xref: /netbsd-src/sys/kern/sched_4bsd.c (revision a536ee5124e62c9a0051a252f7833dc8f50f44c9)
1 /*	$NetBSD: sched_4bsd.c,v 1.28 2011/12/02 12:29:35 yamt Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
10  * Daniel Sieger.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*-
35  * Copyright (c) 1982, 1986, 1990, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of the University nor the names of its contributors
52  *    may be used to endorse or promote products derived from this software
53  *    without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
68  */
69 
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.28 2011/12/02 12:29:35 yamt Exp $");
72 
73 #include "opt_ddb.h"
74 #include "opt_lockdebug.h"
75 #include "opt_perfctrs.h"
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/callout.h>
80 #include <sys/cpu.h>
81 #include <sys/proc.h>
82 #include <sys/kernel.h>
83 #include <sys/signalvar.h>
84 #include <sys/resourcevar.h>
85 #include <sys/sched.h>
86 #include <sys/sysctl.h>
87 #include <sys/kauth.h>
88 #include <sys/lockdebug.h>
89 #include <sys/kmem.h>
90 #include <sys/intr.h>
91 
92 static void updatepri(struct lwp *);
93 static void resetpriority(struct lwp *);
94 
95 extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
96 
97 /* Number of hardclock ticks per sched_tick() */
98 static int rrticks;
99 
100 /*
101  * Force switch among equal priority processes every 100ms.
102  * Called from hardclock every hz/10 == rrticks hardclock ticks.
103  *
104  * There's no need to lock anywhere in this routine, as it's
105  * CPU-local and runs at IPL_SCHED (called from clock interrupt).
106  */
107 /* ARGSUSED */
108 void
109 sched_tick(struct cpu_info *ci)
110 {
111 	struct schedstate_percpu *spc = &ci->ci_schedstate;
112 	lwp_t *l;
113 
114 	spc->spc_ticks = rrticks;
115 
116 	if (CURCPU_IDLE_P()) {
117 		cpu_need_resched(ci, 0);
118 		return;
119 	}
120 	l = ci->ci_data.cpu_onproc;
121 	if (l == NULL) {
122 		return;
123 	}
124 	switch (l->l_class) {
125 	case SCHED_FIFO:
126 		/* No timeslicing for FIFO jobs. */
127 		break;
128 	case SCHED_RR:
129 		/* Force it into mi_switch() to look for other jobs to run. */
130 		cpu_need_resched(ci, RESCHED_KPREEMPT);
131 		break;
132 	default:
133 		if (spc->spc_flags & SPCF_SHOULDYIELD) {
134 			/*
135 			 * Process is stuck in kernel somewhere, probably
136 			 * due to buggy or inefficient code.  Force a
137 			 * kernel preemption.
138 			 */
139 			cpu_need_resched(ci, RESCHED_KPREEMPT);
140 		} else if (spc->spc_flags & SPCF_SEENRR) {
141 			/*
142 			 * The process has already been through a roundrobin
143 			 * without switching and may be hogging the CPU.
144 			 * Indicate that the process should yield.
145 			 */
146 			spc->spc_flags |= SPCF_SHOULDYIELD;
147 			cpu_need_resched(ci, 0);
148 		} else {
149 			spc->spc_flags |= SPCF_SEENRR;
150 		}
151 		break;
152 	}
153 }
154 
155 /*
156  * Why PRIO_MAX - 2? From setpriority(2):
157  *
158  *	prio is a value in the range -20 to 20.  The default priority is
159  *	0; lower priorities cause more favorable scheduling.  A value of
160  *	19 or 20 will schedule a process only when nothing at priority <=
161  *	0 is runnable.
162  *
163  * This gives estcpu influence over 18 priority levels, and leaves nice
164  * with 40 levels.  One way to think about it is that nice has 20 levels
165  * either side of estcpu's 18.
166  */
167 #define	ESTCPU_SHIFT	11
168 #define	ESTCPU_MAX	((PRIO_MAX - 2) << ESTCPU_SHIFT)
169 #define	ESTCPU_ACCUM	(1 << (ESTCPU_SHIFT - 1))
170 #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
171 
172 /*
173  * Constants for digital decay and forget:
174  *	90% of (l_estcpu) usage in 5 * loadav time
175  *	95% of (l_pctcpu) usage in 60 seconds (load insensitive)
176  *          Note that, as ps(1) mentions, this can let percentages
177  *          total over 100% (I've seen 137.9% for 3 processes).
178  *
179  * Note that hardclock updates l_estcpu and l_cpticks independently.
180  *
181  * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds.
182  * That is, the system wants to compute a value of decay such
183  * that the following for loop:
184  * 	for (i = 0; i < (5 * loadavg); i++)
185  * 		l_estcpu *= decay;
186  * will compute
187  * 	l_estcpu *= 0.1;
188  * for all values of loadavg:
189  *
190  * Mathematically this loop can be expressed by saying:
191  * 	decay ** (5 * loadavg) ~= .1
192  *
193  * The system computes decay as:
194  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
195  *
196  * We wish to prove that the system's computation of decay
197  * will always fulfill the equation:
198  * 	decay ** (5 * loadavg) ~= .1
199  *
200  * If we compute b as:
201  * 	b = 2 * loadavg
202  * then
203  * 	decay = b / (b + 1)
204  *
205  * We now need to prove two things:
206  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
207  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
208  *
209  * Facts:
210  *         For x close to zero, exp(x) =~ 1 + x, since
211  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
212  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
213  *         For x close to zero, ln(1+x) =~ x, since
214  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
215  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
216  *         ln(.1) =~ -2.30
217  *
218  * Proof of (1):
219  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
220  *	solving for factor,
221  *      ln(factor) =~ (-2.30/5*loadav), or
222  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
223  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
224  *
225  * Proof of (2):
226  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
227  *	solving for power,
228  *      power*ln(b/(b+1)) =~ -2.30, or
229  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
230  *
231  * Actual power values for the implemented algorithm are as follows:
232  *      loadav: 1       2       3       4
233  *      power:  5.68    10.32   14.94   19.55
234  */
235 
236 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
237 #define	loadfactor(loadav)	(2 * (loadav) / ncpu)
238 
239 static fixpt_t
240 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
241 {
242 
243 	if (estcpu == 0) {
244 		return 0;
245 	}
246 
247 #if !defined(_LP64)
248 	/* avoid 64bit arithmetics. */
249 #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
250 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
251 		return estcpu * loadfac / (loadfac + FSCALE);
252 	}
253 #endif /* !defined(_LP64) */
254 
255 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
256 }
257 
258 /*
259  * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
260  * sleeping for at least seven times the loadfactor will decay l_estcpu to
261  * less than (1 << ESTCPU_SHIFT).
262  *
263  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
264  */
265 static fixpt_t
266 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
267 {
268 
269 	if ((n << FSHIFT) >= 7 * loadfac) {
270 		return 0;
271 	}
272 
273 	while (estcpu != 0 && n > 1) {
274 		estcpu = decay_cpu(loadfac, estcpu);
275 		n--;
276 	}
277 
278 	return estcpu;
279 }
280 
281 /*
282  * sched_pstats_hook:
283  *
284  * Periodically called from sched_pstats(); used to recalculate priorities.
285  */
286 void
287 sched_pstats_hook(struct lwp *l, int batch)
288 {
289 	fixpt_t loadfac;
290 
291 	/*
292 	 * If the LWP has slept an entire second, stop recalculating
293 	 * its priority until it wakes up.
294 	 */
295 	KASSERT(lwp_locked(l, NULL));
296 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
297 	    l->l_stat == LSSUSPENDED) {
298 		if (l->l_slptime > 1) {
299 			return;
300 		}
301 	}
302 	loadfac = 2 * (averunnable.ldavg[0]);
303 	l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
304 	resetpriority(l);
305 }
306 
307 /*
308  * Recalculate the priority of a process after it has slept for a while.
309  */
310 static void
311 updatepri(struct lwp *l)
312 {
313 	fixpt_t loadfac;
314 
315 	KASSERT(lwp_locked(l, NULL));
316 	KASSERT(l->l_slptime > 1);
317 
318 	loadfac = loadfactor(averunnable.ldavg[0]);
319 
320 	l->l_slptime--; /* the first time was done in sched_pstats */
321 	l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
322 	resetpriority(l);
323 }
324 
325 void
326 sched_rqinit(void)
327 {
328 
329 }
330 
331 void
332 sched_setrunnable(struct lwp *l)
333 {
334 
335  	if (l->l_slptime > 1)
336  		updatepri(l);
337 }
338 
339 void
340 sched_nice(struct proc *p, int n)
341 {
342 	struct lwp *l;
343 
344 	KASSERT(mutex_owned(p->p_lock));
345 
346 	p->p_nice = n;
347 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
348 		lwp_lock(l);
349 		resetpriority(l);
350 		lwp_unlock(l);
351 	}
352 }
353 
354 /*
355  * Recompute the priority of an LWP.  Arrange to reschedule if
356  * the resulting priority is better than that of the current LWP.
357  */
358 static void
359 resetpriority(struct lwp *l)
360 {
361 	pri_t pri;
362 	struct proc *p = l->l_proc;
363 
364 	KASSERT(lwp_locked(l, NULL));
365 
366 	if (l->l_class != SCHED_OTHER)
367 		return;
368 
369 	/* See comments above ESTCPU_SHIFT definition. */
370 	pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
371 	pri = imax(pri, 0);
372 	if (pri != l->l_priority)
373 		lwp_changepri(l, pri);
374 }
375 
376 /*
377  * We adjust the priority of the current LWP.  The priority of a LWP
378  * gets worse as it accumulates CPU time.  The CPU usage estimator (l_estcpu)
379  * is increased here.  The formula for computing priorities will compute a
380  * different value each time l_estcpu increases. This can cause a switch,
381  * but unless the priority crosses a PPQ boundary the actual queue will not
382  * change.  The CPU usage estimator ramps up quite quickly when the process
383  * is running (linearly), and decays away exponentially, at a rate which is
384  * proportionally slower when the system is busy.  The basic principle is
385  * that the system will 90% forget that the process used a lot of CPU time
386  * in 5 * loadav seconds.  This causes the system to favor processes which
387  * haven't run much recently, and to round-robin among other processes.
388  */
389 
390 void
391 sched_schedclock(struct lwp *l)
392 {
393 
394 	if (l->l_class != SCHED_OTHER)
395 		return;
396 
397 	KASSERT(!CURCPU_IDLE_P());
398 	l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
399 	lwp_lock(l);
400 	resetpriority(l);
401 	lwp_unlock(l);
402 }
403 
404 /*
405  * sched_proc_fork:
406  *
407  *	Inherit the parent's scheduler history.
408  */
409 void
410 sched_proc_fork(struct proc *parent, struct proc *child)
411 {
412 	lwp_t *pl;
413 
414 	KASSERT(mutex_owned(parent->p_lock));
415 
416 	pl = LIST_FIRST(&parent->p_lwps);
417 	child->p_estcpu_inherited = pl->l_estcpu;
418 	child->p_forktime = sched_pstats_ticks;
419 }
420 
421 /*
422  * sched_proc_exit:
423  *
424  *	Chargeback parents for the sins of their children.
425  */
426 void
427 sched_proc_exit(struct proc *parent, struct proc *child)
428 {
429 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
430 	fixpt_t estcpu;
431 	lwp_t *pl, *cl;
432 
433 	/* XXX Only if parent != init?? */
434 
435 	mutex_enter(parent->p_lock);
436 	pl = LIST_FIRST(&parent->p_lwps);
437 	cl = LIST_FIRST(&child->p_lwps);
438 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
439 	    sched_pstats_ticks - child->p_forktime);
440 	if (cl->l_estcpu > estcpu) {
441 		lwp_lock(pl);
442 		pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
443 		lwp_unlock(pl);
444 	}
445 	mutex_exit(parent->p_lock);
446 }
447 
448 void
449 sched_wakeup(struct lwp *l)
450 {
451 
452 }
453 
454 void
455 sched_slept(struct lwp *l)
456 {
457 
458 }
459 
460 void
461 sched_lwp_fork(struct lwp *l1, struct lwp *l2)
462 {
463 
464 	l2->l_estcpu = l1->l_estcpu;
465 }
466 
467 void
468 sched_lwp_collect(struct lwp *t)
469 {
470 	lwp_t *l;
471 
472 	/* Absorb estcpu value of collected LWP. */
473 	l = curlwp;
474 	lwp_lock(l);
475 	l->l_estcpu += t->l_estcpu;
476 	lwp_unlock(l);
477 }
478 
479 void
480 sched_oncpu(lwp_t *l)
481 {
482 
483 }
484 
485 void
486 sched_newts(lwp_t *l)
487 {
488 
489 }
490 
491 /*
492  * Sysctl nodes and initialization.
493  */
494 
495 static int
496 sysctl_sched_rtts(SYSCTLFN_ARGS)
497 {
498 	struct sysctlnode node;
499 	int rttsms = hztoms(rrticks);
500 
501 	node = *rnode;
502 	node.sysctl_data = &rttsms;
503 	return sysctl_lookup(SYSCTLFN_CALL(&node));
504 }
505 
506 SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
507 {
508 	const struct sysctlnode *node = NULL;
509 
510 	sysctl_createv(clog, 0, NULL, NULL,
511 		CTLFLAG_PERMANENT,
512 		CTLTYPE_NODE, "kern", NULL,
513 		NULL, 0, NULL, 0,
514 		CTL_KERN, CTL_EOL);
515 	sysctl_createv(clog, 0, NULL, &node,
516 		CTLFLAG_PERMANENT,
517 		CTLTYPE_NODE, "sched",
518 		SYSCTL_DESCR("Scheduler options"),
519 		NULL, 0, NULL, 0,
520 		CTL_KERN, CTL_CREATE, CTL_EOL);
521 
522 	if (node == NULL)
523 		return;
524 
525 	rrticks = hz / 10;
526 
527 	sysctl_createv(NULL, 0, &node, NULL,
528 		CTLFLAG_PERMANENT,
529 		CTLTYPE_STRING, "name", NULL,
530 		NULL, 0, __UNCONST("4.4BSD"), 0,
531 		CTL_CREATE, CTL_EOL);
532 	sysctl_createv(NULL, 0, &node, NULL,
533 		CTLFLAG_PERMANENT,
534 		CTLTYPE_INT, "rtts",
535 		SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
536 		sysctl_sched_rtts, 0, NULL, 0,
537 		CTL_CREATE, CTL_EOL);
538 }
539