xref: /netbsd-src/sys/kern/subr_autoconf.c (revision aad9773e38ed2370a628a6416e098f9008fc10a7)
1 /* $NetBSD: subr_autoconf.c,v 1.233 2014/11/06 08:46:04 uebayasi Exp $ */
2 
3 /*
4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *          This product includes software developed for the
18  *          NetBSD Project.  See http://www.NetBSD.org/ for
19  *          information about NetBSD.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35  */
36 
37 /*
38  * Copyright (c) 1992, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This software was developed by the Computer Systems Engineering group
42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43  * contributed to Berkeley.
44  *
45  * All advertising materials mentioning features or use of this software
46  * must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Lawrence Berkeley Laboratories.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
75  *
76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
77  */
78 
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.233 2014/11/06 08:46:04 uebayasi Exp $");
81 
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86 
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110 
111 #include <sys/disk.h>
112 
113 #include <sys/rnd.h>
114 
115 #include <machine/limits.h>
116 
117 /*
118  * Autoconfiguration subroutines.
119  */
120 
121 /*
122  * Device autoconfiguration timings are mixed into the entropy pool.
123  */
124 extern krndsource_t rnd_autoconf_source;
125 
126 /*
127  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
128  * devices and drivers are found via these tables.
129  */
130 extern struct cfdata cfdata[];
131 extern const short cfroots[];
132 
133 /*
134  * List of all cfdriver structures.  We use this to detect duplicates
135  * when other cfdrivers are loaded.
136  */
137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
138 extern struct cfdriver * const cfdriver_list_initial[];
139 
140 /*
141  * Initial list of cfattach's.
142  */
143 extern const struct cfattachinit cfattachinit[];
144 
145 /*
146  * List of cfdata tables.  We always have one such list -- the one
147  * built statically when the kernel was configured.
148  */
149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
150 static struct cftable initcftable;
151 
152 #define	ROOT ((device_t)NULL)
153 
154 struct matchinfo {
155 	cfsubmatch_t fn;
156 	device_t parent;
157 	const int *locs;
158 	void	*aux;
159 	struct	cfdata *match;
160 	int	pri;
161 };
162 
163 struct alldevs_foray {
164 	int			af_s;
165 	struct devicelist	af_garbage;
166 };
167 
168 static char *number(char *, int);
169 static void mapply(struct matchinfo *, cfdata_t);
170 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
171 static void config_devdelete(device_t);
172 static void config_devunlink(device_t, struct devicelist *);
173 static void config_makeroom(int, struct cfdriver *);
174 static void config_devlink(device_t);
175 static void config_alldevs_unlock(int);
176 static int config_alldevs_lock(void);
177 static void config_alldevs_enter(struct alldevs_foray *);
178 static void config_alldevs_exit(struct alldevs_foray *);
179 static void config_add_attrib_dict(device_t);
180 
181 static void config_collect_garbage(struct devicelist *);
182 static void config_dump_garbage(struct devicelist *);
183 
184 static void pmflock_debug(device_t, const char *, int);
185 
186 static device_t deviter_next1(deviter_t *);
187 static void deviter_reinit(deviter_t *);
188 
189 struct deferred_config {
190 	TAILQ_ENTRY(deferred_config) dc_queue;
191 	device_t dc_dev;
192 	void (*dc_func)(device_t);
193 };
194 
195 TAILQ_HEAD(deferred_config_head, deferred_config);
196 
197 struct deferred_config_head deferred_config_queue =
198 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
199 struct deferred_config_head interrupt_config_queue =
200 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
201 int interrupt_config_threads = 8;
202 struct deferred_config_head mountroot_config_queue =
203 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
204 int mountroot_config_threads = 2;
205 static bool root_is_mounted = false;
206 
207 static void config_process_deferred(struct deferred_config_head *, device_t);
208 
209 /* Hooks to finalize configuration once all real devices have been found. */
210 struct finalize_hook {
211 	TAILQ_ENTRY(finalize_hook) f_list;
212 	int (*f_func)(device_t);
213 	device_t f_dev;
214 };
215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
216 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
217 static int config_finalize_done;
218 
219 /* list of all devices */
220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
221 static kmutex_t alldevs_mtx;
222 static volatile bool alldevs_garbage = false;
223 static volatile devgen_t alldevs_gen = 1;
224 static volatile int alldevs_nread = 0;
225 static volatile int alldevs_nwrite = 0;
226 
227 static int config_pending;		/* semaphore for mountroot */
228 static kmutex_t config_misc_lock;
229 static kcondvar_t config_misc_cv;
230 
231 static bool detachall = false;
232 
233 #define	STREQ(s1, s2)			\
234 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
235 
236 static bool config_initialized = false;	/* config_init() has been called. */
237 
238 static int config_do_twiddle;
239 static callout_t config_twiddle_ch;
240 
241 static void sysctl_detach_setup(struct sysctllog **);
242 
243 typedef int (*cfdriver_fn)(struct cfdriver *);
244 static int
245 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
246 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
247 	const char *style, bool dopanic)
248 {
249 	void (*pr)(const char *, ...) __printflike(1, 2) =
250 	    dopanic ? panic : printf;
251 	int i, error = 0, e2 __diagused;
252 
253 	for (i = 0; cfdriverv[i] != NULL; i++) {
254 		if ((error = drv_do(cfdriverv[i])) != 0) {
255 			pr("configure: `%s' driver %s failed: %d",
256 			    cfdriverv[i]->cd_name, style, error);
257 			goto bad;
258 		}
259 	}
260 
261 	KASSERT(error == 0);
262 	return 0;
263 
264  bad:
265 	printf("\n");
266 	for (i--; i >= 0; i--) {
267 		e2 = drv_undo(cfdriverv[i]);
268 		KASSERT(e2 == 0);
269 	}
270 
271 	return error;
272 }
273 
274 typedef int (*cfattach_fn)(const char *, struct cfattach *);
275 static int
276 frob_cfattachvec(const struct cfattachinit *cfattachv,
277 	cfattach_fn att_do, cfattach_fn att_undo,
278 	const char *style, bool dopanic)
279 {
280 	const struct cfattachinit *cfai = NULL;
281 	void (*pr)(const char *, ...) __printflike(1, 2) =
282 	    dopanic ? panic : printf;
283 	int j = 0, error = 0, e2 __diagused;
284 
285 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
286 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
287 			if ((error = att_do(cfai->cfai_name,
288 			    cfai->cfai_list[j])) != 0) {
289 				pr("configure: attachment `%s' "
290 				    "of `%s' driver %s failed: %d",
291 				    cfai->cfai_list[j]->ca_name,
292 				    cfai->cfai_name, style, error);
293 				goto bad;
294 			}
295 		}
296 	}
297 
298 	KASSERT(error == 0);
299 	return 0;
300 
301  bad:
302 	/*
303 	 * Rollback in reverse order.  dunno if super-important, but
304 	 * do that anyway.  Although the code looks a little like
305 	 * someone did a little integration (in the math sense).
306 	 */
307 	printf("\n");
308 	if (cfai) {
309 		bool last;
310 
311 		for (last = false; last == false; ) {
312 			if (cfai == &cfattachv[0])
313 				last = true;
314 			for (j--; j >= 0; j--) {
315 				e2 = att_undo(cfai->cfai_name,
316 				    cfai->cfai_list[j]);
317 				KASSERT(e2 == 0);
318 			}
319 			if (!last) {
320 				cfai--;
321 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
322 					;
323 			}
324 		}
325 	}
326 
327 	return error;
328 }
329 
330 /*
331  * Initialize the autoconfiguration data structures.  Normally this
332  * is done by configure(), but some platforms need to do this very
333  * early (to e.g. initialize the console).
334  */
335 void
336 config_init(void)
337 {
338 
339 	KASSERT(config_initialized == false);
340 
341 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM);
342 
343 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
344 	cv_init(&config_misc_cv, "cfgmisc");
345 
346 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
347 
348 	frob_cfdrivervec(cfdriver_list_initial,
349 	    config_cfdriver_attach, NULL, "bootstrap", true);
350 	frob_cfattachvec(cfattachinit,
351 	    config_cfattach_attach, NULL, "bootstrap", true);
352 
353 	initcftable.ct_cfdata = cfdata;
354 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
355 
356 	config_initialized = true;
357 }
358 
359 /*
360  * Init or fini drivers and attachments.  Either all or none
361  * are processed (via rollback).  It would be nice if this were
362  * atomic to outside consumers, but with the current state of
363  * locking ...
364  */
365 int
366 config_init_component(struct cfdriver * const *cfdriverv,
367 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
368 {
369 	int error;
370 
371 	if ((error = frob_cfdrivervec(cfdriverv,
372 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
373 		return error;
374 	if ((error = frob_cfattachvec(cfattachv,
375 	    config_cfattach_attach, config_cfattach_detach,
376 	    "init", false)) != 0) {
377 		frob_cfdrivervec(cfdriverv,
378 	            config_cfdriver_detach, NULL, "init rollback", true);
379 		return error;
380 	}
381 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
382 		frob_cfattachvec(cfattachv,
383 		    config_cfattach_detach, NULL, "init rollback", true);
384 		frob_cfdrivervec(cfdriverv,
385 	            config_cfdriver_detach, NULL, "init rollback", true);
386 		return error;
387 	}
388 
389 	return 0;
390 }
391 
392 int
393 config_fini_component(struct cfdriver * const *cfdriverv,
394 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
395 {
396 	int error;
397 
398 	if ((error = config_cfdata_detach(cfdatav)) != 0)
399 		return error;
400 	if ((error = frob_cfattachvec(cfattachv,
401 	    config_cfattach_detach, config_cfattach_attach,
402 	    "fini", false)) != 0) {
403 		if (config_cfdata_attach(cfdatav, 0) != 0)
404 			panic("config_cfdata fini rollback failed");
405 		return error;
406 	}
407 	if ((error = frob_cfdrivervec(cfdriverv,
408 	    config_cfdriver_detach, config_cfdriver_attach,
409 	    "fini", false)) != 0) {
410 		frob_cfattachvec(cfattachv,
411 	            config_cfattach_attach, NULL, "fini rollback", true);
412 		if (config_cfdata_attach(cfdatav, 0) != 0)
413 			panic("config_cfdata fini rollback failed");
414 		return error;
415 	}
416 
417 	return 0;
418 }
419 
420 void
421 config_init_mi(void)
422 {
423 
424 	if (!config_initialized)
425 		config_init();
426 
427 	sysctl_detach_setup(NULL);
428 }
429 
430 void
431 config_deferred(device_t dev)
432 {
433 	config_process_deferred(&deferred_config_queue, dev);
434 	config_process_deferred(&interrupt_config_queue, dev);
435 	config_process_deferred(&mountroot_config_queue, dev);
436 }
437 
438 static void
439 config_interrupts_thread(void *cookie)
440 {
441 	struct deferred_config *dc;
442 
443 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
444 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
445 		(*dc->dc_func)(dc->dc_dev);
446 		config_pending_decr(dc->dc_dev);
447 		kmem_free(dc, sizeof(*dc));
448 	}
449 	kthread_exit(0);
450 }
451 
452 void
453 config_create_interruptthreads(void)
454 {
455 	int i;
456 
457 	for (i = 0; i < interrupt_config_threads; i++) {
458 		(void)kthread_create(PRI_NONE, 0, NULL,
459 		    config_interrupts_thread, NULL, NULL, "configintr");
460 	}
461 }
462 
463 static void
464 config_mountroot_thread(void *cookie)
465 {
466 	struct deferred_config *dc;
467 
468 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
469 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
470 		(*dc->dc_func)(dc->dc_dev);
471 		kmem_free(dc, sizeof(*dc));
472 	}
473 	kthread_exit(0);
474 }
475 
476 void
477 config_create_mountrootthreads(void)
478 {
479 	int i;
480 
481 	if (!root_is_mounted)
482 		root_is_mounted = true;
483 
484 	for (i = 0; i < mountroot_config_threads; i++) {
485 		(void)kthread_create(PRI_NONE, 0, NULL,
486 		    config_mountroot_thread, NULL, NULL, "configroot");
487 	}
488 }
489 
490 /*
491  * Announce device attach/detach to userland listeners.
492  */
493 static void
494 devmon_report_device(device_t dev, bool isattach)
495 {
496 #if NDRVCTL > 0
497 	prop_dictionary_t ev;
498 	const char *parent;
499 	const char *what;
500 	device_t pdev = device_parent(dev);
501 
502 	ev = prop_dictionary_create();
503 	if (ev == NULL)
504 		return;
505 
506 	what = (isattach ? "device-attach" : "device-detach");
507 	parent = (pdev == NULL ? "root" : device_xname(pdev));
508 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
509 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
510 		prop_object_release(ev);
511 		return;
512 	}
513 
514 	devmon_insert(what, ev);
515 #endif
516 }
517 
518 /*
519  * Add a cfdriver to the system.
520  */
521 int
522 config_cfdriver_attach(struct cfdriver *cd)
523 {
524 	struct cfdriver *lcd;
525 
526 	/* Make sure this driver isn't already in the system. */
527 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
528 		if (STREQ(lcd->cd_name, cd->cd_name))
529 			return EEXIST;
530 	}
531 
532 	LIST_INIT(&cd->cd_attach);
533 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
534 
535 	return 0;
536 }
537 
538 /*
539  * Remove a cfdriver from the system.
540  */
541 int
542 config_cfdriver_detach(struct cfdriver *cd)
543 {
544 	struct alldevs_foray af;
545 	int i, rc = 0;
546 
547 	config_alldevs_enter(&af);
548 	/* Make sure there are no active instances. */
549 	for (i = 0; i < cd->cd_ndevs; i++) {
550 		if (cd->cd_devs[i] != NULL) {
551 			rc = EBUSY;
552 			break;
553 		}
554 	}
555 	config_alldevs_exit(&af);
556 
557 	if (rc != 0)
558 		return rc;
559 
560 	/* ...and no attachments loaded. */
561 	if (LIST_EMPTY(&cd->cd_attach) == 0)
562 		return EBUSY;
563 
564 	LIST_REMOVE(cd, cd_list);
565 
566 	KASSERT(cd->cd_devs == NULL);
567 
568 	return 0;
569 }
570 
571 /*
572  * Look up a cfdriver by name.
573  */
574 struct cfdriver *
575 config_cfdriver_lookup(const char *name)
576 {
577 	struct cfdriver *cd;
578 
579 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
580 		if (STREQ(cd->cd_name, name))
581 			return cd;
582 	}
583 
584 	return NULL;
585 }
586 
587 /*
588  * Add a cfattach to the specified driver.
589  */
590 int
591 config_cfattach_attach(const char *driver, struct cfattach *ca)
592 {
593 	struct cfattach *lca;
594 	struct cfdriver *cd;
595 
596 	cd = config_cfdriver_lookup(driver);
597 	if (cd == NULL)
598 		return ESRCH;
599 
600 	/* Make sure this attachment isn't already on this driver. */
601 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
602 		if (STREQ(lca->ca_name, ca->ca_name))
603 			return EEXIST;
604 	}
605 
606 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
607 
608 	return 0;
609 }
610 
611 /*
612  * Remove a cfattach from the specified driver.
613  */
614 int
615 config_cfattach_detach(const char *driver, struct cfattach *ca)
616 {
617 	struct alldevs_foray af;
618 	struct cfdriver *cd;
619 	device_t dev;
620 	int i, rc = 0;
621 
622 	cd = config_cfdriver_lookup(driver);
623 	if (cd == NULL)
624 		return ESRCH;
625 
626 	config_alldevs_enter(&af);
627 	/* Make sure there are no active instances. */
628 	for (i = 0; i < cd->cd_ndevs; i++) {
629 		if ((dev = cd->cd_devs[i]) == NULL)
630 			continue;
631 		if (dev->dv_cfattach == ca) {
632 			rc = EBUSY;
633 			break;
634 		}
635 	}
636 	config_alldevs_exit(&af);
637 
638 	if (rc != 0)
639 		return rc;
640 
641 	LIST_REMOVE(ca, ca_list);
642 
643 	return 0;
644 }
645 
646 /*
647  * Look up a cfattach by name.
648  */
649 static struct cfattach *
650 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
651 {
652 	struct cfattach *ca;
653 
654 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
655 		if (STREQ(ca->ca_name, atname))
656 			return ca;
657 	}
658 
659 	return NULL;
660 }
661 
662 /*
663  * Look up a cfattach by driver/attachment name.
664  */
665 struct cfattach *
666 config_cfattach_lookup(const char *name, const char *atname)
667 {
668 	struct cfdriver *cd;
669 
670 	cd = config_cfdriver_lookup(name);
671 	if (cd == NULL)
672 		return NULL;
673 
674 	return config_cfattach_lookup_cd(cd, atname);
675 }
676 
677 /*
678  * Apply the matching function and choose the best.  This is used
679  * a few times and we want to keep the code small.
680  */
681 static void
682 mapply(struct matchinfo *m, cfdata_t cf)
683 {
684 	int pri;
685 
686 	if (m->fn != NULL) {
687 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
688 	} else {
689 		pri = config_match(m->parent, cf, m->aux);
690 	}
691 	if (pri > m->pri) {
692 		m->match = cf;
693 		m->pri = pri;
694 	}
695 }
696 
697 int
698 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
699 {
700 	const struct cfiattrdata *ci;
701 	const struct cflocdesc *cl;
702 	int nlocs, i;
703 
704 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
705 	KASSERT(ci);
706 	nlocs = ci->ci_loclen;
707 	KASSERT(!nlocs || locs);
708 	for (i = 0; i < nlocs; i++) {
709 		cl = &ci->ci_locdesc[i];
710 		if (cl->cld_defaultstr != NULL &&
711 		    cf->cf_loc[i] == cl->cld_default)
712 			continue;
713 		if (cf->cf_loc[i] == locs[i])
714 			continue;
715 		return 0;
716 	}
717 
718 	return config_match(parent, cf, aux);
719 }
720 
721 /*
722  * Helper function: check whether the driver supports the interface attribute
723  * and return its descriptor structure.
724  */
725 static const struct cfiattrdata *
726 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
727 {
728 	const struct cfiattrdata * const *cpp;
729 
730 	if (cd->cd_attrs == NULL)
731 		return 0;
732 
733 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
734 		if (STREQ((*cpp)->ci_name, ia)) {
735 			/* Match. */
736 			return *cpp;
737 		}
738 	}
739 	return 0;
740 }
741 
742 /*
743  * Lookup an interface attribute description by name.
744  * If the driver is given, consider only its supported attributes.
745  */
746 const struct cfiattrdata *
747 cfiattr_lookup(const char *name, const struct cfdriver *cd)
748 {
749 	const struct cfdriver *d;
750 	const struct cfiattrdata *ia;
751 
752 	if (cd)
753 		return cfdriver_get_iattr(cd, name);
754 
755 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
756 		ia = cfdriver_get_iattr(d, name);
757 		if (ia)
758 			return ia;
759 	}
760 	return 0;
761 }
762 
763 /*
764  * Determine if `parent' is a potential parent for a device spec based
765  * on `cfp'.
766  */
767 static int
768 cfparent_match(const device_t parent, const struct cfparent *cfp)
769 {
770 	struct cfdriver *pcd;
771 
772 	/* We don't match root nodes here. */
773 	if (cfp == NULL)
774 		return 0;
775 
776 	pcd = parent->dv_cfdriver;
777 	KASSERT(pcd != NULL);
778 
779 	/*
780 	 * First, ensure this parent has the correct interface
781 	 * attribute.
782 	 */
783 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
784 		return 0;
785 
786 	/*
787 	 * If no specific parent device instance was specified (i.e.
788 	 * we're attaching to the attribute only), we're done!
789 	 */
790 	if (cfp->cfp_parent == NULL)
791 		return 1;
792 
793 	/*
794 	 * Check the parent device's name.
795 	 */
796 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
797 		return 0;	/* not the same parent */
798 
799 	/*
800 	 * Make sure the unit number matches.
801 	 */
802 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
803 	    cfp->cfp_unit == parent->dv_unit)
804 		return 1;
805 
806 	/* Unit numbers don't match. */
807 	return 0;
808 }
809 
810 /*
811  * Helper for config_cfdata_attach(): check all devices whether it could be
812  * parent any attachment in the config data table passed, and rescan.
813  */
814 static void
815 rescan_with_cfdata(const struct cfdata *cf)
816 {
817 	device_t d;
818 	const struct cfdata *cf1;
819 	deviter_t di;
820 
821 
822 	/*
823 	 * "alldevs" is likely longer than a modules's cfdata, so make it
824 	 * the outer loop.
825 	 */
826 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
827 
828 		if (!(d->dv_cfattach->ca_rescan))
829 			continue;
830 
831 		for (cf1 = cf; cf1->cf_name; cf1++) {
832 
833 			if (!cfparent_match(d, cf1->cf_pspec))
834 				continue;
835 
836 			(*d->dv_cfattach->ca_rescan)(d,
837 				cfdata_ifattr(cf1), cf1->cf_loc);
838 
839 			config_deferred(d);
840 		}
841 	}
842 	deviter_release(&di);
843 }
844 
845 /*
846  * Attach a supplemental config data table and rescan potential
847  * parent devices if required.
848  */
849 int
850 config_cfdata_attach(cfdata_t cf, int scannow)
851 {
852 	struct cftable *ct;
853 
854 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
855 	ct->ct_cfdata = cf;
856 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
857 
858 	if (scannow)
859 		rescan_with_cfdata(cf);
860 
861 	return 0;
862 }
863 
864 /*
865  * Helper for config_cfdata_detach: check whether a device is
866  * found through any attachment in the config data table.
867  */
868 static int
869 dev_in_cfdata(device_t d, cfdata_t cf)
870 {
871 	const struct cfdata *cf1;
872 
873 	for (cf1 = cf; cf1->cf_name; cf1++)
874 		if (d->dv_cfdata == cf1)
875 			return 1;
876 
877 	return 0;
878 }
879 
880 /*
881  * Detach a supplemental config data table. Detach all devices found
882  * through that table (and thus keeping references to it) before.
883  */
884 int
885 config_cfdata_detach(cfdata_t cf)
886 {
887 	device_t d;
888 	int error = 0;
889 	struct cftable *ct;
890 	deviter_t di;
891 
892 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
893 	     d = deviter_next(&di)) {
894 		if (!dev_in_cfdata(d, cf))
895 			continue;
896 		if ((error = config_detach(d, 0)) != 0)
897 			break;
898 	}
899 	deviter_release(&di);
900 	if (error) {
901 		aprint_error_dev(d, "unable to detach instance\n");
902 		return error;
903 	}
904 
905 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
906 		if (ct->ct_cfdata == cf) {
907 			TAILQ_REMOVE(&allcftables, ct, ct_list);
908 			kmem_free(ct, sizeof(*ct));
909 			return 0;
910 		}
911 	}
912 
913 	/* not found -- shouldn't happen */
914 	return EINVAL;
915 }
916 
917 /*
918  * Invoke the "match" routine for a cfdata entry on behalf of
919  * an external caller, usually a "submatch" routine.
920  */
921 int
922 config_match(device_t parent, cfdata_t cf, void *aux)
923 {
924 	struct cfattach *ca;
925 
926 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
927 	if (ca == NULL) {
928 		/* No attachment for this entry, oh well. */
929 		return 0;
930 	}
931 
932 	return (*ca->ca_match)(parent, cf, aux);
933 }
934 
935 /*
936  * Iterate over all potential children of some device, calling the given
937  * function (default being the child's match function) for each one.
938  * Nonzero returns are matches; the highest value returned is considered
939  * the best match.  Return the `found child' if we got a match, or NULL
940  * otherwise.  The `aux' pointer is simply passed on through.
941  *
942  * Note that this function is designed so that it can be used to apply
943  * an arbitrary function to all potential children (its return value
944  * can be ignored).
945  */
946 cfdata_t
947 config_search_loc(cfsubmatch_t fn, device_t parent,
948 		  const char *ifattr, const int *locs, void *aux)
949 {
950 	struct cftable *ct;
951 	cfdata_t cf;
952 	struct matchinfo m;
953 
954 	KASSERT(config_initialized);
955 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
956 
957 	m.fn = fn;
958 	m.parent = parent;
959 	m.locs = locs;
960 	m.aux = aux;
961 	m.match = NULL;
962 	m.pri = 0;
963 
964 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
965 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
966 
967 			/* We don't match root nodes here. */
968 			if (!cf->cf_pspec)
969 				continue;
970 
971 			/*
972 			 * Skip cf if no longer eligible, otherwise scan
973 			 * through parents for one matching `parent', and
974 			 * try match function.
975 			 */
976 			if (cf->cf_fstate == FSTATE_FOUND)
977 				continue;
978 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
979 			    cf->cf_fstate == FSTATE_DSTAR)
980 				continue;
981 
982 			/*
983 			 * If an interface attribute was specified,
984 			 * consider only children which attach to
985 			 * that attribute.
986 			 */
987 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
988 				continue;
989 
990 			if (cfparent_match(parent, cf->cf_pspec))
991 				mapply(&m, cf);
992 		}
993 	}
994 	return m.match;
995 }
996 
997 cfdata_t
998 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
999     void *aux)
1000 {
1001 
1002 	return config_search_loc(fn, parent, ifattr, NULL, aux);
1003 }
1004 
1005 /*
1006  * Find the given root device.
1007  * This is much like config_search, but there is no parent.
1008  * Don't bother with multiple cfdata tables; the root node
1009  * must always be in the initial table.
1010  */
1011 cfdata_t
1012 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1013 {
1014 	cfdata_t cf;
1015 	const short *p;
1016 	struct matchinfo m;
1017 
1018 	m.fn = fn;
1019 	m.parent = ROOT;
1020 	m.aux = aux;
1021 	m.match = NULL;
1022 	m.pri = 0;
1023 	m.locs = 0;
1024 	/*
1025 	 * Look at root entries for matching name.  We do not bother
1026 	 * with found-state here since only one root should ever be
1027 	 * searched (and it must be done first).
1028 	 */
1029 	for (p = cfroots; *p >= 0; p++) {
1030 		cf = &cfdata[*p];
1031 		if (strcmp(cf->cf_name, rootname) == 0)
1032 			mapply(&m, cf);
1033 	}
1034 	return m.match;
1035 }
1036 
1037 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1038 
1039 /*
1040  * The given `aux' argument describes a device that has been found
1041  * on the given parent, but not necessarily configured.  Locate the
1042  * configuration data for that device (using the submatch function
1043  * provided, or using candidates' cd_match configuration driver
1044  * functions) and attach it, and return its device_t.  If the device was
1045  * not configured, call the given `print' function and return NULL.
1046  */
1047 device_t
1048 config_found_sm_loc(device_t parent,
1049 		const char *ifattr, const int *locs, void *aux,
1050 		cfprint_t print, cfsubmatch_t submatch)
1051 {
1052 	cfdata_t cf;
1053 
1054 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1055 		return(config_attach_loc(parent, cf, locs, aux, print));
1056 	if (print) {
1057 		if (config_do_twiddle && cold)
1058 			twiddle();
1059 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1060 	}
1061 
1062 	/*
1063 	 * This has the effect of mixing in a single timestamp to the
1064 	 * entropy pool.  Experiments indicate the estimator will almost
1065 	 * always attribute one bit of entropy to this sample; analysis
1066 	 * of device attach/detach timestamps on FreeBSD indicates 4
1067 	 * bits of entropy/sample so this seems appropriately conservative.
1068 	 */
1069 	rnd_add_uint32(&rnd_autoconf_source, 0);
1070 	return NULL;
1071 }
1072 
1073 device_t
1074 config_found_ia(device_t parent, const char *ifattr, void *aux,
1075     cfprint_t print)
1076 {
1077 
1078 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1079 }
1080 
1081 device_t
1082 config_found(device_t parent, void *aux, cfprint_t print)
1083 {
1084 
1085 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1086 }
1087 
1088 /*
1089  * As above, but for root devices.
1090  */
1091 device_t
1092 config_rootfound(const char *rootname, void *aux)
1093 {
1094 	cfdata_t cf;
1095 
1096 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1097 		return config_attach(ROOT, cf, aux, NULL);
1098 	aprint_error("root device %s not configured\n", rootname);
1099 	return NULL;
1100 }
1101 
1102 /* just like sprintf(buf, "%d") except that it works from the end */
1103 static char *
1104 number(char *ep, int n)
1105 {
1106 
1107 	*--ep = 0;
1108 	while (n >= 10) {
1109 		*--ep = (n % 10) + '0';
1110 		n /= 10;
1111 	}
1112 	*--ep = n + '0';
1113 	return ep;
1114 }
1115 
1116 /*
1117  * Expand the size of the cd_devs array if necessary.
1118  *
1119  * The caller must hold alldevs_mtx. config_makeroom() may release and
1120  * re-acquire alldevs_mtx, so callers should re-check conditions such
1121  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1122  * returns.
1123  */
1124 static void
1125 config_makeroom(int n, struct cfdriver *cd)
1126 {
1127 	int ondevs, nndevs;
1128 	device_t *osp, *nsp;
1129 
1130 	alldevs_nwrite++;
1131 
1132 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1133 		;
1134 
1135 	while (n >= cd->cd_ndevs) {
1136 		/*
1137 		 * Need to expand the array.
1138 		 */
1139 		ondevs = cd->cd_ndevs;
1140 		osp = cd->cd_devs;
1141 
1142 		/* Release alldevs_mtx around allocation, which may
1143 		 * sleep.
1144 		 */
1145 		mutex_exit(&alldevs_mtx);
1146 		nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
1147 		if (nsp == NULL)
1148 			panic("%s: could not expand cd_devs", __func__);
1149 		mutex_enter(&alldevs_mtx);
1150 
1151 		/* If another thread moved the array while we did
1152 		 * not hold alldevs_mtx, try again.
1153 		 */
1154 		if (cd->cd_devs != osp) {
1155 			mutex_exit(&alldevs_mtx);
1156 			kmem_free(nsp, sizeof(device_t[nndevs]));
1157 			mutex_enter(&alldevs_mtx);
1158 			continue;
1159 		}
1160 
1161 		memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
1162 		if (ondevs != 0)
1163 			memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
1164 
1165 		cd->cd_ndevs = nndevs;
1166 		cd->cd_devs = nsp;
1167 		if (ondevs != 0) {
1168 			mutex_exit(&alldevs_mtx);
1169 			kmem_free(osp, sizeof(device_t[ondevs]));
1170 			mutex_enter(&alldevs_mtx);
1171 		}
1172 	}
1173 	alldevs_nwrite--;
1174 }
1175 
1176 /*
1177  * Put dev into the devices list.
1178  */
1179 static void
1180 config_devlink(device_t dev)
1181 {
1182 	int s;
1183 
1184 	s = config_alldevs_lock();
1185 
1186 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1187 
1188 	dev->dv_add_gen = alldevs_gen;
1189 	/* It is safe to add a device to the tail of the list while
1190 	 * readers and writers are in the list.
1191 	 */
1192 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1193 	config_alldevs_unlock(s);
1194 }
1195 
1196 static void
1197 config_devfree(device_t dev)
1198 {
1199 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1200 
1201 	if (dev->dv_cfattach->ca_devsize > 0)
1202 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1203 	if (priv)
1204 		kmem_free(dev, sizeof(*dev));
1205 }
1206 
1207 /*
1208  * Caller must hold alldevs_mtx.
1209  */
1210 static void
1211 config_devunlink(device_t dev, struct devicelist *garbage)
1212 {
1213 	struct device_garbage *dg = &dev->dv_garbage;
1214 	cfdriver_t cd = device_cfdriver(dev);
1215 	int i;
1216 
1217 	KASSERT(mutex_owned(&alldevs_mtx));
1218 
1219  	/* Unlink from device list.  Link to garbage list. */
1220 	TAILQ_REMOVE(&alldevs, dev, dv_list);
1221 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1222 
1223 	/* Remove from cfdriver's array. */
1224 	cd->cd_devs[dev->dv_unit] = NULL;
1225 
1226 	/*
1227 	 * If the device now has no units in use, unlink its softc array.
1228 	 */
1229 	for (i = 0; i < cd->cd_ndevs; i++) {
1230 		if (cd->cd_devs[i] != NULL)
1231 			break;
1232 	}
1233 	/* Nothing found.  Unlink, now.  Deallocate, later. */
1234 	if (i == cd->cd_ndevs) {
1235 		dg->dg_ndevs = cd->cd_ndevs;
1236 		dg->dg_devs = cd->cd_devs;
1237 		cd->cd_devs = NULL;
1238 		cd->cd_ndevs = 0;
1239 	}
1240 }
1241 
1242 static void
1243 config_devdelete(device_t dev)
1244 {
1245 	struct device_garbage *dg = &dev->dv_garbage;
1246 	device_lock_t dvl = device_getlock(dev);
1247 
1248 	if (dg->dg_devs != NULL)
1249 		kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1250 
1251 	cv_destroy(&dvl->dvl_cv);
1252 	mutex_destroy(&dvl->dvl_mtx);
1253 
1254 	KASSERT(dev->dv_properties != NULL);
1255 	prop_object_release(dev->dv_properties);
1256 
1257 	if (dev->dv_activity_handlers)
1258 		panic("%s with registered handlers", __func__);
1259 
1260 	if (dev->dv_locators) {
1261 		size_t amount = *--dev->dv_locators;
1262 		kmem_free(dev->dv_locators, amount);
1263 	}
1264 
1265 	config_devfree(dev);
1266 }
1267 
1268 static int
1269 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1270 {
1271 	int unit;
1272 
1273 	if (cf->cf_fstate == FSTATE_STAR) {
1274 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1275 			if (cd->cd_devs[unit] == NULL)
1276 				break;
1277 		/*
1278 		 * unit is now the unit of the first NULL device pointer,
1279 		 * or max(cd->cd_ndevs,cf->cf_unit).
1280 		 */
1281 	} else {
1282 		unit = cf->cf_unit;
1283 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1284 			unit = -1;
1285 	}
1286 	return unit;
1287 }
1288 
1289 static int
1290 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1291 {
1292 	struct alldevs_foray af;
1293 	int unit;
1294 
1295 	config_alldevs_enter(&af);
1296 	for (;;) {
1297 		unit = config_unit_nextfree(cd, cf);
1298 		if (unit == -1)
1299 			break;
1300 		if (unit < cd->cd_ndevs) {
1301 			cd->cd_devs[unit] = dev;
1302 			dev->dv_unit = unit;
1303 			break;
1304 		}
1305 		config_makeroom(unit, cd);
1306 	}
1307 	config_alldevs_exit(&af);
1308 
1309 	return unit;
1310 }
1311 
1312 static device_t
1313 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1314 {
1315 	cfdriver_t cd;
1316 	cfattach_t ca;
1317 	size_t lname, lunit;
1318 	const char *xunit;
1319 	int myunit;
1320 	char num[10];
1321 	device_t dev;
1322 	void *dev_private;
1323 	const struct cfiattrdata *ia;
1324 	device_lock_t dvl;
1325 
1326 	cd = config_cfdriver_lookup(cf->cf_name);
1327 	if (cd == NULL)
1328 		return NULL;
1329 
1330 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1331 	if (ca == NULL)
1332 		return NULL;
1333 
1334 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1335 	    ca->ca_devsize < sizeof(struct device))
1336 		panic("config_devalloc: %s (%zu < %zu)", cf->cf_atname,
1337 		    ca->ca_devsize, sizeof(struct device));
1338 
1339 	/* get memory for all device vars */
1340 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1341 	if (ca->ca_devsize > 0) {
1342 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1343 		if (dev_private == NULL)
1344 			panic("config_devalloc: memory allocation for device softc failed");
1345 	} else {
1346 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1347 		dev_private = NULL;
1348 	}
1349 
1350 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1351 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1352 	} else {
1353 		dev = dev_private;
1354 #ifdef DIAGNOSTIC
1355 		printf("%s has not been converted to device_t\n", cd->cd_name);
1356 #endif
1357 	}
1358 	if (dev == NULL)
1359 		panic("config_devalloc: memory allocation for device_t failed");
1360 
1361 	dev->dv_class = cd->cd_class;
1362 	dev->dv_cfdata = cf;
1363 	dev->dv_cfdriver = cd;
1364 	dev->dv_cfattach = ca;
1365 	dev->dv_activity_count = 0;
1366 	dev->dv_activity_handlers = NULL;
1367 	dev->dv_private = dev_private;
1368 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
1369 
1370 	myunit = config_unit_alloc(dev, cd, cf);
1371 	if (myunit == -1) {
1372 		config_devfree(dev);
1373 		return NULL;
1374 	}
1375 
1376 	/* compute length of name and decimal expansion of unit number */
1377 	lname = strlen(cd->cd_name);
1378 	xunit = number(&num[sizeof(num)], myunit);
1379 	lunit = &num[sizeof(num)] - xunit;
1380 	if (lname + lunit > sizeof(dev->dv_xname))
1381 		panic("config_devalloc: device name too long");
1382 
1383 	dvl = device_getlock(dev);
1384 
1385 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1386 	cv_init(&dvl->dvl_cv, "pmfsusp");
1387 
1388 	memcpy(dev->dv_xname, cd->cd_name, lname);
1389 	memcpy(dev->dv_xname + lname, xunit, lunit);
1390 	dev->dv_parent = parent;
1391 	if (parent != NULL)
1392 		dev->dv_depth = parent->dv_depth + 1;
1393 	else
1394 		dev->dv_depth = 0;
1395 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
1396 	if (locs) {
1397 		KASSERT(parent); /* no locators at root */
1398 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1399 		dev->dv_locators =
1400 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1401 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1402 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1403 	}
1404 	dev->dv_properties = prop_dictionary_create();
1405 	KASSERT(dev->dv_properties != NULL);
1406 
1407 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1408 	    "device-driver", dev->dv_cfdriver->cd_name);
1409 	prop_dictionary_set_uint16(dev->dv_properties,
1410 	    "device-unit", dev->dv_unit);
1411 
1412 	if (dev->dv_cfdriver->cd_attrs != NULL)
1413 		config_add_attrib_dict(dev);
1414 
1415 	return dev;
1416 }
1417 
1418 /*
1419  * Create an array of device attach attributes and add it
1420  * to the device's dv_properties dictionary.
1421  *
1422  * <key>interface-attributes</key>
1423  * <array>
1424  *    <dict>
1425  *       <key>attribute-name</key>
1426  *       <string>foo</string>
1427  *       <key>locators</key>
1428  *       <array>
1429  *          <dict>
1430  *             <key>loc-name</key>
1431  *             <string>foo-loc1</string>
1432  *          </dict>
1433  *          <dict>
1434  *             <key>loc-name</key>
1435  *             <string>foo-loc2</string>
1436  *             <key>default</key>
1437  *             <string>foo-loc2-default</string>
1438  *          </dict>
1439  *          ...
1440  *       </array>
1441  *    </dict>
1442  *    ...
1443  * </array>
1444  */
1445 
1446 static void
1447 config_add_attrib_dict(device_t dev)
1448 {
1449 	int i, j;
1450 	const struct cfiattrdata *ci;
1451 	prop_dictionary_t attr_dict, loc_dict;
1452 	prop_array_t attr_array, loc_array;
1453 
1454 	if ((attr_array = prop_array_create()) == NULL)
1455 		return;
1456 
1457 	for (i = 0; ; i++) {
1458 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1459 			break;
1460 		if ((attr_dict = prop_dictionary_create()) == NULL)
1461 			break;
1462 		prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
1463 		    ci->ci_name);
1464 
1465 		/* Create an array of the locator names and defaults */
1466 
1467 		if (ci->ci_loclen != 0 &&
1468 		    (loc_array = prop_array_create()) != NULL) {
1469 			for (j = 0; j < ci->ci_loclen; j++) {
1470 				loc_dict = prop_dictionary_create();
1471 				if (loc_dict == NULL)
1472 					continue;
1473 				prop_dictionary_set_cstring_nocopy(loc_dict,
1474 				    "loc-name", ci->ci_locdesc[j].cld_name);
1475 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1476 					prop_dictionary_set_cstring_nocopy(
1477 					    loc_dict, "default",
1478 					    ci->ci_locdesc[j].cld_defaultstr);
1479 				prop_array_set(loc_array, j, loc_dict);
1480 				prop_object_release(loc_dict);
1481 			}
1482 			prop_dictionary_set_and_rel(attr_dict, "locators",
1483 			    loc_array);
1484 		}
1485 		prop_array_add(attr_array, attr_dict);
1486 		prop_object_release(attr_dict);
1487 	}
1488 	if (i == 0)
1489 		prop_object_release(attr_array);
1490 	else
1491 		prop_dictionary_set_and_rel(dev->dv_properties,
1492 		    "interface-attributes", attr_array);
1493 
1494 	return;
1495 }
1496 
1497 /*
1498  * Attach a found device.
1499  */
1500 device_t
1501 config_attach_loc(device_t parent, cfdata_t cf,
1502 	const int *locs, void *aux, cfprint_t print)
1503 {
1504 	device_t dev;
1505 	struct cftable *ct;
1506 	const char *drvname;
1507 
1508 	dev = config_devalloc(parent, cf, locs);
1509 	if (!dev)
1510 		panic("config_attach: allocation of device softc failed");
1511 
1512 	/* XXX redundant - see below? */
1513 	if (cf->cf_fstate != FSTATE_STAR) {
1514 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1515 		cf->cf_fstate = FSTATE_FOUND;
1516 	}
1517 
1518 	config_devlink(dev);
1519 
1520 	if (config_do_twiddle && cold)
1521 		twiddle();
1522 	else
1523 		aprint_naive("Found ");
1524 	/*
1525 	 * We want the next two printfs for normal, verbose, and quiet,
1526 	 * but not silent (in which case, we're twiddling, instead).
1527 	 */
1528 	if (parent == ROOT) {
1529 		aprint_naive("%s (root)", device_xname(dev));
1530 		aprint_normal("%s (root)", device_xname(dev));
1531 	} else {
1532 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1533 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1534 		if (print)
1535 			(void) (*print)(aux, NULL);
1536 	}
1537 
1538 	/*
1539 	 * Before attaching, clobber any unfound devices that are
1540 	 * otherwise identical.
1541 	 * XXX code above is redundant?
1542 	 */
1543 	drvname = dev->dv_cfdriver->cd_name;
1544 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1545 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1546 			if (STREQ(cf->cf_name, drvname) &&
1547 			    cf->cf_unit == dev->dv_unit) {
1548 				if (cf->cf_fstate == FSTATE_NOTFOUND)
1549 					cf->cf_fstate = FSTATE_FOUND;
1550 			}
1551 		}
1552 	}
1553 	device_register(dev, aux);
1554 
1555 	/* Let userland know */
1556 	devmon_report_device(dev, true);
1557 
1558 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1559 
1560 	if (!device_pmf_is_registered(dev))
1561 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
1562 
1563 	config_process_deferred(&deferred_config_queue, dev);
1564 
1565 	device_register_post_config(dev, aux);
1566 	return dev;
1567 }
1568 
1569 device_t
1570 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1571 {
1572 
1573 	return config_attach_loc(parent, cf, NULL, aux, print);
1574 }
1575 
1576 /*
1577  * As above, but for pseudo-devices.  Pseudo-devices attached in this
1578  * way are silently inserted into the device tree, and their children
1579  * attached.
1580  *
1581  * Note that because pseudo-devices are attached silently, any information
1582  * the attach routine wishes to print should be prefixed with the device
1583  * name by the attach routine.
1584  */
1585 device_t
1586 config_attach_pseudo(cfdata_t cf)
1587 {
1588 	device_t dev;
1589 
1590 	dev = config_devalloc(ROOT, cf, NULL);
1591 	if (!dev)
1592 		return NULL;
1593 
1594 	/* XXX mark busy in cfdata */
1595 
1596 	if (cf->cf_fstate != FSTATE_STAR) {
1597 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1598 		cf->cf_fstate = FSTATE_FOUND;
1599 	}
1600 
1601 	config_devlink(dev);
1602 
1603 #if 0	/* XXXJRT not yet */
1604 	device_register(dev, NULL);	/* like a root node */
1605 #endif
1606 
1607 	/* Let userland know */
1608 	devmon_report_device(dev, true);
1609 
1610 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1611 
1612 	config_process_deferred(&deferred_config_queue, dev);
1613 	return dev;
1614 }
1615 
1616 /*
1617  * Caller must hold alldevs_mtx.
1618  */
1619 static void
1620 config_collect_garbage(struct devicelist *garbage)
1621 {
1622 	device_t dv;
1623 
1624 	KASSERT(!cpu_intr_p());
1625 	KASSERT(!cpu_softintr_p());
1626 	KASSERT(mutex_owned(&alldevs_mtx));
1627 
1628 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1629 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
1630 			if (dv->dv_del_gen != 0)
1631 				break;
1632 		}
1633 		if (dv == NULL) {
1634 			alldevs_garbage = false;
1635 			break;
1636 		}
1637 		config_devunlink(dv, garbage);
1638 	}
1639 	KASSERT(mutex_owned(&alldevs_mtx));
1640 }
1641 
1642 static void
1643 config_dump_garbage(struct devicelist *garbage)
1644 {
1645 	device_t dv;
1646 
1647 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1648 		TAILQ_REMOVE(garbage, dv, dv_list);
1649 		config_devdelete(dv);
1650 	}
1651 }
1652 
1653 /*
1654  * Detach a device.  Optionally forced (e.g. because of hardware
1655  * removal) and quiet.  Returns zero if successful, non-zero
1656  * (an error code) otherwise.
1657  *
1658  * Note that this code wants to be run from a process context, so
1659  * that the detach can sleep to allow processes which have a device
1660  * open to run and unwind their stacks.
1661  */
1662 int
1663 config_detach(device_t dev, int flags)
1664 {
1665 	struct alldevs_foray af;
1666 	struct cftable *ct;
1667 	cfdata_t cf;
1668 	const struct cfattach *ca;
1669 	struct cfdriver *cd;
1670 #ifdef DIAGNOSTIC
1671 	device_t d;
1672 #endif
1673 	int rv = 0, s;
1674 
1675 #ifdef DIAGNOSTIC
1676 	cf = dev->dv_cfdata;
1677 	if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1678 	    cf->cf_fstate != FSTATE_STAR)
1679 		panic("config_detach: %s: bad device fstate %d",
1680 		    device_xname(dev), cf ? cf->cf_fstate : -1);
1681 #endif
1682 	cd = dev->dv_cfdriver;
1683 	KASSERT(cd != NULL);
1684 
1685 	ca = dev->dv_cfattach;
1686 	KASSERT(ca != NULL);
1687 
1688 	s = config_alldevs_lock();
1689 	if (dev->dv_del_gen != 0) {
1690 		config_alldevs_unlock(s);
1691 #ifdef DIAGNOSTIC
1692 		printf("%s: %s is already detached\n", __func__,
1693 		    device_xname(dev));
1694 #endif /* DIAGNOSTIC */
1695 		return ENOENT;
1696 	}
1697 	alldevs_nwrite++;
1698 	config_alldevs_unlock(s);
1699 
1700 	if (!detachall &&
1701 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1702 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1703 		rv = EOPNOTSUPP;
1704 	} else if (ca->ca_detach != NULL) {
1705 		rv = (*ca->ca_detach)(dev, flags);
1706 	} else
1707 		rv = EOPNOTSUPP;
1708 
1709 	/*
1710 	 * If it was not possible to detach the device, then we either
1711 	 * panic() (for the forced but failed case), or return an error.
1712 	 *
1713 	 * If it was possible to detach the device, ensure that the
1714 	 * device is deactivated.
1715 	 */
1716 	if (rv == 0)
1717 		dev->dv_flags &= ~DVF_ACTIVE;
1718 	else if ((flags & DETACH_FORCE) == 0)
1719 		goto out;
1720 	else {
1721 		panic("config_detach: forced detach of %s failed (%d)",
1722 		    device_xname(dev), rv);
1723 	}
1724 
1725 	/*
1726 	 * The device has now been successfully detached.
1727 	 */
1728 
1729 	/* Let userland know */
1730 	devmon_report_device(dev, false);
1731 
1732 #ifdef DIAGNOSTIC
1733 	/*
1734 	 * Sanity: If you're successfully detached, you should have no
1735 	 * children.  (Note that because children must be attached
1736 	 * after parents, we only need to search the latter part of
1737 	 * the list.)
1738 	 */
1739 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1740 	    d = TAILQ_NEXT(d, dv_list)) {
1741 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
1742 			printf("config_detach: detached device %s"
1743 			    " has children %s\n", device_xname(dev), device_xname(d));
1744 			panic("config_detach");
1745 		}
1746 	}
1747 #endif
1748 
1749 	/* notify the parent that the child is gone */
1750 	if (dev->dv_parent) {
1751 		device_t p = dev->dv_parent;
1752 		if (p->dv_cfattach->ca_childdetached)
1753 			(*p->dv_cfattach->ca_childdetached)(p, dev);
1754 	}
1755 
1756 	/*
1757 	 * Mark cfdata to show that the unit can be reused, if possible.
1758 	 */
1759 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1760 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1761 			if (STREQ(cf->cf_name, cd->cd_name)) {
1762 				if (cf->cf_fstate == FSTATE_FOUND &&
1763 				    cf->cf_unit == dev->dv_unit)
1764 					cf->cf_fstate = FSTATE_NOTFOUND;
1765 			}
1766 		}
1767 	}
1768 
1769 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1770 		aprint_normal_dev(dev, "detached\n");
1771 
1772 out:
1773 	config_alldevs_enter(&af);
1774 	KASSERT(alldevs_nwrite != 0);
1775 	--alldevs_nwrite;
1776 	if (rv == 0 && dev->dv_del_gen == 0) {
1777 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
1778 			config_devunlink(dev, &af.af_garbage);
1779 		else {
1780 			dev->dv_del_gen = alldevs_gen;
1781 			alldevs_garbage = true;
1782 		}
1783 	}
1784 	config_alldevs_exit(&af);
1785 
1786 	return rv;
1787 }
1788 
1789 int
1790 config_detach_children(device_t parent, int flags)
1791 {
1792 	device_t dv;
1793 	deviter_t di;
1794 	int error = 0;
1795 
1796 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1797 	     dv = deviter_next(&di)) {
1798 		if (device_parent(dv) != parent)
1799 			continue;
1800 		if ((error = config_detach(dv, flags)) != 0)
1801 			break;
1802 	}
1803 	deviter_release(&di);
1804 	return error;
1805 }
1806 
1807 device_t
1808 shutdown_first(struct shutdown_state *s)
1809 {
1810 	if (!s->initialized) {
1811 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1812 		s->initialized = true;
1813 	}
1814 	return shutdown_next(s);
1815 }
1816 
1817 device_t
1818 shutdown_next(struct shutdown_state *s)
1819 {
1820 	device_t dv;
1821 
1822 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1823 		;
1824 
1825 	if (dv == NULL)
1826 		s->initialized = false;
1827 
1828 	return dv;
1829 }
1830 
1831 bool
1832 config_detach_all(int how)
1833 {
1834 	static struct shutdown_state s;
1835 	device_t curdev;
1836 	bool progress = false;
1837 
1838 	if ((how & RB_NOSYNC) != 0)
1839 		return false;
1840 
1841 	for (curdev = shutdown_first(&s); curdev != NULL;
1842 	     curdev = shutdown_next(&s)) {
1843 		aprint_debug(" detaching %s, ", device_xname(curdev));
1844 		if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
1845 			progress = true;
1846 			aprint_debug("success.");
1847 		} else
1848 			aprint_debug("failed.");
1849 	}
1850 	return progress;
1851 }
1852 
1853 static bool
1854 device_is_ancestor_of(device_t ancestor, device_t descendant)
1855 {
1856 	device_t dv;
1857 
1858 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1859 		if (device_parent(dv) == ancestor)
1860 			return true;
1861 	}
1862 	return false;
1863 }
1864 
1865 int
1866 config_deactivate(device_t dev)
1867 {
1868 	deviter_t di;
1869 	const struct cfattach *ca;
1870 	device_t descendant;
1871 	int s, rv = 0, oflags;
1872 
1873 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1874 	     descendant != NULL;
1875 	     descendant = deviter_next(&di)) {
1876 		if (dev != descendant &&
1877 		    !device_is_ancestor_of(dev, descendant))
1878 			continue;
1879 
1880 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1881 			continue;
1882 
1883 		ca = descendant->dv_cfattach;
1884 		oflags = descendant->dv_flags;
1885 
1886 		descendant->dv_flags &= ~DVF_ACTIVE;
1887 		if (ca->ca_activate == NULL)
1888 			continue;
1889 		s = splhigh();
1890 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1891 		splx(s);
1892 		if (rv != 0)
1893 			descendant->dv_flags = oflags;
1894 	}
1895 	deviter_release(&di);
1896 	return rv;
1897 }
1898 
1899 /*
1900  * Defer the configuration of the specified device until all
1901  * of its parent's devices have been attached.
1902  */
1903 void
1904 config_defer(device_t dev, void (*func)(device_t))
1905 {
1906 	struct deferred_config *dc;
1907 
1908 	if (dev->dv_parent == NULL)
1909 		panic("config_defer: can't defer config of a root device");
1910 
1911 #ifdef DIAGNOSTIC
1912 	TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1913 		if (dc->dc_dev == dev)
1914 			panic("config_defer: deferred twice");
1915 	}
1916 #endif
1917 
1918 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1919 	if (dc == NULL)
1920 		panic("config_defer: unable to allocate callback");
1921 
1922 	dc->dc_dev = dev;
1923 	dc->dc_func = func;
1924 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1925 	config_pending_incr(dev);
1926 }
1927 
1928 /*
1929  * Defer some autoconfiguration for a device until after interrupts
1930  * are enabled.
1931  */
1932 void
1933 config_interrupts(device_t dev, void (*func)(device_t))
1934 {
1935 	struct deferred_config *dc;
1936 
1937 	/*
1938 	 * If interrupts are enabled, callback now.
1939 	 */
1940 	if (cold == 0) {
1941 		(*func)(dev);
1942 		return;
1943 	}
1944 
1945 #ifdef DIAGNOSTIC
1946 	TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1947 		if (dc->dc_dev == dev)
1948 			panic("config_interrupts: deferred twice");
1949 	}
1950 #endif
1951 
1952 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1953 	if (dc == NULL)
1954 		panic("config_interrupts: unable to allocate callback");
1955 
1956 	dc->dc_dev = dev;
1957 	dc->dc_func = func;
1958 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1959 	config_pending_incr(dev);
1960 }
1961 
1962 /*
1963  * Defer some autoconfiguration for a device until after root file system
1964  * is mounted (to load firmware etc).
1965  */
1966 void
1967 config_mountroot(device_t dev, void (*func)(device_t))
1968 {
1969 	struct deferred_config *dc;
1970 
1971 	/*
1972 	 * If root file system is mounted, callback now.
1973 	 */
1974 	if (root_is_mounted) {
1975 		(*func)(dev);
1976 		return;
1977 	}
1978 
1979 #ifdef DIAGNOSTIC
1980 	TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
1981 		if (dc->dc_dev == dev)
1982 			panic("%s: deferred twice", __func__);
1983 	}
1984 #endif
1985 
1986 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1987 	if (dc == NULL)
1988 		panic("%s: unable to allocate callback", __func__);
1989 
1990 	dc->dc_dev = dev;
1991 	dc->dc_func = func;
1992 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
1993 }
1994 
1995 /*
1996  * Process a deferred configuration queue.
1997  */
1998 static void
1999 config_process_deferred(struct deferred_config_head *queue,
2000     device_t parent)
2001 {
2002 	struct deferred_config *dc, *ndc;
2003 
2004 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
2005 		ndc = TAILQ_NEXT(dc, dc_queue);
2006 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2007 			TAILQ_REMOVE(queue, dc, dc_queue);
2008 			(*dc->dc_func)(dc->dc_dev);
2009 			config_pending_decr(dc->dc_dev);
2010 			kmem_free(dc, sizeof(*dc));
2011 		}
2012 	}
2013 }
2014 
2015 /*
2016  * Manipulate the config_pending semaphore.
2017  */
2018 void
2019 config_pending_incr(device_t dev)
2020 {
2021 
2022 	mutex_enter(&config_misc_lock);
2023 	config_pending++;
2024 #ifdef DEBUG_AUTOCONF
2025 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2026 #endif
2027 	mutex_exit(&config_misc_lock);
2028 }
2029 
2030 void
2031 config_pending_decr(device_t dev)
2032 {
2033 
2034 #ifdef DIAGNOSTIC
2035 	if (config_pending == 0)
2036 		panic("config_pending_decr: config_pending == 0");
2037 #endif
2038 	mutex_enter(&config_misc_lock);
2039 	config_pending--;
2040 #ifdef DEBUG_AUTOCONF
2041 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2042 #endif
2043 	if (config_pending == 0)
2044 		cv_broadcast(&config_misc_cv);
2045 	mutex_exit(&config_misc_lock);
2046 }
2047 
2048 /*
2049  * Register a "finalization" routine.  Finalization routines are
2050  * called iteratively once all real devices have been found during
2051  * autoconfiguration, for as long as any one finalizer has done
2052  * any work.
2053  */
2054 int
2055 config_finalize_register(device_t dev, int (*fn)(device_t))
2056 {
2057 	struct finalize_hook *f;
2058 
2059 	/*
2060 	 * If finalization has already been done, invoke the
2061 	 * callback function now.
2062 	 */
2063 	if (config_finalize_done) {
2064 		while ((*fn)(dev) != 0)
2065 			/* loop */ ;
2066 	}
2067 
2068 	/* Ensure this isn't already on the list. */
2069 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2070 		if (f->f_func == fn && f->f_dev == dev)
2071 			return EEXIST;
2072 	}
2073 
2074 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
2075 	f->f_func = fn;
2076 	f->f_dev = dev;
2077 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2078 
2079 	return 0;
2080 }
2081 
2082 void
2083 config_finalize(void)
2084 {
2085 	struct finalize_hook *f;
2086 	struct pdevinit *pdev;
2087 	extern struct pdevinit pdevinit[];
2088 	int errcnt, rv;
2089 
2090 	/*
2091 	 * Now that device driver threads have been created, wait for
2092 	 * them to finish any deferred autoconfiguration.
2093 	 */
2094 	mutex_enter(&config_misc_lock);
2095 	while (config_pending != 0)
2096 		cv_wait(&config_misc_cv, &config_misc_lock);
2097 	mutex_exit(&config_misc_lock);
2098 
2099 	KERNEL_LOCK(1, NULL);
2100 
2101 	/* Attach pseudo-devices. */
2102 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2103 		(*pdev->pdev_attach)(pdev->pdev_count);
2104 
2105 	/* Run the hooks until none of them does any work. */
2106 	do {
2107 		rv = 0;
2108 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
2109 			rv |= (*f->f_func)(f->f_dev);
2110 	} while (rv != 0);
2111 
2112 	config_finalize_done = 1;
2113 
2114 	/* Now free all the hooks. */
2115 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2116 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
2117 		kmem_free(f, sizeof(*f));
2118 	}
2119 
2120 	KERNEL_UNLOCK_ONE(NULL);
2121 
2122 	errcnt = aprint_get_error_count();
2123 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2124 	    (boothowto & AB_VERBOSE) == 0) {
2125 		mutex_enter(&config_misc_lock);
2126 		if (config_do_twiddle) {
2127 			config_do_twiddle = 0;
2128 			printf_nolog(" done.\n");
2129 		}
2130 		mutex_exit(&config_misc_lock);
2131 		if (errcnt != 0) {
2132 			printf("WARNING: %d error%s while detecting hardware; "
2133 			    "check system log.\n", errcnt,
2134 			    errcnt == 1 ? "" : "s");
2135 		}
2136 	}
2137 }
2138 
2139 void
2140 config_twiddle_init(void)
2141 {
2142 
2143 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2144 		config_do_twiddle = 1;
2145 	}
2146 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2147 }
2148 
2149 void
2150 config_twiddle_fn(void *cookie)
2151 {
2152 
2153 	mutex_enter(&config_misc_lock);
2154 	if (config_do_twiddle) {
2155 		twiddle();
2156 		callout_schedule(&config_twiddle_ch, mstohz(100));
2157 	}
2158 	mutex_exit(&config_misc_lock);
2159 }
2160 
2161 static int
2162 config_alldevs_lock(void)
2163 {
2164 	mutex_enter(&alldevs_mtx);
2165 	return 0;
2166 }
2167 
2168 static void
2169 config_alldevs_enter(struct alldevs_foray *af)
2170 {
2171 	TAILQ_INIT(&af->af_garbage);
2172 	af->af_s = config_alldevs_lock();
2173 	config_collect_garbage(&af->af_garbage);
2174 }
2175 
2176 static void
2177 config_alldevs_exit(struct alldevs_foray *af)
2178 {
2179 	config_alldevs_unlock(af->af_s);
2180 	config_dump_garbage(&af->af_garbage);
2181 }
2182 
2183 /*ARGSUSED*/
2184 static void
2185 config_alldevs_unlock(int s)
2186 {
2187 	mutex_exit(&alldevs_mtx);
2188 }
2189 
2190 /*
2191  * device_lookup:
2192  *
2193  *	Look up a device instance for a given driver.
2194  */
2195 device_t
2196 device_lookup(cfdriver_t cd, int unit)
2197 {
2198 	device_t dv;
2199 	int s;
2200 
2201 	s = config_alldevs_lock();
2202 	KASSERT(mutex_owned(&alldevs_mtx));
2203 	if (unit < 0 || unit >= cd->cd_ndevs)
2204 		dv = NULL;
2205 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2206 		dv = NULL;
2207 	config_alldevs_unlock(s);
2208 
2209 	return dv;
2210 }
2211 
2212 /*
2213  * device_lookup_private:
2214  *
2215  *	Look up a softc instance for a given driver.
2216  */
2217 void *
2218 device_lookup_private(cfdriver_t cd, int unit)
2219 {
2220 
2221 	return device_private(device_lookup(cd, unit));
2222 }
2223 
2224 /*
2225  * device_find_by_xname:
2226  *
2227  *	Returns the device of the given name or NULL if it doesn't exist.
2228  */
2229 device_t
2230 device_find_by_xname(const char *name)
2231 {
2232 	device_t dv;
2233 	deviter_t di;
2234 
2235 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2236 		if (strcmp(device_xname(dv), name) == 0)
2237 			break;
2238 	}
2239 	deviter_release(&di);
2240 
2241 	return dv;
2242 }
2243 
2244 /*
2245  * device_find_by_driver_unit:
2246  *
2247  *	Returns the device of the given driver name and unit or
2248  *	NULL if it doesn't exist.
2249  */
2250 device_t
2251 device_find_by_driver_unit(const char *name, int unit)
2252 {
2253 	struct cfdriver *cd;
2254 
2255 	if ((cd = config_cfdriver_lookup(name)) == NULL)
2256 		return NULL;
2257 	return device_lookup(cd, unit);
2258 }
2259 
2260 /*
2261  * Power management related functions.
2262  */
2263 
2264 bool
2265 device_pmf_is_registered(device_t dev)
2266 {
2267 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2268 }
2269 
2270 bool
2271 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2272 {
2273 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2274 		return true;
2275 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2276 		return false;
2277 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2278 	    dev->dv_driver_suspend != NULL &&
2279 	    !(*dev->dv_driver_suspend)(dev, qual))
2280 		return false;
2281 
2282 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2283 	return true;
2284 }
2285 
2286 bool
2287 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2288 {
2289 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2290 		return true;
2291 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2292 		return false;
2293 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2294 	    dev->dv_driver_resume != NULL &&
2295 	    !(*dev->dv_driver_resume)(dev, qual))
2296 		return false;
2297 
2298 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2299 	return true;
2300 }
2301 
2302 bool
2303 device_pmf_driver_shutdown(device_t dev, int how)
2304 {
2305 
2306 	if (*dev->dv_driver_shutdown != NULL &&
2307 	    !(*dev->dv_driver_shutdown)(dev, how))
2308 		return false;
2309 	return true;
2310 }
2311 
2312 bool
2313 device_pmf_driver_register(device_t dev,
2314     bool (*suspend)(device_t, const pmf_qual_t *),
2315     bool (*resume)(device_t, const pmf_qual_t *),
2316     bool (*shutdown)(device_t, int))
2317 {
2318 	dev->dv_driver_suspend = suspend;
2319 	dev->dv_driver_resume = resume;
2320 	dev->dv_driver_shutdown = shutdown;
2321 	dev->dv_flags |= DVF_POWER_HANDLERS;
2322 	return true;
2323 }
2324 
2325 static const char *
2326 curlwp_name(void)
2327 {
2328 	if (curlwp->l_name != NULL)
2329 		return curlwp->l_name;
2330 	else
2331 		return curlwp->l_proc->p_comm;
2332 }
2333 
2334 void
2335 device_pmf_driver_deregister(device_t dev)
2336 {
2337 	device_lock_t dvl = device_getlock(dev);
2338 
2339 	dev->dv_driver_suspend = NULL;
2340 	dev->dv_driver_resume = NULL;
2341 
2342 	mutex_enter(&dvl->dvl_mtx);
2343 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
2344 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2345 		/* Wake a thread that waits for the lock.  That
2346 		 * thread will fail to acquire the lock, and then
2347 		 * it will wake the next thread that waits for the
2348 		 * lock, or else it will wake us.
2349 		 */
2350 		cv_signal(&dvl->dvl_cv);
2351 		pmflock_debug(dev, __func__, __LINE__);
2352 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2353 		pmflock_debug(dev, __func__, __LINE__);
2354 	}
2355 	mutex_exit(&dvl->dvl_mtx);
2356 }
2357 
2358 bool
2359 device_pmf_driver_child_register(device_t dev)
2360 {
2361 	device_t parent = device_parent(dev);
2362 
2363 	if (parent == NULL || parent->dv_driver_child_register == NULL)
2364 		return true;
2365 	return (*parent->dv_driver_child_register)(dev);
2366 }
2367 
2368 void
2369 device_pmf_driver_set_child_register(device_t dev,
2370     bool (*child_register)(device_t))
2371 {
2372 	dev->dv_driver_child_register = child_register;
2373 }
2374 
2375 static void
2376 pmflock_debug(device_t dev, const char *func, int line)
2377 {
2378 	device_lock_t dvl = device_getlock(dev);
2379 
2380 	aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2381 	    func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2382 	    dev->dv_flags);
2383 }
2384 
2385 static bool
2386 device_pmf_lock1(device_t dev)
2387 {
2388 	device_lock_t dvl = device_getlock(dev);
2389 
2390 	while (device_pmf_is_registered(dev) &&
2391 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2392 		dvl->dvl_nwait++;
2393 		pmflock_debug(dev, __func__, __LINE__);
2394 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2395 		pmflock_debug(dev, __func__, __LINE__);
2396 		dvl->dvl_nwait--;
2397 	}
2398 	if (!device_pmf_is_registered(dev)) {
2399 		pmflock_debug(dev, __func__, __LINE__);
2400 		/* We could not acquire the lock, but some other thread may
2401 		 * wait for it, also.  Wake that thread.
2402 		 */
2403 		cv_signal(&dvl->dvl_cv);
2404 		return false;
2405 	}
2406 	dvl->dvl_nlock++;
2407 	dvl->dvl_holder = curlwp;
2408 	pmflock_debug(dev, __func__, __LINE__);
2409 	return true;
2410 }
2411 
2412 bool
2413 device_pmf_lock(device_t dev)
2414 {
2415 	bool rc;
2416 	device_lock_t dvl = device_getlock(dev);
2417 
2418 	mutex_enter(&dvl->dvl_mtx);
2419 	rc = device_pmf_lock1(dev);
2420 	mutex_exit(&dvl->dvl_mtx);
2421 
2422 	return rc;
2423 }
2424 
2425 void
2426 device_pmf_unlock(device_t dev)
2427 {
2428 	device_lock_t dvl = device_getlock(dev);
2429 
2430 	KASSERT(dvl->dvl_nlock > 0);
2431 	mutex_enter(&dvl->dvl_mtx);
2432 	if (--dvl->dvl_nlock == 0)
2433 		dvl->dvl_holder = NULL;
2434 	cv_signal(&dvl->dvl_cv);
2435 	pmflock_debug(dev, __func__, __LINE__);
2436 	mutex_exit(&dvl->dvl_mtx);
2437 }
2438 
2439 device_lock_t
2440 device_getlock(device_t dev)
2441 {
2442 	return &dev->dv_lock;
2443 }
2444 
2445 void *
2446 device_pmf_bus_private(device_t dev)
2447 {
2448 	return dev->dv_bus_private;
2449 }
2450 
2451 bool
2452 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2453 {
2454 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2455 		return true;
2456 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2457 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2458 		return false;
2459 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2460 	    dev->dv_bus_suspend != NULL &&
2461 	    !(*dev->dv_bus_suspend)(dev, qual))
2462 		return false;
2463 
2464 	dev->dv_flags |= DVF_BUS_SUSPENDED;
2465 	return true;
2466 }
2467 
2468 bool
2469 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2470 {
2471 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2472 		return true;
2473 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2474 	    dev->dv_bus_resume != NULL &&
2475 	    !(*dev->dv_bus_resume)(dev, qual))
2476 		return false;
2477 
2478 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2479 	return true;
2480 }
2481 
2482 bool
2483 device_pmf_bus_shutdown(device_t dev, int how)
2484 {
2485 
2486 	if (*dev->dv_bus_shutdown != NULL &&
2487 	    !(*dev->dv_bus_shutdown)(dev, how))
2488 		return false;
2489 	return true;
2490 }
2491 
2492 void
2493 device_pmf_bus_register(device_t dev, void *priv,
2494     bool (*suspend)(device_t, const pmf_qual_t *),
2495     bool (*resume)(device_t, const pmf_qual_t *),
2496     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2497 {
2498 	dev->dv_bus_private = priv;
2499 	dev->dv_bus_resume = resume;
2500 	dev->dv_bus_suspend = suspend;
2501 	dev->dv_bus_shutdown = shutdown;
2502 	dev->dv_bus_deregister = deregister;
2503 }
2504 
2505 void
2506 device_pmf_bus_deregister(device_t dev)
2507 {
2508 	if (dev->dv_bus_deregister == NULL)
2509 		return;
2510 	(*dev->dv_bus_deregister)(dev);
2511 	dev->dv_bus_private = NULL;
2512 	dev->dv_bus_suspend = NULL;
2513 	dev->dv_bus_resume = NULL;
2514 	dev->dv_bus_deregister = NULL;
2515 }
2516 
2517 void *
2518 device_pmf_class_private(device_t dev)
2519 {
2520 	return dev->dv_class_private;
2521 }
2522 
2523 bool
2524 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2525 {
2526 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2527 		return true;
2528 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2529 	    dev->dv_class_suspend != NULL &&
2530 	    !(*dev->dv_class_suspend)(dev, qual))
2531 		return false;
2532 
2533 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
2534 	return true;
2535 }
2536 
2537 bool
2538 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2539 {
2540 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2541 		return true;
2542 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2543 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2544 		return false;
2545 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2546 	    dev->dv_class_resume != NULL &&
2547 	    !(*dev->dv_class_resume)(dev, qual))
2548 		return false;
2549 
2550 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2551 	return true;
2552 }
2553 
2554 void
2555 device_pmf_class_register(device_t dev, void *priv,
2556     bool (*suspend)(device_t, const pmf_qual_t *),
2557     bool (*resume)(device_t, const pmf_qual_t *),
2558     void (*deregister)(device_t))
2559 {
2560 	dev->dv_class_private = priv;
2561 	dev->dv_class_suspend = suspend;
2562 	dev->dv_class_resume = resume;
2563 	dev->dv_class_deregister = deregister;
2564 }
2565 
2566 void
2567 device_pmf_class_deregister(device_t dev)
2568 {
2569 	if (dev->dv_class_deregister == NULL)
2570 		return;
2571 	(*dev->dv_class_deregister)(dev);
2572 	dev->dv_class_private = NULL;
2573 	dev->dv_class_suspend = NULL;
2574 	dev->dv_class_resume = NULL;
2575 	dev->dv_class_deregister = NULL;
2576 }
2577 
2578 bool
2579 device_active(device_t dev, devactive_t type)
2580 {
2581 	size_t i;
2582 
2583 	if (dev->dv_activity_count == 0)
2584 		return false;
2585 
2586 	for (i = 0; i < dev->dv_activity_count; ++i) {
2587 		if (dev->dv_activity_handlers[i] == NULL)
2588 			break;
2589 		(*dev->dv_activity_handlers[i])(dev, type);
2590 	}
2591 
2592 	return true;
2593 }
2594 
2595 bool
2596 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2597 {
2598 	void (**new_handlers)(device_t, devactive_t);
2599 	void (**old_handlers)(device_t, devactive_t);
2600 	size_t i, old_size, new_size;
2601 	int s;
2602 
2603 	old_handlers = dev->dv_activity_handlers;
2604 	old_size = dev->dv_activity_count;
2605 
2606 	for (i = 0; i < old_size; ++i) {
2607 		KASSERT(old_handlers[i] != handler);
2608 		if (old_handlers[i] == NULL) {
2609 			old_handlers[i] = handler;
2610 			return true;
2611 		}
2612 	}
2613 
2614 	new_size = old_size + 4;
2615 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2616 
2617 	memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2618 	new_handlers[old_size] = handler;
2619 	memset(new_handlers + old_size + 1, 0,
2620 	    sizeof(int [new_size - (old_size+1)]));
2621 
2622 	s = splhigh();
2623 	dev->dv_activity_count = new_size;
2624 	dev->dv_activity_handlers = new_handlers;
2625 	splx(s);
2626 
2627 	if (old_handlers != NULL)
2628 		kmem_free(old_handlers, sizeof(void * [old_size]));
2629 
2630 	return true;
2631 }
2632 
2633 void
2634 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2635 {
2636 	void (**old_handlers)(device_t, devactive_t);
2637 	size_t i, old_size;
2638 	int s;
2639 
2640 	old_handlers = dev->dv_activity_handlers;
2641 	old_size = dev->dv_activity_count;
2642 
2643 	for (i = 0; i < old_size; ++i) {
2644 		if (old_handlers[i] == handler)
2645 			break;
2646 		if (old_handlers[i] == NULL)
2647 			return; /* XXX panic? */
2648 	}
2649 
2650 	if (i == old_size)
2651 		return; /* XXX panic? */
2652 
2653 	for (; i < old_size - 1; ++i) {
2654 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2655 			continue;
2656 
2657 		if (i == 0) {
2658 			s = splhigh();
2659 			dev->dv_activity_count = 0;
2660 			dev->dv_activity_handlers = NULL;
2661 			splx(s);
2662 			kmem_free(old_handlers, sizeof(void *[old_size]));
2663 		}
2664 		return;
2665 	}
2666 	old_handlers[i] = NULL;
2667 }
2668 
2669 /* Return true iff the device_t `dev' exists at generation `gen'. */
2670 static bool
2671 device_exists_at(device_t dv, devgen_t gen)
2672 {
2673 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2674 	    dv->dv_add_gen <= gen;
2675 }
2676 
2677 static bool
2678 deviter_visits(const deviter_t *di, device_t dv)
2679 {
2680 	return device_exists_at(dv, di->di_gen);
2681 }
2682 
2683 /*
2684  * Device Iteration
2685  *
2686  * deviter_t: a device iterator.  Holds state for a "walk" visiting
2687  *     each device_t's in the device tree.
2688  *
2689  * deviter_init(di, flags): initialize the device iterator `di'
2690  *     to "walk" the device tree.  deviter_next(di) will return
2691  *     the first device_t in the device tree, or NULL if there are
2692  *     no devices.
2693  *
2694  *     `flags' is one or more of DEVITER_F_RW, indicating that the
2695  *     caller intends to modify the device tree by calling
2696  *     config_detach(9) on devices in the order that the iterator
2697  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2698  *     nearest the "root" of the device tree to be returned, first;
2699  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2700  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2701  *     indicating both that deviter_init() should not respect any
2702  *     locks on the device tree, and that deviter_next(di) may run
2703  *     in more than one LWP before the walk has finished.
2704  *
2705  *     Only one DEVITER_F_RW iterator may be in the device tree at
2706  *     once.
2707  *
2708  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2709  *
2710  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2711  *     DEVITER_F_LEAVES_FIRST are used in combination.
2712  *
2713  * deviter_first(di, flags): initialize the device iterator `di'
2714  *     and return the first device_t in the device tree, or NULL
2715  *     if there are no devices.  The statement
2716  *
2717  *         dv = deviter_first(di);
2718  *
2719  *     is shorthand for
2720  *
2721  *         deviter_init(di);
2722  *         dv = deviter_next(di);
2723  *
2724  * deviter_next(di): return the next device_t in the device tree,
2725  *     or NULL if there are no more devices.  deviter_next(di)
2726  *     is undefined if `di' was not initialized with deviter_init() or
2727  *     deviter_first().
2728  *
2729  * deviter_release(di): stops iteration (subsequent calls to
2730  *     deviter_next() will return NULL), releases any locks and
2731  *     resources held by the device iterator.
2732  *
2733  * Device iteration does not return device_t's in any particular
2734  * order.  An iterator will never return the same device_t twice.
2735  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2736  * is called repeatedly on the same `di', it will eventually return
2737  * NULL.  It is ok to attach/detach devices during device iteration.
2738  */
2739 void
2740 deviter_init(deviter_t *di, deviter_flags_t flags)
2741 {
2742 	device_t dv;
2743 	int s;
2744 
2745 	memset(di, 0, sizeof(*di));
2746 
2747 	s = config_alldevs_lock();
2748 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
2749 		flags |= DEVITER_F_RW;
2750 
2751 	if ((flags & DEVITER_F_RW) != 0)
2752 		alldevs_nwrite++;
2753 	else
2754 		alldevs_nread++;
2755 	di->di_gen = alldevs_gen++;
2756 	config_alldevs_unlock(s);
2757 
2758 	di->di_flags = flags;
2759 
2760 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2761 	case DEVITER_F_LEAVES_FIRST:
2762 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
2763 			if (!deviter_visits(di, dv))
2764 				continue;
2765 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2766 		}
2767 		break;
2768 	case DEVITER_F_ROOT_FIRST:
2769 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
2770 			if (!deviter_visits(di, dv))
2771 				continue;
2772 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2773 		}
2774 		break;
2775 	default:
2776 		break;
2777 	}
2778 
2779 	deviter_reinit(di);
2780 }
2781 
2782 static void
2783 deviter_reinit(deviter_t *di)
2784 {
2785 	if ((di->di_flags & DEVITER_F_RW) != 0)
2786 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2787 	else
2788 		di->di_prev = TAILQ_FIRST(&alldevs);
2789 }
2790 
2791 device_t
2792 deviter_first(deviter_t *di, deviter_flags_t flags)
2793 {
2794 	deviter_init(di, flags);
2795 	return deviter_next(di);
2796 }
2797 
2798 static device_t
2799 deviter_next2(deviter_t *di)
2800 {
2801 	device_t dv;
2802 
2803 	dv = di->di_prev;
2804 
2805 	if (dv == NULL)
2806 		return NULL;
2807 
2808 	if ((di->di_flags & DEVITER_F_RW) != 0)
2809 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2810 	else
2811 		di->di_prev = TAILQ_NEXT(dv, dv_list);
2812 
2813 	return dv;
2814 }
2815 
2816 static device_t
2817 deviter_next1(deviter_t *di)
2818 {
2819 	device_t dv;
2820 
2821 	do {
2822 		dv = deviter_next2(di);
2823 	} while (dv != NULL && !deviter_visits(di, dv));
2824 
2825 	return dv;
2826 }
2827 
2828 device_t
2829 deviter_next(deviter_t *di)
2830 {
2831 	device_t dv = NULL;
2832 
2833 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2834 	case 0:
2835 		return deviter_next1(di);
2836 	case DEVITER_F_LEAVES_FIRST:
2837 		while (di->di_curdepth >= 0) {
2838 			if ((dv = deviter_next1(di)) == NULL) {
2839 				di->di_curdepth--;
2840 				deviter_reinit(di);
2841 			} else if (dv->dv_depth == di->di_curdepth)
2842 				break;
2843 		}
2844 		return dv;
2845 	case DEVITER_F_ROOT_FIRST:
2846 		while (di->di_curdepth <= di->di_maxdepth) {
2847 			if ((dv = deviter_next1(di)) == NULL) {
2848 				di->di_curdepth++;
2849 				deviter_reinit(di);
2850 			} else if (dv->dv_depth == di->di_curdepth)
2851 				break;
2852 		}
2853 		return dv;
2854 	default:
2855 		return NULL;
2856 	}
2857 }
2858 
2859 void
2860 deviter_release(deviter_t *di)
2861 {
2862 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2863 	int s;
2864 
2865 	s = config_alldevs_lock();
2866 	if (rw)
2867 		--alldevs_nwrite;
2868 	else
2869 		--alldevs_nread;
2870 	/* XXX wake a garbage-collection thread */
2871 	config_alldevs_unlock(s);
2872 }
2873 
2874 const char *
2875 cfdata_ifattr(const struct cfdata *cf)
2876 {
2877 	return cf->cf_pspec->cfp_iattr;
2878 }
2879 
2880 bool
2881 ifattr_match(const char *snull, const char *t)
2882 {
2883 	return (snull == NULL) || strcmp(snull, t) == 0;
2884 }
2885 
2886 void
2887 null_childdetached(device_t self, device_t child)
2888 {
2889 	/* do nothing */
2890 }
2891 
2892 static void
2893 sysctl_detach_setup(struct sysctllog **clog)
2894 {
2895 
2896 	sysctl_createv(clog, 0, NULL, NULL,
2897 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2898 		CTLTYPE_BOOL, "detachall",
2899 		SYSCTL_DESCR("Detach all devices at shutdown"),
2900 		NULL, 0, &detachall, 0,
2901 		CTL_KERN, CTL_CREATE, CTL_EOL);
2902 }
2903