xref: /netbsd-src/sys/kern/subr_autoconf.c (revision deb6f0161a9109e7de9b519dc8dfb9478668dcdd)
1 /* $NetBSD: subr_autoconf.c,v 1.265 2018/12/01 02:08:16 msaitoh Exp $ */
2 
3 /*
4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *          This product includes software developed for the
18  *          NetBSD Project.  See http://www.NetBSD.org/ for
19  *          information about NetBSD.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35  */
36 
37 /*
38  * Copyright (c) 1992, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This software was developed by the Computer Systems Engineering group
42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43  * contributed to Berkeley.
44  *
45  * All advertising materials mentioning features or use of this software
46  * must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Lawrence Berkeley Laboratories.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
75  *
76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
77  */
78 
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.265 2018/12/01 02:08:16 msaitoh Exp $");
81 
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86 
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110 
111 #include <sys/disk.h>
112 
113 #include <sys/rndsource.h>
114 
115 #include <machine/limits.h>
116 
117 /*
118  * Autoconfiguration subroutines.
119  */
120 
121 /*
122  * Device autoconfiguration timings are mixed into the entropy pool.
123  */
124 extern krndsource_t rnd_autoconf_source;
125 
126 /*
127  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
128  * devices and drivers are found via these tables.
129  */
130 extern struct cfdata cfdata[];
131 extern const short cfroots[];
132 
133 /*
134  * List of all cfdriver structures.  We use this to detect duplicates
135  * when other cfdrivers are loaded.
136  */
137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
138 extern struct cfdriver * const cfdriver_list_initial[];
139 
140 /*
141  * Initial list of cfattach's.
142  */
143 extern const struct cfattachinit cfattachinit[];
144 
145 /*
146  * List of cfdata tables.  We always have one such list -- the one
147  * built statically when the kernel was configured.
148  */
149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
150 static struct cftable initcftable;
151 
152 #define	ROOT ((device_t)NULL)
153 
154 struct matchinfo {
155 	cfsubmatch_t fn;
156 	device_t parent;
157 	const int *locs;
158 	void	*aux;
159 	struct	cfdata *match;
160 	int	pri;
161 };
162 
163 struct alldevs_foray {
164 	int			af_s;
165 	struct devicelist	af_garbage;
166 };
167 
168 static char *number(char *, int);
169 static void mapply(struct matchinfo *, cfdata_t);
170 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
171 static void config_devdelete(device_t);
172 static void config_devunlink(device_t, struct devicelist *);
173 static void config_makeroom(int, struct cfdriver *);
174 static void config_devlink(device_t);
175 static void config_alldevs_enter(struct alldevs_foray *);
176 static void config_alldevs_exit(struct alldevs_foray *);
177 static void config_add_attrib_dict(device_t);
178 
179 static void config_collect_garbage(struct devicelist *);
180 static void config_dump_garbage(struct devicelist *);
181 
182 static void pmflock_debug(device_t, const char *, int);
183 
184 static device_t deviter_next1(deviter_t *);
185 static void deviter_reinit(deviter_t *);
186 
187 struct deferred_config {
188 	TAILQ_ENTRY(deferred_config) dc_queue;
189 	device_t dc_dev;
190 	void (*dc_func)(device_t);
191 };
192 
193 TAILQ_HEAD(deferred_config_head, deferred_config);
194 
195 static struct deferred_config_head deferred_config_queue =
196 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
197 static struct deferred_config_head interrupt_config_queue =
198 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
199 static int interrupt_config_threads = 8;
200 static struct deferred_config_head mountroot_config_queue =
201 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
202 static int mountroot_config_threads = 2;
203 static lwp_t **mountroot_config_lwpids;
204 static size_t mountroot_config_lwpids_size;
205 bool root_is_mounted = false;
206 
207 static void config_process_deferred(struct deferred_config_head *, device_t);
208 
209 /* Hooks to finalize configuration once all real devices have been found. */
210 struct finalize_hook {
211 	TAILQ_ENTRY(finalize_hook) f_list;
212 	int (*f_func)(device_t);
213 	device_t f_dev;
214 };
215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
216 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
217 static int config_finalize_done;
218 
219 /* list of all devices */
220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
221 static kmutex_t alldevs_lock __cacheline_aligned;
222 static devgen_t alldevs_gen = 1;
223 static int alldevs_nread = 0;
224 static int alldevs_nwrite = 0;
225 static bool alldevs_garbage = false;
226 
227 static int config_pending;		/* semaphore for mountroot */
228 static kmutex_t config_misc_lock;
229 static kcondvar_t config_misc_cv;
230 
231 static bool detachall = false;
232 
233 #define	STREQ(s1, s2)			\
234 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
235 
236 static bool config_initialized = false;	/* config_init() has been called. */
237 
238 static int config_do_twiddle;
239 static callout_t config_twiddle_ch;
240 
241 static void sysctl_detach_setup(struct sysctllog **);
242 
243 int no_devmon_insert(const char *, prop_dictionary_t);
244 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
245 
246 typedef int (*cfdriver_fn)(struct cfdriver *);
247 static int
248 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
249 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
250 	const char *style, bool dopanic)
251 {
252 	void (*pr)(const char *, ...) __printflike(1, 2) =
253 	    dopanic ? panic : printf;
254 	int i, error = 0, e2 __diagused;
255 
256 	for (i = 0; cfdriverv[i] != NULL; i++) {
257 		if ((error = drv_do(cfdriverv[i])) != 0) {
258 			pr("configure: `%s' driver %s failed: %d",
259 			    cfdriverv[i]->cd_name, style, error);
260 			goto bad;
261 		}
262 	}
263 
264 	KASSERT(error == 0);
265 	return 0;
266 
267  bad:
268 	printf("\n");
269 	for (i--; i >= 0; i--) {
270 		e2 = drv_undo(cfdriverv[i]);
271 		KASSERT(e2 == 0);
272 	}
273 
274 	return error;
275 }
276 
277 typedef int (*cfattach_fn)(const char *, struct cfattach *);
278 static int
279 frob_cfattachvec(const struct cfattachinit *cfattachv,
280 	cfattach_fn att_do, cfattach_fn att_undo,
281 	const char *style, bool dopanic)
282 {
283 	const struct cfattachinit *cfai = NULL;
284 	void (*pr)(const char *, ...) __printflike(1, 2) =
285 	    dopanic ? panic : printf;
286 	int j = 0, error = 0, e2 __diagused;
287 
288 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
289 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
290 			if ((error = att_do(cfai->cfai_name,
291 			    cfai->cfai_list[j])) != 0) {
292 				pr("configure: attachment `%s' "
293 				    "of `%s' driver %s failed: %d",
294 				    cfai->cfai_list[j]->ca_name,
295 				    cfai->cfai_name, style, error);
296 				goto bad;
297 			}
298 		}
299 	}
300 
301 	KASSERT(error == 0);
302 	return 0;
303 
304  bad:
305 	/*
306 	 * Rollback in reverse order.  dunno if super-important, but
307 	 * do that anyway.  Although the code looks a little like
308 	 * someone did a little integration (in the math sense).
309 	 */
310 	printf("\n");
311 	if (cfai) {
312 		bool last;
313 
314 		for (last = false; last == false; ) {
315 			if (cfai == &cfattachv[0])
316 				last = true;
317 			for (j--; j >= 0; j--) {
318 				e2 = att_undo(cfai->cfai_name,
319 				    cfai->cfai_list[j]);
320 				KASSERT(e2 == 0);
321 			}
322 			if (!last) {
323 				cfai--;
324 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
325 					;
326 			}
327 		}
328 	}
329 
330 	return error;
331 }
332 
333 /*
334  * Initialize the autoconfiguration data structures.  Normally this
335  * is done by configure(), but some platforms need to do this very
336  * early (to e.g. initialize the console).
337  */
338 void
339 config_init(void)
340 {
341 
342 	KASSERT(config_initialized == false);
343 
344 	mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
345 
346 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
347 	cv_init(&config_misc_cv, "cfgmisc");
348 
349 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
350 
351 	frob_cfdrivervec(cfdriver_list_initial,
352 	    config_cfdriver_attach, NULL, "bootstrap", true);
353 	frob_cfattachvec(cfattachinit,
354 	    config_cfattach_attach, NULL, "bootstrap", true);
355 
356 	initcftable.ct_cfdata = cfdata;
357 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
358 
359 	config_initialized = true;
360 }
361 
362 /*
363  * Init or fini drivers and attachments.  Either all or none
364  * are processed (via rollback).  It would be nice if this were
365  * atomic to outside consumers, but with the current state of
366  * locking ...
367  */
368 int
369 config_init_component(struct cfdriver * const *cfdriverv,
370 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
371 {
372 	int error;
373 
374 	if ((error = frob_cfdrivervec(cfdriverv,
375 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
376 		return error;
377 	if ((error = frob_cfattachvec(cfattachv,
378 	    config_cfattach_attach, config_cfattach_detach,
379 	    "init", false)) != 0) {
380 		frob_cfdrivervec(cfdriverv,
381 	            config_cfdriver_detach, NULL, "init rollback", true);
382 		return error;
383 	}
384 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
385 		frob_cfattachvec(cfattachv,
386 		    config_cfattach_detach, NULL, "init rollback", true);
387 		frob_cfdrivervec(cfdriverv,
388 	            config_cfdriver_detach, NULL, "init rollback", true);
389 		return error;
390 	}
391 
392 	return 0;
393 }
394 
395 int
396 config_fini_component(struct cfdriver * const *cfdriverv,
397 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
398 {
399 	int error;
400 
401 	if ((error = config_cfdata_detach(cfdatav)) != 0)
402 		return error;
403 	if ((error = frob_cfattachvec(cfattachv,
404 	    config_cfattach_detach, config_cfattach_attach,
405 	    "fini", false)) != 0) {
406 		if (config_cfdata_attach(cfdatav, 0) != 0)
407 			panic("config_cfdata fini rollback failed");
408 		return error;
409 	}
410 	if ((error = frob_cfdrivervec(cfdriverv,
411 	    config_cfdriver_detach, config_cfdriver_attach,
412 	    "fini", false)) != 0) {
413 		frob_cfattachvec(cfattachv,
414 	            config_cfattach_attach, NULL, "fini rollback", true);
415 		if (config_cfdata_attach(cfdatav, 0) != 0)
416 			panic("config_cfdata fini rollback failed");
417 		return error;
418 	}
419 
420 	return 0;
421 }
422 
423 void
424 config_init_mi(void)
425 {
426 
427 	if (!config_initialized)
428 		config_init();
429 
430 	sysctl_detach_setup(NULL);
431 }
432 
433 void
434 config_deferred(device_t dev)
435 {
436 	config_process_deferred(&deferred_config_queue, dev);
437 	config_process_deferred(&interrupt_config_queue, dev);
438 	config_process_deferred(&mountroot_config_queue, dev);
439 }
440 
441 static void
442 config_interrupts_thread(void *cookie)
443 {
444 	struct deferred_config *dc;
445 
446 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
447 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
448 		(*dc->dc_func)(dc->dc_dev);
449 		dc->dc_dev->dv_flags &= ~DVF_ATTACH_INPROGRESS;
450 		if (!device_pmf_is_registered(dc->dc_dev))
451 			aprint_debug_dev(dc->dc_dev,
452 			    "WARNING: power management not supported\n");
453 		config_pending_decr(dc->dc_dev);
454 		kmem_free(dc, sizeof(*dc));
455 	}
456 	kthread_exit(0);
457 }
458 
459 void
460 config_create_interruptthreads(void)
461 {
462 	int i;
463 
464 	for (i = 0; i < interrupt_config_threads; i++) {
465 		(void)kthread_create(PRI_NONE, 0, NULL,
466 		    config_interrupts_thread, NULL, NULL, "configintr");
467 	}
468 }
469 
470 static void
471 config_mountroot_thread(void *cookie)
472 {
473 	struct deferred_config *dc;
474 
475 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
476 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
477 		(*dc->dc_func)(dc->dc_dev);
478 		kmem_free(dc, sizeof(*dc));
479 	}
480 	kthread_exit(0);
481 }
482 
483 void
484 config_create_mountrootthreads(void)
485 {
486 	int i;
487 
488 	if (!root_is_mounted)
489 		root_is_mounted = true;
490 
491 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
492 				       mountroot_config_threads;
493 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
494 					     KM_NOSLEEP);
495 	KASSERT(mountroot_config_lwpids);
496 	for (i = 0; i < mountroot_config_threads; i++) {
497 		mountroot_config_lwpids[i] = 0;
498 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL,
499 				     config_mountroot_thread, NULL,
500 				     &mountroot_config_lwpids[i],
501 				     "configroot");
502 	}
503 }
504 
505 void
506 config_finalize_mountroot(void)
507 {
508 	int i, error;
509 
510 	for (i = 0; i < mountroot_config_threads; i++) {
511 		if (mountroot_config_lwpids[i] == 0)
512 			continue;
513 
514 		error = kthread_join(mountroot_config_lwpids[i]);
515 		if (error)
516 			printf("%s: thread %x joined with error %d\n",
517 			       __func__, i, error);
518 	}
519 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
520 }
521 
522 /*
523  * Announce device attach/detach to userland listeners.
524  */
525 
526 int
527 no_devmon_insert(const char *name, prop_dictionary_t p)
528 {
529 
530 	return ENODEV;
531 }
532 
533 static void
534 devmon_report_device(device_t dev, bool isattach)
535 {
536 	prop_dictionary_t ev;
537 	const char *parent;
538 	const char *what;
539 	device_t pdev = device_parent(dev);
540 
541 	/* If currently no drvctl device, just return */
542 	if (devmon_insert_vec == no_devmon_insert)
543 		return;
544 
545 	ev = prop_dictionary_create();
546 	if (ev == NULL)
547 		return;
548 
549 	what = (isattach ? "device-attach" : "device-detach");
550 	parent = (pdev == NULL ? "root" : device_xname(pdev));
551 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
552 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
553 		prop_object_release(ev);
554 		return;
555 	}
556 
557 	if ((*devmon_insert_vec)(what, ev) != 0)
558 		prop_object_release(ev);
559 }
560 
561 /*
562  * Add a cfdriver to the system.
563  */
564 int
565 config_cfdriver_attach(struct cfdriver *cd)
566 {
567 	struct cfdriver *lcd;
568 
569 	/* Make sure this driver isn't already in the system. */
570 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
571 		if (STREQ(lcd->cd_name, cd->cd_name))
572 			return EEXIST;
573 	}
574 
575 	LIST_INIT(&cd->cd_attach);
576 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
577 
578 	return 0;
579 }
580 
581 /*
582  * Remove a cfdriver from the system.
583  */
584 int
585 config_cfdriver_detach(struct cfdriver *cd)
586 {
587 	struct alldevs_foray af;
588 	int i, rc = 0;
589 
590 	config_alldevs_enter(&af);
591 	/* Make sure there are no active instances. */
592 	for (i = 0; i < cd->cd_ndevs; i++) {
593 		if (cd->cd_devs[i] != NULL) {
594 			rc = EBUSY;
595 			break;
596 		}
597 	}
598 	config_alldevs_exit(&af);
599 
600 	if (rc != 0)
601 		return rc;
602 
603 	/* ...and no attachments loaded. */
604 	if (LIST_EMPTY(&cd->cd_attach) == 0)
605 		return EBUSY;
606 
607 	LIST_REMOVE(cd, cd_list);
608 
609 	KASSERT(cd->cd_devs == NULL);
610 
611 	return 0;
612 }
613 
614 /*
615  * Look up a cfdriver by name.
616  */
617 struct cfdriver *
618 config_cfdriver_lookup(const char *name)
619 {
620 	struct cfdriver *cd;
621 
622 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
623 		if (STREQ(cd->cd_name, name))
624 			return cd;
625 	}
626 
627 	return NULL;
628 }
629 
630 /*
631  * Add a cfattach to the specified driver.
632  */
633 int
634 config_cfattach_attach(const char *driver, struct cfattach *ca)
635 {
636 	struct cfattach *lca;
637 	struct cfdriver *cd;
638 
639 	cd = config_cfdriver_lookup(driver);
640 	if (cd == NULL)
641 		return ESRCH;
642 
643 	/* Make sure this attachment isn't already on this driver. */
644 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
645 		if (STREQ(lca->ca_name, ca->ca_name))
646 			return EEXIST;
647 	}
648 
649 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
650 
651 	return 0;
652 }
653 
654 /*
655  * Remove a cfattach from the specified driver.
656  */
657 int
658 config_cfattach_detach(const char *driver, struct cfattach *ca)
659 {
660 	struct alldevs_foray af;
661 	struct cfdriver *cd;
662 	device_t dev;
663 	int i, rc = 0;
664 
665 	cd = config_cfdriver_lookup(driver);
666 	if (cd == NULL)
667 		return ESRCH;
668 
669 	config_alldevs_enter(&af);
670 	/* Make sure there are no active instances. */
671 	for (i = 0; i < cd->cd_ndevs; i++) {
672 		if ((dev = cd->cd_devs[i]) == NULL)
673 			continue;
674 		if (dev->dv_cfattach == ca) {
675 			rc = EBUSY;
676 			break;
677 		}
678 	}
679 	config_alldevs_exit(&af);
680 
681 	if (rc != 0)
682 		return rc;
683 
684 	LIST_REMOVE(ca, ca_list);
685 
686 	return 0;
687 }
688 
689 /*
690  * Look up a cfattach by name.
691  */
692 static struct cfattach *
693 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
694 {
695 	struct cfattach *ca;
696 
697 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
698 		if (STREQ(ca->ca_name, atname))
699 			return ca;
700 	}
701 
702 	return NULL;
703 }
704 
705 /*
706  * Look up a cfattach by driver/attachment name.
707  */
708 struct cfattach *
709 config_cfattach_lookup(const char *name, const char *atname)
710 {
711 	struct cfdriver *cd;
712 
713 	cd = config_cfdriver_lookup(name);
714 	if (cd == NULL)
715 		return NULL;
716 
717 	return config_cfattach_lookup_cd(cd, atname);
718 }
719 
720 /*
721  * Apply the matching function and choose the best.  This is used
722  * a few times and we want to keep the code small.
723  */
724 static void
725 mapply(struct matchinfo *m, cfdata_t cf)
726 {
727 	int pri;
728 
729 	if (m->fn != NULL) {
730 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
731 	} else {
732 		pri = config_match(m->parent, cf, m->aux);
733 	}
734 	if (pri > m->pri) {
735 		m->match = cf;
736 		m->pri = pri;
737 	}
738 }
739 
740 int
741 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
742 {
743 	const struct cfiattrdata *ci;
744 	const struct cflocdesc *cl;
745 	int nlocs, i;
746 
747 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
748 	KASSERT(ci);
749 	nlocs = ci->ci_loclen;
750 	KASSERT(!nlocs || locs);
751 	for (i = 0; i < nlocs; i++) {
752 		cl = &ci->ci_locdesc[i];
753 		if (cl->cld_defaultstr != NULL &&
754 		    cf->cf_loc[i] == cl->cld_default)
755 			continue;
756 		if (cf->cf_loc[i] == locs[i])
757 			continue;
758 		return 0;
759 	}
760 
761 	return config_match(parent, cf, aux);
762 }
763 
764 /*
765  * Helper function: check whether the driver supports the interface attribute
766  * and return its descriptor structure.
767  */
768 static const struct cfiattrdata *
769 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
770 {
771 	const struct cfiattrdata * const *cpp;
772 
773 	if (cd->cd_attrs == NULL)
774 		return 0;
775 
776 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
777 		if (STREQ((*cpp)->ci_name, ia)) {
778 			/* Match. */
779 			return *cpp;
780 		}
781 	}
782 	return 0;
783 }
784 
785 /*
786  * Lookup an interface attribute description by name.
787  * If the driver is given, consider only its supported attributes.
788  */
789 const struct cfiattrdata *
790 cfiattr_lookup(const char *name, const struct cfdriver *cd)
791 {
792 	const struct cfdriver *d;
793 	const struct cfiattrdata *ia;
794 
795 	if (cd)
796 		return cfdriver_get_iattr(cd, name);
797 
798 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
799 		ia = cfdriver_get_iattr(d, name);
800 		if (ia)
801 			return ia;
802 	}
803 	return 0;
804 }
805 
806 /*
807  * Determine if `parent' is a potential parent for a device spec based
808  * on `cfp'.
809  */
810 static int
811 cfparent_match(const device_t parent, const struct cfparent *cfp)
812 {
813 	struct cfdriver *pcd;
814 
815 	/* We don't match root nodes here. */
816 	if (cfp == NULL)
817 		return 0;
818 
819 	pcd = parent->dv_cfdriver;
820 	KASSERT(pcd != NULL);
821 
822 	/*
823 	 * First, ensure this parent has the correct interface
824 	 * attribute.
825 	 */
826 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
827 		return 0;
828 
829 	/*
830 	 * If no specific parent device instance was specified (i.e.
831 	 * we're attaching to the attribute only), we're done!
832 	 */
833 	if (cfp->cfp_parent == NULL)
834 		return 1;
835 
836 	/*
837 	 * Check the parent device's name.
838 	 */
839 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
840 		return 0;	/* not the same parent */
841 
842 	/*
843 	 * Make sure the unit number matches.
844 	 */
845 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
846 	    cfp->cfp_unit == parent->dv_unit)
847 		return 1;
848 
849 	/* Unit numbers don't match. */
850 	return 0;
851 }
852 
853 /*
854  * Helper for config_cfdata_attach(): check all devices whether it could be
855  * parent any attachment in the config data table passed, and rescan.
856  */
857 static void
858 rescan_with_cfdata(const struct cfdata *cf)
859 {
860 	device_t d;
861 	const struct cfdata *cf1;
862 	deviter_t di;
863 
864 
865 	/*
866 	 * "alldevs" is likely longer than a modules's cfdata, so make it
867 	 * the outer loop.
868 	 */
869 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
870 
871 		if (!(d->dv_cfattach->ca_rescan))
872 			continue;
873 
874 		for (cf1 = cf; cf1->cf_name; cf1++) {
875 
876 			if (!cfparent_match(d, cf1->cf_pspec))
877 				continue;
878 
879 			(*d->dv_cfattach->ca_rescan)(d,
880 				cfdata_ifattr(cf1), cf1->cf_loc);
881 
882 			config_deferred(d);
883 		}
884 	}
885 	deviter_release(&di);
886 }
887 
888 /*
889  * Attach a supplemental config data table and rescan potential
890  * parent devices if required.
891  */
892 int
893 config_cfdata_attach(cfdata_t cf, int scannow)
894 {
895 	struct cftable *ct;
896 
897 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
898 	ct->ct_cfdata = cf;
899 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
900 
901 	if (scannow)
902 		rescan_with_cfdata(cf);
903 
904 	return 0;
905 }
906 
907 /*
908  * Helper for config_cfdata_detach: check whether a device is
909  * found through any attachment in the config data table.
910  */
911 static int
912 dev_in_cfdata(device_t d, cfdata_t cf)
913 {
914 	const struct cfdata *cf1;
915 
916 	for (cf1 = cf; cf1->cf_name; cf1++)
917 		if (d->dv_cfdata == cf1)
918 			return 1;
919 
920 	return 0;
921 }
922 
923 /*
924  * Detach a supplemental config data table. Detach all devices found
925  * through that table (and thus keeping references to it) before.
926  */
927 int
928 config_cfdata_detach(cfdata_t cf)
929 {
930 	device_t d;
931 	int error = 0;
932 	struct cftable *ct;
933 	deviter_t di;
934 
935 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
936 	     d = deviter_next(&di)) {
937 		if (!dev_in_cfdata(d, cf))
938 			continue;
939 		if ((error = config_detach(d, 0)) != 0)
940 			break;
941 	}
942 	deviter_release(&di);
943 	if (error) {
944 		aprint_error_dev(d, "unable to detach instance\n");
945 		return error;
946 	}
947 
948 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
949 		if (ct->ct_cfdata == cf) {
950 			TAILQ_REMOVE(&allcftables, ct, ct_list);
951 			kmem_free(ct, sizeof(*ct));
952 			return 0;
953 		}
954 	}
955 
956 	/* not found -- shouldn't happen */
957 	return EINVAL;
958 }
959 
960 /*
961  * Invoke the "match" routine for a cfdata entry on behalf of
962  * an external caller, usually a "submatch" routine.
963  */
964 int
965 config_match(device_t parent, cfdata_t cf, void *aux)
966 {
967 	struct cfattach *ca;
968 
969 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
970 	if (ca == NULL) {
971 		/* No attachment for this entry, oh well. */
972 		return 0;
973 	}
974 
975 	return (*ca->ca_match)(parent, cf, aux);
976 }
977 
978 /*
979  * Iterate over all potential children of some device, calling the given
980  * function (default being the child's match function) for each one.
981  * Nonzero returns are matches; the highest value returned is considered
982  * the best match.  Return the `found child' if we got a match, or NULL
983  * otherwise.  The `aux' pointer is simply passed on through.
984  *
985  * Note that this function is designed so that it can be used to apply
986  * an arbitrary function to all potential children (its return value
987  * can be ignored).
988  */
989 cfdata_t
990 config_search_loc(cfsubmatch_t fn, device_t parent,
991 		  const char *ifattr, const int *locs, void *aux)
992 {
993 	struct cftable *ct;
994 	cfdata_t cf;
995 	struct matchinfo m;
996 
997 	KASSERT(config_initialized);
998 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
999 
1000 	m.fn = fn;
1001 	m.parent = parent;
1002 	m.locs = locs;
1003 	m.aux = aux;
1004 	m.match = NULL;
1005 	m.pri = 0;
1006 
1007 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1008 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1009 
1010 			/* We don't match root nodes here. */
1011 			if (!cf->cf_pspec)
1012 				continue;
1013 
1014 			/*
1015 			 * Skip cf if no longer eligible, otherwise scan
1016 			 * through parents for one matching `parent', and
1017 			 * try match function.
1018 			 */
1019 			if (cf->cf_fstate == FSTATE_FOUND)
1020 				continue;
1021 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
1022 			    cf->cf_fstate == FSTATE_DSTAR)
1023 				continue;
1024 
1025 			/*
1026 			 * If an interface attribute was specified,
1027 			 * consider only children which attach to
1028 			 * that attribute.
1029 			 */
1030 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
1031 				continue;
1032 
1033 			if (cfparent_match(parent, cf->cf_pspec))
1034 				mapply(&m, cf);
1035 		}
1036 	}
1037 	return m.match;
1038 }
1039 
1040 cfdata_t
1041 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
1042     void *aux)
1043 {
1044 
1045 	return config_search_loc(fn, parent, ifattr, NULL, aux);
1046 }
1047 
1048 /*
1049  * Find the given root device.
1050  * This is much like config_search, but there is no parent.
1051  * Don't bother with multiple cfdata tables; the root node
1052  * must always be in the initial table.
1053  */
1054 cfdata_t
1055 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1056 {
1057 	cfdata_t cf;
1058 	const short *p;
1059 	struct matchinfo m;
1060 
1061 	m.fn = fn;
1062 	m.parent = ROOT;
1063 	m.aux = aux;
1064 	m.match = NULL;
1065 	m.pri = 0;
1066 	m.locs = 0;
1067 	/*
1068 	 * Look at root entries for matching name.  We do not bother
1069 	 * with found-state here since only one root should ever be
1070 	 * searched (and it must be done first).
1071 	 */
1072 	for (p = cfroots; *p >= 0; p++) {
1073 		cf = &cfdata[*p];
1074 		if (strcmp(cf->cf_name, rootname) == 0)
1075 			mapply(&m, cf);
1076 	}
1077 	return m.match;
1078 }
1079 
1080 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1081 
1082 /*
1083  * The given `aux' argument describes a device that has been found
1084  * on the given parent, but not necessarily configured.  Locate the
1085  * configuration data for that device (using the submatch function
1086  * provided, or using candidates' cd_match configuration driver
1087  * functions) and attach it, and return its device_t.  If the device was
1088  * not configured, call the given `print' function and return NULL.
1089  */
1090 device_t
1091 config_found_sm_loc(device_t parent,
1092 		const char *ifattr, const int *locs, void *aux,
1093 		cfprint_t print, cfsubmatch_t submatch)
1094 {
1095 	cfdata_t cf;
1096 
1097 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1098 		return(config_attach_loc(parent, cf, locs, aux, print));
1099 	if (print) {
1100 		if (config_do_twiddle && cold)
1101 			twiddle();
1102 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1103 	}
1104 
1105 	/*
1106 	 * This has the effect of mixing in a single timestamp to the
1107 	 * entropy pool.  Experiments indicate the estimator will almost
1108 	 * always attribute one bit of entropy to this sample; analysis
1109 	 * of device attach/detach timestamps on FreeBSD indicates 4
1110 	 * bits of entropy/sample so this seems appropriately conservative.
1111 	 */
1112 	rnd_add_uint32(&rnd_autoconf_source, 0);
1113 	return NULL;
1114 }
1115 
1116 device_t
1117 config_found_ia(device_t parent, const char *ifattr, void *aux,
1118     cfprint_t print)
1119 {
1120 
1121 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1122 }
1123 
1124 device_t
1125 config_found(device_t parent, void *aux, cfprint_t print)
1126 {
1127 
1128 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1129 }
1130 
1131 /*
1132  * As above, but for root devices.
1133  */
1134 device_t
1135 config_rootfound(const char *rootname, void *aux)
1136 {
1137 	cfdata_t cf;
1138 
1139 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1140 		return config_attach(ROOT, cf, aux, NULL);
1141 	aprint_error("root device %s not configured\n", rootname);
1142 	return NULL;
1143 }
1144 
1145 /* just like sprintf(buf, "%d") except that it works from the end */
1146 static char *
1147 number(char *ep, int n)
1148 {
1149 
1150 	*--ep = 0;
1151 	while (n >= 10) {
1152 		*--ep = (n % 10) + '0';
1153 		n /= 10;
1154 	}
1155 	*--ep = n + '0';
1156 	return ep;
1157 }
1158 
1159 /*
1160  * Expand the size of the cd_devs array if necessary.
1161  *
1162  * The caller must hold alldevs_lock. config_makeroom() may release and
1163  * re-acquire alldevs_lock, so callers should re-check conditions such
1164  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1165  * returns.
1166  */
1167 static void
1168 config_makeroom(int n, struct cfdriver *cd)
1169 {
1170 	int ondevs, nndevs;
1171 	device_t *osp, *nsp;
1172 
1173 	KASSERT(mutex_owned(&alldevs_lock));
1174 	alldevs_nwrite++;
1175 
1176 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1177 		;
1178 
1179 	while (n >= cd->cd_ndevs) {
1180 		/*
1181 		 * Need to expand the array.
1182 		 */
1183 		ondevs = cd->cd_ndevs;
1184 		osp = cd->cd_devs;
1185 
1186 		/*
1187 		 * Release alldevs_lock around allocation, which may
1188 		 * sleep.
1189 		 */
1190 		mutex_exit(&alldevs_lock);
1191 		nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
1192 		mutex_enter(&alldevs_lock);
1193 
1194 		/*
1195 		 * If another thread moved the array while we did
1196 		 * not hold alldevs_lock, try again.
1197 		 */
1198 		if (cd->cd_devs != osp) {
1199 			mutex_exit(&alldevs_lock);
1200 			kmem_free(nsp, sizeof(device_t[nndevs]));
1201 			mutex_enter(&alldevs_lock);
1202 			continue;
1203 		}
1204 
1205 		memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
1206 		if (ondevs != 0)
1207 			memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
1208 
1209 		cd->cd_ndevs = nndevs;
1210 		cd->cd_devs = nsp;
1211 		if (ondevs != 0) {
1212 			mutex_exit(&alldevs_lock);
1213 			kmem_free(osp, sizeof(device_t[ondevs]));
1214 			mutex_enter(&alldevs_lock);
1215 		}
1216 	}
1217 	KASSERT(mutex_owned(&alldevs_lock));
1218 	alldevs_nwrite--;
1219 }
1220 
1221 /*
1222  * Put dev into the devices list.
1223  */
1224 static void
1225 config_devlink(device_t dev)
1226 {
1227 
1228 	mutex_enter(&alldevs_lock);
1229 
1230 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1231 
1232 	dev->dv_add_gen = alldevs_gen;
1233 	/* It is safe to add a device to the tail of the list while
1234 	 * readers and writers are in the list.
1235 	 */
1236 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1237 	mutex_exit(&alldevs_lock);
1238 }
1239 
1240 static void
1241 config_devfree(device_t dev)
1242 {
1243 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1244 
1245 	if (dev->dv_cfattach->ca_devsize > 0)
1246 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1247 	if (priv)
1248 		kmem_free(dev, sizeof(*dev));
1249 }
1250 
1251 /*
1252  * Caller must hold alldevs_lock.
1253  */
1254 static void
1255 config_devunlink(device_t dev, struct devicelist *garbage)
1256 {
1257 	struct device_garbage *dg = &dev->dv_garbage;
1258 	cfdriver_t cd = device_cfdriver(dev);
1259 	int i;
1260 
1261 	KASSERT(mutex_owned(&alldevs_lock));
1262 
1263  	/* Unlink from device list.  Link to garbage list. */
1264 	TAILQ_REMOVE(&alldevs, dev, dv_list);
1265 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1266 
1267 	/* Remove from cfdriver's array. */
1268 	cd->cd_devs[dev->dv_unit] = NULL;
1269 
1270 	/*
1271 	 * If the device now has no units in use, unlink its softc array.
1272 	 */
1273 	for (i = 0; i < cd->cd_ndevs; i++) {
1274 		if (cd->cd_devs[i] != NULL)
1275 			break;
1276 	}
1277 	/* Nothing found.  Unlink, now.  Deallocate, later. */
1278 	if (i == cd->cd_ndevs) {
1279 		dg->dg_ndevs = cd->cd_ndevs;
1280 		dg->dg_devs = cd->cd_devs;
1281 		cd->cd_devs = NULL;
1282 		cd->cd_ndevs = 0;
1283 	}
1284 }
1285 
1286 static void
1287 config_devdelete(device_t dev)
1288 {
1289 	struct device_garbage *dg = &dev->dv_garbage;
1290 	device_lock_t dvl = device_getlock(dev);
1291 
1292 	if (dg->dg_devs != NULL)
1293 		kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1294 
1295 	cv_destroy(&dvl->dvl_cv);
1296 	mutex_destroy(&dvl->dvl_mtx);
1297 
1298 	KASSERT(dev->dv_properties != NULL);
1299 	prop_object_release(dev->dv_properties);
1300 
1301 	if (dev->dv_activity_handlers)
1302 		panic("%s with registered handlers", __func__);
1303 
1304 	if (dev->dv_locators) {
1305 		size_t amount = *--dev->dv_locators;
1306 		kmem_free(dev->dv_locators, amount);
1307 	}
1308 
1309 	config_devfree(dev);
1310 }
1311 
1312 static int
1313 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1314 {
1315 	int unit;
1316 
1317 	if (cf->cf_fstate == FSTATE_STAR) {
1318 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1319 			if (cd->cd_devs[unit] == NULL)
1320 				break;
1321 		/*
1322 		 * unit is now the unit of the first NULL device pointer,
1323 		 * or max(cd->cd_ndevs,cf->cf_unit).
1324 		 */
1325 	} else {
1326 		unit = cf->cf_unit;
1327 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1328 			unit = -1;
1329 	}
1330 	return unit;
1331 }
1332 
1333 static int
1334 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1335 {
1336 	struct alldevs_foray af;
1337 	int unit;
1338 
1339 	config_alldevs_enter(&af);
1340 	for (;;) {
1341 		unit = config_unit_nextfree(cd, cf);
1342 		if (unit == -1)
1343 			break;
1344 		if (unit < cd->cd_ndevs) {
1345 			cd->cd_devs[unit] = dev;
1346 			dev->dv_unit = unit;
1347 			break;
1348 		}
1349 		config_makeroom(unit, cd);
1350 	}
1351 	config_alldevs_exit(&af);
1352 
1353 	return unit;
1354 }
1355 
1356 static device_t
1357 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1358 {
1359 	cfdriver_t cd;
1360 	cfattach_t ca;
1361 	size_t lname, lunit;
1362 	const char *xunit;
1363 	int myunit;
1364 	char num[10];
1365 	device_t dev;
1366 	void *dev_private;
1367 	const struct cfiattrdata *ia;
1368 	device_lock_t dvl;
1369 
1370 	cd = config_cfdriver_lookup(cf->cf_name);
1371 	if (cd == NULL)
1372 		return NULL;
1373 
1374 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1375 	if (ca == NULL)
1376 		return NULL;
1377 
1378 	/* get memory for all device vars */
1379 	KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC)
1380 	    || ca->ca_devsize >= sizeof(struct device),
1381 	    "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize,
1382 	    sizeof(struct device));
1383 	if (ca->ca_devsize > 0) {
1384 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1385 	} else {
1386 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1387 		dev_private = NULL;
1388 	}
1389 
1390 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1391 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1392 	} else {
1393 		dev = dev_private;
1394 #ifdef DIAGNOSTIC
1395 		printf("%s has not been converted to device_t\n", cd->cd_name);
1396 #endif
1397 		KASSERT(dev != NULL);
1398 	}
1399 	dev->dv_class = cd->cd_class;
1400 	dev->dv_cfdata = cf;
1401 	dev->dv_cfdriver = cd;
1402 	dev->dv_cfattach = ca;
1403 	dev->dv_activity_count = 0;
1404 	dev->dv_activity_handlers = NULL;
1405 	dev->dv_private = dev_private;
1406 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
1407 
1408 	myunit = config_unit_alloc(dev, cd, cf);
1409 	if (myunit == -1) {
1410 		config_devfree(dev);
1411 		return NULL;
1412 	}
1413 
1414 	/* compute length of name and decimal expansion of unit number */
1415 	lname = strlen(cd->cd_name);
1416 	xunit = number(&num[sizeof(num)], myunit);
1417 	lunit = &num[sizeof(num)] - xunit;
1418 	if (lname + lunit > sizeof(dev->dv_xname))
1419 		panic("config_devalloc: device name too long");
1420 
1421 	dvl = device_getlock(dev);
1422 
1423 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1424 	cv_init(&dvl->dvl_cv, "pmfsusp");
1425 
1426 	memcpy(dev->dv_xname, cd->cd_name, lname);
1427 	memcpy(dev->dv_xname + lname, xunit, lunit);
1428 	dev->dv_parent = parent;
1429 	if (parent != NULL)
1430 		dev->dv_depth = parent->dv_depth + 1;
1431 	else
1432 		dev->dv_depth = 0;
1433 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
1434 	if (locs) {
1435 		KASSERT(parent); /* no locators at root */
1436 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1437 		dev->dv_locators =
1438 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1439 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1440 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1441 	}
1442 	dev->dv_properties = prop_dictionary_create();
1443 	KASSERT(dev->dv_properties != NULL);
1444 
1445 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1446 	    "device-driver", dev->dv_cfdriver->cd_name);
1447 	prop_dictionary_set_uint16(dev->dv_properties,
1448 	    "device-unit", dev->dv_unit);
1449 	if (parent != NULL) {
1450 		prop_dictionary_set_cstring(dev->dv_properties,
1451 		    "device-parent", device_xname(parent));
1452 	}
1453 
1454 	if (dev->dv_cfdriver->cd_attrs != NULL)
1455 		config_add_attrib_dict(dev);
1456 
1457 	return dev;
1458 }
1459 
1460 /*
1461  * Create an array of device attach attributes and add it
1462  * to the device's dv_properties dictionary.
1463  *
1464  * <key>interface-attributes</key>
1465  * <array>
1466  *    <dict>
1467  *       <key>attribute-name</key>
1468  *       <string>foo</string>
1469  *       <key>locators</key>
1470  *       <array>
1471  *          <dict>
1472  *             <key>loc-name</key>
1473  *             <string>foo-loc1</string>
1474  *          </dict>
1475  *          <dict>
1476  *             <key>loc-name</key>
1477  *             <string>foo-loc2</string>
1478  *             <key>default</key>
1479  *             <string>foo-loc2-default</string>
1480  *          </dict>
1481  *          ...
1482  *       </array>
1483  *    </dict>
1484  *    ...
1485  * </array>
1486  */
1487 
1488 static void
1489 config_add_attrib_dict(device_t dev)
1490 {
1491 	int i, j;
1492 	const struct cfiattrdata *ci;
1493 	prop_dictionary_t attr_dict, loc_dict;
1494 	prop_array_t attr_array, loc_array;
1495 
1496 	if ((attr_array = prop_array_create()) == NULL)
1497 		return;
1498 
1499 	for (i = 0; ; i++) {
1500 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1501 			break;
1502 		if ((attr_dict = prop_dictionary_create()) == NULL)
1503 			break;
1504 		prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
1505 		    ci->ci_name);
1506 
1507 		/* Create an array of the locator names and defaults */
1508 
1509 		if (ci->ci_loclen != 0 &&
1510 		    (loc_array = prop_array_create()) != NULL) {
1511 			for (j = 0; j < ci->ci_loclen; j++) {
1512 				loc_dict = prop_dictionary_create();
1513 				if (loc_dict == NULL)
1514 					continue;
1515 				prop_dictionary_set_cstring_nocopy(loc_dict,
1516 				    "loc-name", ci->ci_locdesc[j].cld_name);
1517 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1518 					prop_dictionary_set_cstring_nocopy(
1519 					    loc_dict, "default",
1520 					    ci->ci_locdesc[j].cld_defaultstr);
1521 				prop_array_set(loc_array, j, loc_dict);
1522 				prop_object_release(loc_dict);
1523 			}
1524 			prop_dictionary_set_and_rel(attr_dict, "locators",
1525 			    loc_array);
1526 		}
1527 		prop_array_add(attr_array, attr_dict);
1528 		prop_object_release(attr_dict);
1529 	}
1530 	if (i == 0)
1531 		prop_object_release(attr_array);
1532 	else
1533 		prop_dictionary_set_and_rel(dev->dv_properties,
1534 		    "interface-attributes", attr_array);
1535 
1536 	return;
1537 }
1538 
1539 /*
1540  * Attach a found device.
1541  */
1542 device_t
1543 config_attach_loc(device_t parent, cfdata_t cf,
1544 	const int *locs, void *aux, cfprint_t print)
1545 {
1546 	device_t dev;
1547 	struct cftable *ct;
1548 	const char *drvname;
1549 
1550 	dev = config_devalloc(parent, cf, locs);
1551 	if (!dev)
1552 		panic("config_attach: allocation of device softc failed");
1553 
1554 	/* XXX redundant - see below? */
1555 	if (cf->cf_fstate != FSTATE_STAR) {
1556 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1557 		cf->cf_fstate = FSTATE_FOUND;
1558 	}
1559 
1560 	config_devlink(dev);
1561 
1562 	if (config_do_twiddle && cold)
1563 		twiddle();
1564 	else
1565 		aprint_naive("Found ");
1566 	/*
1567 	 * We want the next two printfs for normal, verbose, and quiet,
1568 	 * but not silent (in which case, we're twiddling, instead).
1569 	 */
1570 	if (parent == ROOT) {
1571 		aprint_naive("%s (root)", device_xname(dev));
1572 		aprint_normal("%s (root)", device_xname(dev));
1573 	} else {
1574 		aprint_naive("%s at %s", device_xname(dev),
1575 		    device_xname(parent));
1576 		aprint_normal("%s at %s", device_xname(dev),
1577 		    device_xname(parent));
1578 		if (print)
1579 			(void) (*print)(aux, NULL);
1580 	}
1581 
1582 	/*
1583 	 * Before attaching, clobber any unfound devices that are
1584 	 * otherwise identical.
1585 	 * XXX code above is redundant?
1586 	 */
1587 	drvname = dev->dv_cfdriver->cd_name;
1588 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1589 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1590 			if (STREQ(cf->cf_name, drvname) &&
1591 			    cf->cf_unit == dev->dv_unit) {
1592 				if (cf->cf_fstate == FSTATE_NOTFOUND)
1593 					cf->cf_fstate = FSTATE_FOUND;
1594 			}
1595 		}
1596 	}
1597 	device_register(dev, aux);
1598 
1599 	/* Let userland know */
1600 	devmon_report_device(dev, true);
1601 
1602 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1603 
1604 	if (((dev->dv_flags & DVF_ATTACH_INPROGRESS) == 0)
1605 	    && !device_pmf_is_registered(dev))
1606 		aprint_debug_dev(dev,
1607 		    "WARNING: power management not supported\n");
1608 
1609 	config_process_deferred(&deferred_config_queue, dev);
1610 
1611 	device_register_post_config(dev, aux);
1612 	return dev;
1613 }
1614 
1615 device_t
1616 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1617 {
1618 
1619 	return config_attach_loc(parent, cf, NULL, aux, print);
1620 }
1621 
1622 /*
1623  * As above, but for pseudo-devices.  Pseudo-devices attached in this
1624  * way are silently inserted into the device tree, and their children
1625  * attached.
1626  *
1627  * Note that because pseudo-devices are attached silently, any information
1628  * the attach routine wishes to print should be prefixed with the device
1629  * name by the attach routine.
1630  */
1631 device_t
1632 config_attach_pseudo(cfdata_t cf)
1633 {
1634 	device_t dev;
1635 
1636 	dev = config_devalloc(ROOT, cf, NULL);
1637 	if (!dev)
1638 		return NULL;
1639 
1640 	/* XXX mark busy in cfdata */
1641 
1642 	if (cf->cf_fstate != FSTATE_STAR) {
1643 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1644 		cf->cf_fstate = FSTATE_FOUND;
1645 	}
1646 
1647 	config_devlink(dev);
1648 
1649 #if 0	/* XXXJRT not yet */
1650 	device_register(dev, NULL);	/* like a root node */
1651 #endif
1652 
1653 	/* Let userland know */
1654 	devmon_report_device(dev, true);
1655 
1656 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1657 
1658 	config_process_deferred(&deferred_config_queue, dev);
1659 	return dev;
1660 }
1661 
1662 /*
1663  * Caller must hold alldevs_lock.
1664  */
1665 static void
1666 config_collect_garbage(struct devicelist *garbage)
1667 {
1668 	device_t dv;
1669 
1670 	KASSERT(!cpu_intr_p());
1671 	KASSERT(!cpu_softintr_p());
1672 	KASSERT(mutex_owned(&alldevs_lock));
1673 
1674 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1675 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
1676 			if (dv->dv_del_gen != 0)
1677 				break;
1678 		}
1679 		if (dv == NULL) {
1680 			alldevs_garbage = false;
1681 			break;
1682 		}
1683 		config_devunlink(dv, garbage);
1684 	}
1685 	KASSERT(mutex_owned(&alldevs_lock));
1686 }
1687 
1688 static void
1689 config_dump_garbage(struct devicelist *garbage)
1690 {
1691 	device_t dv;
1692 
1693 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1694 		TAILQ_REMOVE(garbage, dv, dv_list);
1695 		config_devdelete(dv);
1696 	}
1697 }
1698 
1699 /*
1700  * Detach a device.  Optionally forced (e.g. because of hardware
1701  * removal) and quiet.  Returns zero if successful, non-zero
1702  * (an error code) otherwise.
1703  *
1704  * Note that this code wants to be run from a process context, so
1705  * that the detach can sleep to allow processes which have a device
1706  * open to run and unwind their stacks.
1707  */
1708 int
1709 config_detach(device_t dev, int flags)
1710 {
1711 	struct alldevs_foray af;
1712 	struct cftable *ct;
1713 	cfdata_t cf;
1714 	const struct cfattach *ca;
1715 	struct cfdriver *cd;
1716 	device_t d __diagused;
1717 	int rv = 0;
1718 
1719 	cf = dev->dv_cfdata;
1720 	KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
1721 		cf->cf_fstate == FSTATE_STAR),
1722 	    "config_detach: %s: bad device fstate: %d",
1723 	    device_xname(dev), cf ? cf->cf_fstate : -1);
1724 
1725 	cd = dev->dv_cfdriver;
1726 	KASSERT(cd != NULL);
1727 
1728 	ca = dev->dv_cfattach;
1729 	KASSERT(ca != NULL);
1730 
1731 	mutex_enter(&alldevs_lock);
1732 	if (dev->dv_del_gen != 0) {
1733 		mutex_exit(&alldevs_lock);
1734 #ifdef DIAGNOSTIC
1735 		printf("%s: %s is already detached\n", __func__,
1736 		    device_xname(dev));
1737 #endif /* DIAGNOSTIC */
1738 		return ENOENT;
1739 	}
1740 	alldevs_nwrite++;
1741 	mutex_exit(&alldevs_lock);
1742 
1743 	if (!detachall &&
1744 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1745 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1746 		rv = EOPNOTSUPP;
1747 	} else if (ca->ca_detach != NULL) {
1748 		rv = (*ca->ca_detach)(dev, flags);
1749 	} else
1750 		rv = EOPNOTSUPP;
1751 
1752 	/*
1753 	 * If it was not possible to detach the device, then we either
1754 	 * panic() (for the forced but failed case), or return an error.
1755 	 *
1756 	 * If it was possible to detach the device, ensure that the
1757 	 * device is deactivated.
1758 	 */
1759 	if (rv == 0)
1760 		dev->dv_flags &= ~DVF_ACTIVE;
1761 	else if ((flags & DETACH_FORCE) == 0)
1762 		goto out;
1763 	else {
1764 		panic("config_detach: forced detach of %s failed (%d)",
1765 		    device_xname(dev), rv);
1766 	}
1767 
1768 	/*
1769 	 * The device has now been successfully detached.
1770 	 */
1771 
1772 	/* Let userland know */
1773 	devmon_report_device(dev, false);
1774 
1775 #ifdef DIAGNOSTIC
1776 	/*
1777 	 * Sanity: If you're successfully detached, you should have no
1778 	 * children.  (Note that because children must be attached
1779 	 * after parents, we only need to search the latter part of
1780 	 * the list.)
1781 	 */
1782 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1783 	    d = TAILQ_NEXT(d, dv_list)) {
1784 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
1785 			printf("config_detach: detached device %s"
1786 			    " has children %s\n", device_xname(dev),
1787 			    device_xname(d));
1788 			panic("config_detach");
1789 		}
1790 	}
1791 #endif
1792 
1793 	/* notify the parent that the child is gone */
1794 	if (dev->dv_parent) {
1795 		device_t p = dev->dv_parent;
1796 		if (p->dv_cfattach->ca_childdetached)
1797 			(*p->dv_cfattach->ca_childdetached)(p, dev);
1798 	}
1799 
1800 	/*
1801 	 * Mark cfdata to show that the unit can be reused, if possible.
1802 	 */
1803 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1804 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1805 			if (STREQ(cf->cf_name, cd->cd_name)) {
1806 				if (cf->cf_fstate == FSTATE_FOUND &&
1807 				    cf->cf_unit == dev->dv_unit)
1808 					cf->cf_fstate = FSTATE_NOTFOUND;
1809 			}
1810 		}
1811 	}
1812 
1813 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1814 		aprint_normal_dev(dev, "detached\n");
1815 
1816 out:
1817 	config_alldevs_enter(&af);
1818 	KASSERT(alldevs_nwrite != 0);
1819 	--alldevs_nwrite;
1820 	if (rv == 0 && dev->dv_del_gen == 0) {
1821 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
1822 			config_devunlink(dev, &af.af_garbage);
1823 		else {
1824 			dev->dv_del_gen = alldevs_gen;
1825 			alldevs_garbage = true;
1826 		}
1827 	}
1828 	config_alldevs_exit(&af);
1829 
1830 	return rv;
1831 }
1832 
1833 int
1834 config_detach_children(device_t parent, int flags)
1835 {
1836 	device_t dv;
1837 	deviter_t di;
1838 	int error = 0;
1839 
1840 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1841 	     dv = deviter_next(&di)) {
1842 		if (device_parent(dv) != parent)
1843 			continue;
1844 		if ((error = config_detach(dv, flags)) != 0)
1845 			break;
1846 	}
1847 	deviter_release(&di);
1848 	return error;
1849 }
1850 
1851 device_t
1852 shutdown_first(struct shutdown_state *s)
1853 {
1854 	if (!s->initialized) {
1855 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1856 		s->initialized = true;
1857 	}
1858 	return shutdown_next(s);
1859 }
1860 
1861 device_t
1862 shutdown_next(struct shutdown_state *s)
1863 {
1864 	device_t dv;
1865 
1866 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1867 		;
1868 
1869 	if (dv == NULL)
1870 		s->initialized = false;
1871 
1872 	return dv;
1873 }
1874 
1875 bool
1876 config_detach_all(int how)
1877 {
1878 	static struct shutdown_state s;
1879 	device_t curdev;
1880 	bool progress = false;
1881 	int flags;
1882 
1883 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
1884 		return false;
1885 
1886 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
1887 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
1888 	else
1889 		flags = DETACH_SHUTDOWN;
1890 
1891 	for (curdev = shutdown_first(&s); curdev != NULL;
1892 	     curdev = shutdown_next(&s)) {
1893 		aprint_debug(" detaching %s, ", device_xname(curdev));
1894 		if (config_detach(curdev, flags) == 0) {
1895 			progress = true;
1896 			aprint_debug("success.");
1897 		} else
1898 			aprint_debug("failed.");
1899 	}
1900 	return progress;
1901 }
1902 
1903 static bool
1904 device_is_ancestor_of(device_t ancestor, device_t descendant)
1905 {
1906 	device_t dv;
1907 
1908 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1909 		if (device_parent(dv) == ancestor)
1910 			return true;
1911 	}
1912 	return false;
1913 }
1914 
1915 int
1916 config_deactivate(device_t dev)
1917 {
1918 	deviter_t di;
1919 	const struct cfattach *ca;
1920 	device_t descendant;
1921 	int s, rv = 0, oflags;
1922 
1923 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1924 	     descendant != NULL;
1925 	     descendant = deviter_next(&di)) {
1926 		if (dev != descendant &&
1927 		    !device_is_ancestor_of(dev, descendant))
1928 			continue;
1929 
1930 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1931 			continue;
1932 
1933 		ca = descendant->dv_cfattach;
1934 		oflags = descendant->dv_flags;
1935 
1936 		descendant->dv_flags &= ~DVF_ACTIVE;
1937 		if (ca->ca_activate == NULL)
1938 			continue;
1939 		s = splhigh();
1940 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1941 		splx(s);
1942 		if (rv != 0)
1943 			descendant->dv_flags = oflags;
1944 	}
1945 	deviter_release(&di);
1946 	return rv;
1947 }
1948 
1949 /*
1950  * Defer the configuration of the specified device until all
1951  * of its parent's devices have been attached.
1952  */
1953 void
1954 config_defer(device_t dev, void (*func)(device_t))
1955 {
1956 	struct deferred_config *dc;
1957 
1958 	if (dev->dv_parent == NULL)
1959 		panic("config_defer: can't defer config of a root device");
1960 
1961 #ifdef DIAGNOSTIC
1962 	TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1963 		if (dc->dc_dev == dev)
1964 			panic("config_defer: deferred twice");
1965 	}
1966 #endif
1967 
1968 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1969 	dc->dc_dev = dev;
1970 	dc->dc_func = func;
1971 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1972 	config_pending_incr(dev);
1973 }
1974 
1975 /*
1976  * Defer some autoconfiguration for a device until after interrupts
1977  * are enabled.
1978  */
1979 void
1980 config_interrupts(device_t dev, void (*func)(device_t))
1981 {
1982 	struct deferred_config *dc;
1983 
1984 	/*
1985 	 * If interrupts are enabled, callback now.
1986 	 */
1987 	if (cold == 0) {
1988 		(*func)(dev);
1989 		return;
1990 	}
1991 
1992 #ifdef DIAGNOSTIC
1993 	TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1994 		if (dc->dc_dev == dev)
1995 			panic("config_interrupts: deferred twice");
1996 	}
1997 #endif
1998 
1999 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2000 	dc->dc_dev = dev;
2001 	dc->dc_func = func;
2002 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
2003 	config_pending_incr(dev);
2004 	dev->dv_flags |= DVF_ATTACH_INPROGRESS;
2005 }
2006 
2007 /*
2008  * Defer some autoconfiguration for a device until after root file system
2009  * is mounted (to load firmware etc).
2010  */
2011 void
2012 config_mountroot(device_t dev, void (*func)(device_t))
2013 {
2014 	struct deferred_config *dc;
2015 
2016 	/*
2017 	 * If root file system is mounted, callback now.
2018 	 */
2019 	if (root_is_mounted) {
2020 		(*func)(dev);
2021 		return;
2022 	}
2023 
2024 #ifdef DIAGNOSTIC
2025 	TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
2026 		if (dc->dc_dev == dev)
2027 			panic("%s: deferred twice", __func__);
2028 	}
2029 #endif
2030 
2031 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2032 	dc->dc_dev = dev;
2033 	dc->dc_func = func;
2034 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
2035 }
2036 
2037 /*
2038  * Process a deferred configuration queue.
2039  */
2040 static void
2041 config_process_deferred(struct deferred_config_head *queue, device_t parent)
2042 {
2043 	struct deferred_config *dc, *ndc;
2044 
2045 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
2046 		ndc = TAILQ_NEXT(dc, dc_queue);
2047 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2048 			TAILQ_REMOVE(queue, dc, dc_queue);
2049 			(*dc->dc_func)(dc->dc_dev);
2050 			config_pending_decr(dc->dc_dev);
2051 			kmem_free(dc, sizeof(*dc));
2052 		}
2053 	}
2054 }
2055 
2056 /*
2057  * Manipulate the config_pending semaphore.
2058  */
2059 void
2060 config_pending_incr(device_t dev)
2061 {
2062 
2063 	mutex_enter(&config_misc_lock);
2064 	config_pending++;
2065 #ifdef DEBUG_AUTOCONF
2066 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2067 #endif
2068 	mutex_exit(&config_misc_lock);
2069 }
2070 
2071 void
2072 config_pending_decr(device_t dev)
2073 {
2074 
2075 	KASSERT(0 < config_pending);
2076 	mutex_enter(&config_misc_lock);
2077 	config_pending--;
2078 #ifdef DEBUG_AUTOCONF
2079 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2080 #endif
2081 	if (config_pending == 0)
2082 		cv_broadcast(&config_misc_cv);
2083 	mutex_exit(&config_misc_lock);
2084 }
2085 
2086 /*
2087  * Register a "finalization" routine.  Finalization routines are
2088  * called iteratively once all real devices have been found during
2089  * autoconfiguration, for as long as any one finalizer has done
2090  * any work.
2091  */
2092 int
2093 config_finalize_register(device_t dev, int (*fn)(device_t))
2094 {
2095 	struct finalize_hook *f;
2096 
2097 	/*
2098 	 * If finalization has already been done, invoke the
2099 	 * callback function now.
2100 	 */
2101 	if (config_finalize_done) {
2102 		while ((*fn)(dev) != 0)
2103 			/* loop */ ;
2104 		return 0;
2105 	}
2106 
2107 	/* Ensure this isn't already on the list. */
2108 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2109 		if (f->f_func == fn && f->f_dev == dev)
2110 			return EEXIST;
2111 	}
2112 
2113 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
2114 	f->f_func = fn;
2115 	f->f_dev = dev;
2116 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2117 
2118 	return 0;
2119 }
2120 
2121 void
2122 config_finalize(void)
2123 {
2124 	struct finalize_hook *f;
2125 	struct pdevinit *pdev;
2126 	extern struct pdevinit pdevinit[];
2127 	int errcnt, rv;
2128 
2129 	/*
2130 	 * Now that device driver threads have been created, wait for
2131 	 * them to finish any deferred autoconfiguration.
2132 	 */
2133 	mutex_enter(&config_misc_lock);
2134 	while (config_pending != 0)
2135 		cv_wait(&config_misc_cv, &config_misc_lock);
2136 	mutex_exit(&config_misc_lock);
2137 
2138 	KERNEL_LOCK(1, NULL);
2139 
2140 	/* Attach pseudo-devices. */
2141 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2142 		(*pdev->pdev_attach)(pdev->pdev_count);
2143 
2144 	/* Run the hooks until none of them does any work. */
2145 	do {
2146 		rv = 0;
2147 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
2148 			rv |= (*f->f_func)(f->f_dev);
2149 	} while (rv != 0);
2150 
2151 	config_finalize_done = 1;
2152 
2153 	/* Now free all the hooks. */
2154 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2155 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
2156 		kmem_free(f, sizeof(*f));
2157 	}
2158 
2159 	KERNEL_UNLOCK_ONE(NULL);
2160 
2161 	errcnt = aprint_get_error_count();
2162 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2163 	    (boothowto & AB_VERBOSE) == 0) {
2164 		mutex_enter(&config_misc_lock);
2165 		if (config_do_twiddle) {
2166 			config_do_twiddle = 0;
2167 			printf_nolog(" done.\n");
2168 		}
2169 		mutex_exit(&config_misc_lock);
2170 	}
2171 	if (errcnt != 0) {
2172 		printf("WARNING: %d error%s while detecting hardware; "
2173 		    "check system log.\n", errcnt,
2174 		    errcnt == 1 ? "" : "s");
2175 	}
2176 }
2177 
2178 void
2179 config_twiddle_init(void)
2180 {
2181 
2182 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2183 		config_do_twiddle = 1;
2184 	}
2185 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2186 }
2187 
2188 void
2189 config_twiddle_fn(void *cookie)
2190 {
2191 
2192 	mutex_enter(&config_misc_lock);
2193 	if (config_do_twiddle) {
2194 		twiddle();
2195 		callout_schedule(&config_twiddle_ch, mstohz(100));
2196 	}
2197 	mutex_exit(&config_misc_lock);
2198 }
2199 
2200 static void
2201 config_alldevs_enter(struct alldevs_foray *af)
2202 {
2203 	TAILQ_INIT(&af->af_garbage);
2204 	mutex_enter(&alldevs_lock);
2205 	config_collect_garbage(&af->af_garbage);
2206 }
2207 
2208 static void
2209 config_alldevs_exit(struct alldevs_foray *af)
2210 {
2211 	mutex_exit(&alldevs_lock);
2212 	config_dump_garbage(&af->af_garbage);
2213 }
2214 
2215 /*
2216  * device_lookup:
2217  *
2218  *	Look up a device instance for a given driver.
2219  */
2220 device_t
2221 device_lookup(cfdriver_t cd, int unit)
2222 {
2223 	device_t dv;
2224 
2225 	mutex_enter(&alldevs_lock);
2226 	if (unit < 0 || unit >= cd->cd_ndevs)
2227 		dv = NULL;
2228 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2229 		dv = NULL;
2230 	mutex_exit(&alldevs_lock);
2231 
2232 	return dv;
2233 }
2234 
2235 /*
2236  * device_lookup_private:
2237  *
2238  *	Look up a softc instance for a given driver.
2239  */
2240 void *
2241 device_lookup_private(cfdriver_t cd, int unit)
2242 {
2243 
2244 	return device_private(device_lookup(cd, unit));
2245 }
2246 
2247 /*
2248  * device_find_by_xname:
2249  *
2250  *	Returns the device of the given name or NULL if it doesn't exist.
2251  */
2252 device_t
2253 device_find_by_xname(const char *name)
2254 {
2255 	device_t dv;
2256 	deviter_t di;
2257 
2258 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2259 		if (strcmp(device_xname(dv), name) == 0)
2260 			break;
2261 	}
2262 	deviter_release(&di);
2263 
2264 	return dv;
2265 }
2266 
2267 /*
2268  * device_find_by_driver_unit:
2269  *
2270  *	Returns the device of the given driver name and unit or
2271  *	NULL if it doesn't exist.
2272  */
2273 device_t
2274 device_find_by_driver_unit(const char *name, int unit)
2275 {
2276 	struct cfdriver *cd;
2277 
2278 	if ((cd = config_cfdriver_lookup(name)) == NULL)
2279 		return NULL;
2280 	return device_lookup(cd, unit);
2281 }
2282 
2283 /*
2284  * device_compatible_match:
2285  *
2286  *	Match a driver's "compatible" data against a device's
2287  *	"compatible" strings.  If a match is found, we return
2288  *	a weighted match result, and optionally the matching
2289  *	entry.
2290  */
2291 int
2292 device_compatible_match(const char **device_compats, int ndevice_compats,
2293 			const struct device_compatible_entry *driver_compats,
2294 			const struct device_compatible_entry **matching_entryp)
2295 {
2296 	const struct device_compatible_entry *dce = NULL;
2297 	int i, match_weight;
2298 
2299 	if (ndevice_compats == 0 || device_compats == NULL ||
2300 	    driver_compats == NULL)
2301 		return 0;
2302 
2303 	/*
2304 	 * We take the first match because we start with the most-specific
2305 	 * device compatible string.
2306 	 */
2307 	for (i = 0, match_weight = ndevice_compats - 1;
2308 	     i < ndevice_compats;
2309 	     i++, match_weight--) {
2310 		for (dce = driver_compats; dce->compat != NULL; dce++) {
2311 			if (strcmp(dce->compat, device_compats[i]) == 0) {
2312 				KASSERT(match_weight >= 0);
2313 				if (matching_entryp)
2314 					*matching_entryp = dce;
2315 				return 1 + match_weight;
2316 			}
2317 		}
2318 	}
2319 	return 0;
2320 }
2321 
2322 /*
2323  * Power management related functions.
2324  */
2325 
2326 bool
2327 device_pmf_is_registered(device_t dev)
2328 {
2329 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2330 }
2331 
2332 bool
2333 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2334 {
2335 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2336 		return true;
2337 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2338 		return false;
2339 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2340 	    dev->dv_driver_suspend != NULL &&
2341 	    !(*dev->dv_driver_suspend)(dev, qual))
2342 		return false;
2343 
2344 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2345 	return true;
2346 }
2347 
2348 bool
2349 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2350 {
2351 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2352 		return true;
2353 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2354 		return false;
2355 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2356 	    dev->dv_driver_resume != NULL &&
2357 	    !(*dev->dv_driver_resume)(dev, qual))
2358 		return false;
2359 
2360 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2361 	return true;
2362 }
2363 
2364 bool
2365 device_pmf_driver_shutdown(device_t dev, int how)
2366 {
2367 
2368 	if (*dev->dv_driver_shutdown != NULL &&
2369 	    !(*dev->dv_driver_shutdown)(dev, how))
2370 		return false;
2371 	return true;
2372 }
2373 
2374 bool
2375 device_pmf_driver_register(device_t dev,
2376     bool (*suspend)(device_t, const pmf_qual_t *),
2377     bool (*resume)(device_t, const pmf_qual_t *),
2378     bool (*shutdown)(device_t, int))
2379 {
2380 	dev->dv_driver_suspend = suspend;
2381 	dev->dv_driver_resume = resume;
2382 	dev->dv_driver_shutdown = shutdown;
2383 	dev->dv_flags |= DVF_POWER_HANDLERS;
2384 	return true;
2385 }
2386 
2387 static const char *
2388 curlwp_name(void)
2389 {
2390 	if (curlwp->l_name != NULL)
2391 		return curlwp->l_name;
2392 	else
2393 		return curlwp->l_proc->p_comm;
2394 }
2395 
2396 void
2397 device_pmf_driver_deregister(device_t dev)
2398 {
2399 	device_lock_t dvl = device_getlock(dev);
2400 
2401 	dev->dv_driver_suspend = NULL;
2402 	dev->dv_driver_resume = NULL;
2403 
2404 	mutex_enter(&dvl->dvl_mtx);
2405 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
2406 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2407 		/* Wake a thread that waits for the lock.  That
2408 		 * thread will fail to acquire the lock, and then
2409 		 * it will wake the next thread that waits for the
2410 		 * lock, or else it will wake us.
2411 		 */
2412 		cv_signal(&dvl->dvl_cv);
2413 		pmflock_debug(dev, __func__, __LINE__);
2414 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2415 		pmflock_debug(dev, __func__, __LINE__);
2416 	}
2417 	mutex_exit(&dvl->dvl_mtx);
2418 }
2419 
2420 bool
2421 device_pmf_driver_child_register(device_t dev)
2422 {
2423 	device_t parent = device_parent(dev);
2424 
2425 	if (parent == NULL || parent->dv_driver_child_register == NULL)
2426 		return true;
2427 	return (*parent->dv_driver_child_register)(dev);
2428 }
2429 
2430 void
2431 device_pmf_driver_set_child_register(device_t dev,
2432     bool (*child_register)(device_t))
2433 {
2434 	dev->dv_driver_child_register = child_register;
2435 }
2436 
2437 static void
2438 pmflock_debug(device_t dev, const char *func, int line)
2439 {
2440 	device_lock_t dvl = device_getlock(dev);
2441 
2442 	aprint_debug_dev(dev,
2443 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
2444 	    curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
2445 }
2446 
2447 static bool
2448 device_pmf_lock1(device_t dev)
2449 {
2450 	device_lock_t dvl = device_getlock(dev);
2451 
2452 	while (device_pmf_is_registered(dev) &&
2453 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2454 		dvl->dvl_nwait++;
2455 		pmflock_debug(dev, __func__, __LINE__);
2456 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2457 		pmflock_debug(dev, __func__, __LINE__);
2458 		dvl->dvl_nwait--;
2459 	}
2460 	if (!device_pmf_is_registered(dev)) {
2461 		pmflock_debug(dev, __func__, __LINE__);
2462 		/* We could not acquire the lock, but some other thread may
2463 		 * wait for it, also.  Wake that thread.
2464 		 */
2465 		cv_signal(&dvl->dvl_cv);
2466 		return false;
2467 	}
2468 	dvl->dvl_nlock++;
2469 	dvl->dvl_holder = curlwp;
2470 	pmflock_debug(dev, __func__, __LINE__);
2471 	return true;
2472 }
2473 
2474 bool
2475 device_pmf_lock(device_t dev)
2476 {
2477 	bool rc;
2478 	device_lock_t dvl = device_getlock(dev);
2479 
2480 	mutex_enter(&dvl->dvl_mtx);
2481 	rc = device_pmf_lock1(dev);
2482 	mutex_exit(&dvl->dvl_mtx);
2483 
2484 	return rc;
2485 }
2486 
2487 void
2488 device_pmf_unlock(device_t dev)
2489 {
2490 	device_lock_t dvl = device_getlock(dev);
2491 
2492 	KASSERT(dvl->dvl_nlock > 0);
2493 	mutex_enter(&dvl->dvl_mtx);
2494 	if (--dvl->dvl_nlock == 0)
2495 		dvl->dvl_holder = NULL;
2496 	cv_signal(&dvl->dvl_cv);
2497 	pmflock_debug(dev, __func__, __LINE__);
2498 	mutex_exit(&dvl->dvl_mtx);
2499 }
2500 
2501 device_lock_t
2502 device_getlock(device_t dev)
2503 {
2504 	return &dev->dv_lock;
2505 }
2506 
2507 void *
2508 device_pmf_bus_private(device_t dev)
2509 {
2510 	return dev->dv_bus_private;
2511 }
2512 
2513 bool
2514 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2515 {
2516 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2517 		return true;
2518 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2519 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2520 		return false;
2521 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2522 	    dev->dv_bus_suspend != NULL &&
2523 	    !(*dev->dv_bus_suspend)(dev, qual))
2524 		return false;
2525 
2526 	dev->dv_flags |= DVF_BUS_SUSPENDED;
2527 	return true;
2528 }
2529 
2530 bool
2531 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2532 {
2533 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2534 		return true;
2535 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2536 	    dev->dv_bus_resume != NULL &&
2537 	    !(*dev->dv_bus_resume)(dev, qual))
2538 		return false;
2539 
2540 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2541 	return true;
2542 }
2543 
2544 bool
2545 device_pmf_bus_shutdown(device_t dev, int how)
2546 {
2547 
2548 	if (*dev->dv_bus_shutdown != NULL &&
2549 	    !(*dev->dv_bus_shutdown)(dev, how))
2550 		return false;
2551 	return true;
2552 }
2553 
2554 void
2555 device_pmf_bus_register(device_t dev, void *priv,
2556     bool (*suspend)(device_t, const pmf_qual_t *),
2557     bool (*resume)(device_t, const pmf_qual_t *),
2558     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2559 {
2560 	dev->dv_bus_private = priv;
2561 	dev->dv_bus_resume = resume;
2562 	dev->dv_bus_suspend = suspend;
2563 	dev->dv_bus_shutdown = shutdown;
2564 	dev->dv_bus_deregister = deregister;
2565 }
2566 
2567 void
2568 device_pmf_bus_deregister(device_t dev)
2569 {
2570 	if (dev->dv_bus_deregister == NULL)
2571 		return;
2572 	(*dev->dv_bus_deregister)(dev);
2573 	dev->dv_bus_private = NULL;
2574 	dev->dv_bus_suspend = NULL;
2575 	dev->dv_bus_resume = NULL;
2576 	dev->dv_bus_deregister = NULL;
2577 }
2578 
2579 void *
2580 device_pmf_class_private(device_t dev)
2581 {
2582 	return dev->dv_class_private;
2583 }
2584 
2585 bool
2586 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2587 {
2588 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2589 		return true;
2590 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2591 	    dev->dv_class_suspend != NULL &&
2592 	    !(*dev->dv_class_suspend)(dev, qual))
2593 		return false;
2594 
2595 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
2596 	return true;
2597 }
2598 
2599 bool
2600 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2601 {
2602 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2603 		return true;
2604 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2605 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2606 		return false;
2607 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2608 	    dev->dv_class_resume != NULL &&
2609 	    !(*dev->dv_class_resume)(dev, qual))
2610 		return false;
2611 
2612 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2613 	return true;
2614 }
2615 
2616 void
2617 device_pmf_class_register(device_t dev, void *priv,
2618     bool (*suspend)(device_t, const pmf_qual_t *),
2619     bool (*resume)(device_t, const pmf_qual_t *),
2620     void (*deregister)(device_t))
2621 {
2622 	dev->dv_class_private = priv;
2623 	dev->dv_class_suspend = suspend;
2624 	dev->dv_class_resume = resume;
2625 	dev->dv_class_deregister = deregister;
2626 }
2627 
2628 void
2629 device_pmf_class_deregister(device_t dev)
2630 {
2631 	if (dev->dv_class_deregister == NULL)
2632 		return;
2633 	(*dev->dv_class_deregister)(dev);
2634 	dev->dv_class_private = NULL;
2635 	dev->dv_class_suspend = NULL;
2636 	dev->dv_class_resume = NULL;
2637 	dev->dv_class_deregister = NULL;
2638 }
2639 
2640 bool
2641 device_active(device_t dev, devactive_t type)
2642 {
2643 	size_t i;
2644 
2645 	if (dev->dv_activity_count == 0)
2646 		return false;
2647 
2648 	for (i = 0; i < dev->dv_activity_count; ++i) {
2649 		if (dev->dv_activity_handlers[i] == NULL)
2650 			break;
2651 		(*dev->dv_activity_handlers[i])(dev, type);
2652 	}
2653 
2654 	return true;
2655 }
2656 
2657 bool
2658 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2659 {
2660 	void (**new_handlers)(device_t, devactive_t);
2661 	void (**old_handlers)(device_t, devactive_t);
2662 	size_t i, old_size, new_size;
2663 	int s;
2664 
2665 	old_handlers = dev->dv_activity_handlers;
2666 	old_size = dev->dv_activity_count;
2667 
2668 	KASSERT(old_size == 0 || old_handlers != NULL);
2669 
2670 	for (i = 0; i < old_size; ++i) {
2671 		KASSERT(old_handlers[i] != handler);
2672 		if (old_handlers[i] == NULL) {
2673 			old_handlers[i] = handler;
2674 			return true;
2675 		}
2676 	}
2677 
2678 	new_size = old_size + 4;
2679 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2680 
2681 	for (i = 0; i < old_size; ++i)
2682 		new_handlers[i] = old_handlers[i];
2683 	new_handlers[old_size] = handler;
2684 	for (i = old_size+1; i < new_size; ++i)
2685 		new_handlers[i] = NULL;
2686 
2687 	s = splhigh();
2688 	dev->dv_activity_count = new_size;
2689 	dev->dv_activity_handlers = new_handlers;
2690 	splx(s);
2691 
2692 	if (old_size > 0)
2693 		kmem_free(old_handlers, sizeof(void * [old_size]));
2694 
2695 	return true;
2696 }
2697 
2698 void
2699 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2700 {
2701 	void (**old_handlers)(device_t, devactive_t);
2702 	size_t i, old_size;
2703 	int s;
2704 
2705 	old_handlers = dev->dv_activity_handlers;
2706 	old_size = dev->dv_activity_count;
2707 
2708 	for (i = 0; i < old_size; ++i) {
2709 		if (old_handlers[i] == handler)
2710 			break;
2711 		if (old_handlers[i] == NULL)
2712 			return; /* XXX panic? */
2713 	}
2714 
2715 	if (i == old_size)
2716 		return; /* XXX panic? */
2717 
2718 	for (; i < old_size - 1; ++i) {
2719 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2720 			continue;
2721 
2722 		if (i == 0) {
2723 			s = splhigh();
2724 			dev->dv_activity_count = 0;
2725 			dev->dv_activity_handlers = NULL;
2726 			splx(s);
2727 			kmem_free(old_handlers, sizeof(void *[old_size]));
2728 		}
2729 		return;
2730 	}
2731 	old_handlers[i] = NULL;
2732 }
2733 
2734 /* Return true iff the device_t `dev' exists at generation `gen'. */
2735 static bool
2736 device_exists_at(device_t dv, devgen_t gen)
2737 {
2738 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2739 	    dv->dv_add_gen <= gen;
2740 }
2741 
2742 static bool
2743 deviter_visits(const deviter_t *di, device_t dv)
2744 {
2745 	return device_exists_at(dv, di->di_gen);
2746 }
2747 
2748 /*
2749  * Device Iteration
2750  *
2751  * deviter_t: a device iterator.  Holds state for a "walk" visiting
2752  *     each device_t's in the device tree.
2753  *
2754  * deviter_init(di, flags): initialize the device iterator `di'
2755  *     to "walk" the device tree.  deviter_next(di) will return
2756  *     the first device_t in the device tree, or NULL if there are
2757  *     no devices.
2758  *
2759  *     `flags' is one or more of DEVITER_F_RW, indicating that the
2760  *     caller intends to modify the device tree by calling
2761  *     config_detach(9) on devices in the order that the iterator
2762  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2763  *     nearest the "root" of the device tree to be returned, first;
2764  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2765  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2766  *     indicating both that deviter_init() should not respect any
2767  *     locks on the device tree, and that deviter_next(di) may run
2768  *     in more than one LWP before the walk has finished.
2769  *
2770  *     Only one DEVITER_F_RW iterator may be in the device tree at
2771  *     once.
2772  *
2773  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2774  *
2775  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2776  *     DEVITER_F_LEAVES_FIRST are used in combination.
2777  *
2778  * deviter_first(di, flags): initialize the device iterator `di'
2779  *     and return the first device_t in the device tree, or NULL
2780  *     if there are no devices.  The statement
2781  *
2782  *         dv = deviter_first(di);
2783  *
2784  *     is shorthand for
2785  *
2786  *         deviter_init(di);
2787  *         dv = deviter_next(di);
2788  *
2789  * deviter_next(di): return the next device_t in the device tree,
2790  *     or NULL if there are no more devices.  deviter_next(di)
2791  *     is undefined if `di' was not initialized with deviter_init() or
2792  *     deviter_first().
2793  *
2794  * deviter_release(di): stops iteration (subsequent calls to
2795  *     deviter_next() will return NULL), releases any locks and
2796  *     resources held by the device iterator.
2797  *
2798  * Device iteration does not return device_t's in any particular
2799  * order.  An iterator will never return the same device_t twice.
2800  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2801  * is called repeatedly on the same `di', it will eventually return
2802  * NULL.  It is ok to attach/detach devices during device iteration.
2803  */
2804 void
2805 deviter_init(deviter_t *di, deviter_flags_t flags)
2806 {
2807 	device_t dv;
2808 
2809 	memset(di, 0, sizeof(*di));
2810 
2811 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
2812 		flags |= DEVITER_F_RW;
2813 
2814 	mutex_enter(&alldevs_lock);
2815 	if ((flags & DEVITER_F_RW) != 0)
2816 		alldevs_nwrite++;
2817 	else
2818 		alldevs_nread++;
2819 	di->di_gen = alldevs_gen++;
2820 	di->di_flags = flags;
2821 
2822 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2823 	case DEVITER_F_LEAVES_FIRST:
2824 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
2825 			if (!deviter_visits(di, dv))
2826 				continue;
2827 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2828 		}
2829 		break;
2830 	case DEVITER_F_ROOT_FIRST:
2831 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
2832 			if (!deviter_visits(di, dv))
2833 				continue;
2834 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2835 		}
2836 		break;
2837 	default:
2838 		break;
2839 	}
2840 
2841 	deviter_reinit(di);
2842 	mutex_exit(&alldevs_lock);
2843 }
2844 
2845 static void
2846 deviter_reinit(deviter_t *di)
2847 {
2848 
2849 	KASSERT(mutex_owned(&alldevs_lock));
2850 	if ((di->di_flags & DEVITER_F_RW) != 0)
2851 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2852 	else
2853 		di->di_prev = TAILQ_FIRST(&alldevs);
2854 }
2855 
2856 device_t
2857 deviter_first(deviter_t *di, deviter_flags_t flags)
2858 {
2859 
2860 	deviter_init(di, flags);
2861 	return deviter_next(di);
2862 }
2863 
2864 static device_t
2865 deviter_next2(deviter_t *di)
2866 {
2867 	device_t dv;
2868 
2869 	KASSERT(mutex_owned(&alldevs_lock));
2870 
2871 	dv = di->di_prev;
2872 
2873 	if (dv == NULL)
2874 		return NULL;
2875 
2876 	if ((di->di_flags & DEVITER_F_RW) != 0)
2877 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2878 	else
2879 		di->di_prev = TAILQ_NEXT(dv, dv_list);
2880 
2881 	return dv;
2882 }
2883 
2884 static device_t
2885 deviter_next1(deviter_t *di)
2886 {
2887 	device_t dv;
2888 
2889 	KASSERT(mutex_owned(&alldevs_lock));
2890 
2891 	do {
2892 		dv = deviter_next2(di);
2893 	} while (dv != NULL && !deviter_visits(di, dv));
2894 
2895 	return dv;
2896 }
2897 
2898 device_t
2899 deviter_next(deviter_t *di)
2900 {
2901 	device_t dv = NULL;
2902 
2903 	mutex_enter(&alldevs_lock);
2904 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2905 	case 0:
2906 		dv = deviter_next1(di);
2907 		break;
2908 	case DEVITER_F_LEAVES_FIRST:
2909 		while (di->di_curdepth >= 0) {
2910 			if ((dv = deviter_next1(di)) == NULL) {
2911 				di->di_curdepth--;
2912 				deviter_reinit(di);
2913 			} else if (dv->dv_depth == di->di_curdepth)
2914 				break;
2915 		}
2916 		break;
2917 	case DEVITER_F_ROOT_FIRST:
2918 		while (di->di_curdepth <= di->di_maxdepth) {
2919 			if ((dv = deviter_next1(di)) == NULL) {
2920 				di->di_curdepth++;
2921 				deviter_reinit(di);
2922 			} else if (dv->dv_depth == di->di_curdepth)
2923 				break;
2924 		}
2925 		break;
2926 	default:
2927 		break;
2928 	}
2929 	mutex_exit(&alldevs_lock);
2930 
2931 	return dv;
2932 }
2933 
2934 void
2935 deviter_release(deviter_t *di)
2936 {
2937 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2938 
2939 	mutex_enter(&alldevs_lock);
2940 	if (rw)
2941 		--alldevs_nwrite;
2942 	else
2943 		--alldevs_nread;
2944 	/* XXX wake a garbage-collection thread */
2945 	mutex_exit(&alldevs_lock);
2946 }
2947 
2948 const char *
2949 cfdata_ifattr(const struct cfdata *cf)
2950 {
2951 	return cf->cf_pspec->cfp_iattr;
2952 }
2953 
2954 bool
2955 ifattr_match(const char *snull, const char *t)
2956 {
2957 	return (snull == NULL) || strcmp(snull, t) == 0;
2958 }
2959 
2960 void
2961 null_childdetached(device_t self, device_t child)
2962 {
2963 	/* do nothing */
2964 }
2965 
2966 static void
2967 sysctl_detach_setup(struct sysctllog **clog)
2968 {
2969 
2970 	sysctl_createv(clog, 0, NULL, NULL,
2971 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2972 		CTLTYPE_BOOL, "detachall",
2973 		SYSCTL_DESCR("Detach all devices at shutdown"),
2974 		NULL, 0, &detachall, 0,
2975 		CTL_KERN, CTL_CREATE, CTL_EOL);
2976 }
2977