xref: /netbsd-src/sys/kern/kern_timeout.c (revision ecf6466c633518f478c293c388551b29e46729cc)
1 /*	$NetBSD: kern_timeout.c,v 1.57 2019/11/21 17:57:40 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003, 2006, 2007, 2008, 2009, 2019 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe, and by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 2001 Thomas Nordin <nordin@openbsd.org>
34  * Copyright (c) 2000-2001 Artur Grabowski <art@openbsd.org>
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  *
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. The name of the author may not be used to endorse or promote products
47  *    derived from this software without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
50  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
51  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
52  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
53  * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.57 2019/11/21 17:57:40 ad Exp $");
63 
64 /*
65  * Timeouts are kept in a hierarchical timing wheel.  The c_time is the
66  * value of c_cpu->cc_ticks when the timeout should be called.  There are
67  * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
68  * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
69  * a Timer Facility" by George Varghese and Tony Lauck.
70  *
71  * Some of the "math" in here is a bit tricky.  We have to beware of
72  * wrapping ints.
73  *
74  * We use the fact that any element added to the queue must be added with
75  * a positive time.  That means that any element `to' on the queue cannot
76  * be scheduled to timeout further in time than INT_MAX, but c->c_time can
77  * be positive or negative so comparing it with anything is dangerous.
78  * The only way we can use the c->c_time value in any predictable way is
79  * when we calculate how far in the future `to' will timeout - "c->c_time
80  * - c->c_cpu->cc_ticks".  The result will always be positive for future
81  * timeouts and 0 or negative for due timeouts.
82  */
83 
84 #define	_CALLOUT_PRIVATE
85 
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/callout.h>
90 #include <sys/lwp.h>
91 #include <sys/mutex.h>
92 #include <sys/proc.h>
93 #include <sys/sleepq.h>
94 #include <sys/syncobj.h>
95 #include <sys/evcnt.h>
96 #include <sys/intr.h>
97 #include <sys/cpu.h>
98 #include <sys/kmem.h>
99 
100 #ifdef DDB
101 #include <machine/db_machdep.h>
102 #include <ddb/db_interface.h>
103 #include <ddb/db_access.h>
104 #include <ddb/db_cpu.h>
105 #include <ddb/db_sym.h>
106 #include <ddb/db_output.h>
107 #endif
108 
109 #define BUCKETS		1024
110 #define WHEELSIZE	256
111 #define WHEELMASK	255
112 #define WHEELBITS	8
113 
114 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
115 
116 #define BUCKET(cc, rel, abs)						\
117     (((rel) <= (1 << (2*WHEELBITS)))					\
118     	? ((rel) <= (1 << WHEELBITS))					\
119             ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))]			\
120             : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE]		\
121         : ((rel) <= (1 << (3*WHEELBITS)))				\
122             ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE]	\
123             : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
124 
125 #define MOVEBUCKET(cc, wheel, time)					\
126     CIRCQ_APPEND(&(cc)->cc_todo,					\
127         &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
128 
129 /*
130  * Circular queue definitions.
131  */
132 
133 #define CIRCQ_INIT(list)						\
134 do {									\
135         (list)->cq_next_l = (list);					\
136         (list)->cq_prev_l = (list);					\
137 } while (/*CONSTCOND*/0)
138 
139 #define CIRCQ_INSERT(elem, list)					\
140 do {									\
141         (elem)->cq_prev_e = (list)->cq_prev_e;				\
142         (elem)->cq_next_l = (list);					\
143         (list)->cq_prev_l->cq_next_l = (elem);				\
144         (list)->cq_prev_l = (elem);					\
145 } while (/*CONSTCOND*/0)
146 
147 #define CIRCQ_APPEND(fst, snd)						\
148 do {									\
149         if (!CIRCQ_EMPTY(snd)) {					\
150                 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l;		\
151                 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l;		\
152                 (snd)->cq_prev_l->cq_next_l = (fst);			\
153                 (fst)->cq_prev_l = (snd)->cq_prev_l;			\
154                 CIRCQ_INIT(snd);					\
155         }								\
156 } while (/*CONSTCOND*/0)
157 
158 #define CIRCQ_REMOVE(elem)						\
159 do {									\
160         (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e;		\
161         (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e;		\
162 } while (/*CONSTCOND*/0)
163 
164 #define CIRCQ_FIRST(list)	((list)->cq_next_e)
165 #define CIRCQ_NEXT(elem)	((elem)->cq_next_e)
166 #define CIRCQ_LAST(elem,list)	((elem)->cq_next_l == (list))
167 #define CIRCQ_EMPTY(list)	((list)->cq_next_l == (list))
168 
169 struct callout_cpu {
170 	kmutex_t	*cc_lock;
171 	sleepq_t	cc_sleepq;
172 	u_int		cc_nwait;
173 	u_int		cc_ticks;
174 	lwp_t		*cc_lwp;
175 	callout_impl_t	*cc_active;
176 	callout_impl_t	*cc_cancel;
177 	struct evcnt	cc_ev_late;
178 	struct evcnt	cc_ev_block;
179 	struct callout_circq cc_todo;		/* Worklist */
180 	struct callout_circq cc_wheel[BUCKETS];	/* Queues of timeouts */
181 	char		cc_name1[12];
182 	char		cc_name2[12];
183 };
184 
185 #ifndef CRASH
186 
187 static void	callout_softclock(void *);
188 static void	callout_wait(callout_impl_t *, void *, kmutex_t *);
189 
190 static struct callout_cpu callout_cpu0 __cacheline_aligned;
191 static void *callout_sih __read_mostly;
192 
193 static inline kmutex_t *
194 callout_lock(callout_impl_t *c)
195 {
196 	struct callout_cpu *cc;
197 	kmutex_t *lock;
198 
199 	for (;;) {
200 		cc = c->c_cpu;
201 		lock = cc->cc_lock;
202 		mutex_spin_enter(lock);
203 		if (__predict_true(cc == c->c_cpu))
204 			return lock;
205 		mutex_spin_exit(lock);
206 	}
207 }
208 
209 /*
210  * callout_startup:
211  *
212  *	Initialize the callout facility, called at system startup time.
213  *	Do just enough to allow callouts to be safely registered.
214  */
215 void
216 callout_startup(void)
217 {
218 	struct callout_cpu *cc;
219 	int b;
220 
221 	KASSERT(curcpu()->ci_data.cpu_callout == NULL);
222 
223 	cc = &callout_cpu0;
224 	cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
225 	CIRCQ_INIT(&cc->cc_todo);
226 	for (b = 0; b < BUCKETS; b++)
227 		CIRCQ_INIT(&cc->cc_wheel[b]);
228 	curcpu()->ci_data.cpu_callout = cc;
229 }
230 
231 /*
232  * callout_init_cpu:
233  *
234  *	Per-CPU initialization.
235  */
236 CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
237 
238 void
239 callout_init_cpu(struct cpu_info *ci)
240 {
241 	struct callout_cpu *cc;
242 	int b;
243 
244 	if ((cc = ci->ci_data.cpu_callout) == NULL) {
245 		cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
246 		cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
247 		CIRCQ_INIT(&cc->cc_todo);
248 		for (b = 0; b < BUCKETS; b++)
249 			CIRCQ_INIT(&cc->cc_wheel[b]);
250 	} else {
251 		/* Boot CPU, one time only. */
252 		callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
253 		    callout_softclock, NULL);
254 		if (callout_sih == NULL)
255 			panic("callout_init_cpu (2)");
256 	}
257 
258 	sleepq_init(&cc->cc_sleepq);
259 
260 	snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
261 	    cpu_index(ci));
262 	evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
263 	    NULL, "callout", cc->cc_name1);
264 
265 	snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
266 	    cpu_index(ci));
267 	evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
268 	    NULL, "callout", cc->cc_name2);
269 
270 	ci->ci_data.cpu_callout = cc;
271 }
272 
273 /*
274  * callout_init:
275  *
276  *	Initialize a callout structure.  This must be quick, so we fill
277  *	only the minimum number of fields.
278  */
279 void
280 callout_init(callout_t *cs, u_int flags)
281 {
282 	callout_impl_t *c = (callout_impl_t *)cs;
283 	struct callout_cpu *cc;
284 
285 	KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
286 
287 	cc = curcpu()->ci_data.cpu_callout;
288 	c->c_func = NULL;
289 	c->c_magic = CALLOUT_MAGIC;
290 	if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
291 		c->c_flags = flags;
292 		c->c_cpu = cc;
293 		return;
294 	}
295 	c->c_flags = flags | CALLOUT_BOUND;
296 	c->c_cpu = &callout_cpu0;
297 }
298 
299 /*
300  * callout_destroy:
301  *
302  *	Destroy a callout structure.  The callout must be stopped.
303  */
304 void
305 callout_destroy(callout_t *cs)
306 {
307 	callout_impl_t *c = (callout_impl_t *)cs;
308 
309 	KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
310 	    "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
311 	    c, c->c_magic, CALLOUT_MAGIC);
312 	/*
313 	 * It's not necessary to lock in order to see the correct value
314 	 * of c->c_flags.  If the callout could potentially have been
315 	 * running, the current thread should have stopped it.
316 	 */
317 	KASSERTMSG((c->c_flags & CALLOUT_PENDING) == 0,
318 	    "callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
319 	    c, c->c_func, c->c_flags, __builtin_return_address(0));
320 	KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
321 	c->c_magic = 0;
322 }
323 
324 /*
325  * callout_schedule_locked:
326  *
327  *	Schedule a callout to run.  The function and argument must
328  *	already be set in the callout structure.  Must be called with
329  *	callout_lock.
330  */
331 static void
332 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
333 {
334 	struct callout_cpu *cc, *occ;
335 	int old_time;
336 
337 	KASSERT(to_ticks >= 0);
338 	KASSERT(c->c_func != NULL);
339 
340 	/* Initialize the time here, it won't change. */
341 	occ = c->c_cpu;
342 	c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
343 
344 	/*
345 	 * If this timeout is already scheduled and now is moved
346 	 * earlier, reschedule it now.  Otherwise leave it in place
347 	 * and let it be rescheduled later.
348 	 */
349 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
350 		/* Leave on existing CPU. */
351 		old_time = c->c_time;
352 		c->c_time = to_ticks + occ->cc_ticks;
353 		if (c->c_time - old_time < 0) {
354 			CIRCQ_REMOVE(&c->c_list);
355 			CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
356 		}
357 		mutex_spin_exit(lock);
358 		return;
359 	}
360 
361 	cc = curcpu()->ci_data.cpu_callout;
362 	if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
363 	    !mutex_tryenter(cc->cc_lock)) {
364 		/* Leave on existing CPU. */
365 		c->c_time = to_ticks + occ->cc_ticks;
366 		c->c_flags |= CALLOUT_PENDING;
367 		CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
368 	} else {
369 		/* Move to this CPU. */
370 		c->c_cpu = cc;
371 		c->c_time = to_ticks + cc->cc_ticks;
372 		c->c_flags |= CALLOUT_PENDING;
373 		CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
374 		mutex_spin_exit(cc->cc_lock);
375 	}
376 	mutex_spin_exit(lock);
377 }
378 
379 /*
380  * callout_reset:
381  *
382  *	Reset a callout structure with a new function and argument, and
383  *	schedule it to run.
384  */
385 void
386 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
387 {
388 	callout_impl_t *c = (callout_impl_t *)cs;
389 	kmutex_t *lock;
390 
391 	KASSERT(c->c_magic == CALLOUT_MAGIC);
392 	KASSERT(func != NULL);
393 
394 	lock = callout_lock(c);
395 	c->c_func = func;
396 	c->c_arg = arg;
397 	callout_schedule_locked(c, lock, to_ticks);
398 }
399 
400 /*
401  * callout_schedule:
402  *
403  *	Schedule a callout to run.  The function and argument must
404  *	already be set in the callout structure.
405  */
406 void
407 callout_schedule(callout_t *cs, int to_ticks)
408 {
409 	callout_impl_t *c = (callout_impl_t *)cs;
410 	kmutex_t *lock;
411 
412 	KASSERT(c->c_magic == CALLOUT_MAGIC);
413 
414 	lock = callout_lock(c);
415 	callout_schedule_locked(c, lock, to_ticks);
416 }
417 
418 /*
419  * callout_stop:
420  *
421  *	Try to cancel a pending callout.  It may be too late: the callout
422  *	could be running on another CPU.  If called from interrupt context,
423  *	the callout could already be in progress at a lower priority.
424  */
425 bool
426 callout_stop(callout_t *cs)
427 {
428 	callout_impl_t *c = (callout_impl_t *)cs;
429 	struct callout_cpu *cc;
430 	kmutex_t *lock;
431 	bool expired;
432 
433 	KASSERT(c->c_magic == CALLOUT_MAGIC);
434 
435 	lock = callout_lock(c);
436 
437 	if ((c->c_flags & CALLOUT_PENDING) != 0)
438 		CIRCQ_REMOVE(&c->c_list);
439 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
440 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
441 
442 	cc = c->c_cpu;
443 	if (cc->cc_active == c) {
444 		/*
445 		 * This is for non-MPSAFE callouts only.  To synchronize
446 		 * effectively we must be called with kernel_lock held.
447 		 * It's also taken in callout_softclock.
448 		 */
449 		cc->cc_cancel = c;
450 	}
451 
452 	mutex_spin_exit(lock);
453 
454 	return expired;
455 }
456 
457 /*
458  * callout_halt:
459  *
460  *	Cancel a pending callout.  If in-flight, block until it completes.
461  *	May not be called from a hard interrupt handler.  If the callout
462  * 	can take locks, the caller of callout_halt() must not hold any of
463  *	those locks, otherwise the two could deadlock.  If 'interlock' is
464  *	non-NULL and we must wait for the callout to complete, it will be
465  *	released and re-acquired before returning.
466  */
467 bool
468 callout_halt(callout_t *cs, void *interlock)
469 {
470 	callout_impl_t *c = (callout_impl_t *)cs;
471 	kmutex_t *lock;
472 	int flags;
473 
474 	KASSERT(c->c_magic == CALLOUT_MAGIC);
475 	KASSERT(!cpu_intr_p());
476 	KASSERT(interlock == NULL || mutex_owned(interlock));
477 
478 	/* Fast path. */
479 	lock = callout_lock(c);
480 	flags = c->c_flags;
481 	if ((flags & CALLOUT_PENDING) != 0)
482 		CIRCQ_REMOVE(&c->c_list);
483 	c->c_flags = flags & ~(CALLOUT_PENDING|CALLOUT_FIRED);
484 	if (__predict_false(flags & CALLOUT_FIRED)) {
485 		callout_wait(c, interlock, lock);
486 		return true;
487 	}
488 	mutex_spin_exit(lock);
489 	return false;
490 }
491 
492 /*
493  * callout_wait:
494  *
495  *	Slow path for callout_halt().  Deliberately marked __noinline to
496  *	prevent unneeded overhead in the caller.
497  */
498 static void __noinline
499 callout_wait(callout_impl_t *c, void *interlock, kmutex_t *lock)
500 {
501 	struct callout_cpu *cc;
502 	struct lwp *l;
503 	kmutex_t *relock;
504 
505 	l = curlwp;
506 	relock = NULL;
507 	for (;;) {
508 		cc = c->c_cpu;
509 		if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
510 			break;
511 		if (interlock != NULL) {
512 			/*
513 			 * Avoid potential scheduler lock order problems by
514 			 * dropping the interlock without the callout lock
515 			 * held.
516 			 */
517 			mutex_spin_exit(lock);
518 			mutex_exit(interlock);
519 			relock = interlock;
520 			interlock = NULL;
521 		} else {
522 			/* XXX Better to do priority inheritance. */
523 			KASSERT(l->l_wchan == NULL);
524 			cc->cc_nwait++;
525 			cc->cc_ev_block.ev_count++;
526 			l->l_kpriority = true;
527 			sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
528 			sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
529 			    &sleep_syncobj);
530 			sleepq_block(0, false);
531 		}
532 		lock = callout_lock(c);
533 	}
534 
535 	mutex_spin_exit(lock);
536 	if (__predict_false(relock != NULL))
537 		mutex_enter(relock);
538 }
539 
540 #ifdef notyet
541 /*
542  * callout_bind:
543  *
544  *	Bind a callout so that it will only execute on one CPU.
545  *	The callout must be stopped, and must be MPSAFE.
546  *
547  *	XXX Disabled for now until it is decided how to handle
548  *	offlined CPUs.  We may want weak+strong binding.
549  */
550 void
551 callout_bind(callout_t *cs, struct cpu_info *ci)
552 {
553 	callout_impl_t *c = (callout_impl_t *)cs;
554 	struct callout_cpu *cc;
555 	kmutex_t *lock;
556 
557 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
558 	KASSERT(c->c_cpu->cc_active != c);
559 	KASSERT(c->c_magic == CALLOUT_MAGIC);
560 	KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
561 
562 	lock = callout_lock(c);
563 	cc = ci->ci_data.cpu_callout;
564 	c->c_flags |= CALLOUT_BOUND;
565 	if (c->c_cpu != cc) {
566 		/*
567 		 * Assigning c_cpu effectively unlocks the callout
568 		 * structure, as we don't hold the new CPU's lock.
569 		 * Issue memory barrier to prevent accesses being
570 		 * reordered.
571 		 */
572 		membar_exit();
573 		c->c_cpu = cc;
574 	}
575 	mutex_spin_exit(lock);
576 }
577 #endif
578 
579 void
580 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
581 {
582 	callout_impl_t *c = (callout_impl_t *)cs;
583 	kmutex_t *lock;
584 
585 	KASSERT(c->c_magic == CALLOUT_MAGIC);
586 	KASSERT(func != NULL);
587 
588 	lock = callout_lock(c);
589 	c->c_func = func;
590 	c->c_arg = arg;
591 	mutex_spin_exit(lock);
592 }
593 
594 bool
595 callout_expired(callout_t *cs)
596 {
597 	callout_impl_t *c = (callout_impl_t *)cs;
598 	kmutex_t *lock;
599 	bool rv;
600 
601 	KASSERT(c->c_magic == CALLOUT_MAGIC);
602 
603 	lock = callout_lock(c);
604 	rv = ((c->c_flags & CALLOUT_FIRED) != 0);
605 	mutex_spin_exit(lock);
606 
607 	return rv;
608 }
609 
610 bool
611 callout_active(callout_t *cs)
612 {
613 	callout_impl_t *c = (callout_impl_t *)cs;
614 	kmutex_t *lock;
615 	bool rv;
616 
617 	KASSERT(c->c_magic == CALLOUT_MAGIC);
618 
619 	lock = callout_lock(c);
620 	rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
621 	mutex_spin_exit(lock);
622 
623 	return rv;
624 }
625 
626 bool
627 callout_pending(callout_t *cs)
628 {
629 	callout_impl_t *c = (callout_impl_t *)cs;
630 	kmutex_t *lock;
631 	bool rv;
632 
633 	KASSERT(c->c_magic == CALLOUT_MAGIC);
634 
635 	lock = callout_lock(c);
636 	rv = ((c->c_flags & CALLOUT_PENDING) != 0);
637 	mutex_spin_exit(lock);
638 
639 	return rv;
640 }
641 
642 bool
643 callout_invoking(callout_t *cs)
644 {
645 	callout_impl_t *c = (callout_impl_t *)cs;
646 	kmutex_t *lock;
647 	bool rv;
648 
649 	KASSERT(c->c_magic == CALLOUT_MAGIC);
650 
651 	lock = callout_lock(c);
652 	rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
653 	mutex_spin_exit(lock);
654 
655 	return rv;
656 }
657 
658 void
659 callout_ack(callout_t *cs)
660 {
661 	callout_impl_t *c = (callout_impl_t *)cs;
662 	kmutex_t *lock;
663 
664 	KASSERT(c->c_magic == CALLOUT_MAGIC);
665 
666 	lock = callout_lock(c);
667 	c->c_flags &= ~CALLOUT_INVOKING;
668 	mutex_spin_exit(lock);
669 }
670 
671 /*
672  * callout_hardclock:
673  *
674  *	Called from hardclock() once every tick.  We schedule a soft
675  *	interrupt if there is work to be done.
676  */
677 void
678 callout_hardclock(void)
679 {
680 	struct callout_cpu *cc;
681 	int needsoftclock, ticks;
682 
683 	cc = curcpu()->ci_data.cpu_callout;
684 	mutex_spin_enter(cc->cc_lock);
685 
686 	ticks = ++cc->cc_ticks;
687 
688 	MOVEBUCKET(cc, 0, ticks);
689 	if (MASKWHEEL(0, ticks) == 0) {
690 		MOVEBUCKET(cc, 1, ticks);
691 		if (MASKWHEEL(1, ticks) == 0) {
692 			MOVEBUCKET(cc, 2, ticks);
693 			if (MASKWHEEL(2, ticks) == 0)
694 				MOVEBUCKET(cc, 3, ticks);
695 		}
696 	}
697 
698 	needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
699 	mutex_spin_exit(cc->cc_lock);
700 
701 	if (needsoftclock)
702 		softint_schedule(callout_sih);
703 }
704 
705 /*
706  * callout_softclock:
707  *
708  *	Soft interrupt handler, scheduled above if there is work to
709  * 	be done.  Callouts are made in soft interrupt context.
710  */
711 static void
712 callout_softclock(void *v)
713 {
714 	callout_impl_t *c;
715 	struct callout_cpu *cc;
716 	void (*func)(void *);
717 	void *arg;
718 	int mpsafe, count, ticks, delta;
719 	lwp_t *l;
720 
721 	l = curlwp;
722 	KASSERT(l->l_cpu == curcpu());
723 	cc = l->l_cpu->ci_data.cpu_callout;
724 
725 	mutex_spin_enter(cc->cc_lock);
726 	cc->cc_lwp = l;
727 	while (!CIRCQ_EMPTY(&cc->cc_todo)) {
728 		c = CIRCQ_FIRST(&cc->cc_todo);
729 		KASSERT(c->c_magic == CALLOUT_MAGIC);
730 		KASSERT(c->c_func != NULL);
731 		KASSERT(c->c_cpu == cc);
732 		KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
733 		KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
734 		CIRCQ_REMOVE(&c->c_list);
735 
736 		/* If due run it, otherwise insert it into the right bucket. */
737 		ticks = cc->cc_ticks;
738 		delta = (int)((unsigned)c->c_time - (unsigned)ticks);
739 		if (delta > 0) {
740 			CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
741 			continue;
742 		}
743 		if (delta < 0)
744 			cc->cc_ev_late.ev_count++;
745 
746 		c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
747 		    (CALLOUT_FIRED | CALLOUT_INVOKING);
748 		mpsafe = (c->c_flags & CALLOUT_MPSAFE);
749 		func = c->c_func;
750 		arg = c->c_arg;
751 		cc->cc_active = c;
752 
753 		mutex_spin_exit(cc->cc_lock);
754 		KASSERT(func != NULL);
755 		if (__predict_false(!mpsafe)) {
756 			KERNEL_LOCK(1, NULL);
757 			(*func)(arg);
758 			KERNEL_UNLOCK_ONE(NULL);
759 		} else
760 			(*func)(arg);
761 		mutex_spin_enter(cc->cc_lock);
762 
763 		/*
764 		 * We can't touch 'c' here because it might be
765 		 * freed already.  If LWPs waiting for callout
766 		 * to complete, awaken them.
767 		 */
768 		cc->cc_active = NULL;
769 		if ((count = cc->cc_nwait) != 0) {
770 			cc->cc_nwait = 0;
771 			/* sleepq_wake() drops the lock. */
772 			sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
773 			mutex_spin_enter(cc->cc_lock);
774 		}
775 	}
776 	cc->cc_lwp = NULL;
777 	mutex_spin_exit(cc->cc_lock);
778 }
779 #endif
780 
781 #ifdef DDB
782 static void
783 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *kbucket,
784     struct callout_circq *bucket)
785 {
786 	callout_impl_t *c, ci;
787 	db_expr_t offset;
788 	const char *name;
789 	static char question[] = "?";
790 	int b;
791 
792 	if (CIRCQ_LAST(bucket, kbucket))
793 		return;
794 
795 	for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
796 		db_read_bytes((db_addr_t)c, sizeof(ci), (char *)&ci);
797 		c = &ci;
798 		db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
799 		    &offset);
800 		name = name ? name : question;
801 		b = (bucket - cc->cc_wheel);
802 		if (b < 0)
803 			b = -WHEELSIZE;
804 		db_printf("%9d %2d/%-4d %16lx  %s\n",
805 		    c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
806 		    (u_long)c->c_arg, name);
807 		if (CIRCQ_LAST(&c->c_list, kbucket))
808 			break;
809 	}
810 }
811 
812 void
813 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
814 {
815 	struct callout_cpu *cc, ccb;
816 	struct cpu_info *ci, cib;
817 	int b;
818 
819 #ifndef CRASH
820 	db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
821 #endif
822 	db_printf("    ticks  wheel               arg  func\n");
823 
824 	/*
825 	 * Don't lock the callwheel; all the other CPUs are paused
826 	 * anyhow, and we might be called in a circumstance where
827 	 * some other CPU was paused while holding the lock.
828 	 */
829 	for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
830 		db_read_bytes((db_addr_t)ci, sizeof(cib), (char *)&cib);
831 		cc = cib.ci_data.cpu_callout;
832 		db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
833 		db_show_callout_bucket(&ccb, &cc->cc_todo, &ccb.cc_todo);
834 	}
835 	for (b = 0; b < BUCKETS; b++) {
836 		for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
837 			db_read_bytes((db_addr_t)ci, sizeof(cib), (char *)&cib);
838 			cc = cib.ci_data.cpu_callout;
839 			db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
840 			db_show_callout_bucket(&ccb, &cc->cc_wheel[b],
841 			    &ccb.cc_wheel[b]);
842 		}
843 	}
844 }
845 #endif /* DDB */
846