devlink(dev); 1932 1933 #if 0 /* XXXJRT not yet */ 1934 device_register(dev, NULL); /* like a root node */ 1935 #endif 1936 1937 /* Let userland know */ 1938 devmon_report_device(dev, true); 1939 1940 /* 1941 * Prevent detach until the driver's attach function, and all 1942 * deferred actions, have finished. 1943 */ 1944 config_pending_incr(dev); 1945 1946 /* 1947 * Prevent concurrent detach from destroying the device_t until 1948 * the caller has released the device. 1949 */ 1950 device_acquire(dev); 1951 1952 /* Call the driver's attach function. */ 1953 (*dev->dv_cfattach->ca_attach)(ROOT, dev, aux); 1954 1955 /* 1956 * Allow other threads to acquire references to the device now 1957 * that the driver's attach function is done. 1958 */ 1959 mutex_enter(&config_misc_lock); 1960 KASSERT(dev->dv_attaching == curlwp); 1961 dev->dv_attaching = NULL; 1962 cv_broadcast(&config_misc_cv); 1963 mutex_exit(&config_misc_lock); 1964 1965 /* 1966 * Synchronous parts of attach are done. Allow detach, unless 1967 * the driver's attach function scheduled deferred actions. 1968 */ 1969 config_pending_decr(dev); 1970 1971 config_process_deferred(&deferred_config_queue, dev); 1972 1973 out: KERNEL_UNLOCK_ONE(NULL); 1974 return dev; 1975 } 1976 1977 /* 1978 * config_attach_pseudo(cf) 1979 * 1980 * Legacy entry point for callers whose use of the returned 1981 * device_t is not delimited by device_release. 1982 * 1983 * The caller is required to hold the kernel lock as a fragile 1984 * defence against races. 1985 * 1986 * Callers should ignore the return value or be converted to 1987 * config_attach_pseudo_acquire with a matching device_release 1988 * once they have finished with the returned device_t. As a 1989 * bonus, config_attach_pseudo_acquire can pass a non-null aux 1990 * argument into the driver's attach routine. 1991 */ 1992 device_t 1993 config_attach_pseudo(cfdata_t cf) 1994 { 1995 device_t dev; 1996 1997 dev = config_attach_pseudo_acquire(cf, NULL); 1998 if (dev == NULL) 1999 return dev; 2000 device_release(dev); 2001 2002 return dev; 2003 } 2004 2005 /* 2006 * Caller must hold alldevs_lock. 2007 */ 2008 static void 2009 config_collect_garbage(struct devicelist *garbage) 2010 { 2011 device_t dv; 2012 2013 KASSERT(!cpu_intr_p()); 2014 KASSERT(!cpu_softintr_p()); 2015 KASSERT(mutex_owned(&alldevs_lock)); 2016 2017 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) { 2018 TAILQ_FOREACH(dv, &alldevs, dv_list) { 2019 if (dv->dv_del_gen != 0) 2020 break; 2021 } 2022 if (dv == NULL) { 2023 alldevs_garbage = false; 2024 break; 2025 } 2026 config_devunlink(dv, garbage); 2027 } 2028 KASSERT(mutex_owned(&alldevs_lock)); 2029 } 2030 2031 static void 2032 config_dump_garbage(struct devicelist *garbage) 2033 { 2034 device_t dv; 2035 2036 while ((dv = TAILQ_FIRST(garbage)) != NULL) { 2037 TAILQ_REMOVE(garbage, dv, dv_list); 2038 config_devdelete(dv); 2039 } 2040 } 2041 2042 static int 2043 config_detach_enter(device_t dev) 2044 { 2045 struct lwp *l __diagused; 2046 int error = 0; 2047 2048 mutex_enter(&config_misc_lock); 2049 2050 /* 2051 * Wait until attach has fully completed, and until any 2052 * concurrent detach (e.g., drvctl racing with USB event 2053 * thread) has completed. 2054 * 2055 * Caller must hold alldevs_nread or alldevs_nwrite (e.g., via 2056 * deviter) to ensure the winner of the race doesn't free the 2057 * device leading the loser of the race into use-after-free. 2058 * 2059 * XXX Not all callers do this! 2060 */ 2061 while (dev->dv_pending || dev->dv_detaching) { 2062 KASSERTMSG(dev->dv_detaching != curlwp, 2063 "recursively detaching %s", device_xname(dev)); 2064 error = cv_wait_sig(&config_misc_cv, &config_misc_lock); 2065 if (error) 2066 goto out; 2067 } 2068 2069 /* 2070 * Attach has completed, and no other concurrent detach is 2071 * running. Claim the device for detaching. This will cause 2072 * all new attempts to acquire references to block. 2073 */ 2074 KASSERTMSG((l = dev->dv_attaching) == NULL, 2075 "lwp %ld [%s] @ %p attaching %s", 2076 (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l, 2077 device_xname(dev)); 2078 KASSERTMSG((l = dev->dv_detaching) == NULL, 2079 "lwp %ld [%s] @ %p detaching %s", 2080 (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l, 2081 device_xname(dev)); 2082 dev->dv_detaching = curlwp; 2083 2084 out: mutex_exit(&config_misc_lock); 2085 return error; 2086 } 2087 2088 static void 2089 config_detach_exit(device_t dev) 2090 { 2091 struct lwp *l __diagused; 2092 2093 mutex_enter(&config_misc_lock); 2094 KASSERTMSG(dev->dv_detaching != NULL, "not detaching %s", 2095 device_xname(dev)); 2096 KASSERTMSG((l = dev->dv_detaching) == curlwp, 2097 "lwp %ld [%s] @ %p detaching %s", 2098 (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l, 2099 device_xname(dev)); 2100 dev->dv_detaching = NULL; 2101 cv_broadcast(&config_misc_cv); 2102 mutex_exit(&config_misc_lock); 2103 } 2104 2105 /* 2106 * Detach a device. Optionally forced (e.g. because of hardware 2107 * removal) and quiet. Returns zero if successful, non-zero 2108 * (an error code) otherwise. 2109 * 2110 * Note that this code wants to be run from a process context, so 2111 * that the detach can sleep to allow processes which have a device 2112 * open to run and unwind their stacks. 2113 * 2114 * Caller must hold a reference with device_acquire or 2115 * device_lookup_acquire. 2116 */ 2117 int 2118 config_detach_release(device_t dev, int flags) 2119 { 2120 struct alldevs_foray af; 2121 struct cftable *ct; 2122 cfdata_t cf; 2123 const struct cfattach *ca; 2124 struct cfdriver *cd; 2125 device_t d __diagused; 2126 int rv = 0; 2127 2128 KERNEL_LOCK(1, NULL); 2129 2130 cf = dev->dv_cfdata; 2131 KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND || 2132 cf->cf_fstate == FSTATE_STAR), 2133 "config_detach: %s: bad device fstate: %d", 2134 device_xname(dev), cf ? cf->cf_fstate : -1); 2135 2136 cd = dev->dv_cfdriver; 2137 KASSERT(cd != NULL); 2138 2139 ca = dev->dv_cfattach; 2140 KASSERT(ca != NULL); 2141 2142 /* 2143 * Only one detach at a time, please -- and not until fully 2144 * attached. 2145 */ 2146 rv = config_detach_enter(dev); 2147 device_release(dev); 2148 if (rv) { 2149 KERNEL_UNLOCK_ONE(NULL); 2150 return rv; 2151 } 2152 2153 mutex_enter(&alldevs_lock); 2154 if (dev->dv_del_gen != 0) { 2155 mutex_exit(&alldevs_lock); 2156 #ifdef DIAGNOSTIC 2157 printf("%s: %s is already detached\n", __func__, 2158 device_xname(dev)); 2159 #endif /* DIAGNOSTIC */ 2160 config_detach_exit(dev); 2161 KERNEL_UNLOCK_ONE(NULL); 2162 return ENOENT; 2163 } 2164 alldevs_nwrite++; 2165 mutex_exit(&alldevs_lock); 2166 2167 /* 2168 * Call the driver's .ca_detach function, unless it has none or 2169 * we are skipping it because it's unforced shutdown time and 2170 * the driver didn't ask to detach on shutdown. 2171 */ 2172 if (!detachall && 2173 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN && 2174 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) { 2175 rv = EOPNOTSUPP; 2176 } else if (ca->ca_detach != NULL) { 2177 rv = (*ca->ca_detach)(dev, flags); 2178 } else 2179 rv = EOPNOTSUPP; 2180 2181 KASSERTMSG(!dev->dv_detach_done, "%s detached twice, error=%d", 2182 device_xname(dev), rv); 2183 2184 /* 2185 * If it was not possible to detach the device, then we either 2186 * panic() (for the forced but failed case), or return an error. 2187 */ 2188 if (rv) { 2189 /* 2190 * Detach failed -- likely EOPNOTSUPP or EBUSY. Driver 2191 * must not have called config_detach_commit. 2192 */ 2193 KASSERTMSG(!dev->dv_detach_committed, 2194 "%s committed to detaching and then backed out, error=%d", 2195 device_xname(dev), rv); 2196 if (flags & DETACH_FORCE) { 2197 panic("config_detach: forced detach of %s failed (%d)", 2198 device_xname(dev), rv); 2199 } 2200 goto out; 2201 } 2202 2203 /* 2204 * The device has now been successfully detached. 2205 */ 2206 dev->dv_detach_done = true; 2207 2208 /* 2209 * If .ca_detach didn't commit to detach, then do that for it. 2210 * This wakes any pending device_lookup_acquire calls so they 2211 * will fail. 2212 */ 2213 config_detach_commit(dev); 2214 2215 /* 2216 * If it was possible to detach the device, ensure that the 2217 * device is deactivated. 2218 */ 2219 dev->dv_flags &= ~DVF_ACTIVE; /* XXXSMP */ 2220 2221 /* 2222 * Wait for all device_lookup_acquire references -- mostly, for 2223 * all attempts to open the device -- to drain. It is the 2224 * responsibility of .ca_detach to ensure anything with open 2225 * references will be interrupted and release them promptly, 2226 * not block indefinitely. All new attempts to acquire 2227 * references will fail, as config_detach_commit has arranged 2228 * by now. 2229 */ 2230 mutex_enter(&config_misc_lock); 2231 localcount_drain(dev->dv_localcount, 2232 &config_misc_cv, &config_misc_lock); 2233 mutex_exit(&config_misc_lock); 2234 2235 /* Let userland know */ 2236 devmon_report_device(dev, false); 2237 2238 #ifdef DIAGNOSTIC 2239 /* 2240 * Sanity: If you're successfully detached, you should have no 2241 * children. (Note that because children must be attached 2242 * after parents, we only need to search the latter part of 2243 * the list.) 2244 */ 2245 mutex_enter(&alldevs_lock); 2246 for (d = TAILQ_NEXT(dev, dv_list); d != NULL; 2247 d = TAILQ_NEXT(d, dv_list)) { 2248 if (d->dv_parent == dev && d->dv_del_gen == 0) { 2249 printf("config_detach: detached device %s" 2250 " has children %s\n", device_xname(dev), 2251 device_xname(d)); 2252 panic("config_detach"); 2253 } 2254 } 2255 mutex_exit(&alldevs_lock); 2256 #endif 2257 2258 /* notify the parent that the child is gone */ 2259 if (dev->dv_parent) { 2260 device_t p = dev->dv_parent; 2261 if (p->dv_cfattach->ca_childdetached) 2262 (*p->dv_cfattach->ca_childdetached)(p, dev); 2263 } 2264 2265 /* 2266 * Mark cfdata to show that the unit can be reused, if possible. 2267 */ 2268 TAILQ_FOREACH(ct, &allcftables, ct_list) { 2269 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 2270 if (STREQ(cf->cf_name, cd->cd_name)) { 2271 if (cf->cf_fstate == FSTATE_FOUND && 2272 cf->cf_unit == dev->dv_unit) 2273 cf->cf_fstate = FSTATE_NOTFOUND; 2274 } 2275 } 2276 } 2277 2278 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0) 2279 aprint_normal_dev(dev, "detached\n"); 2280 2281 out: 2282 config_detach_exit(dev); 2283 2284 config_alldevs_enter(&af); 2285 KASSERT(alldevs_nwrite != 0); 2286 --alldevs_nwrite; 2287 if (rv == 0 && dev->dv_del_gen == 0) { 2288 if (alldevs_nwrite == 0 && alldevs_nread == 0) 2289 config_devunlink(dev, &af.af_garbage); 2290 else { 2291 dev->dv_del_gen = alldevs_gen; 2292 alldevs_garbage = true; 2293 } 2294 } 2295 config_alldevs_exit(&af); 2296 2297 KERNEL_UNLOCK_ONE(NULL); 2298 2299 return rv; 2300 } 2301 2302 /* 2303 * config_detach(dev, flags) 2304 * 2305 * Legacy entry point for callers that have not acquired a 2306 * reference to dev. 2307 * 2308 * The caller is required to hold the kernel lock as a fragile 2309 * defence against races. 2310 * 2311 * Callers should be converted to use device_acquire under a lock 2312 * taken also by .ca_childdetached to synchronize access to the 2313 * device_t, and then config_detach_release ouside the lock. 2314 * Alternatively, most drivers detach children only in their own 2315 * detach routines, which can be done with config_detach_children 2316 * instead. 2317 */ 2318 int 2319 config_detach(device_t dev, int flags) 2320 { 2321 2322 device_acquire(dev); 2323 return config_detach_release(dev, flags); 2324 } 2325 2326 /* 2327 * config_detach_commit(dev) 2328 * 2329 * Issued by a driver's .ca_detach routine to notify anyone 2330 * waiting in device_lookup_acquire that the driver is committed 2331 * to detaching the device, which allows device_lookup_acquire to 2332 * wake up and fail immediately. 2333 * 2334 * Safe to call multiple times -- idempotent. Must be called 2335 * during config_detach_enter/exit. Safe to use with 2336 * device_lookup because the device is not actually removed from 2337 * the table until after config_detach_exit. 2338 */ 2339 void 2340 config_detach_commit(device_t dev) 2341 { 2342 struct lwp *l __diagused; 2343 2344 mutex_enter(&config_misc_lock); 2345 KASSERTMSG(dev->dv_detaching != NULL, "not detaching %s", 2346 device_xname(dev)); 2347 KASSERTMSG((l = dev->dv_detaching) == curlwp, 2348 "lwp %ld [%s] @ %p detaching %s", 2349 (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l, 2350 device_xname(dev)); 2351 dev->dv_detach_committed = true; 2352 cv_broadcast(&config_misc_cv); 2353 mutex_exit(&config_misc_lock); 2354 } 2355 2356 int 2357 config_detach_children(device_t parent, int flags) 2358 { 2359 device_t dv; 2360 deviter_t di; 2361 int error = 0; 2362 2363 KASSERT(KERNEL_LOCKED_P()); 2364 2365 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL; 2366 dv = deviter_next(&di)) { 2367 if (device_parent(dv) != parent) 2368 continue; 2369 if ((error = config_detach(dv, flags)) != 0) 2370 break; 2371 } 2372 deviter_release(&di); 2373 return error; 2374 } 2375 2376 device_t 2377 shutdown_first(struct shutdown_state *s) 2378 { 2379 if (!s->initialized) { 2380 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST); 2381 s->initialized = true; 2382 } 2383 return shutdown_next(s); 2384 } 2385 2386 device_t 2387 shutdown_next(struct shutdown_state *s) 2388 { 2389 device_t dv; 2390 2391 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv)) 2392 ; 2393 2394 if (dv == NULL) 2395 s->initialized = false; 2396 2397 return dv; 2398 } 2399 2400 bool 2401 config_detach_all(int how) 2402 { 2403 static struct shutdown_state s; 2404 device_t curdev; 2405 bool progress = false; 2406 int flags; 2407 2408 KERNEL_LOCK(1, NULL); 2409 2410 if ((how & (RB_NOSYNC|RB_DUMP)) != 0) 2411 goto out; 2412 2413 if ((how & RB_POWERDOWN) == RB_POWERDOWN) 2414 flags = DETACH_SHUTDOWN | DETACH_POWEROFF; 2415 else 2416 flags = DETACH_SHUTDOWN; 2417 2418 for (curdev = shutdown_first(&s); curdev != NULL; 2419 curdev = shutdown_next(&s)) { 2420 aprint_debug(" detaching %s, ", device_xname(curdev)); 2421 if (config_detach(curdev, flags) == 0) { 2422 progress = true; 2423 aprint_debug("success."); 2424 } else 2425 aprint_debug("failed."); 2426 } 2427 2428 out: KERNEL_UNLOCK_ONE(NULL); 2429 return progress; 2430 } 2431 2432 static bool 2433 device_is_ancestor_of(device_t ancestor, device_t descendant) 2434 { 2435 device_t dv; 2436 2437 for (dv = descendant; dv != NULL; dv = device_parent(dv)) { 2438 if (device_parent(dv) == ancestor) 2439 return true; 2440 } 2441 return false; 2442 } 2443 2444 int 2445 config_deactivate(device_t dev) 2446 { 2447 deviter_t di; 2448 const struct cfattach *ca; 2449 device_t descendant; 2450 int s, rv = 0, oflags; 2451 2452 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST); 2453 descendant != NULL; 2454 descendant = deviter_next(&di)) { 2455 if (dev != descendant && 2456 !device_is_ancestor_of(dev, descendant)) 2457 continue; 2458 2459 if ((descendant->dv_flags & DVF_ACTIVE) == 0) 2460 continue; 2461 2462 ca = descendant->dv_cfattach; 2463 oflags = descendant->dv_flags; 2464 2465 descendant->dv_flags &= ~DVF_ACTIVE; 2466 if (ca->ca_activate == NULL) 2467 continue; 2468 s = splhigh(); 2469 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE); 2470 splx(s); 2471 if (rv != 0) 2472 descendant->dv_flags = oflags; 2473 } 2474 deviter_release(&di); 2475 return rv; 2476 } 2477 2478 /* 2479 * Defer the configuration of the specified device until all 2480 * of its parent's devices have been attached. 2481 */ 2482 void 2483 config_defer(device_t dev, void (*func)(device_t)) 2484 { 2485 struct deferred_config *dc; 2486 2487 if (dev->dv_parent == NULL) 2488 panic("config_defer: can't defer config of a root device"); 2489 2490 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 2491 2492 config_pending_incr(dev); 2493 2494 mutex_enter(&config_misc_lock); 2495 #ifdef DIAGNOSTIC 2496 struct deferred_config *odc; 2497 TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) { 2498 if (odc->dc_dev == dev) 2499 panic("config_defer: deferred twice"); 2500 } 2501 #endif 2502 dc->dc_dev = dev; 2503 dc->dc_func = func; 2504 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue); 2505 mutex_exit(&config_misc_lock); 2506 } 2507 2508 /* 2509 * Defer some autoconfiguration for a device until after interrupts 2510 * are enabled. 2511 */ 2512 void 2513 config_interrupts(device_t dev, void (*func)(device_t)) 2514 { 2515 struct deferred_config *dc; 2516 2517 /* 2518 * If interrupts are enabled, callback now. 2519 */ 2520 if (cold == 0) { 2521 (*func)(dev); 2522 return; 2523 } 2524 2525 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 2526 2527 config_pending_incr(dev); 2528 2529 mutex_enter(&config_misc_lock); 2530 #ifdef DIAGNOSTIC 2531 struct deferred_config *odc; 2532 TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) { 2533 if (odc->dc_dev == dev) 2534 panic("config_interrupts: deferred twice"); 2535 } 2536 #endif 2537 dc->dc_dev = dev; 2538 dc->dc_func = func; 2539 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue); 2540 mutex_exit(&config_misc_lock); 2541 } 2542 2543 /* 2544 * Defer some autoconfiguration for a device until after root file system 2545 * is mounted (to load firmware etc). 2546 */ 2547 void 2548 config_mountroot(device_t dev, void (*func)(device_t)) 2549 { 2550 struct deferred_config *dc; 2551 2552 /* 2553 * If root file system is mounted, callback now. 2554 */ 2555 if (root_is_mounted) { 2556 (*func)(dev); 2557 return; 2558 } 2559 2560 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 2561 2562 mutex_enter(&config_misc_lock); 2563 #ifdef DIAGNOSTIC 2564 struct deferred_config *odc; 2565 TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) { 2566 if (odc->dc_dev == dev) 2567 panic("%s: deferred twice", __func__); 2568 } 2569 #endif 2570 2571 dc->dc_dev = dev; 2572 dc->dc_func = func; 2573 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue); 2574 mutex_exit(&config_misc_lock); 2575 } 2576 2577 /* 2578 * Process a deferred configuration queue. 2579 */ 2580 static void 2581 config_process_deferred(struct deferred_config_head *queue, device_t parent) 2582 { 2583 struct deferred_config *dc; 2584 2585 KASSERT(KERNEL_LOCKED_P()); 2586 2587 mutex_enter(&config_misc_lock); 2588 dc = TAILQ_FIRST(queue); 2589 while (dc) { 2590 if (parent == NULL || dc->dc_dev->dv_parent == parent) { 2591 TAILQ_REMOVE(queue, dc, dc_queue); 2592 mutex_exit(&config_misc_lock); 2593 2594 (*dc->dc_func)(dc->dc_dev); 2595 config_pending_decr(dc->dc_dev); 2596 kmem_free(dc, sizeof(*dc)); 2597 2598 mutex_enter(&config_misc_lock); 2599 /* Restart, queue might have changed */ 2600 dc = TAILQ_FIRST(queue); 2601 } else { 2602 dc = TAILQ_NEXT(dc, dc_queue); 2603 } 2604 } 2605 mutex_exit(&config_misc_lock); 2606 } 2607 2608 /* 2609 * Manipulate the config_pending semaphore. 2610 */ 2611 void 2612 config_pending_incr(device_t dev) 2613 { 2614 2615 mutex_enter(&config_misc_lock); 2616 KASSERTMSG(dev->dv_pending < INT_MAX, 2617 "%s: excess config_pending_incr", device_xname(dev)); 2618 if (dev->dv_pending++ == 0) 2619 TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list); 2620 #ifdef DEBUG_AUTOCONF 2621 printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending); 2622 #endif 2623 mutex_exit(&config_misc_lock); 2624 } 2625 2626 void 2627 config_pending_decr(device_t dev) 2628 { 2629 2630 mutex_enter(&config_misc_lock); 2631 KASSERTMSG(dev->dv_pending > 0, 2632 "%s: excess config_pending_decr", device_xname(dev)); 2633 if (--dev->dv_pending == 0) { 2634 TAILQ_REMOVE(&config_pending, dev, dv_pending_list); 2635 cv_broadcast(&config_misc_cv); 2636 } 2637 #ifdef DEBUG_AUTOCONF 2638 printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending); 2639 #endif 2640 mutex_exit(&config_misc_lock); 2641 } 2642 2643 /* 2644 * Register a "finalization" routine. Finalization routines are 2645 * called iteratively once all real devices have been found during 2646 * autoconfiguration, for as long as any one finalizer has done 2647 * any work. 2648 */ 2649 int 2650 config_finalize_register(device_t dev, int (*fn)(device_t)) 2651 { 2652 struct finalize_hook *f; 2653 int error = 0; 2654 2655 KERNEL_LOCK(1, NULL); 2656 2657 /* 2658 * If finalization has already been done, invoke the 2659 * callback function now. 2660 */ 2661 if (config_finalize_done) { 2662 while ((*fn)(dev) != 0) 2663 /* loop */ ; 2664 goto out; 2665 } 2666 2667 /* Ensure this isn't already on the list. */ 2668 TAILQ_FOREACH(f, &config_finalize_list, f_list) { 2669 if (f->f_func == fn && f->f_dev == dev) { 2670 error = EEXIST; 2671 goto out; 2672 } 2673 } 2674 2675 f = kmem_alloc(sizeof(*f), KM_SLEEP); 2676 f->f_func = fn; 2677 f->f_dev = dev; 2678 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list); 2679 2680 /* Success! */ 2681 error = 0; 2682 2683 out: KERNEL_UNLOCK_ONE(NULL); 2684 return error; 2685 } 2686 2687 void 2688 config_finalize(void) 2689 { 2690 struct finalize_hook *f; 2691 struct pdevinit *pdev; 2692 extern struct pdevinit pdevinit[]; 2693 int errcnt, rv; 2694 2695 /* 2696 * Now that device driver threads have been created, wait for 2697 * them to finish any deferred autoconfiguration. 2698 */ 2699 mutex_enter(&config_misc_lock); 2700 while (!TAILQ_EMPTY(&config_pending)) { 2701 device_t dev; 2702 int error; 2703 2704 error = cv_timedwait(&config_misc_cv, &config_misc_lock, 2705 mstohz(1000)); 2706 if (error == EWOULDBLOCK) { 2707 aprint_debug("waiting for devices:"); 2708 TAILQ_FOREACH(dev, &config_pending, dv_pending_list) 2709 aprint_debug(" %s", device_xname(dev)); 2710 aprint_debug("\n"); 2711 } 2712 } 2713 mutex_exit(&config_misc_lock); 2714 2715 KERNEL_LOCK(1, NULL); 2716 2717 /* Attach pseudo-devices. */ 2718 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++) 2719 (*pdev->pdev_attach)(pdev->pdev_count); 2720 2721 /* Run the hooks until none of them does any work. */ 2722 do { 2723 rv = 0; 2724 TAILQ_FOREACH(f, &config_finalize_list, f_list) 2725 rv |= (*f->f_func)(f->f_dev); 2726 } while (rv != 0); 2727 2728 config_finalize_done = 1; 2729 2730 /* Now free all the hooks. */ 2731 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) { 2732 TAILQ_REMOVE(&config_finalize_list, f, f_list); 2733 kmem_free(f, sizeof(*f)); 2734 } 2735 2736 KERNEL_UNLOCK_ONE(NULL); 2737 2738 errcnt = aprint_get_error_count(); 2739 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 && 2740 (boothowto & AB_VERBOSE) == 0) { 2741 mutex_enter(&config_misc_lock); 2742 if (config_do_twiddle) { 2743 config_do_twiddle = 0; 2744 printf_nolog(" done.\n"); 2745 } 2746 mutex_exit(&config_misc_lock); 2747 } 2748 if (errcnt != 0) { 2749 printf("WARNING: %d error%s while detecting hardware; " 2750 "check system log.\n", errcnt, 2751 errcnt == 1 ? "" : "s"); 2752 } 2753 } 2754 2755 void 2756 config_twiddle_init(void) 2757 { 2758 2759 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) { 2760 config_do_twiddle = 1; 2761 } 2762 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL); 2763 } 2764 2765 void 2766 config_twiddle_fn(void *cookie) 2767 { 2768 2769 mutex_enter(&config_misc_lock); 2770 if (config_do_twiddle) { 2771 twiddle(); 2772 callout_schedule(&config_twiddle_ch, mstohz(100)); 2773 } 2774 mutex_exit(&config_misc_lock); 2775 } 2776 2777 static void 2778 config_alldevs_enter(struct alldevs_foray *af) 2779 { 2780 TAILQ_INIT(&af->af_garbage); 2781 mutex_enter(&alldevs_lock); 2782 config_collect_garbage(&af->af_garbage); 2783 } 2784 2785 static void 2786 config_alldevs_exit(struct alldevs_foray *af) 2787 { 2788 mutex_exit(&alldevs_lock); 2789 config_dump_garbage(&af->af_garbage); 2790 } 2791 2792 /* 2793 * device_lookup: 2794 * 2795 * Look up a device instance for a given driver. 2796 * 2797 * Caller is responsible for ensuring the device's state is 2798 * stable, either by holding a reference already obtained with 2799 * device_lookup_acquire or by otherwise ensuring the device is 2800 * attached and can't be detached (e.g., holding an open device 2801 * node and ensuring *_detach calls vdevgone). 2802 * 2803 * XXX Find a way to assert this. 2804 * 2805 * Safe for use up to and including interrupt context at IPL_VM. 2806 * Never sleeps. 2807 */ 2808 device_t 2809 device_lookup(cfdriver_t cd, int unit) 2810 { 2811 device_t dv; 2812 2813 mutex_enter(&alldevs_lock); 2814 if (unit < 0 || unit >= cd->cd_ndevs) 2815 dv = NULL; 2816 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0) 2817 dv = NULL; 2818 mutex_exit(&alldevs_lock); 2819 2820 return dv; 2821 } 2822 2823 /* 2824 * device_lookup_private: 2825 * 2826 * Look up a softc instance for a given driver. 2827 */ 2828 void * 2829 device_lookup_private(cfdriver_t cd, int unit) 2830 { 2831 2832 return device_private(device_lookup(cd, unit)); 2833 } 2834 2835 /* 2836 * device_lookup_acquire: 2837 * 2838 * Look up a device instance for a given driver, and return a 2839 * reference to it that must be released by device_release. 2840 * 2841 * => If the device is still attaching, blocks until *_attach has 2842 * returned. 2843 * 2844 * => If the device is detaching, blocks until *_detach has 2845 * returned. May succeed or fail in that case, depending on 2846 * whether *_detach has backed out (EBUSY) or committed to 2847 * detaching. 2848 * 2849 * May sleep. 2850 */ 2851 device_t 2852 device_lookup_acquire(cfdriver_t cd, int unit) 2853 { 2854 device_t dv; 2855 2856 ASSERT_SLEEPABLE(); 2857 2858 /* XXX This should have a pserialized fast path -- TBD. */ 2859 mutex_enter(&config_misc_lock); 2860 mutex_enter(&alldevs_lock); 2861 retry: if (unit < 0 || unit >= cd->cd_ndevs || 2862 (dv = cd->cd_devs[unit]) == NULL || 2863 dv->dv_del_gen != 0 || 2864 dv->dv_detach_committed) { 2865 dv = NULL; 2866 } else { 2867 /* 2868 * Wait for the device to stabilize, if attaching or 2869 * detaching. Either way we must wait for *_attach or 2870 * *_detach to complete, and either way we must retry: 2871 * even if detaching, *_detach might fail (EBUSY) so 2872 * the device may still be there. 2873 */ 2874 if ((dv->dv_attaching != NULL && dv->dv_attaching != curlwp) || 2875 dv->dv_detaching != NULL) { 2876 mutex_exit(&alldevs_lock); 2877 cv_wait(&config_misc_cv, &config_misc_lock); 2878 mutex_enter(&alldevs_lock); 2879 goto retry; 2880 } 2881 device_acquire(dv); 2882 } 2883 mutex_exit(&alldevs_lock); 2884 mutex_exit(&config_misc_lock); 2885 2886 return dv; 2887 } 2888 2889 /* 2890 * device_acquire: 2891 * 2892 * Acquire a reference to a device. It is the caller's 2893 * responsibility to ensure that the device's .ca_detach routine 2894 * cannot return before calling this. Caller must release the 2895 * reference with device_release or config_detach_release. 2896 */ 2897 void 2898 device_acquire(device_t dv) 2899 { 2900 2901 /* 2902 * No lock because the caller has promised that this can't 2903 * change concurrently with device_acquire. 2904 */ 2905 KASSERTMSG(!dv->dv_detach_done, "%s", 2906 dv == NULL ? "(null)" : device_xname(dv)); 2907 localcount_acquire(dv->dv_localcount); 2908 } 2909 2910 /* 2911 * device_release: 2912 * 2913 * Release a reference to a device acquired with device_acquire or 2914 * device_lookup_acquire. 2915 */ 2916 void 2917 device_release(device_t dv) 2918 { 2919 2920 localcount_release(dv->dv_localcount, 2921 &config_misc_cv, &config_misc_lock); 2922 } 2923 2924 /* 2925 * device_find_by_xname: 2926 * 2927 * Returns the device of the given name or NULL if it doesn't exist. 2928 */ 2929 device_t 2930 device_find_by_xname(const char *name) 2931 { 2932 device_t dv; 2933 deviter_t di; 2934 2935 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) { 2936 if (strcmp(device_xname(dv), name) == 0) 2937 break; 2938 } 2939 deviter_release(&di); 2940 2941 return dv; 2942 } 2943 2944 /* 2945 * device_find_by_driver_unit: 2946 * 2947 * Returns the device of the given driver name and unit or 2948 * NULL if it doesn't exist. 2949 */ 2950 device_t 2951 device_find_by_driver_unit(const char *name, int unit) 2952 { 2953 struct cfdriver *cd; 2954 2955 if ((cd = config_cfdriver_lookup(name)) == NULL) 2956 return NULL; 2957 return device_lookup(cd, unit); 2958 } 2959 2960 static bool 2961 match_strcmp(const char * const s1, const char * const s2) 2962 { 2963 return strcmp(s1, s2) == 0; 2964 } 2965 2966 static bool 2967 match_pmatch(const char * const s1, const char * const s2) 2968 { 2969 return pmatch(s1, s2, NULL) == 2; 2970 } 2971 2972 static bool 2973 strarray_match_internal(const char ** const strings, 2974 unsigned int const nstrings, const char * const str, 2975 unsigned int * const indexp, 2976 bool (*match_fn)(const char *, const char *)) 2977 { 2978 unsigned int i; 2979 2980 if (strings == NULL || nstrings == 0) { 2981 return false; 2982 } 2983 2984 for (i = 0; i < nstrings; i++) { 2985 if ((*match_fn)(strings[i], str)) { 2986 *indexp = i; 2987 return true; 2988 } 2989 } 2990 2991 return false; 2992 } 2993 2994 static int 2995 strarray_match(const char ** const strings, unsigned int const nstrings, 2996 const char * const str) 2997 { 2998 unsigned int idx; 2999 3000 if (strarray_match_internal(strings, nstrings, str, &idx, 3001 match_strcmp)) { 3002 return (int)(nstrings - idx); 3003 } 3004 return 0; 3005 } 3006 3007 static int 3008 strarray_pmatch(const char ** const strings, unsigned int const nstrings, 3009 const char * const pattern) 3010 { 3011 unsigned int idx; 3012 3013 if (strarray_match_internal(strings, nstrings, pattern, &idx, 3014 match_pmatch)) { 3015 return (int)(nstrings - idx); 3016 } 3017 return 0; 3018 } 3019 3020 static int 3021 device_compatible_match_strarray_internal( 3022 const char **device_compats, int ndevice_compats, 3023 const struct device_compatible_entry *driver_compats, 3024 const struct device_compatible_entry **matching_entryp, 3025 int (*match_fn)(const char **, unsigned int, const char *)) 3026 { 3027 const struct device_compatible_entry *dce = NULL; 3028 int rv; 3029 3030 if (ndevice_compats == 0 || device_compats == NULL || 3031 driver_compats == NULL) 3032 return 0; 3033 3034 for (dce = driver_compats; dce->compat != NULL; dce++) { 3035 rv = (*match_fn)(device_compats, ndevice_compats, dce->compat); 3036 if (rv != 0) { 3037 if (matching_entryp != NULL) { 3038 *matching_entryp = dce; 3039 } 3040 return rv; 3041 } 3042 } 3043 return 0; 3044 } 3045 3046 /* 3047 * device_compatible_match: 3048 * 3049 * Match a driver's "compatible" data against a device's 3050 * "compatible" strings. Returns resulted weighted by 3051 * which device "compatible" string was matched. 3052 */ 3053 int 3054 device_compatible_match(const char **device_compats, int ndevice_compats, 3055 const struct device_compatible_entry *driver_compats) 3056 { 3057 return device_compatible_match_strarray_internal(device_compats, 3058 ndevice_compats, driver_compats, NULL, strarray_match); 3059 } 3060 3061 /* 3062 * device_compatible_pmatch: 3063 * 3064 * Like device_compatible_match(), but uses pmatch(9) to compare 3065 * the device "compatible" strings against patterns in the 3066 * driver's "compatible" data. 3067 */ 3068 int 3069 device_compatible_pmatch(const char **device_compats, int ndevice_compats, 3070 const struct device_compatible_entry *driver_compats) 3071 { 3072 return device_compatible_match_strarray_internal(device_compats, 3073 ndevice_compats, driver_compats, NULL, strarray_pmatch); 3074 } 3075 3076 static int 3077 device_compatible_match_strlist_internal( 3078 const char * const device_compats, size_t const device_compatsize, 3079 const struct device_compatible_entry *driver_compats, 3080 const struct device_compatible_entry **matching_entryp, 3081 int (*match_fn)(const char *, size_t, const char *)) 3082 { 3083 const struct device_compatible_entry *dce = NULL; 3084 int rv; 3085 3086 if (device_compats == NULL || device_compatsize == 0 || 3087 driver_compats == NULL) 3088 return 0; 3089 3090 for (dce = driver_compats; dce->compat != NULL; dce++) { 3091 rv = (*match_fn)(device_compats, device_compatsize, 3092 dce->compat); 3093 if (rv != 0) { 3094 if (matching_entryp != NULL) { 3095 *matching_entryp = dce; 3096 } 3097 return rv; 3098 } 3099 } 3100 return 0; 3101 } 3102 3103 /* 3104 * device_compatible_match_strlist: 3105 * 3106 * Like device_compatible_match(), but take the device 3107 * "compatible" strings as an OpenFirmware-style string 3108 * list. 3109 */ 3110 int 3111 device_compatible_match_strlist( 3112 const char * const device_compats, size_t const device_compatsize, 3113 const struct device_compatible_entry *driver_compats) 3114 { 3115 return device_compatible_match_strlist_internal(device_compats, 3116 device_compatsize, driver_compats, NULL, strlist_match); 3117 } 3118 3119 /* 3120 * device_compatible_pmatch_strlist: 3121 * 3122 * Like device_compatible_pmatch(), but take the device 3123 * "compatible" strings as an OpenFirmware-style string 3124 * list. 3125 */ 3126 int 3127 device_compatible_pmatch_strlist( 3128 const char * const device_compats, size_t const device_compatsize, 3129 const struct device_compatible_entry *driver_compats) 3130 { 3131 return device_compatible_match_strlist_internal(device_compats, 3132 device_compatsize, driver_compats, NULL, strlist_pmatch); 3133 } 3134 3135 static int 3136 device_compatible_match_id_internal( 3137 uintptr_t const id, uintptr_t const mask, uintptr_t const sentinel_id, 3138 const struct device_compatible_entry *driver_compats, 3139 const struct device_compatible_entry **matching_entryp) 3140 { 3141 const struct device_compatible_entry *dce = NULL; 3142 3143 if (mask == 0) 3144 return 0; 3145 3146 for (dce = driver_compats; dce->id != sentinel_id; dce++) { 3147 if ((id & mask) == dce->id) { 3148 if (matching_entryp != NULL) { 3149 *matching_entryp = dce; 3150 } 3151 return 1; 3152 } 3153 } 3154 return 0; 3155 } 3156 3157 /* 3158 * device_compatible_match_id: 3159 * 3160 * Like device_compatible_match(), but takes a single 3161 * unsigned integer device ID. 3162 */ 3163 int 3164 device_compatible_match_id( 3165 uintptr_t const id, uintptr_t const sentinel_id, 3166 const struct device_compatible_entry *driver_compats) 3167 { 3168 return device_compatible_match_id_internal(id, (uintptr_t)-1, 3169 sentinel_id, driver_compats, NULL); 3170 } 3171 3172 /* 3173 * device_compatible_lookup: 3174 * 3175 * Look up and return the device_compatible_entry, using the 3176 * same matching criteria used by device_compatible_match(). 3177 */ 3178 const struct device_compatible_entry * 3179 device_compatible_lookup(const char **device_compats, int ndevice_compats, 3180 const struct device_compatible_entry *driver_compats) 3181 { 3182 const struct device_compatible_entry *dce; 3183 3184 if (device_compatible_match_strarray_internal(device_compats, 3185 ndevice_compats, driver_compats, &dce, strarray_match)) { 3186 return dce; 3187 } 3188 return NULL; 3189 } 3190 3191 /* 3192 * device_compatible_plookup: 3193 * 3194 * Look up and return the device_compatible_entry, using the 3195 * same matching criteria used by device_compatible_pmatch(). 3196 */ 3197 const struct device_compatible_entry * 3198 device_compatible_plookup(const char **device_compats, int ndevice_compats, 3199 const struct device_compatible_entry *driver_compats) 3200 { 3201 const struct device_compatible_entry *dce; 3202 3203 if (device_compatible_match_strarray_internal(device_compats, 3204 ndevice_compats, driver_compats, &dce, strarray_pmatch)) { 3205 return dce; 3206 } 3207 return NULL; 3208 } 3209 3210 /* 3211 * device_compatible_lookup_strlist: 3212 * 3213 * Like device_compatible_lookup(), but take the device 3214 * "compatible" strings as an OpenFirmware-style string 3215 * list. 3216 */ 3217 const struct device_compatible_entry * 3218 device_compatible_lookup_strlist( 3219 const char * const device_compats, size_t const device_compatsize, 3220 const struct device_compatible_entry *driver_compats) 3221 { 3222 const struct device_compatible_entry *dce; 3223 3224 if (device_compatible_match_strlist_internal(device_compats, 3225 device_compatsize, driver_compats, &dce, strlist_match)) { 3226 return dce; 3227 } 3228 return NULL; 3229 } 3230 3231 /* 3232 * device_compatible_plookup_strlist: 3233 * 3234 * Like device_compatible_plookup(), but take the device 3235 * "compatible" strings as an OpenFirmware-style string 3236 * list. 3237 */ 3238 const struct device_compatible_entry * 3239 device_compatible_plookup_strlist( 3240 const char * const device_compats, size_t const device_compatsize, 3241 const struct device_compatible_entry *driver_compats) 3242 { 3243 const struct device_compatible_entry *dce; 3244 3245 if (device_compatible_match_strlist_internal(device_compats, 3246 device_compatsize, driver_compats, &dce, strlist_pmatch)) { 3247 return dce; 3248 } 3249 return NULL; 3250 } 3251 3252 /* 3253 * device_compatible_lookup_id: 3254 * 3255 * Like device_compatible_lookup(), but takes a single 3256 * unsigned integer device ID. 3257 */ 3258 const struct device_compatible_entry * 3259 device_compatible_lookup_id( 3260 uintptr_t const id, uintptr_t const sentinel_id, 3261 const struct device_compatible_entry *driver_compats) 3262 { 3263 const struct device_compatible_entry *dce; 3264 3265 if (device_compatible_match_id_internal(id, (uintptr_t)-1, 3266 sentinel_id, driver_compats, &dce)) { 3267 return dce; 3268 } 3269 return NULL; 3270 } 3271 3272 /* 3273 * Power management related functions. 3274 */ 3275 3276 bool 3277 device_pmf_is_registered(device_t dev) 3278 { 3279 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0; 3280 } 3281 3282 bool 3283 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual) 3284 { 3285 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 3286 return true; 3287 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 3288 return false; 3289 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 3290 dev->dv_driver_suspend != NULL && 3291 !(*dev->dv_driver_suspend)(dev, qual)) 3292 return false; 3293 3294 dev->dv_flags |= DVF_DRIVER_SUSPENDED; 3295 return true; 3296 } 3297 3298 bool 3299 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual) 3300 { 3301 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 3302 return true; 3303 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 3304 return false; 3305 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 3306 dev->dv_driver_resume != NULL && 3307 !(*dev->dv_driver_resume)(dev, qual)) 3308 return false; 3309 3310 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED; 3311 return true; 3312 } 3313 3314 bool 3315 device_pmf_driver_shutdown(device_t dev, int how) 3316 { 3317 3318 if (*dev->dv_driver_shutdown != NULL && 3319 !(*dev->dv_driver_shutdown)(dev, how)) 3320 return false; 3321 return true; 3322 } 3323 3324 void 3325 device_pmf_driver_register(device_t dev, 3326 bool (*suspend)(device_t, const pmf_qual_t *), 3327 bool (*resume)(device_t, const pmf_qual_t *), 3328 bool (*shutdown)(device_t, int)) 3329 { 3330 3331 dev->dv_driver_suspend = suspend; 3332 dev->dv_driver_resume = resume; 3333 dev->dv_driver_shutdown = shutdown; 3334 dev->dv_flags |= DVF_POWER_HANDLERS; 3335 } 3336 3337 void 3338 device_pmf_driver_deregister(device_t dev) 3339 { 3340 device_lock_t dvl = device_getlock(dev); 3341 3342 dev->dv_driver_suspend = NULL; 3343 dev->dv_driver_resume = NULL; 3344 3345 mutex_enter(&dvl->dvl_mtx); 3346 dev->dv_flags &= ~DVF_POWER_HANDLERS; 3347 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) { 3348 /* Wake a thread that waits for the lock. That 3349 * thread will fail to acquire the lock, and then 3350 * it will wake the next thread that waits for the 3351 * lock, or else it will wake us. 3352 */ 3353 cv_signal(&dvl->dvl_cv); 3354 pmflock_debug(dev, __func__, __LINE__); 3355 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 3356 pmflock_debug(dev, __func__, __LINE__); 3357 } 3358 mutex_exit(&dvl->dvl_mtx); 3359 } 3360 3361 void 3362 device_pmf_driver_child_register(device_t dev) 3363 { 3364 device_t parent = device_parent(dev); 3365 3366 if (parent == NULL || parent->dv_driver_child_register == NULL) 3367 return; 3368 (*parent->dv_driver_child_register)(dev); 3369 } 3370 3371 void 3372 device_pmf_driver_set_child_register(device_t dev, 3373 void (*child_register)(device_t)) 3374 { 3375 dev->dv_driver_child_register = child_register; 3376 } 3377 3378 static void 3379 pmflock_debug(device_t dev, const char *func, int line) 3380 { 3381 #ifdef PMFLOCK_DEBUG 3382 device_lock_t dvl = device_getlock(dev); 3383 const char *curlwp_name; 3384 3385 if (curlwp->l_name != NULL) 3386 curlwp_name = curlwp->l_name; 3387 else 3388 curlwp_name = curlwp->l_proc->p_comm; 3389 3390 aprint_debug_dev(dev, 3391 "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line, 3392 curlwp_name, dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags); 3393 #endif /* PMFLOCK_DEBUG */ 3394 } 3395 3396 static bool 3397 device_pmf_lock1(device_t dev) 3398 { 3399 device_lock_t dvl = device_getlock(dev); 3400 3401 while (device_pmf_is_registered(dev) && 3402 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) { 3403 dvl->dvl_nwait++; 3404 pmflock_debug(dev, __func__, __LINE__); 3405 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 3406 pmflock_debug(dev, __func__, __LINE__); 3407 dvl->dvl_nwait--; 3408 } 3409 if (!device_pmf_is_registered(dev)) { 3410 pmflock_debug(dev, __func__, __LINE__); 3411 /* We could not acquire the lock, but some other thread may 3412 * wait for it, also. Wake that thread. 3413 */ 3414 cv_signal(&dvl->dvl_cv); 3415 return false; 3416 } 3417 dvl->dvl_nlock++; 3418 dvl->dvl_holder = curlwp; 3419 pmflock_debug(dev, __func__, __LINE__); 3420 return true; 3421 } 3422 3423 bool 3424 device_pmf_lock(device_t dev) 3425 { 3426 bool rc; 3427 device_lock_t dvl = device_getlock(dev); 3428 3429 mutex_enter(&dvl->dvl_mtx); 3430 rc = device_pmf_lock1(dev); 3431 mutex_exit(&dvl->dvl_mtx); 3432 3433 return rc; 3434 } 3435 3436 void 3437 device_pmf_unlock(device_t dev) 3438 { 3439 device_lock_t dvl = device_getlock(dev); 3440 3441 KASSERT(dvl->dvl_nlock > 0); 3442 mutex_enter(&dvl->dvl_mtx); 3443 if (--dvl->dvl_nlock == 0) 3444 dvl->dvl_holder = NULL; 3445 cv_signal(&dvl->dvl_cv); 3446 pmflock_debug(dev, __func__, __LINE__); 3447 mutex_exit(&dvl->dvl_mtx); 3448 } 3449 3450 device_lock_t 3451 device_getlock(device_t dev) 3452 { 3453 return &dev->dv_lock; 3454 } 3455 3456 void * 3457 device_pmf_bus_private(device_t dev) 3458 { 3459 return dev->dv_bus_private; 3460 } 3461 3462 bool 3463 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual) 3464 { 3465 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 3466 return true; 3467 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 || 3468 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 3469 return false; 3470 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 3471 dev->dv_bus_suspend != NULL && 3472 !(*dev->dv_bus_suspend)(dev, qual)) 3473 return false; 3474 3475 dev->dv_flags |= DVF_BUS_SUSPENDED; 3476 return true; 3477 } 3478 3479 bool 3480 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual) 3481 { 3482 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0) 3483 return true; 3484 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 3485 dev->dv_bus_resume != NULL && 3486 !(*dev->dv_bus_resume)(dev, qual)) 3487 return false; 3488 3489 dev->dv_flags &= ~DVF_BUS_SUSPENDED; 3490 return true; 3491 } 3492 3493 bool 3494 device_pmf_bus_shutdown(device_t dev, int how) 3495 { 3496 3497 if (*dev->dv_bus_shutdown != NULL && 3498 !(*dev->dv_bus_shutdown)(dev, how)) 3499 return false; 3500 return true; 3501 } 3502 3503 void 3504 device_pmf_bus_register(device_t dev, void *priv, 3505 bool (*suspend)(device_t, const pmf_qual_t *), 3506 bool (*resume)(device_t, const pmf_qual_t *), 3507 bool (*shutdown)(device_t, int), void (*deregister)(device_t)) 3508 { 3509 dev->dv_bus_private = priv; 3510 dev->dv_bus_resume = resume; 3511 dev->dv_bus_suspend = suspend; 3512 dev->dv_bus_shutdown = shutdown; 3513 dev->dv_bus_deregister = deregister; 3514 } 3515 3516 void 3517 device_pmf_bus_deregister(device_t dev) 3518 { 3519 if (dev->dv_bus_deregister == NULL) 3520 return; 3521 (*dev->dv_bus_deregister)(dev); 3522 dev->dv_bus_private = NULL; 3523 dev->dv_bus_suspend = NULL; 3524 dev->dv_bus_resume = NULL; 3525 dev->dv_bus_deregister = NULL; 3526 } 3527 3528 void * 3529 device_pmf_class_private(device_t dev) 3530 { 3531 return dev->dv_class_private; 3532 } 3533 3534 bool 3535 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual) 3536 { 3537 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0) 3538 return true; 3539 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 3540 dev->dv_class_suspend != NULL && 3541 !(*dev->dv_class_suspend)(dev, qual)) 3542 return false; 3543 3544 dev->dv_flags |= DVF_CLASS_SUSPENDED; 3545 return true; 3546 } 3547 3548 bool 3549 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual) 3550 { 3551 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 3552 return true; 3553 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 || 3554 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 3555 return false; 3556 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 3557 dev->dv_class_resume != NULL && 3558 !(*dev->dv_class_resume)(dev, qual)) 3559 return false; 3560 3561 dev->dv_flags &= ~DVF_CLASS_SUSPENDED; 3562 return true; 3563 } 3564 3565 void 3566 device_pmf_class_register(device_t dev, void *priv, 3567 bool (*suspend)(device_t, const pmf_qual_t *), 3568 bool (*resume)(device_t, const pmf_qual_t *), 3569 void (*deregister)(device_t)) 3570 { 3571 dev->dv_class_private = priv; 3572 dev->dv_class_suspend = suspend; 3573 dev->dv_class_resume = resume; 3574 dev->dv_class_deregister = deregister; 3575 } 3576 3577 void 3578 device_pmf_class_deregister(device_t dev) 3579 { 3580 if (dev->dv_class_deregister == NULL) 3581 return; 3582 (*dev->dv_class_deregister)(dev); 3583 dev->dv_class_private = NULL; 3584 dev->dv_class_suspend = NULL; 3585 dev->dv_class_resume = NULL; 3586 dev->dv_class_deregister = NULL; 3587 } 3588 3589 bool 3590 device_active(device_t dev, devactive_t type) 3591 { 3592 size_t i; 3593 3594 if (dev->dv_activity_count == 0) 3595 return false; 3596 3597 for (i = 0; i < dev->dv_activity_count; ++i) { 3598 if (dev->dv_activity_handlers[i] == NULL) 3599 break; 3600 (*dev->dv_activity_handlers[i])(dev, type); 3601 } 3602 3603 return true; 3604 } 3605 3606 bool 3607 device_active_register(device_t dev, void (*handler)(device_t, devactive_t)) 3608 { 3609 void (**new_handlers)(device_t, devactive_t); 3610 void (**old_handlers)(device_t, devactive_t); 3611 size_t i, old_size, new_size; 3612 int s; 3613 3614 old_handlers = dev->dv_activity_handlers; 3615 old_size = dev->dv_activity_count; 3616 3617 KASSERT(old_size == 0 || old_handlers != NULL); 3618 3619 for (i = 0; i < old_size; ++i) { 3620 KASSERT(old_handlers[i] != handler); 3621 if (old_handlers[i] == NULL) { 3622 old_handlers[i] = handler; 3623 return true; 3624 } 3625 } 3626 3627 new_size = old_size + 4; 3628 new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP); 3629 3630 for (i = 0; i < old_size; ++i) 3631 new_handlers[i] = old_handlers[i]; 3632 new_handlers[old_size] = handler; 3633 for (i = old_size+1; i < new_size; ++i) 3634 new_handlers[i] = NULL; 3635 3636 s = splhigh(); 3637 dev->dv_activity_count = new_size; 3638 dev->dv_activity_handlers = new_handlers; 3639 splx(s); 3640 3641 if (old_size > 0) 3642 kmem_free(old_handlers, sizeof(void *) * old_size); 3643 3644 return true; 3645 } 3646 3647 void 3648 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t)) 3649 { 3650 void (**old_handlers)(device_t, devactive_t); 3651 size_t i, old_size; 3652 int s; 3653 3654 old_handlers = dev->dv_activity_handlers; 3655 old_size = dev->dv_activity_count; 3656 3657 for (i = 0; i < old_size; ++i) { 3658 if (old_handlers[i] == handler) 3659 break; 3660 if (old_handlers[i] == NULL) 3661 return; /* XXX panic? */ 3662 } 3663 3664 if (i == old_size) 3665 return; /* XXX panic? */ 3666 3667 for (; i < old_size - 1; ++i) { 3668 if ((old_handlers[i] = old_handlers[i + 1]) != NULL) 3669 continue; 3670 3671 if (i == 0) { 3672 s = splhigh(); 3673 dev->dv_activity_count = 0; 3674 dev->dv_activity_handlers = NULL; 3675 splx(s); 3676 kmem_free(old_handlers, sizeof(void *) * old_size); 3677 } 3678 return; 3679 } 3680 old_handlers[i] = NULL; 3681 } 3682 3683 /* Return true iff the device_t `dev' exists at generation `gen'. */ 3684 static bool 3685 device_exists_at(device_t dv, devgen_t gen) 3686 { 3687 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) && 3688 dv->dv_add_gen <= gen; 3689 } 3690 3691 static bool 3692 deviter_visits(const deviter_t *di, device_t dv) 3693 { 3694 return device_exists_at(dv, di->di_gen); 3695 } 3696 3697 /* 3698 * Device Iteration 3699 * 3700 * deviter_t: a device iterator. Holds state for a "walk" visiting 3701 * each device_t's in the device tree. 3702 * 3703 * deviter_init(di, flags): initialize the device iterator `di' 3704 * to "walk" the device tree. deviter_next(di) will return 3705 * the first device_t in the device tree, or NULL if there are 3706 * no devices. 3707 * 3708 * `flags' is one or more of DEVITER_F_RW, indicating that the 3709 * caller intends to modify the device tree by calling 3710 * config_detach(9) on devices in the order that the iterator 3711 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices 3712 * nearest the "root" of the device tree to be returned, first; 3713 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from 3714 * the root of the device tree, first; and DEVITER_F_SHUTDOWN, 3715 * indicating both that deviter_init() should not respect any 3716 * locks on the device tree, and that deviter_next(di) may run 3717 * in more than one LWP before the walk has finished. 3718 * 3719 * Only one DEVITER_F_RW iterator may be in the device tree at 3720 * once. 3721 * 3722 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW. 3723 * 3724 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and 3725 * DEVITER_F_LEAVES_FIRST are used in combination. 3726 * 3727 * deviter_first(di, flags): initialize the device iterator `di' 3728 * and return the first device_t in the device tree, or NULL 3729 * if there are no devices. The statement 3730 * 3731 * dv = deviter_first(di); 3732 * 3733 * is shorthand for 3734 * 3735 * deviter_init(di); 3736 * dv = deviter_next(di); 3737 * 3738 * deviter_next(di): return the next device_t in the device tree, 3739 * or NULL if there are no more devices. deviter_next(di) 3740 * is undefined if `di' was not initialized with deviter_init() or 3741 * deviter_first(). 3742 * 3743 * deviter_release(di): stops iteration (subsequent calls to 3744 * deviter_next() will return NULL), releases any locks and 3745 * resources held by the device iterator. 3746 * 3747 * Device iteration does not return device_t's in any particular 3748 * order. An iterator will never return the same device_t twice. 3749 * Device iteration is guaranteed to complete---i.e., if deviter_next(di) 3750 * is called repeatedly on the same `di', it will eventually return 3751 * NULL. It is ok to attach/detach devices during device iteration. 3752 */ 3753 void 3754 deviter_init(deviter_t *di, deviter_flags_t flags) 3755 { 3756 device_t dv; 3757 3758 memset(di, 0, sizeof(*di)); 3759 3760 if ((flags & DEVITER_F_SHUTDOWN) != 0) 3761 flags |= DEVITER_F_RW; 3762 3763 mutex_enter(&alldevs_lock); 3764 if ((flags & DEVITER_F_RW) != 0) 3765 alldevs_nwrite++; 3766 else 3767 alldevs_nread++; 3768 di->di_gen = alldevs_gen++; 3769 di->di_flags = flags; 3770 3771 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 3772 case DEVITER_F_LEAVES_FIRST: 3773 TAILQ_FOREACH(dv, &alldevs, dv_list) { 3774 if (!deviter_visits(di, dv)) 3775 continue; 3776 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth); 3777 } 3778 break; 3779 case DEVITER_F_ROOT_FIRST: 3780 TAILQ_FOREACH(dv, &alldevs, dv_list) { 3781 if (!deviter_visits(di, dv)) 3782 continue; 3783 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth); 3784 } 3785 break; 3786 default: 3787 break; 3788 } 3789 3790 deviter_reinit(di); 3791 mutex_exit(&alldevs_lock); 3792 } 3793 3794 static void 3795 deviter_reinit(deviter_t *di) 3796 { 3797 3798 KASSERT(mutex_owned(&alldevs_lock)); 3799 if ((di->di_flags & DEVITER_F_RW) != 0) 3800 di->di_prev = TAILQ_LAST(&alldevs, devicelist); 3801 else 3802 di->di_prev = TAILQ_FIRST(&alldevs); 3803 } 3804 3805 device_t 3806 deviter_first(deviter_t *di, deviter_flags_t flags) 3807 { 3808 3809 deviter_init(di, flags); 3810 return deviter_next(di); 3811 } 3812 3813 static device_t 3814 deviter_next2(deviter_t *di) 3815 { 3816 device_t dv; 3817 3818 KASSERT(mutex_owned(&alldevs_lock)); 3819 3820 dv = di->di_prev; 3821 3822 if (dv == NULL) 3823 return NULL; 3824 3825 if ((di->di_flags & DEVITER_F_RW) != 0) 3826 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list); 3827 else 3828 di->di_prev = TAILQ_NEXT(dv, dv_list); 3829 3830 return dv; 3831 } 3832 3833 static device_t 3834 deviter_next1(deviter_t *di) 3835 { 3836 device_t dv; 3837 3838 KASSERT(mutex_owned(&alldevs_lock)); 3839 3840 do { 3841 dv = deviter_next2(di); 3842 } while (dv != NULL && !deviter_visits(di, dv)); 3843 3844 return dv; 3845 } 3846 3847 device_t 3848 deviter_next(deviter_t *di) 3849 { 3850 device_t dv = NULL; 3851 3852 mutex_enter(&alldevs_lock); 3853 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 3854 case 0: 3855 dv = deviter_next1(di); 3856 break; 3857 case DEVITER_F_LEAVES_FIRST: 3858 while (di->di_curdepth >= 0) { 3859 if ((dv = deviter_next1(di)) == NULL) { 3860 di->di_curdepth--; 3861 deviter_reinit(di); 3862 } else if (dv->dv_depth == di->di_curdepth) 3863 break; 3864 } 3865 break; 3866 case DEVITER_F_ROOT_FIRST: 3867 while (di->di_curdepth <= di->di_maxdepth) { 3868 if ((dv = deviter_next1(di)) == NULL) { 3869 di->di_curdepth++; 3870 deviter_reinit(di); 3871 } else if (dv->dv_depth == di->di_curdepth) 3872 break; 3873 } 3874 break; 3875 default: 3876 break; 3877 } 3878 mutex_exit(&alldevs_lock); 3879 3880 return dv; 3881 } 3882 3883 void 3884 deviter_release(deviter_t *di) 3885 { 3886 bool rw = (di->di_flags & DEVITER_F_RW) != 0; 3887 3888 mutex_enter(&alldevs_lock); 3889 if (rw) 3890 --alldevs_nwrite; 3891 else 3892 --alldevs_nread; 3893 /* XXX wake a garbage-collection thread */ 3894 mutex_exit(&alldevs_lock); 3895 } 3896 3897 const char * 3898 cfdata_ifattr(const struct cfdata *cf) 3899 { 3900 return cf->cf_pspec->cfp_iattr; 3901 } 3902 3903 bool 3904 ifattr_match(const char *snull, const char *t) 3905 { 3906 return (snull == NULL) || strcmp(snull, t) == 0; 3907 } 3908 3909 void 3910 null_childdetached(device_t self, device_t child) 3911 { 3912 /* do nothing */ 3913 } 3914 3915 static void 3916 sysctl_detach_setup(struct sysctllog **clog) 3917 { 3918 3919 sysctl_createv(clog, 0, NULL, NULL, 3920 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 3921 CTLTYPE_BOOL, "detachall", 3922 SYSCTL_DESCR("Detach all devices at shutdown"), 3923 NULL, 0, &detachall, 0, 3924 CTL_KERN, CTL_CREATE, CTL_EOL); 3925 } 3926