1 /* $NetBSD: subr_autoconf.c,v 1.233 2014/11/06 08:46:04 uebayasi Exp $ */ 2 3 /* 4 * Copyright (c) 1996, 2000 Christopher G. Demetriou 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed for the 18 * NetBSD Project. See http://www.NetBSD.org/ for 19 * information about NetBSD. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )-- 35 */ 36 37 /* 38 * Copyright (c) 1992, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * This software was developed by the Computer Systems Engineering group 42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 43 * contributed to Berkeley. 44 * 45 * All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Lawrence Berkeley Laboratories. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. Neither the name of the University nor the names of its contributors 59 * may be used to endorse or promote products derived from this software 60 * without specific prior written permission. 61 * 62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 72 * SUCH DAMAGE. 73 * 74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL) 75 * 76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94 77 */ 78 79 #include <sys/cdefs.h> 80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.233 2014/11/06 08:46:04 uebayasi Exp $"); 81 82 #ifdef _KERNEL_OPT 83 #include "opt_ddb.h" 84 #include "drvctl.h" 85 #endif 86 87 #include <sys/param.h> 88 #include <sys/device.h> 89 #include <sys/disklabel.h> 90 #include <sys/conf.h> 91 #include <sys/kauth.h> 92 #include <sys/kmem.h> 93 #include <sys/systm.h> 94 #include <sys/kernel.h> 95 #include <sys/errno.h> 96 #include <sys/proc.h> 97 #include <sys/reboot.h> 98 #include <sys/kthread.h> 99 #include <sys/buf.h> 100 #include <sys/dirent.h> 101 #include <sys/mount.h> 102 #include <sys/namei.h> 103 #include <sys/unistd.h> 104 #include <sys/fcntl.h> 105 #include <sys/lockf.h> 106 #include <sys/callout.h> 107 #include <sys/devmon.h> 108 #include <sys/cpu.h> 109 #include <sys/sysctl.h> 110 111 #include <sys/disk.h> 112 113 #include <sys/rnd.h> 114 115 #include <machine/limits.h> 116 117 /* 118 * Autoconfiguration subroutines. 119 */ 120 121 /* 122 * Device autoconfiguration timings are mixed into the entropy pool. 123 */ 124 extern krndsource_t rnd_autoconf_source; 125 126 /* 127 * ioconf.c exports exactly two names: cfdata and cfroots. All system 128 * devices and drivers are found via these tables. 129 */ 130 extern struct cfdata cfdata[]; 131 extern const short cfroots[]; 132 133 /* 134 * List of all cfdriver structures. We use this to detect duplicates 135 * when other cfdrivers are loaded. 136 */ 137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers); 138 extern struct cfdriver * const cfdriver_list_initial[]; 139 140 /* 141 * Initial list of cfattach's. 142 */ 143 extern const struct cfattachinit cfattachinit[]; 144 145 /* 146 * List of cfdata tables. We always have one such list -- the one 147 * built statically when the kernel was configured. 148 */ 149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables); 150 static struct cftable initcftable; 151 152 #define ROOT ((device_t)NULL) 153 154 struct matchinfo { 155 cfsubmatch_t fn; 156 device_t parent; 157 const int *locs; 158 void *aux; 159 struct cfdata *match; 160 int pri; 161 }; 162 163 struct alldevs_foray { 164 int af_s; 165 struct devicelist af_garbage; 166 }; 167 168 static char *number(char *, int); 169 static void mapply(struct matchinfo *, cfdata_t); 170 static device_t config_devalloc(const device_t, const cfdata_t, const int *); 171 static void config_devdelete(device_t); 172 static void config_devunlink(device_t, struct devicelist *); 173 static void config_makeroom(int, struct cfdriver *); 174 static void config_devlink(device_t); 175 static void config_alldevs_unlock(int); 176 static int config_alldevs_lock(void); 177 static void config_alldevs_enter(struct alldevs_foray *); 178 static void config_alldevs_exit(struct alldevs_foray *); 179 static void config_add_attrib_dict(device_t); 180 181 static void config_collect_garbage(struct devicelist *); 182 static void config_dump_garbage(struct devicelist *); 183 184 static void pmflock_debug(device_t, const char *, int); 185 186 static device_t deviter_next1(deviter_t *); 187 static void deviter_reinit(deviter_t *); 188 189 struct deferred_config { 190 TAILQ_ENTRY(deferred_config) dc_queue; 191 device_t dc_dev; 192 void (*dc_func)(device_t); 193 }; 194 195 TAILQ_HEAD(deferred_config_head, deferred_config); 196 197 struct deferred_config_head deferred_config_queue = 198 TAILQ_HEAD_INITIALIZER(deferred_config_queue); 199 struct deferred_config_head interrupt_config_queue = 200 TAILQ_HEAD_INITIALIZER(interrupt_config_queue); 201 int interrupt_config_threads = 8; 202 struct deferred_config_head mountroot_config_queue = 203 TAILQ_HEAD_INITIALIZER(mountroot_config_queue); 204 int mountroot_config_threads = 2; 205 static bool root_is_mounted = false; 206 207 static void config_process_deferred(struct deferred_config_head *, device_t); 208 209 /* Hooks to finalize configuration once all real devices have been found. */ 210 struct finalize_hook { 211 TAILQ_ENTRY(finalize_hook) f_list; 212 int (*f_func)(device_t); 213 device_t f_dev; 214 }; 215 static TAILQ_HEAD(, finalize_hook) config_finalize_list = 216 TAILQ_HEAD_INITIALIZER(config_finalize_list); 217 static int config_finalize_done; 218 219 /* list of all devices */ 220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs); 221 static kmutex_t alldevs_mtx; 222 static volatile bool alldevs_garbage = false; 223 static volatile devgen_t alldevs_gen = 1; 224 static volatile int alldevs_nread = 0; 225 static volatile int alldevs_nwrite = 0; 226 227 static int config_pending; /* semaphore for mountroot */ 228 static kmutex_t config_misc_lock; 229 static kcondvar_t config_misc_cv; 230 231 static bool detachall = false; 232 233 #define STREQ(s1, s2) \ 234 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0) 235 236 static bool config_initialized = false; /* config_init() has been called. */ 237 238 static int config_do_twiddle; 239 static callout_t config_twiddle_ch; 240 241 static void sysctl_detach_setup(struct sysctllog **); 242 243 typedef int (*cfdriver_fn)(struct cfdriver *); 244 static int 245 frob_cfdrivervec(struct cfdriver * const *cfdriverv, 246 cfdriver_fn drv_do, cfdriver_fn drv_undo, 247 const char *style, bool dopanic) 248 { 249 void (*pr)(const char *, ...) __printflike(1, 2) = 250 dopanic ? panic : printf; 251 int i, error = 0, e2 __diagused; 252 253 for (i = 0; cfdriverv[i] != NULL; i++) { 254 if ((error = drv_do(cfdriverv[i])) != 0) { 255 pr("configure: `%s' driver %s failed: %d", 256 cfdriverv[i]->cd_name, style, error); 257 goto bad; 258 } 259 } 260 261 KASSERT(error == 0); 262 return 0; 263 264 bad: 265 printf("\n"); 266 for (i--; i >= 0; i--) { 267 e2 = drv_undo(cfdriverv[i]); 268 KASSERT(e2 == 0); 269 } 270 271 return error; 272 } 273 274 typedef int (*cfattach_fn)(const char *, struct cfattach *); 275 static int 276 frob_cfattachvec(const struct cfattachinit *cfattachv, 277 cfattach_fn att_do, cfattach_fn att_undo, 278 const char *style, bool dopanic) 279 { 280 const struct cfattachinit *cfai = NULL; 281 void (*pr)(const char *, ...) __printflike(1, 2) = 282 dopanic ? panic : printf; 283 int j = 0, error = 0, e2 __diagused; 284 285 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) { 286 for (j = 0; cfai->cfai_list[j] != NULL; j++) { 287 if ((error = att_do(cfai->cfai_name, 288 cfai->cfai_list[j])) != 0) { 289 pr("configure: attachment `%s' " 290 "of `%s' driver %s failed: %d", 291 cfai->cfai_list[j]->ca_name, 292 cfai->cfai_name, style, error); 293 goto bad; 294 } 295 } 296 } 297 298 KASSERT(error == 0); 299 return 0; 300 301 bad: 302 /* 303 * Rollback in reverse order. dunno if super-important, but 304 * do that anyway. Although the code looks a little like 305 * someone did a little integration (in the math sense). 306 */ 307 printf("\n"); 308 if (cfai) { 309 bool last; 310 311 for (last = false; last == false; ) { 312 if (cfai == &cfattachv[0]) 313 last = true; 314 for (j--; j >= 0; j--) { 315 e2 = att_undo(cfai->cfai_name, 316 cfai->cfai_list[j]); 317 KASSERT(e2 == 0); 318 } 319 if (!last) { 320 cfai--; 321 for (j = 0; cfai->cfai_list[j] != NULL; j++) 322 ; 323 } 324 } 325 } 326 327 return error; 328 } 329 330 /* 331 * Initialize the autoconfiguration data structures. Normally this 332 * is done by configure(), but some platforms need to do this very 333 * early (to e.g. initialize the console). 334 */ 335 void 336 config_init(void) 337 { 338 339 KASSERT(config_initialized == false); 340 341 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM); 342 343 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE); 344 cv_init(&config_misc_cv, "cfgmisc"); 345 346 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE); 347 348 frob_cfdrivervec(cfdriver_list_initial, 349 config_cfdriver_attach, NULL, "bootstrap", true); 350 frob_cfattachvec(cfattachinit, 351 config_cfattach_attach, NULL, "bootstrap", true); 352 353 initcftable.ct_cfdata = cfdata; 354 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list); 355 356 config_initialized = true; 357 } 358 359 /* 360 * Init or fini drivers and attachments. Either all or none 361 * are processed (via rollback). It would be nice if this were 362 * atomic to outside consumers, but with the current state of 363 * locking ... 364 */ 365 int 366 config_init_component(struct cfdriver * const *cfdriverv, 367 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 368 { 369 int error; 370 371 if ((error = frob_cfdrivervec(cfdriverv, 372 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0) 373 return error; 374 if ((error = frob_cfattachvec(cfattachv, 375 config_cfattach_attach, config_cfattach_detach, 376 "init", false)) != 0) { 377 frob_cfdrivervec(cfdriverv, 378 config_cfdriver_detach, NULL, "init rollback", true); 379 return error; 380 } 381 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) { 382 frob_cfattachvec(cfattachv, 383 config_cfattach_detach, NULL, "init rollback", true); 384 frob_cfdrivervec(cfdriverv, 385 config_cfdriver_detach, NULL, "init rollback", true); 386 return error; 387 } 388 389 return 0; 390 } 391 392 int 393 config_fini_component(struct cfdriver * const *cfdriverv, 394 const struct cfattachinit *cfattachv, struct cfdata *cfdatav) 395 { 396 int error; 397 398 if ((error = config_cfdata_detach(cfdatav)) != 0) 399 return error; 400 if ((error = frob_cfattachvec(cfattachv, 401 config_cfattach_detach, config_cfattach_attach, 402 "fini", false)) != 0) { 403 if (config_cfdata_attach(cfdatav, 0) != 0) 404 panic("config_cfdata fini rollback failed"); 405 return error; 406 } 407 if ((error = frob_cfdrivervec(cfdriverv, 408 config_cfdriver_detach, config_cfdriver_attach, 409 "fini", false)) != 0) { 410 frob_cfattachvec(cfattachv, 411 config_cfattach_attach, NULL, "fini rollback", true); 412 if (config_cfdata_attach(cfdatav, 0) != 0) 413 panic("config_cfdata fini rollback failed"); 414 return error; 415 } 416 417 return 0; 418 } 419 420 void 421 config_init_mi(void) 422 { 423 424 if (!config_initialized) 425 config_init(); 426 427 sysctl_detach_setup(NULL); 428 } 429 430 void 431 config_deferred(device_t dev) 432 { 433 config_process_deferred(&deferred_config_queue, dev); 434 config_process_deferred(&interrupt_config_queue, dev); 435 config_process_deferred(&mountroot_config_queue, dev); 436 } 437 438 static void 439 config_interrupts_thread(void *cookie) 440 { 441 struct deferred_config *dc; 442 443 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) { 444 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue); 445 (*dc->dc_func)(dc->dc_dev); 446 config_pending_decr(dc->dc_dev); 447 kmem_free(dc, sizeof(*dc)); 448 } 449 kthread_exit(0); 450 } 451 452 void 453 config_create_interruptthreads(void) 454 { 455 int i; 456 457 for (i = 0; i < interrupt_config_threads; i++) { 458 (void)kthread_create(PRI_NONE, 0, NULL, 459 config_interrupts_thread, NULL, NULL, "configintr"); 460 } 461 } 462 463 static void 464 config_mountroot_thread(void *cookie) 465 { 466 struct deferred_config *dc; 467 468 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) { 469 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue); 470 (*dc->dc_func)(dc->dc_dev); 471 kmem_free(dc, sizeof(*dc)); 472 } 473 kthread_exit(0); 474 } 475 476 void 477 config_create_mountrootthreads(void) 478 { 479 int i; 480 481 if (!root_is_mounted) 482 root_is_mounted = true; 483 484 for (i = 0; i < mountroot_config_threads; i++) { 485 (void)kthread_create(PRI_NONE, 0, NULL, 486 config_mountroot_thread, NULL, NULL, "configroot"); 487 } 488 } 489 490 /* 491 * Announce device attach/detach to userland listeners. 492 */ 493 static void 494 devmon_report_device(device_t dev, bool isattach) 495 { 496 #if NDRVCTL > 0 497 prop_dictionary_t ev; 498 const char *parent; 499 const char *what; 500 device_t pdev = device_parent(dev); 501 502 ev = prop_dictionary_create(); 503 if (ev == NULL) 504 return; 505 506 what = (isattach ? "device-attach" : "device-detach"); 507 parent = (pdev == NULL ? "root" : device_xname(pdev)); 508 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) || 509 !prop_dictionary_set_cstring(ev, "parent", parent)) { 510 prop_object_release(ev); 511 return; 512 } 513 514 devmon_insert(what, ev); 515 #endif 516 } 517 518 /* 519 * Add a cfdriver to the system. 520 */ 521 int 522 config_cfdriver_attach(struct cfdriver *cd) 523 { 524 struct cfdriver *lcd; 525 526 /* Make sure this driver isn't already in the system. */ 527 LIST_FOREACH(lcd, &allcfdrivers, cd_list) { 528 if (STREQ(lcd->cd_name, cd->cd_name)) 529 return EEXIST; 530 } 531 532 LIST_INIT(&cd->cd_attach); 533 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list); 534 535 return 0; 536 } 537 538 /* 539 * Remove a cfdriver from the system. 540 */ 541 int 542 config_cfdriver_detach(struct cfdriver *cd) 543 { 544 struct alldevs_foray af; 545 int i, rc = 0; 546 547 config_alldevs_enter(&af); 548 /* Make sure there are no active instances. */ 549 for (i = 0; i < cd->cd_ndevs; i++) { 550 if (cd->cd_devs[i] != NULL) { 551 rc = EBUSY; 552 break; 553 } 554 } 555 config_alldevs_exit(&af); 556 557 if (rc != 0) 558 return rc; 559 560 /* ...and no attachments loaded. */ 561 if (LIST_EMPTY(&cd->cd_attach) == 0) 562 return EBUSY; 563 564 LIST_REMOVE(cd, cd_list); 565 566 KASSERT(cd->cd_devs == NULL); 567 568 return 0; 569 } 570 571 /* 572 * Look up a cfdriver by name. 573 */ 574 struct cfdriver * 575 config_cfdriver_lookup(const char *name) 576 { 577 struct cfdriver *cd; 578 579 LIST_FOREACH(cd, &allcfdrivers, cd_list) { 580 if (STREQ(cd->cd_name, name)) 581 return cd; 582 } 583 584 return NULL; 585 } 586 587 /* 588 * Add a cfattach to the specified driver. 589 */ 590 int 591 config_cfattach_attach(const char *driver, struct cfattach *ca) 592 { 593 struct cfattach *lca; 594 struct cfdriver *cd; 595 596 cd = config_cfdriver_lookup(driver); 597 if (cd == NULL) 598 return ESRCH; 599 600 /* Make sure this attachment isn't already on this driver. */ 601 LIST_FOREACH(lca, &cd->cd_attach, ca_list) { 602 if (STREQ(lca->ca_name, ca->ca_name)) 603 return EEXIST; 604 } 605 606 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list); 607 608 return 0; 609 } 610 611 /* 612 * Remove a cfattach from the specified driver. 613 */ 614 int 615 config_cfattach_detach(const char *driver, struct cfattach *ca) 616 { 617 struct alldevs_foray af; 618 struct cfdriver *cd; 619 device_t dev; 620 int i, rc = 0; 621 622 cd = config_cfdriver_lookup(driver); 623 if (cd == NULL) 624 return ESRCH; 625 626 config_alldevs_enter(&af); 627 /* Make sure there are no active instances. */ 628 for (i = 0; i < cd->cd_ndevs; i++) { 629 if ((dev = cd->cd_devs[i]) == NULL) 630 continue; 631 if (dev->dv_cfattach == ca) { 632 rc = EBUSY; 633 break; 634 } 635 } 636 config_alldevs_exit(&af); 637 638 if (rc != 0) 639 return rc; 640 641 LIST_REMOVE(ca, ca_list); 642 643 return 0; 644 } 645 646 /* 647 * Look up a cfattach by name. 648 */ 649 static struct cfattach * 650 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname) 651 { 652 struct cfattach *ca; 653 654 LIST_FOREACH(ca, &cd->cd_attach, ca_list) { 655 if (STREQ(ca->ca_name, atname)) 656 return ca; 657 } 658 659 return NULL; 660 } 661 662 /* 663 * Look up a cfattach by driver/attachment name. 664 */ 665 struct cfattach * 666 config_cfattach_lookup(const char *name, const char *atname) 667 { 668 struct cfdriver *cd; 669 670 cd = config_cfdriver_lookup(name); 671 if (cd == NULL) 672 return NULL; 673 674 return config_cfattach_lookup_cd(cd, atname); 675 } 676 677 /* 678 * Apply the matching function and choose the best. This is used 679 * a few times and we want to keep the code small. 680 */ 681 static void 682 mapply(struct matchinfo *m, cfdata_t cf) 683 { 684 int pri; 685 686 if (m->fn != NULL) { 687 pri = (*m->fn)(m->parent, cf, m->locs, m->aux); 688 } else { 689 pri = config_match(m->parent, cf, m->aux); 690 } 691 if (pri > m->pri) { 692 m->match = cf; 693 m->pri = pri; 694 } 695 } 696 697 int 698 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux) 699 { 700 const struct cfiattrdata *ci; 701 const struct cflocdesc *cl; 702 int nlocs, i; 703 704 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 705 KASSERT(ci); 706 nlocs = ci->ci_loclen; 707 KASSERT(!nlocs || locs); 708 for (i = 0; i < nlocs; i++) { 709 cl = &ci->ci_locdesc[i]; 710 if (cl->cld_defaultstr != NULL && 711 cf->cf_loc[i] == cl->cld_default) 712 continue; 713 if (cf->cf_loc[i] == locs[i]) 714 continue; 715 return 0; 716 } 717 718 return config_match(parent, cf, aux); 719 } 720 721 /* 722 * Helper function: check whether the driver supports the interface attribute 723 * and return its descriptor structure. 724 */ 725 static const struct cfiattrdata * 726 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia) 727 { 728 const struct cfiattrdata * const *cpp; 729 730 if (cd->cd_attrs == NULL) 731 return 0; 732 733 for (cpp = cd->cd_attrs; *cpp; cpp++) { 734 if (STREQ((*cpp)->ci_name, ia)) { 735 /* Match. */ 736 return *cpp; 737 } 738 } 739 return 0; 740 } 741 742 /* 743 * Lookup an interface attribute description by name. 744 * If the driver is given, consider only its supported attributes. 745 */ 746 const struct cfiattrdata * 747 cfiattr_lookup(const char *name, const struct cfdriver *cd) 748 { 749 const struct cfdriver *d; 750 const struct cfiattrdata *ia; 751 752 if (cd) 753 return cfdriver_get_iattr(cd, name); 754 755 LIST_FOREACH(d, &allcfdrivers, cd_list) { 756 ia = cfdriver_get_iattr(d, name); 757 if (ia) 758 return ia; 759 } 760 return 0; 761 } 762 763 /* 764 * Determine if `parent' is a potential parent for a device spec based 765 * on `cfp'. 766 */ 767 static int 768 cfparent_match(const device_t parent, const struct cfparent *cfp) 769 { 770 struct cfdriver *pcd; 771 772 /* We don't match root nodes here. */ 773 if (cfp == NULL) 774 return 0; 775 776 pcd = parent->dv_cfdriver; 777 KASSERT(pcd != NULL); 778 779 /* 780 * First, ensure this parent has the correct interface 781 * attribute. 782 */ 783 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr)) 784 return 0; 785 786 /* 787 * If no specific parent device instance was specified (i.e. 788 * we're attaching to the attribute only), we're done! 789 */ 790 if (cfp->cfp_parent == NULL) 791 return 1; 792 793 /* 794 * Check the parent device's name. 795 */ 796 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0) 797 return 0; /* not the same parent */ 798 799 /* 800 * Make sure the unit number matches. 801 */ 802 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */ 803 cfp->cfp_unit == parent->dv_unit) 804 return 1; 805 806 /* Unit numbers don't match. */ 807 return 0; 808 } 809 810 /* 811 * Helper for config_cfdata_attach(): check all devices whether it could be 812 * parent any attachment in the config data table passed, and rescan. 813 */ 814 static void 815 rescan_with_cfdata(const struct cfdata *cf) 816 { 817 device_t d; 818 const struct cfdata *cf1; 819 deviter_t di; 820 821 822 /* 823 * "alldevs" is likely longer than a modules's cfdata, so make it 824 * the outer loop. 825 */ 826 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) { 827 828 if (!(d->dv_cfattach->ca_rescan)) 829 continue; 830 831 for (cf1 = cf; cf1->cf_name; cf1++) { 832 833 if (!cfparent_match(d, cf1->cf_pspec)) 834 continue; 835 836 (*d->dv_cfattach->ca_rescan)(d, 837 cfdata_ifattr(cf1), cf1->cf_loc); 838 839 config_deferred(d); 840 } 841 } 842 deviter_release(&di); 843 } 844 845 /* 846 * Attach a supplemental config data table and rescan potential 847 * parent devices if required. 848 */ 849 int 850 config_cfdata_attach(cfdata_t cf, int scannow) 851 { 852 struct cftable *ct; 853 854 ct = kmem_alloc(sizeof(*ct), KM_SLEEP); 855 ct->ct_cfdata = cf; 856 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list); 857 858 if (scannow) 859 rescan_with_cfdata(cf); 860 861 return 0; 862 } 863 864 /* 865 * Helper for config_cfdata_detach: check whether a device is 866 * found through any attachment in the config data table. 867 */ 868 static int 869 dev_in_cfdata(device_t d, cfdata_t cf) 870 { 871 const struct cfdata *cf1; 872 873 for (cf1 = cf; cf1->cf_name; cf1++) 874 if (d->dv_cfdata == cf1) 875 return 1; 876 877 return 0; 878 } 879 880 /* 881 * Detach a supplemental config data table. Detach all devices found 882 * through that table (and thus keeping references to it) before. 883 */ 884 int 885 config_cfdata_detach(cfdata_t cf) 886 { 887 device_t d; 888 int error = 0; 889 struct cftable *ct; 890 deviter_t di; 891 892 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL; 893 d = deviter_next(&di)) { 894 if (!dev_in_cfdata(d, cf)) 895 continue; 896 if ((error = config_detach(d, 0)) != 0) 897 break; 898 } 899 deviter_release(&di); 900 if (error) { 901 aprint_error_dev(d, "unable to detach instance\n"); 902 return error; 903 } 904 905 TAILQ_FOREACH(ct, &allcftables, ct_list) { 906 if (ct->ct_cfdata == cf) { 907 TAILQ_REMOVE(&allcftables, ct, ct_list); 908 kmem_free(ct, sizeof(*ct)); 909 return 0; 910 } 911 } 912 913 /* not found -- shouldn't happen */ 914 return EINVAL; 915 } 916 917 /* 918 * Invoke the "match" routine for a cfdata entry on behalf of 919 * an external caller, usually a "submatch" routine. 920 */ 921 int 922 config_match(device_t parent, cfdata_t cf, void *aux) 923 { 924 struct cfattach *ca; 925 926 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); 927 if (ca == NULL) { 928 /* No attachment for this entry, oh well. */ 929 return 0; 930 } 931 932 return (*ca->ca_match)(parent, cf, aux); 933 } 934 935 /* 936 * Iterate over all potential children of some device, calling the given 937 * function (default being the child's match function) for each one. 938 * Nonzero returns are matches; the highest value returned is considered 939 * the best match. Return the `found child' if we got a match, or NULL 940 * otherwise. The `aux' pointer is simply passed on through. 941 * 942 * Note that this function is designed so that it can be used to apply 943 * an arbitrary function to all potential children (its return value 944 * can be ignored). 945 */ 946 cfdata_t 947 config_search_loc(cfsubmatch_t fn, device_t parent, 948 const char *ifattr, const int *locs, void *aux) 949 { 950 struct cftable *ct; 951 cfdata_t cf; 952 struct matchinfo m; 953 954 KASSERT(config_initialized); 955 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr)); 956 957 m.fn = fn; 958 m.parent = parent; 959 m.locs = locs; 960 m.aux = aux; 961 m.match = NULL; 962 m.pri = 0; 963 964 TAILQ_FOREACH(ct, &allcftables, ct_list) { 965 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 966 967 /* We don't match root nodes here. */ 968 if (!cf->cf_pspec) 969 continue; 970 971 /* 972 * Skip cf if no longer eligible, otherwise scan 973 * through parents for one matching `parent', and 974 * try match function. 975 */ 976 if (cf->cf_fstate == FSTATE_FOUND) 977 continue; 978 if (cf->cf_fstate == FSTATE_DNOTFOUND || 979 cf->cf_fstate == FSTATE_DSTAR) 980 continue; 981 982 /* 983 * If an interface attribute was specified, 984 * consider only children which attach to 985 * that attribute. 986 */ 987 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf))) 988 continue; 989 990 if (cfparent_match(parent, cf->cf_pspec)) 991 mapply(&m, cf); 992 } 993 } 994 return m.match; 995 } 996 997 cfdata_t 998 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr, 999 void *aux) 1000 { 1001 1002 return config_search_loc(fn, parent, ifattr, NULL, aux); 1003 } 1004 1005 /* 1006 * Find the given root device. 1007 * This is much like config_search, but there is no parent. 1008 * Don't bother with multiple cfdata tables; the root node 1009 * must always be in the initial table. 1010 */ 1011 cfdata_t 1012 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux) 1013 { 1014 cfdata_t cf; 1015 const short *p; 1016 struct matchinfo m; 1017 1018 m.fn = fn; 1019 m.parent = ROOT; 1020 m.aux = aux; 1021 m.match = NULL; 1022 m.pri = 0; 1023 m.locs = 0; 1024 /* 1025 * Look at root entries for matching name. We do not bother 1026 * with found-state here since only one root should ever be 1027 * searched (and it must be done first). 1028 */ 1029 for (p = cfroots; *p >= 0; p++) { 1030 cf = &cfdata[*p]; 1031 if (strcmp(cf->cf_name, rootname) == 0) 1032 mapply(&m, cf); 1033 } 1034 return m.match; 1035 } 1036 1037 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" }; 1038 1039 /* 1040 * The given `aux' argument describes a device that has been found 1041 * on the given parent, but not necessarily configured. Locate the 1042 * configuration data for that device (using the submatch function 1043 * provided, or using candidates' cd_match configuration driver 1044 * functions) and attach it, and return its device_t. If the device was 1045 * not configured, call the given `print' function and return NULL. 1046 */ 1047 device_t 1048 config_found_sm_loc(device_t parent, 1049 const char *ifattr, const int *locs, void *aux, 1050 cfprint_t print, cfsubmatch_t submatch) 1051 { 1052 cfdata_t cf; 1053 1054 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux))) 1055 return(config_attach_loc(parent, cf, locs, aux, print)); 1056 if (print) { 1057 if (config_do_twiddle && cold) 1058 twiddle(); 1059 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]); 1060 } 1061 1062 /* 1063 * This has the effect of mixing in a single timestamp to the 1064 * entropy pool. Experiments indicate the estimator will almost 1065 * always attribute one bit of entropy to this sample; analysis 1066 * of device attach/detach timestamps on FreeBSD indicates 4 1067 * bits of entropy/sample so this seems appropriately conservative. 1068 */ 1069 rnd_add_uint32(&rnd_autoconf_source, 0); 1070 return NULL; 1071 } 1072 1073 device_t 1074 config_found_ia(device_t parent, const char *ifattr, void *aux, 1075 cfprint_t print) 1076 { 1077 1078 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL); 1079 } 1080 1081 device_t 1082 config_found(device_t parent, void *aux, cfprint_t print) 1083 { 1084 1085 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL); 1086 } 1087 1088 /* 1089 * As above, but for root devices. 1090 */ 1091 device_t 1092 config_rootfound(const char *rootname, void *aux) 1093 { 1094 cfdata_t cf; 1095 1096 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL) 1097 return config_attach(ROOT, cf, aux, NULL); 1098 aprint_error("root device %s not configured\n", rootname); 1099 return NULL; 1100 } 1101 1102 /* just like sprintf(buf, "%d") except that it works from the end */ 1103 static char * 1104 number(char *ep, int n) 1105 { 1106 1107 *--ep = 0; 1108 while (n >= 10) { 1109 *--ep = (n % 10) + '0'; 1110 n /= 10; 1111 } 1112 *--ep = n + '0'; 1113 return ep; 1114 } 1115 1116 /* 1117 * Expand the size of the cd_devs array if necessary. 1118 * 1119 * The caller must hold alldevs_mtx. config_makeroom() may release and 1120 * re-acquire alldevs_mtx, so callers should re-check conditions such 1121 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom() 1122 * returns. 1123 */ 1124 static void 1125 config_makeroom(int n, struct cfdriver *cd) 1126 { 1127 int ondevs, nndevs; 1128 device_t *osp, *nsp; 1129 1130 alldevs_nwrite++; 1131 1132 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs) 1133 ; 1134 1135 while (n >= cd->cd_ndevs) { 1136 /* 1137 * Need to expand the array. 1138 */ 1139 ondevs = cd->cd_ndevs; 1140 osp = cd->cd_devs; 1141 1142 /* Release alldevs_mtx around allocation, which may 1143 * sleep. 1144 */ 1145 mutex_exit(&alldevs_mtx); 1146 nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP); 1147 if (nsp == NULL) 1148 panic("%s: could not expand cd_devs", __func__); 1149 mutex_enter(&alldevs_mtx); 1150 1151 /* If another thread moved the array while we did 1152 * not hold alldevs_mtx, try again. 1153 */ 1154 if (cd->cd_devs != osp) { 1155 mutex_exit(&alldevs_mtx); 1156 kmem_free(nsp, sizeof(device_t[nndevs])); 1157 mutex_enter(&alldevs_mtx); 1158 continue; 1159 } 1160 1161 memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs])); 1162 if (ondevs != 0) 1163 memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs])); 1164 1165 cd->cd_ndevs = nndevs; 1166 cd->cd_devs = nsp; 1167 if (ondevs != 0) { 1168 mutex_exit(&alldevs_mtx); 1169 kmem_free(osp, sizeof(device_t[ondevs])); 1170 mutex_enter(&alldevs_mtx); 1171 } 1172 } 1173 alldevs_nwrite--; 1174 } 1175 1176 /* 1177 * Put dev into the devices list. 1178 */ 1179 static void 1180 config_devlink(device_t dev) 1181 { 1182 int s; 1183 1184 s = config_alldevs_lock(); 1185 1186 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev); 1187 1188 dev->dv_add_gen = alldevs_gen; 1189 /* It is safe to add a device to the tail of the list while 1190 * readers and writers are in the list. 1191 */ 1192 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); 1193 config_alldevs_unlock(s); 1194 } 1195 1196 static void 1197 config_devfree(device_t dev) 1198 { 1199 int priv = (dev->dv_flags & DVF_PRIV_ALLOC); 1200 1201 if (dev->dv_cfattach->ca_devsize > 0) 1202 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize); 1203 if (priv) 1204 kmem_free(dev, sizeof(*dev)); 1205 } 1206 1207 /* 1208 * Caller must hold alldevs_mtx. 1209 */ 1210 static void 1211 config_devunlink(device_t dev, struct devicelist *garbage) 1212 { 1213 struct device_garbage *dg = &dev->dv_garbage; 1214 cfdriver_t cd = device_cfdriver(dev); 1215 int i; 1216 1217 KASSERT(mutex_owned(&alldevs_mtx)); 1218 1219 /* Unlink from device list. Link to garbage list. */ 1220 TAILQ_REMOVE(&alldevs, dev, dv_list); 1221 TAILQ_INSERT_TAIL(garbage, dev, dv_list); 1222 1223 /* Remove from cfdriver's array. */ 1224 cd->cd_devs[dev->dv_unit] = NULL; 1225 1226 /* 1227 * If the device now has no units in use, unlink its softc array. 1228 */ 1229 for (i = 0; i < cd->cd_ndevs; i++) { 1230 if (cd->cd_devs[i] != NULL) 1231 break; 1232 } 1233 /* Nothing found. Unlink, now. Deallocate, later. */ 1234 if (i == cd->cd_ndevs) { 1235 dg->dg_ndevs = cd->cd_ndevs; 1236 dg->dg_devs = cd->cd_devs; 1237 cd->cd_devs = NULL; 1238 cd->cd_ndevs = 0; 1239 } 1240 } 1241 1242 static void 1243 config_devdelete(device_t dev) 1244 { 1245 struct device_garbage *dg = &dev->dv_garbage; 1246 device_lock_t dvl = device_getlock(dev); 1247 1248 if (dg->dg_devs != NULL) 1249 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs])); 1250 1251 cv_destroy(&dvl->dvl_cv); 1252 mutex_destroy(&dvl->dvl_mtx); 1253 1254 KASSERT(dev->dv_properties != NULL); 1255 prop_object_release(dev->dv_properties); 1256 1257 if (dev->dv_activity_handlers) 1258 panic("%s with registered handlers", __func__); 1259 1260 if (dev->dv_locators) { 1261 size_t amount = *--dev->dv_locators; 1262 kmem_free(dev->dv_locators, amount); 1263 } 1264 1265 config_devfree(dev); 1266 } 1267 1268 static int 1269 config_unit_nextfree(cfdriver_t cd, cfdata_t cf) 1270 { 1271 int unit; 1272 1273 if (cf->cf_fstate == FSTATE_STAR) { 1274 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++) 1275 if (cd->cd_devs[unit] == NULL) 1276 break; 1277 /* 1278 * unit is now the unit of the first NULL device pointer, 1279 * or max(cd->cd_ndevs,cf->cf_unit). 1280 */ 1281 } else { 1282 unit = cf->cf_unit; 1283 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL) 1284 unit = -1; 1285 } 1286 return unit; 1287 } 1288 1289 static int 1290 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf) 1291 { 1292 struct alldevs_foray af; 1293 int unit; 1294 1295 config_alldevs_enter(&af); 1296 for (;;) { 1297 unit = config_unit_nextfree(cd, cf); 1298 if (unit == -1) 1299 break; 1300 if (unit < cd->cd_ndevs) { 1301 cd->cd_devs[unit] = dev; 1302 dev->dv_unit = unit; 1303 break; 1304 } 1305 config_makeroom(unit, cd); 1306 } 1307 config_alldevs_exit(&af); 1308 1309 return unit; 1310 } 1311 1312 static device_t 1313 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs) 1314 { 1315 cfdriver_t cd; 1316 cfattach_t ca; 1317 size_t lname, lunit; 1318 const char *xunit; 1319 int myunit; 1320 char num[10]; 1321 device_t dev; 1322 void *dev_private; 1323 const struct cfiattrdata *ia; 1324 device_lock_t dvl; 1325 1326 cd = config_cfdriver_lookup(cf->cf_name); 1327 if (cd == NULL) 1328 return NULL; 1329 1330 ca = config_cfattach_lookup_cd(cd, cf->cf_atname); 1331 if (ca == NULL) 1332 return NULL; 1333 1334 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 && 1335 ca->ca_devsize < sizeof(struct device)) 1336 panic("config_devalloc: %s (%zu < %zu)", cf->cf_atname, 1337 ca->ca_devsize, sizeof(struct device)); 1338 1339 /* get memory for all device vars */ 1340 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device)); 1341 if (ca->ca_devsize > 0) { 1342 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP); 1343 if (dev_private == NULL) 1344 panic("config_devalloc: memory allocation for device softc failed"); 1345 } else { 1346 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC); 1347 dev_private = NULL; 1348 } 1349 1350 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) { 1351 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP); 1352 } else { 1353 dev = dev_private; 1354 #ifdef DIAGNOSTIC 1355 printf("%s has not been converted to device_t\n", cd->cd_name); 1356 #endif 1357 } 1358 if (dev == NULL) 1359 panic("config_devalloc: memory allocation for device_t failed"); 1360 1361 dev->dv_class = cd->cd_class; 1362 dev->dv_cfdata = cf; 1363 dev->dv_cfdriver = cd; 1364 dev->dv_cfattach = ca; 1365 dev->dv_activity_count = 0; 1366 dev->dv_activity_handlers = NULL; 1367 dev->dv_private = dev_private; 1368 dev->dv_flags = ca->ca_flags; /* inherit flags from class */ 1369 1370 myunit = config_unit_alloc(dev, cd, cf); 1371 if (myunit == -1) { 1372 config_devfree(dev); 1373 return NULL; 1374 } 1375 1376 /* compute length of name and decimal expansion of unit number */ 1377 lname = strlen(cd->cd_name); 1378 xunit = number(&num[sizeof(num)], myunit); 1379 lunit = &num[sizeof(num)] - xunit; 1380 if (lname + lunit > sizeof(dev->dv_xname)) 1381 panic("config_devalloc: device name too long"); 1382 1383 dvl = device_getlock(dev); 1384 1385 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE); 1386 cv_init(&dvl->dvl_cv, "pmfsusp"); 1387 1388 memcpy(dev->dv_xname, cd->cd_name, lname); 1389 memcpy(dev->dv_xname + lname, xunit, lunit); 1390 dev->dv_parent = parent; 1391 if (parent != NULL) 1392 dev->dv_depth = parent->dv_depth + 1; 1393 else 1394 dev->dv_depth = 0; 1395 dev->dv_flags |= DVF_ACTIVE; /* always initially active */ 1396 if (locs) { 1397 KASSERT(parent); /* no locators at root */ 1398 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver); 1399 dev->dv_locators = 1400 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP); 1401 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]); 1402 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen])); 1403 } 1404 dev->dv_properties = prop_dictionary_create(); 1405 KASSERT(dev->dv_properties != NULL); 1406 1407 prop_dictionary_set_cstring_nocopy(dev->dv_properties, 1408 "device-driver", dev->dv_cfdriver->cd_name); 1409 prop_dictionary_set_uint16(dev->dv_properties, 1410 "device-unit", dev->dv_unit); 1411 1412 if (dev->dv_cfdriver->cd_attrs != NULL) 1413 config_add_attrib_dict(dev); 1414 1415 return dev; 1416 } 1417 1418 /* 1419 * Create an array of device attach attributes and add it 1420 * to the device's dv_properties dictionary. 1421 * 1422 * <key>interface-attributes</key> 1423 * <array> 1424 * <dict> 1425 * <key>attribute-name</key> 1426 * <string>foo</string> 1427 * <key>locators</key> 1428 * <array> 1429 * <dict> 1430 * <key>loc-name</key> 1431 * <string>foo-loc1</string> 1432 * </dict> 1433 * <dict> 1434 * <key>loc-name</key> 1435 * <string>foo-loc2</string> 1436 * <key>default</key> 1437 * <string>foo-loc2-default</string> 1438 * </dict> 1439 * ... 1440 * </array> 1441 * </dict> 1442 * ... 1443 * </array> 1444 */ 1445 1446 static void 1447 config_add_attrib_dict(device_t dev) 1448 { 1449 int i, j; 1450 const struct cfiattrdata *ci; 1451 prop_dictionary_t attr_dict, loc_dict; 1452 prop_array_t attr_array, loc_array; 1453 1454 if ((attr_array = prop_array_create()) == NULL) 1455 return; 1456 1457 for (i = 0; ; i++) { 1458 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL) 1459 break; 1460 if ((attr_dict = prop_dictionary_create()) == NULL) 1461 break; 1462 prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name", 1463 ci->ci_name); 1464 1465 /* Create an array of the locator names and defaults */ 1466 1467 if (ci->ci_loclen != 0 && 1468 (loc_array = prop_array_create()) != NULL) { 1469 for (j = 0; j < ci->ci_loclen; j++) { 1470 loc_dict = prop_dictionary_create(); 1471 if (loc_dict == NULL) 1472 continue; 1473 prop_dictionary_set_cstring_nocopy(loc_dict, 1474 "loc-name", ci->ci_locdesc[j].cld_name); 1475 if (ci->ci_locdesc[j].cld_defaultstr != NULL) 1476 prop_dictionary_set_cstring_nocopy( 1477 loc_dict, "default", 1478 ci->ci_locdesc[j].cld_defaultstr); 1479 prop_array_set(loc_array, j, loc_dict); 1480 prop_object_release(loc_dict); 1481 } 1482 prop_dictionary_set_and_rel(attr_dict, "locators", 1483 loc_array); 1484 } 1485 prop_array_add(attr_array, attr_dict); 1486 prop_object_release(attr_dict); 1487 } 1488 if (i == 0) 1489 prop_object_release(attr_array); 1490 else 1491 prop_dictionary_set_and_rel(dev->dv_properties, 1492 "interface-attributes", attr_array); 1493 1494 return; 1495 } 1496 1497 /* 1498 * Attach a found device. 1499 */ 1500 device_t 1501 config_attach_loc(device_t parent, cfdata_t cf, 1502 const int *locs, void *aux, cfprint_t print) 1503 { 1504 device_t dev; 1505 struct cftable *ct; 1506 const char *drvname; 1507 1508 dev = config_devalloc(parent, cf, locs); 1509 if (!dev) 1510 panic("config_attach: allocation of device softc failed"); 1511 1512 /* XXX redundant - see below? */ 1513 if (cf->cf_fstate != FSTATE_STAR) { 1514 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1515 cf->cf_fstate = FSTATE_FOUND; 1516 } 1517 1518 config_devlink(dev); 1519 1520 if (config_do_twiddle && cold) 1521 twiddle(); 1522 else 1523 aprint_naive("Found "); 1524 /* 1525 * We want the next two printfs for normal, verbose, and quiet, 1526 * but not silent (in which case, we're twiddling, instead). 1527 */ 1528 if (parent == ROOT) { 1529 aprint_naive("%s (root)", device_xname(dev)); 1530 aprint_normal("%s (root)", device_xname(dev)); 1531 } else { 1532 aprint_naive("%s at %s", device_xname(dev), device_xname(parent)); 1533 aprint_normal("%s at %s", device_xname(dev), device_xname(parent)); 1534 if (print) 1535 (void) (*print)(aux, NULL); 1536 } 1537 1538 /* 1539 * Before attaching, clobber any unfound devices that are 1540 * otherwise identical. 1541 * XXX code above is redundant? 1542 */ 1543 drvname = dev->dv_cfdriver->cd_name; 1544 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1545 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1546 if (STREQ(cf->cf_name, drvname) && 1547 cf->cf_unit == dev->dv_unit) { 1548 if (cf->cf_fstate == FSTATE_NOTFOUND) 1549 cf->cf_fstate = FSTATE_FOUND; 1550 } 1551 } 1552 } 1553 device_register(dev, aux); 1554 1555 /* Let userland know */ 1556 devmon_report_device(dev, true); 1557 1558 (*dev->dv_cfattach->ca_attach)(parent, dev, aux); 1559 1560 if (!device_pmf_is_registered(dev)) 1561 aprint_debug_dev(dev, "WARNING: power management not supported\n"); 1562 1563 config_process_deferred(&deferred_config_queue, dev); 1564 1565 device_register_post_config(dev, aux); 1566 return dev; 1567 } 1568 1569 device_t 1570 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print) 1571 { 1572 1573 return config_attach_loc(parent, cf, NULL, aux, print); 1574 } 1575 1576 /* 1577 * As above, but for pseudo-devices. Pseudo-devices attached in this 1578 * way are silently inserted into the device tree, and their children 1579 * attached. 1580 * 1581 * Note that because pseudo-devices are attached silently, any information 1582 * the attach routine wishes to print should be prefixed with the device 1583 * name by the attach routine. 1584 */ 1585 device_t 1586 config_attach_pseudo(cfdata_t cf) 1587 { 1588 device_t dev; 1589 1590 dev = config_devalloc(ROOT, cf, NULL); 1591 if (!dev) 1592 return NULL; 1593 1594 /* XXX mark busy in cfdata */ 1595 1596 if (cf->cf_fstate != FSTATE_STAR) { 1597 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); 1598 cf->cf_fstate = FSTATE_FOUND; 1599 } 1600 1601 config_devlink(dev); 1602 1603 #if 0 /* XXXJRT not yet */ 1604 device_register(dev, NULL); /* like a root node */ 1605 #endif 1606 1607 /* Let userland know */ 1608 devmon_report_device(dev, true); 1609 1610 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL); 1611 1612 config_process_deferred(&deferred_config_queue, dev); 1613 return dev; 1614 } 1615 1616 /* 1617 * Caller must hold alldevs_mtx. 1618 */ 1619 static void 1620 config_collect_garbage(struct devicelist *garbage) 1621 { 1622 device_t dv; 1623 1624 KASSERT(!cpu_intr_p()); 1625 KASSERT(!cpu_softintr_p()); 1626 KASSERT(mutex_owned(&alldevs_mtx)); 1627 1628 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) { 1629 TAILQ_FOREACH(dv, &alldevs, dv_list) { 1630 if (dv->dv_del_gen != 0) 1631 break; 1632 } 1633 if (dv == NULL) { 1634 alldevs_garbage = false; 1635 break; 1636 } 1637 config_devunlink(dv, garbage); 1638 } 1639 KASSERT(mutex_owned(&alldevs_mtx)); 1640 } 1641 1642 static void 1643 config_dump_garbage(struct devicelist *garbage) 1644 { 1645 device_t dv; 1646 1647 while ((dv = TAILQ_FIRST(garbage)) != NULL) { 1648 TAILQ_REMOVE(garbage, dv, dv_list); 1649 config_devdelete(dv); 1650 } 1651 } 1652 1653 /* 1654 * Detach a device. Optionally forced (e.g. because of hardware 1655 * removal) and quiet. Returns zero if successful, non-zero 1656 * (an error code) otherwise. 1657 * 1658 * Note that this code wants to be run from a process context, so 1659 * that the detach can sleep to allow processes which have a device 1660 * open to run and unwind their stacks. 1661 */ 1662 int 1663 config_detach(device_t dev, int flags) 1664 { 1665 struct alldevs_foray af; 1666 struct cftable *ct; 1667 cfdata_t cf; 1668 const struct cfattach *ca; 1669 struct cfdriver *cd; 1670 #ifdef DIAGNOSTIC 1671 device_t d; 1672 #endif 1673 int rv = 0, s; 1674 1675 #ifdef DIAGNOSTIC 1676 cf = dev->dv_cfdata; 1677 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND && 1678 cf->cf_fstate != FSTATE_STAR) 1679 panic("config_detach: %s: bad device fstate %d", 1680 device_xname(dev), cf ? cf->cf_fstate : -1); 1681 #endif 1682 cd = dev->dv_cfdriver; 1683 KASSERT(cd != NULL); 1684 1685 ca = dev->dv_cfattach; 1686 KASSERT(ca != NULL); 1687 1688 s = config_alldevs_lock(); 1689 if (dev->dv_del_gen != 0) { 1690 config_alldevs_unlock(s); 1691 #ifdef DIAGNOSTIC 1692 printf("%s: %s is already detached\n", __func__, 1693 device_xname(dev)); 1694 #endif /* DIAGNOSTIC */ 1695 return ENOENT; 1696 } 1697 alldevs_nwrite++; 1698 config_alldevs_unlock(s); 1699 1700 if (!detachall && 1701 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN && 1702 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) { 1703 rv = EOPNOTSUPP; 1704 } else if (ca->ca_detach != NULL) { 1705 rv = (*ca->ca_detach)(dev, flags); 1706 } else 1707 rv = EOPNOTSUPP; 1708 1709 /* 1710 * If it was not possible to detach the device, then we either 1711 * panic() (for the forced but failed case), or return an error. 1712 * 1713 * If it was possible to detach the device, ensure that the 1714 * device is deactivated. 1715 */ 1716 if (rv == 0) 1717 dev->dv_flags &= ~DVF_ACTIVE; 1718 else if ((flags & DETACH_FORCE) == 0) 1719 goto out; 1720 else { 1721 panic("config_detach: forced detach of %s failed (%d)", 1722 device_xname(dev), rv); 1723 } 1724 1725 /* 1726 * The device has now been successfully detached. 1727 */ 1728 1729 /* Let userland know */ 1730 devmon_report_device(dev, false); 1731 1732 #ifdef DIAGNOSTIC 1733 /* 1734 * Sanity: If you're successfully detached, you should have no 1735 * children. (Note that because children must be attached 1736 * after parents, we only need to search the latter part of 1737 * the list.) 1738 */ 1739 for (d = TAILQ_NEXT(dev, dv_list); d != NULL; 1740 d = TAILQ_NEXT(d, dv_list)) { 1741 if (d->dv_parent == dev && d->dv_del_gen == 0) { 1742 printf("config_detach: detached device %s" 1743 " has children %s\n", device_xname(dev), device_xname(d)); 1744 panic("config_detach"); 1745 } 1746 } 1747 #endif 1748 1749 /* notify the parent that the child is gone */ 1750 if (dev->dv_parent) { 1751 device_t p = dev->dv_parent; 1752 if (p->dv_cfattach->ca_childdetached) 1753 (*p->dv_cfattach->ca_childdetached)(p, dev); 1754 } 1755 1756 /* 1757 * Mark cfdata to show that the unit can be reused, if possible. 1758 */ 1759 TAILQ_FOREACH(ct, &allcftables, ct_list) { 1760 for (cf = ct->ct_cfdata; cf->cf_name; cf++) { 1761 if (STREQ(cf->cf_name, cd->cd_name)) { 1762 if (cf->cf_fstate == FSTATE_FOUND && 1763 cf->cf_unit == dev->dv_unit) 1764 cf->cf_fstate = FSTATE_NOTFOUND; 1765 } 1766 } 1767 } 1768 1769 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0) 1770 aprint_normal_dev(dev, "detached\n"); 1771 1772 out: 1773 config_alldevs_enter(&af); 1774 KASSERT(alldevs_nwrite != 0); 1775 --alldevs_nwrite; 1776 if (rv == 0 && dev->dv_del_gen == 0) { 1777 if (alldevs_nwrite == 0 && alldevs_nread == 0) 1778 config_devunlink(dev, &af.af_garbage); 1779 else { 1780 dev->dv_del_gen = alldevs_gen; 1781 alldevs_garbage = true; 1782 } 1783 } 1784 config_alldevs_exit(&af); 1785 1786 return rv; 1787 } 1788 1789 int 1790 config_detach_children(device_t parent, int flags) 1791 { 1792 device_t dv; 1793 deviter_t di; 1794 int error = 0; 1795 1796 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL; 1797 dv = deviter_next(&di)) { 1798 if (device_parent(dv) != parent) 1799 continue; 1800 if ((error = config_detach(dv, flags)) != 0) 1801 break; 1802 } 1803 deviter_release(&di); 1804 return error; 1805 } 1806 1807 device_t 1808 shutdown_first(struct shutdown_state *s) 1809 { 1810 if (!s->initialized) { 1811 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST); 1812 s->initialized = true; 1813 } 1814 return shutdown_next(s); 1815 } 1816 1817 device_t 1818 shutdown_next(struct shutdown_state *s) 1819 { 1820 device_t dv; 1821 1822 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv)) 1823 ; 1824 1825 if (dv == NULL) 1826 s->initialized = false; 1827 1828 return dv; 1829 } 1830 1831 bool 1832 config_detach_all(int how) 1833 { 1834 static struct shutdown_state s; 1835 device_t curdev; 1836 bool progress = false; 1837 1838 if ((how & RB_NOSYNC) != 0) 1839 return false; 1840 1841 for (curdev = shutdown_first(&s); curdev != NULL; 1842 curdev = shutdown_next(&s)) { 1843 aprint_debug(" detaching %s, ", device_xname(curdev)); 1844 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) { 1845 progress = true; 1846 aprint_debug("success."); 1847 } else 1848 aprint_debug("failed."); 1849 } 1850 return progress; 1851 } 1852 1853 static bool 1854 device_is_ancestor_of(device_t ancestor, device_t descendant) 1855 { 1856 device_t dv; 1857 1858 for (dv = descendant; dv != NULL; dv = device_parent(dv)) { 1859 if (device_parent(dv) == ancestor) 1860 return true; 1861 } 1862 return false; 1863 } 1864 1865 int 1866 config_deactivate(device_t dev) 1867 { 1868 deviter_t di; 1869 const struct cfattach *ca; 1870 device_t descendant; 1871 int s, rv = 0, oflags; 1872 1873 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST); 1874 descendant != NULL; 1875 descendant = deviter_next(&di)) { 1876 if (dev != descendant && 1877 !device_is_ancestor_of(dev, descendant)) 1878 continue; 1879 1880 if ((descendant->dv_flags & DVF_ACTIVE) == 0) 1881 continue; 1882 1883 ca = descendant->dv_cfattach; 1884 oflags = descendant->dv_flags; 1885 1886 descendant->dv_flags &= ~DVF_ACTIVE; 1887 if (ca->ca_activate == NULL) 1888 continue; 1889 s = splhigh(); 1890 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE); 1891 splx(s); 1892 if (rv != 0) 1893 descendant->dv_flags = oflags; 1894 } 1895 deviter_release(&di); 1896 return rv; 1897 } 1898 1899 /* 1900 * Defer the configuration of the specified device until all 1901 * of its parent's devices have been attached. 1902 */ 1903 void 1904 config_defer(device_t dev, void (*func)(device_t)) 1905 { 1906 struct deferred_config *dc; 1907 1908 if (dev->dv_parent == NULL) 1909 panic("config_defer: can't defer config of a root device"); 1910 1911 #ifdef DIAGNOSTIC 1912 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) { 1913 if (dc->dc_dev == dev) 1914 panic("config_defer: deferred twice"); 1915 } 1916 #endif 1917 1918 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1919 if (dc == NULL) 1920 panic("config_defer: unable to allocate callback"); 1921 1922 dc->dc_dev = dev; 1923 dc->dc_func = func; 1924 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue); 1925 config_pending_incr(dev); 1926 } 1927 1928 /* 1929 * Defer some autoconfiguration for a device until after interrupts 1930 * are enabled. 1931 */ 1932 void 1933 config_interrupts(device_t dev, void (*func)(device_t)) 1934 { 1935 struct deferred_config *dc; 1936 1937 /* 1938 * If interrupts are enabled, callback now. 1939 */ 1940 if (cold == 0) { 1941 (*func)(dev); 1942 return; 1943 } 1944 1945 #ifdef DIAGNOSTIC 1946 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) { 1947 if (dc->dc_dev == dev) 1948 panic("config_interrupts: deferred twice"); 1949 } 1950 #endif 1951 1952 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1953 if (dc == NULL) 1954 panic("config_interrupts: unable to allocate callback"); 1955 1956 dc->dc_dev = dev; 1957 dc->dc_func = func; 1958 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue); 1959 config_pending_incr(dev); 1960 } 1961 1962 /* 1963 * Defer some autoconfiguration for a device until after root file system 1964 * is mounted (to load firmware etc). 1965 */ 1966 void 1967 config_mountroot(device_t dev, void (*func)(device_t)) 1968 { 1969 struct deferred_config *dc; 1970 1971 /* 1972 * If root file system is mounted, callback now. 1973 */ 1974 if (root_is_mounted) { 1975 (*func)(dev); 1976 return; 1977 } 1978 1979 #ifdef DIAGNOSTIC 1980 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) { 1981 if (dc->dc_dev == dev) 1982 panic("%s: deferred twice", __func__); 1983 } 1984 #endif 1985 1986 dc = kmem_alloc(sizeof(*dc), KM_SLEEP); 1987 if (dc == NULL) 1988 panic("%s: unable to allocate callback", __func__); 1989 1990 dc->dc_dev = dev; 1991 dc->dc_func = func; 1992 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue); 1993 } 1994 1995 /* 1996 * Process a deferred configuration queue. 1997 */ 1998 static void 1999 config_process_deferred(struct deferred_config_head *queue, 2000 device_t parent) 2001 { 2002 struct deferred_config *dc, *ndc; 2003 2004 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) { 2005 ndc = TAILQ_NEXT(dc, dc_queue); 2006 if (parent == NULL || dc->dc_dev->dv_parent == parent) { 2007 TAILQ_REMOVE(queue, dc, dc_queue); 2008 (*dc->dc_func)(dc->dc_dev); 2009 config_pending_decr(dc->dc_dev); 2010 kmem_free(dc, sizeof(*dc)); 2011 } 2012 } 2013 } 2014 2015 /* 2016 * Manipulate the config_pending semaphore. 2017 */ 2018 void 2019 config_pending_incr(device_t dev) 2020 { 2021 2022 mutex_enter(&config_misc_lock); 2023 config_pending++; 2024 #ifdef DEBUG_AUTOCONF 2025 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending); 2026 #endif 2027 mutex_exit(&config_misc_lock); 2028 } 2029 2030 void 2031 config_pending_decr(device_t dev) 2032 { 2033 2034 #ifdef DIAGNOSTIC 2035 if (config_pending == 0) 2036 panic("config_pending_decr: config_pending == 0"); 2037 #endif 2038 mutex_enter(&config_misc_lock); 2039 config_pending--; 2040 #ifdef DEBUG_AUTOCONF 2041 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending); 2042 #endif 2043 if (config_pending == 0) 2044 cv_broadcast(&config_misc_cv); 2045 mutex_exit(&config_misc_lock); 2046 } 2047 2048 /* 2049 * Register a "finalization" routine. Finalization routines are 2050 * called iteratively once all real devices have been found during 2051 * autoconfiguration, for as long as any one finalizer has done 2052 * any work. 2053 */ 2054 int 2055 config_finalize_register(device_t dev, int (*fn)(device_t)) 2056 { 2057 struct finalize_hook *f; 2058 2059 /* 2060 * If finalization has already been done, invoke the 2061 * callback function now. 2062 */ 2063 if (config_finalize_done) { 2064 while ((*fn)(dev) != 0) 2065 /* loop */ ; 2066 } 2067 2068 /* Ensure this isn't already on the list. */ 2069 TAILQ_FOREACH(f, &config_finalize_list, f_list) { 2070 if (f->f_func == fn && f->f_dev == dev) 2071 return EEXIST; 2072 } 2073 2074 f = kmem_alloc(sizeof(*f), KM_SLEEP); 2075 f->f_func = fn; 2076 f->f_dev = dev; 2077 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list); 2078 2079 return 0; 2080 } 2081 2082 void 2083 config_finalize(void) 2084 { 2085 struct finalize_hook *f; 2086 struct pdevinit *pdev; 2087 extern struct pdevinit pdevinit[]; 2088 int errcnt, rv; 2089 2090 /* 2091 * Now that device driver threads have been created, wait for 2092 * them to finish any deferred autoconfiguration. 2093 */ 2094 mutex_enter(&config_misc_lock); 2095 while (config_pending != 0) 2096 cv_wait(&config_misc_cv, &config_misc_lock); 2097 mutex_exit(&config_misc_lock); 2098 2099 KERNEL_LOCK(1, NULL); 2100 2101 /* Attach pseudo-devices. */ 2102 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++) 2103 (*pdev->pdev_attach)(pdev->pdev_count); 2104 2105 /* Run the hooks until none of them does any work. */ 2106 do { 2107 rv = 0; 2108 TAILQ_FOREACH(f, &config_finalize_list, f_list) 2109 rv |= (*f->f_func)(f->f_dev); 2110 } while (rv != 0); 2111 2112 config_finalize_done = 1; 2113 2114 /* Now free all the hooks. */ 2115 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) { 2116 TAILQ_REMOVE(&config_finalize_list, f, f_list); 2117 kmem_free(f, sizeof(*f)); 2118 } 2119 2120 KERNEL_UNLOCK_ONE(NULL); 2121 2122 errcnt = aprint_get_error_count(); 2123 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 && 2124 (boothowto & AB_VERBOSE) == 0) { 2125 mutex_enter(&config_misc_lock); 2126 if (config_do_twiddle) { 2127 config_do_twiddle = 0; 2128 printf_nolog(" done.\n"); 2129 } 2130 mutex_exit(&config_misc_lock); 2131 if (errcnt != 0) { 2132 printf("WARNING: %d error%s while detecting hardware; " 2133 "check system log.\n", errcnt, 2134 errcnt == 1 ? "" : "s"); 2135 } 2136 } 2137 } 2138 2139 void 2140 config_twiddle_init(void) 2141 { 2142 2143 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) { 2144 config_do_twiddle = 1; 2145 } 2146 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL); 2147 } 2148 2149 void 2150 config_twiddle_fn(void *cookie) 2151 { 2152 2153 mutex_enter(&config_misc_lock); 2154 if (config_do_twiddle) { 2155 twiddle(); 2156 callout_schedule(&config_twiddle_ch, mstohz(100)); 2157 } 2158 mutex_exit(&config_misc_lock); 2159 } 2160 2161 static int 2162 config_alldevs_lock(void) 2163 { 2164 mutex_enter(&alldevs_mtx); 2165 return 0; 2166 } 2167 2168 static void 2169 config_alldevs_enter(struct alldevs_foray *af) 2170 { 2171 TAILQ_INIT(&af->af_garbage); 2172 af->af_s = config_alldevs_lock(); 2173 config_collect_garbage(&af->af_garbage); 2174 } 2175 2176 static void 2177 config_alldevs_exit(struct alldevs_foray *af) 2178 { 2179 config_alldevs_unlock(af->af_s); 2180 config_dump_garbage(&af->af_garbage); 2181 } 2182 2183 /*ARGSUSED*/ 2184 static void 2185 config_alldevs_unlock(int s) 2186 { 2187 mutex_exit(&alldevs_mtx); 2188 } 2189 2190 /* 2191 * device_lookup: 2192 * 2193 * Look up a device instance for a given driver. 2194 */ 2195 device_t 2196 device_lookup(cfdriver_t cd, int unit) 2197 { 2198 device_t dv; 2199 int s; 2200 2201 s = config_alldevs_lock(); 2202 KASSERT(mutex_owned(&alldevs_mtx)); 2203 if (unit < 0 || unit >= cd->cd_ndevs) 2204 dv = NULL; 2205 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0) 2206 dv = NULL; 2207 config_alldevs_unlock(s); 2208 2209 return dv; 2210 } 2211 2212 /* 2213 * device_lookup_private: 2214 * 2215 * Look up a softc instance for a given driver. 2216 */ 2217 void * 2218 device_lookup_private(cfdriver_t cd, int unit) 2219 { 2220 2221 return device_private(device_lookup(cd, unit)); 2222 } 2223 2224 /* 2225 * device_find_by_xname: 2226 * 2227 * Returns the device of the given name or NULL if it doesn't exist. 2228 */ 2229 device_t 2230 device_find_by_xname(const char *name) 2231 { 2232 device_t dv; 2233 deviter_t di; 2234 2235 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) { 2236 if (strcmp(device_xname(dv), name) == 0) 2237 break; 2238 } 2239 deviter_release(&di); 2240 2241 return dv; 2242 } 2243 2244 /* 2245 * device_find_by_driver_unit: 2246 * 2247 * Returns the device of the given driver name and unit or 2248 * NULL if it doesn't exist. 2249 */ 2250 device_t 2251 device_find_by_driver_unit(const char *name, int unit) 2252 { 2253 struct cfdriver *cd; 2254 2255 if ((cd = config_cfdriver_lookup(name)) == NULL) 2256 return NULL; 2257 return device_lookup(cd, unit); 2258 } 2259 2260 /* 2261 * Power management related functions. 2262 */ 2263 2264 bool 2265 device_pmf_is_registered(device_t dev) 2266 { 2267 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0; 2268 } 2269 2270 bool 2271 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual) 2272 { 2273 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2274 return true; 2275 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2276 return false; 2277 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 2278 dev->dv_driver_suspend != NULL && 2279 !(*dev->dv_driver_suspend)(dev, qual)) 2280 return false; 2281 2282 dev->dv_flags |= DVF_DRIVER_SUSPENDED; 2283 return true; 2284 } 2285 2286 bool 2287 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual) 2288 { 2289 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2290 return true; 2291 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2292 return false; 2293 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER && 2294 dev->dv_driver_resume != NULL && 2295 !(*dev->dv_driver_resume)(dev, qual)) 2296 return false; 2297 2298 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED; 2299 return true; 2300 } 2301 2302 bool 2303 device_pmf_driver_shutdown(device_t dev, int how) 2304 { 2305 2306 if (*dev->dv_driver_shutdown != NULL && 2307 !(*dev->dv_driver_shutdown)(dev, how)) 2308 return false; 2309 return true; 2310 } 2311 2312 bool 2313 device_pmf_driver_register(device_t dev, 2314 bool (*suspend)(device_t, const pmf_qual_t *), 2315 bool (*resume)(device_t, const pmf_qual_t *), 2316 bool (*shutdown)(device_t, int)) 2317 { 2318 dev->dv_driver_suspend = suspend; 2319 dev->dv_driver_resume = resume; 2320 dev->dv_driver_shutdown = shutdown; 2321 dev->dv_flags |= DVF_POWER_HANDLERS; 2322 return true; 2323 } 2324 2325 static const char * 2326 curlwp_name(void) 2327 { 2328 if (curlwp->l_name != NULL) 2329 return curlwp->l_name; 2330 else 2331 return curlwp->l_proc->p_comm; 2332 } 2333 2334 void 2335 device_pmf_driver_deregister(device_t dev) 2336 { 2337 device_lock_t dvl = device_getlock(dev); 2338 2339 dev->dv_driver_suspend = NULL; 2340 dev->dv_driver_resume = NULL; 2341 2342 mutex_enter(&dvl->dvl_mtx); 2343 dev->dv_flags &= ~DVF_POWER_HANDLERS; 2344 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) { 2345 /* Wake a thread that waits for the lock. That 2346 * thread will fail to acquire the lock, and then 2347 * it will wake the next thread that waits for the 2348 * lock, or else it will wake us. 2349 */ 2350 cv_signal(&dvl->dvl_cv); 2351 pmflock_debug(dev, __func__, __LINE__); 2352 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2353 pmflock_debug(dev, __func__, __LINE__); 2354 } 2355 mutex_exit(&dvl->dvl_mtx); 2356 } 2357 2358 bool 2359 device_pmf_driver_child_register(device_t dev) 2360 { 2361 device_t parent = device_parent(dev); 2362 2363 if (parent == NULL || parent->dv_driver_child_register == NULL) 2364 return true; 2365 return (*parent->dv_driver_child_register)(dev); 2366 } 2367 2368 void 2369 device_pmf_driver_set_child_register(device_t dev, 2370 bool (*child_register)(device_t)) 2371 { 2372 dev->dv_driver_child_register = child_register; 2373 } 2374 2375 static void 2376 pmflock_debug(device_t dev, const char *func, int line) 2377 { 2378 device_lock_t dvl = device_getlock(dev); 2379 2380 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", 2381 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, 2382 dev->dv_flags); 2383 } 2384 2385 static bool 2386 device_pmf_lock1(device_t dev) 2387 { 2388 device_lock_t dvl = device_getlock(dev); 2389 2390 while (device_pmf_is_registered(dev) && 2391 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) { 2392 dvl->dvl_nwait++; 2393 pmflock_debug(dev, __func__, __LINE__); 2394 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx); 2395 pmflock_debug(dev, __func__, __LINE__); 2396 dvl->dvl_nwait--; 2397 } 2398 if (!device_pmf_is_registered(dev)) { 2399 pmflock_debug(dev, __func__, __LINE__); 2400 /* We could not acquire the lock, but some other thread may 2401 * wait for it, also. Wake that thread. 2402 */ 2403 cv_signal(&dvl->dvl_cv); 2404 return false; 2405 } 2406 dvl->dvl_nlock++; 2407 dvl->dvl_holder = curlwp; 2408 pmflock_debug(dev, __func__, __LINE__); 2409 return true; 2410 } 2411 2412 bool 2413 device_pmf_lock(device_t dev) 2414 { 2415 bool rc; 2416 device_lock_t dvl = device_getlock(dev); 2417 2418 mutex_enter(&dvl->dvl_mtx); 2419 rc = device_pmf_lock1(dev); 2420 mutex_exit(&dvl->dvl_mtx); 2421 2422 return rc; 2423 } 2424 2425 void 2426 device_pmf_unlock(device_t dev) 2427 { 2428 device_lock_t dvl = device_getlock(dev); 2429 2430 KASSERT(dvl->dvl_nlock > 0); 2431 mutex_enter(&dvl->dvl_mtx); 2432 if (--dvl->dvl_nlock == 0) 2433 dvl->dvl_holder = NULL; 2434 cv_signal(&dvl->dvl_cv); 2435 pmflock_debug(dev, __func__, __LINE__); 2436 mutex_exit(&dvl->dvl_mtx); 2437 } 2438 2439 device_lock_t 2440 device_getlock(device_t dev) 2441 { 2442 return &dev->dv_lock; 2443 } 2444 2445 void * 2446 device_pmf_bus_private(device_t dev) 2447 { 2448 return dev->dv_bus_private; 2449 } 2450 2451 bool 2452 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual) 2453 { 2454 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) 2455 return true; 2456 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 || 2457 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) 2458 return false; 2459 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 2460 dev->dv_bus_suspend != NULL && 2461 !(*dev->dv_bus_suspend)(dev, qual)) 2462 return false; 2463 2464 dev->dv_flags |= DVF_BUS_SUSPENDED; 2465 return true; 2466 } 2467 2468 bool 2469 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual) 2470 { 2471 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0) 2472 return true; 2473 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS && 2474 dev->dv_bus_resume != NULL && 2475 !(*dev->dv_bus_resume)(dev, qual)) 2476 return false; 2477 2478 dev->dv_flags &= ~DVF_BUS_SUSPENDED; 2479 return true; 2480 } 2481 2482 bool 2483 device_pmf_bus_shutdown(device_t dev, int how) 2484 { 2485 2486 if (*dev->dv_bus_shutdown != NULL && 2487 !(*dev->dv_bus_shutdown)(dev, how)) 2488 return false; 2489 return true; 2490 } 2491 2492 void 2493 device_pmf_bus_register(device_t dev, void *priv, 2494 bool (*suspend)(device_t, const pmf_qual_t *), 2495 bool (*resume)(device_t, const pmf_qual_t *), 2496 bool (*shutdown)(device_t, int), void (*deregister)(device_t)) 2497 { 2498 dev->dv_bus_private = priv; 2499 dev->dv_bus_resume = resume; 2500 dev->dv_bus_suspend = suspend; 2501 dev->dv_bus_shutdown = shutdown; 2502 dev->dv_bus_deregister = deregister; 2503 } 2504 2505 void 2506 device_pmf_bus_deregister(device_t dev) 2507 { 2508 if (dev->dv_bus_deregister == NULL) 2509 return; 2510 (*dev->dv_bus_deregister)(dev); 2511 dev->dv_bus_private = NULL; 2512 dev->dv_bus_suspend = NULL; 2513 dev->dv_bus_resume = NULL; 2514 dev->dv_bus_deregister = NULL; 2515 } 2516 2517 void * 2518 device_pmf_class_private(device_t dev) 2519 { 2520 return dev->dv_class_private; 2521 } 2522 2523 bool 2524 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual) 2525 { 2526 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0) 2527 return true; 2528 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 2529 dev->dv_class_suspend != NULL && 2530 !(*dev->dv_class_suspend)(dev, qual)) 2531 return false; 2532 2533 dev->dv_flags |= DVF_CLASS_SUSPENDED; 2534 return true; 2535 } 2536 2537 bool 2538 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual) 2539 { 2540 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) 2541 return true; 2542 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 || 2543 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) 2544 return false; 2545 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS && 2546 dev->dv_class_resume != NULL && 2547 !(*dev->dv_class_resume)(dev, qual)) 2548 return false; 2549 2550 dev->dv_flags &= ~DVF_CLASS_SUSPENDED; 2551 return true; 2552 } 2553 2554 void 2555 device_pmf_class_register(device_t dev, void *priv, 2556 bool (*suspend)(device_t, const pmf_qual_t *), 2557 bool (*resume)(device_t, const pmf_qual_t *), 2558 void (*deregister)(device_t)) 2559 { 2560 dev->dv_class_private = priv; 2561 dev->dv_class_suspend = suspend; 2562 dev->dv_class_resume = resume; 2563 dev->dv_class_deregister = deregister; 2564 } 2565 2566 void 2567 device_pmf_class_deregister(device_t dev) 2568 { 2569 if (dev->dv_class_deregister == NULL) 2570 return; 2571 (*dev->dv_class_deregister)(dev); 2572 dev->dv_class_private = NULL; 2573 dev->dv_class_suspend = NULL; 2574 dev->dv_class_resume = NULL; 2575 dev->dv_class_deregister = NULL; 2576 } 2577 2578 bool 2579 device_active(device_t dev, devactive_t type) 2580 { 2581 size_t i; 2582 2583 if (dev->dv_activity_count == 0) 2584 return false; 2585 2586 for (i = 0; i < dev->dv_activity_count; ++i) { 2587 if (dev->dv_activity_handlers[i] == NULL) 2588 break; 2589 (*dev->dv_activity_handlers[i])(dev, type); 2590 } 2591 2592 return true; 2593 } 2594 2595 bool 2596 device_active_register(device_t dev, void (*handler)(device_t, devactive_t)) 2597 { 2598 void (**new_handlers)(device_t, devactive_t); 2599 void (**old_handlers)(device_t, devactive_t); 2600 size_t i, old_size, new_size; 2601 int s; 2602 2603 old_handlers = dev->dv_activity_handlers; 2604 old_size = dev->dv_activity_count; 2605 2606 for (i = 0; i < old_size; ++i) { 2607 KASSERT(old_handlers[i] != handler); 2608 if (old_handlers[i] == NULL) { 2609 old_handlers[i] = handler; 2610 return true; 2611 } 2612 } 2613 2614 new_size = old_size + 4; 2615 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP); 2616 2617 memcpy(new_handlers, old_handlers, sizeof(void *[old_size])); 2618 new_handlers[old_size] = handler; 2619 memset(new_handlers + old_size + 1, 0, 2620 sizeof(int [new_size - (old_size+1)])); 2621 2622 s = splhigh(); 2623 dev->dv_activity_count = new_size; 2624 dev->dv_activity_handlers = new_handlers; 2625 splx(s); 2626 2627 if (old_handlers != NULL) 2628 kmem_free(old_handlers, sizeof(void * [old_size])); 2629 2630 return true; 2631 } 2632 2633 void 2634 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t)) 2635 { 2636 void (**old_handlers)(device_t, devactive_t); 2637 size_t i, old_size; 2638 int s; 2639 2640 old_handlers = dev->dv_activity_handlers; 2641 old_size = dev->dv_activity_count; 2642 2643 for (i = 0; i < old_size; ++i) { 2644 if (old_handlers[i] == handler) 2645 break; 2646 if (old_handlers[i] == NULL) 2647 return; /* XXX panic? */ 2648 } 2649 2650 if (i == old_size) 2651 return; /* XXX panic? */ 2652 2653 for (; i < old_size - 1; ++i) { 2654 if ((old_handlers[i] = old_handlers[i + 1]) != NULL) 2655 continue; 2656 2657 if (i == 0) { 2658 s = splhigh(); 2659 dev->dv_activity_count = 0; 2660 dev->dv_activity_handlers = NULL; 2661 splx(s); 2662 kmem_free(old_handlers, sizeof(void *[old_size])); 2663 } 2664 return; 2665 } 2666 old_handlers[i] = NULL; 2667 } 2668 2669 /* Return true iff the device_t `dev' exists at generation `gen'. */ 2670 static bool 2671 device_exists_at(device_t dv, devgen_t gen) 2672 { 2673 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) && 2674 dv->dv_add_gen <= gen; 2675 } 2676 2677 static bool 2678 deviter_visits(const deviter_t *di, device_t dv) 2679 { 2680 return device_exists_at(dv, di->di_gen); 2681 } 2682 2683 /* 2684 * Device Iteration 2685 * 2686 * deviter_t: a device iterator. Holds state for a "walk" visiting 2687 * each device_t's in the device tree. 2688 * 2689 * deviter_init(di, flags): initialize the device iterator `di' 2690 * to "walk" the device tree. deviter_next(di) will return 2691 * the first device_t in the device tree, or NULL if there are 2692 * no devices. 2693 * 2694 * `flags' is one or more of DEVITER_F_RW, indicating that the 2695 * caller intends to modify the device tree by calling 2696 * config_detach(9) on devices in the order that the iterator 2697 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices 2698 * nearest the "root" of the device tree to be returned, first; 2699 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from 2700 * the root of the device tree, first; and DEVITER_F_SHUTDOWN, 2701 * indicating both that deviter_init() should not respect any 2702 * locks on the device tree, and that deviter_next(di) may run 2703 * in more than one LWP before the walk has finished. 2704 * 2705 * Only one DEVITER_F_RW iterator may be in the device tree at 2706 * once. 2707 * 2708 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW. 2709 * 2710 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and 2711 * DEVITER_F_LEAVES_FIRST are used in combination. 2712 * 2713 * deviter_first(di, flags): initialize the device iterator `di' 2714 * and return the first device_t in the device tree, or NULL 2715 * if there are no devices. The statement 2716 * 2717 * dv = deviter_first(di); 2718 * 2719 * is shorthand for 2720 * 2721 * deviter_init(di); 2722 * dv = deviter_next(di); 2723 * 2724 * deviter_next(di): return the next device_t in the device tree, 2725 * or NULL if there are no more devices. deviter_next(di) 2726 * is undefined if `di' was not initialized with deviter_init() or 2727 * deviter_first(). 2728 * 2729 * deviter_release(di): stops iteration (subsequent calls to 2730 * deviter_next() will return NULL), releases any locks and 2731 * resources held by the device iterator. 2732 * 2733 * Device iteration does not return device_t's in any particular 2734 * order. An iterator will never return the same device_t twice. 2735 * Device iteration is guaranteed to complete---i.e., if deviter_next(di) 2736 * is called repeatedly on the same `di', it will eventually return 2737 * NULL. It is ok to attach/detach devices during device iteration. 2738 */ 2739 void 2740 deviter_init(deviter_t *di, deviter_flags_t flags) 2741 { 2742 device_t dv; 2743 int s; 2744 2745 memset(di, 0, sizeof(*di)); 2746 2747 s = config_alldevs_lock(); 2748 if ((flags & DEVITER_F_SHUTDOWN) != 0) 2749 flags |= DEVITER_F_RW; 2750 2751 if ((flags & DEVITER_F_RW) != 0) 2752 alldevs_nwrite++; 2753 else 2754 alldevs_nread++; 2755 di->di_gen = alldevs_gen++; 2756 config_alldevs_unlock(s); 2757 2758 di->di_flags = flags; 2759 2760 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2761 case DEVITER_F_LEAVES_FIRST: 2762 TAILQ_FOREACH(dv, &alldevs, dv_list) { 2763 if (!deviter_visits(di, dv)) 2764 continue; 2765 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth); 2766 } 2767 break; 2768 case DEVITER_F_ROOT_FIRST: 2769 TAILQ_FOREACH(dv, &alldevs, dv_list) { 2770 if (!deviter_visits(di, dv)) 2771 continue; 2772 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth); 2773 } 2774 break; 2775 default: 2776 break; 2777 } 2778 2779 deviter_reinit(di); 2780 } 2781 2782 static void 2783 deviter_reinit(deviter_t *di) 2784 { 2785 if ((di->di_flags & DEVITER_F_RW) != 0) 2786 di->di_prev = TAILQ_LAST(&alldevs, devicelist); 2787 else 2788 di->di_prev = TAILQ_FIRST(&alldevs); 2789 } 2790 2791 device_t 2792 deviter_first(deviter_t *di, deviter_flags_t flags) 2793 { 2794 deviter_init(di, flags); 2795 return deviter_next(di); 2796 } 2797 2798 static device_t 2799 deviter_next2(deviter_t *di) 2800 { 2801 device_t dv; 2802 2803 dv = di->di_prev; 2804 2805 if (dv == NULL) 2806 return NULL; 2807 2808 if ((di->di_flags & DEVITER_F_RW) != 0) 2809 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list); 2810 else 2811 di->di_prev = TAILQ_NEXT(dv, dv_list); 2812 2813 return dv; 2814 } 2815 2816 static device_t 2817 deviter_next1(deviter_t *di) 2818 { 2819 device_t dv; 2820 2821 do { 2822 dv = deviter_next2(di); 2823 } while (dv != NULL && !deviter_visits(di, dv)); 2824 2825 return dv; 2826 } 2827 2828 device_t 2829 deviter_next(deviter_t *di) 2830 { 2831 device_t dv = NULL; 2832 2833 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { 2834 case 0: 2835 return deviter_next1(di); 2836 case DEVITER_F_LEAVES_FIRST: 2837 while (di->di_curdepth >= 0) { 2838 if ((dv = deviter_next1(di)) == NULL) { 2839 di->di_curdepth--; 2840 deviter_reinit(di); 2841 } else if (dv->dv_depth == di->di_curdepth) 2842 break; 2843 } 2844 return dv; 2845 case DEVITER_F_ROOT_FIRST: 2846 while (di->di_curdepth <= di->di_maxdepth) { 2847 if ((dv = deviter_next1(di)) == NULL) { 2848 di->di_curdepth++; 2849 deviter_reinit(di); 2850 } else if (dv->dv_depth == di->di_curdepth) 2851 break; 2852 } 2853 return dv; 2854 default: 2855 return NULL; 2856 } 2857 } 2858 2859 void 2860 deviter_release(deviter_t *di) 2861 { 2862 bool rw = (di->di_flags & DEVITER_F_RW) != 0; 2863 int s; 2864 2865 s = config_alldevs_lock(); 2866 if (rw) 2867 --alldevs_nwrite; 2868 else 2869 --alldevs_nread; 2870 /* XXX wake a garbage-collection thread */ 2871 config_alldevs_unlock(s); 2872 } 2873 2874 const char * 2875 cfdata_ifattr(const struct cfdata *cf) 2876 { 2877 return cf->cf_pspec->cfp_iattr; 2878 } 2879 2880 bool 2881 ifattr_match(const char *snull, const char *t) 2882 { 2883 return (snull == NULL) || strcmp(snull, t) == 0; 2884 } 2885 2886 void 2887 null_childdetached(device_t self, device_t child) 2888 { 2889 /* do nothing */ 2890 } 2891 2892 static void 2893 sysctl_detach_setup(struct sysctllog **clog) 2894 { 2895 2896 sysctl_createv(clog, 0, NULL, NULL, 2897 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 2898 CTLTYPE_BOOL, "detachall", 2899 SYSCTL_DESCR("Detach all devices at shutdown"), 2900 NULL, 0, &detachall, 0, 2901 CTL_KERN, CTL_CREATE, CTL_EOL); 2902 } 2903