xref: /netbsd-src/sys/kern/kern_tc.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /* $NetBSD: kern_tc.c,v 1.28 2007/12/15 18:20:11 yamt Exp $ */
2 
3 /*-
4  * ----------------------------------------------------------------------------
5  * "THE BEER-WARE LICENSE" (Revision 42):
6  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
7  * can do whatever you want with this stuff. If we meet some day, and you think
8  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
9  * ---------------------------------------------------------------------------
10  */
11 
12 #include <sys/cdefs.h>
13 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
14 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.28 2007/12/15 18:20:11 yamt Exp $");
15 
16 #include "opt_ntp.h"
17 
18 #include <sys/param.h>
19 #ifdef __HAVE_TIMECOUNTER	/* XXX */
20 #include <sys/kernel.h>
21 #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
22 #include <sys/sysctl.h>
23 #include <sys/syslog.h>
24 #include <sys/systm.h>
25 #include <sys/timepps.h>
26 #include <sys/timetc.h>
27 #include <sys/timex.h>
28 #include <sys/evcnt.h>
29 #include <sys/kauth.h>
30 #include <sys/mutex.h>
31 #include <sys/atomic.h>
32 
33 /*
34  * A large step happens on boot.  This constant detects such steps.
35  * It is relatively small so that ntp_update_second gets called enough
36  * in the typical 'missed a couple of seconds' case, but doesn't loop
37  * forever when the time step is large.
38  */
39 #define LARGE_STEP	200
40 
41 /*
42  * Implement a dummy timecounter which we can use until we get a real one
43  * in the air.  This allows the console and other early stuff to use
44  * time services.
45  */
46 
47 static u_int
48 dummy_get_timecount(struct timecounter *tc)
49 {
50 	static u_int now;
51 
52 	return (++now);
53 }
54 
55 static struct timecounter dummy_timecounter = {
56 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
57 };
58 
59 struct timehands {
60 	/* These fields must be initialized by the driver. */
61 	struct timecounter	*th_counter;
62 	int64_t			th_adjustment;
63 	u_int64_t		th_scale;
64 	u_int	 		th_offset_count;
65 	struct bintime		th_offset;
66 	struct timeval		th_microtime;
67 	struct timespec		th_nanotime;
68 	/* Fields not to be copied in tc_windup start with th_generation. */
69 	volatile u_int		th_generation;
70 	struct timehands	*th_next;
71 };
72 
73 static struct timehands th0;
74 static struct timehands th9 = { .th_next = &th0, };
75 static struct timehands th8 = { .th_next = &th9, };
76 static struct timehands th7 = { .th_next = &th8, };
77 static struct timehands th6 = { .th_next = &th7, };
78 static struct timehands th5 = { .th_next = &th6, };
79 static struct timehands th4 = { .th_next = &th5, };
80 static struct timehands th3 = { .th_next = &th4, };
81 static struct timehands th2 = { .th_next = &th3, };
82 static struct timehands th1 = { .th_next = &th2, };
83 static struct timehands th0 = {
84 	.th_counter = &dummy_timecounter,
85 	.th_scale = (uint64_t)-1 / 1000000,
86 	.th_offset = { .sec = 1, .frac = 0 },
87 	.th_generation = 1,
88 	.th_next = &th1,
89 };
90 
91 static struct timehands *volatile timehands = &th0;
92 struct timecounter *timecounter = &dummy_timecounter;
93 static struct timecounter *timecounters = &dummy_timecounter;
94 
95 time_t time_second = 1;
96 time_t time_uptime = 1;
97 
98 static struct bintime timebasebin;
99 
100 static int timestepwarnings;
101 
102 extern kmutex_t time_lock;
103 
104 #ifdef __FreeBSD__
105 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
106     &timestepwarnings, 0, "");
107 #endif /* __FreeBSD__ */
108 
109 /*
110  * sysctl helper routine for kern.timercounter.hardware
111  */
112 static int
113 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
114 {
115 	struct sysctlnode node;
116 	int error;
117 	char newname[MAX_TCNAMELEN];
118 	struct timecounter *newtc, *tc;
119 
120 	tc = timecounter;
121 
122 	strlcpy(newname, tc->tc_name, sizeof(newname));
123 
124 	node = *rnode;
125 	node.sysctl_data = newname;
126 	node.sysctl_size = sizeof(newname);
127 
128 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
129 
130 	if (error ||
131 	    newp == NULL ||
132 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
133 		return error;
134 
135 	if (l != NULL && (error = kauth_authorize_system(l->l_cred,
136 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
137 	    NULL, NULL)) != 0)
138 		return (error);
139 
140 	if (!cold)
141 		mutex_enter(&time_lock);
142 	error = EINVAL;
143 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
144 		if (strcmp(newname, newtc->tc_name) != 0)
145 			continue;
146 		/* Warm up new timecounter. */
147 		(void)newtc->tc_get_timecount(newtc);
148 		(void)newtc->tc_get_timecount(newtc);
149 		timecounter = newtc;
150 		error = 0;
151 		break;
152 	}
153 	if (!cold)
154 		mutex_exit(&time_lock);
155 	return error;
156 }
157 
158 static int
159 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
160 {
161 	char buf[MAX_TCNAMELEN+48];
162 	char *where = oldp;
163 	const char *spc;
164 	struct timecounter *tc;
165 	size_t needed, left, slen;
166 	int error;
167 
168 	if (newp != NULL)
169 		return (EPERM);
170 	if (namelen != 0)
171 		return (EINVAL);
172 
173 	spc = "";
174 	error = 0;
175 	needed = 0;
176 	left = *oldlenp;
177 
178 	mutex_enter(&time_lock);
179 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
180 		if (where == NULL) {
181 			needed += sizeof(buf);  /* be conservative */
182 		} else {
183 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
184 					" Hz)", spc, tc->tc_name, tc->tc_quality,
185 					tc->tc_frequency);
186 			if (left < slen + 1)
187 				break;
188 			/* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
189 			/* XXX copyout with held lock. */
190 			error = copyout(buf, where, slen + 1);
191 			spc = " ";
192 			where += slen;
193 			needed += slen;
194 			left -= slen;
195 		}
196 	}
197 	mutex_exit(&time_lock);
198 
199 	*oldlenp = needed;
200 	return (error);
201 }
202 
203 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
204 {
205 	const struct sysctlnode *node;
206 
207 	sysctl_createv(clog, 0, NULL, &node,
208 		       CTLFLAG_PERMANENT,
209 		       CTLTYPE_NODE, "timecounter",
210 		       SYSCTL_DESCR("time counter information"),
211 		       NULL, 0, NULL, 0,
212 		       CTL_KERN, CTL_CREATE, CTL_EOL);
213 
214 	if (node != NULL) {
215 		sysctl_createv(clog, 0, NULL, NULL,
216 			       CTLFLAG_PERMANENT,
217 			       CTLTYPE_STRING, "choice",
218 			       SYSCTL_DESCR("available counters"),
219 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
220 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
221 
222 		sysctl_createv(clog, 0, NULL, NULL,
223 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
224 			       CTLTYPE_STRING, "hardware",
225 			       SYSCTL_DESCR("currently active time counter"),
226 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
227 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
228 
229 		sysctl_createv(clog, 0, NULL, NULL,
230 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
231 			       CTLTYPE_INT, "timestepwarnings",
232 			       SYSCTL_DESCR("log time steps"),
233 			       NULL, 0, &timestepwarnings, 0,
234 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
235 	}
236 }
237 
238 #define	TC_STATS(name)							\
239 static struct evcnt n##name =						\
240     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
241 EVCNT_ATTACH_STATIC(n##name)
242 
243 TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
244 TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
245 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
246 TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
247 TC_STATS(setclock);
248 
249 #undef TC_STATS
250 
251 static void tc_windup(void);
252 
253 /*
254  * Return the difference between the timehands' counter value now and what
255  * was when we copied it to the timehands' offset_count.
256  */
257 static __inline u_int
258 tc_delta(struct timehands *th)
259 {
260 	struct timecounter *tc;
261 
262 	tc = th->th_counter;
263 	return ((tc->tc_get_timecount(tc) -
264 		 th->th_offset_count) & tc->tc_counter_mask);
265 }
266 
267 /*
268  * Functions for reading the time.  We have to loop until we are sure that
269  * the timehands that we operated on was not updated under our feet.  See
270  * the comment in <sys/timevar.h> for a description of these 12 functions.
271  */
272 
273 void
274 binuptime(struct bintime *bt)
275 {
276 	struct timehands *th;
277 	u_int gen;
278 
279 	nbinuptime.ev_count++;
280 	do {
281 		th = timehands;
282 		gen = th->th_generation;
283 		*bt = th->th_offset;
284 		bintime_addx(bt, th->th_scale * tc_delta(th));
285 	} while (gen == 0 || gen != th->th_generation);
286 }
287 
288 void
289 nanouptime(struct timespec *tsp)
290 {
291 	struct bintime bt;
292 
293 	nnanouptime.ev_count++;
294 	binuptime(&bt);
295 	bintime2timespec(&bt, tsp);
296 }
297 
298 void
299 microuptime(struct timeval *tvp)
300 {
301 	struct bintime bt;
302 
303 	nmicrouptime.ev_count++;
304 	binuptime(&bt);
305 	bintime2timeval(&bt, tvp);
306 }
307 
308 void
309 bintime(struct bintime *bt)
310 {
311 
312 	nbintime.ev_count++;
313 	binuptime(bt);
314 	bintime_add(bt, &timebasebin);
315 }
316 
317 void
318 nanotime(struct timespec *tsp)
319 {
320 	struct bintime bt;
321 
322 	nnanotime.ev_count++;
323 	bintime(&bt);
324 	bintime2timespec(&bt, tsp);
325 }
326 
327 void
328 microtime(struct timeval *tvp)
329 {
330 	struct bintime bt;
331 
332 	nmicrotime.ev_count++;
333 	bintime(&bt);
334 	bintime2timeval(&bt, tvp);
335 }
336 
337 void
338 getbinuptime(struct bintime *bt)
339 {
340 	struct timehands *th;
341 	u_int gen;
342 
343 	ngetbinuptime.ev_count++;
344 	do {
345 		th = timehands;
346 		gen = th->th_generation;
347 		*bt = th->th_offset;
348 	} while (gen == 0 || gen != th->th_generation);
349 }
350 
351 void
352 getnanouptime(struct timespec *tsp)
353 {
354 	struct timehands *th;
355 	u_int gen;
356 
357 	ngetnanouptime.ev_count++;
358 	do {
359 		th = timehands;
360 		gen = th->th_generation;
361 		bintime2timespec(&th->th_offset, tsp);
362 	} while (gen == 0 || gen != th->th_generation);
363 }
364 
365 void
366 getmicrouptime(struct timeval *tvp)
367 {
368 	struct timehands *th;
369 	u_int gen;
370 
371 	ngetmicrouptime.ev_count++;
372 	do {
373 		th = timehands;
374 		gen = th->th_generation;
375 		bintime2timeval(&th->th_offset, tvp);
376 	} while (gen == 0 || gen != th->th_generation);
377 }
378 
379 void
380 getbintime(struct bintime *bt)
381 {
382 	struct timehands *th;
383 	u_int gen;
384 
385 	ngetbintime.ev_count++;
386 	do {
387 		th = timehands;
388 		gen = th->th_generation;
389 		*bt = th->th_offset;
390 	} while (gen == 0 || gen != th->th_generation);
391 	bintime_add(bt, &timebasebin);
392 }
393 
394 void
395 getnanotime(struct timespec *tsp)
396 {
397 	struct timehands *th;
398 	u_int gen;
399 
400 	ngetnanotime.ev_count++;
401 	do {
402 		th = timehands;
403 		gen = th->th_generation;
404 		*tsp = th->th_nanotime;
405 	} while (gen == 0 || gen != th->th_generation);
406 }
407 
408 void
409 getmicrotime(struct timeval *tvp)
410 {
411 	struct timehands *th;
412 	u_int gen;
413 
414 	ngetmicrotime.ev_count++;
415 	do {
416 		th = timehands;
417 		gen = th->th_generation;
418 		*tvp = th->th_microtime;
419 	} while (gen == 0 || gen != th->th_generation);
420 }
421 
422 /*
423  * Initialize a new timecounter and possibly use it.
424  */
425 void
426 tc_init(struct timecounter *tc)
427 {
428 	u_int u;
429 	int s;
430 
431 	u = tc->tc_frequency / tc->tc_counter_mask;
432 	/* XXX: We need some margin here, 10% is a guess */
433 	u *= 11;
434 	u /= 10;
435 	if (u > hz && tc->tc_quality >= 0) {
436 		tc->tc_quality = -2000;
437 		aprint_verbose(
438 		    "timecounter: Timecounter \"%s\" frequency %ju Hz",
439 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
440 		aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
441 	} else if (tc->tc_quality >= 0 || bootverbose) {
442 		aprint_verbose(
443 		    "timecounter: Timecounter \"%s\" frequency %ju Hz "
444 		    "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
445 		    tc->tc_quality);
446 	}
447 
448 	mutex_enter(&time_lock);
449 	s = splsched();
450 	tc->tc_next = timecounters;
451 	timecounters = tc;
452 	/*
453 	 * Never automatically use a timecounter with negative quality.
454 	 * Even though we run on the dummy counter, switching here may be
455 	 * worse since this timecounter may not be monotonous.
456 	 */
457 	if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
458 	    (tc->tc_quality == timecounter->tc_quality &&
459 	    tc->tc_frequency > timecounter->tc_frequency))) {
460 		(void)tc->tc_get_timecount(tc);
461 		(void)tc->tc_get_timecount(tc);
462 		timecounter = tc;
463 		tc_windup();
464 	}
465 	splx(s);
466 	mutex_exit(&time_lock);
467 }
468 
469 /* Report the frequency of the current timecounter. */
470 u_int64_t
471 tc_getfrequency(void)
472 {
473 
474 	return (timehands->th_counter->tc_frequency);
475 }
476 
477 /*
478  * Step our concept of UTC.  This is done by modifying our estimate of
479  * when we booted.
480  * XXX: not locked.
481  */
482 void
483 tc_setclock(struct timespec *ts)
484 {
485 	struct timespec ts2;
486 	struct bintime bt, bt2;
487 
488 	nsetclock.ev_count++;
489 	binuptime(&bt2);
490 	timespec2bintime(ts, &bt);
491 	bintime_sub(&bt, &bt2);
492 	bintime_add(&bt2, &timebasebin);
493 	timebasebin = bt;
494 
495 	/* XXX fiddle all the little crinkly bits around the fiords... */
496 	tc_windup();
497 	if (timestepwarnings) {
498 		bintime2timespec(&bt2, &ts2);
499 		log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
500 		    (intmax_t)ts2.tv_sec, ts2.tv_nsec,
501 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
502 	}
503 }
504 
505 /*
506  * Initialize the next struct timehands in the ring and make
507  * it the active timehands.  Along the way we might switch to a different
508  * timecounter and/or do seconds processing in NTP.  Slightly magic.
509  */
510 static void
511 tc_windup(void)
512 {
513 	struct bintime bt;
514 	struct timehands *th, *tho;
515 	u_int64_t scale;
516 	u_int delta, ncount, ogen;
517 	int i, s_update;
518 	time_t t;
519 
520 	s_update = 0;
521 
522 	/*
523 	 * Make the next timehands a copy of the current one, but do not
524 	 * overwrite the generation or next pointer.  While we update
525 	 * the contents, the generation must be zero.  Ensure global
526 	 * visibility of the generation before proceeding.
527 	 */
528 	tho = timehands;
529 	th = tho->th_next;
530 	ogen = th->th_generation;
531 	th->th_generation = 0;
532 	membar_producer();
533 	bcopy(tho, th, offsetof(struct timehands, th_generation));
534 
535 	/*
536 	 * Capture a timecounter delta on the current timecounter and if
537 	 * changing timecounters, a counter value from the new timecounter.
538 	 * Update the offset fields accordingly.
539 	 */
540 	delta = tc_delta(th);
541 	if (th->th_counter != timecounter)
542 		ncount = timecounter->tc_get_timecount(timecounter);
543 	else
544 		ncount = 0;
545 	th->th_offset_count += delta;
546 	th->th_offset_count &= th->th_counter->tc_counter_mask;
547 	bintime_addx(&th->th_offset, th->th_scale * delta);
548 
549 	/*
550 	 * Hardware latching timecounters may not generate interrupts on
551 	 * PPS events, so instead we poll them.  There is a finite risk that
552 	 * the hardware might capture a count which is later than the one we
553 	 * got above, and therefore possibly in the next NTP second which might
554 	 * have a different rate than the current NTP second.  It doesn't
555 	 * matter in practice.
556 	 */
557 	if (tho->th_counter->tc_poll_pps)
558 		tho->th_counter->tc_poll_pps(tho->th_counter);
559 
560 	/*
561 	 * Deal with NTP second processing.  The for loop normally
562 	 * iterates at most once, but in extreme situations it might
563 	 * keep NTP sane if timeouts are not run for several seconds.
564 	 * At boot, the time step can be large when the TOD hardware
565 	 * has been read, so on really large steps, we call
566 	 * ntp_update_second only twice.  We need to call it twice in
567 	 * case we missed a leap second.
568 	 * If NTP is not compiled in ntp_update_second still calculates
569 	 * the adjustment resulting from adjtime() calls.
570 	 */
571 	bt = th->th_offset;
572 	bintime_add(&bt, &timebasebin);
573 	i = bt.sec - tho->th_microtime.tv_sec;
574 	if (i > LARGE_STEP)
575 		i = 2;
576 	for (; i > 0; i--) {
577 		t = bt.sec;
578 		ntp_update_second(&th->th_adjustment, &bt.sec);
579 		s_update = 1;
580 		if (bt.sec != t)
581 			timebasebin.sec += bt.sec - t;
582 	}
583 
584 	/* Update the UTC timestamps used by the get*() functions. */
585 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
586 	bintime2timeval(&bt, &th->th_microtime);
587 	bintime2timespec(&bt, &th->th_nanotime);
588 
589 	/* Now is a good time to change timecounters. */
590 	if (th->th_counter != timecounter) {
591 		th->th_counter = timecounter;
592 		th->th_offset_count = ncount;
593 		s_update = 1;
594 	}
595 
596 	/*-
597 	 * Recalculate the scaling factor.  We want the number of 1/2^64
598 	 * fractions of a second per period of the hardware counter, taking
599 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
600 	 * processing provides us with.
601 	 *
602 	 * The th_adjustment is nanoseconds per second with 32 bit binary
603 	 * fraction and we want 64 bit binary fraction of second:
604 	 *
605 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
606 	 *
607 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
608 	 * we can only multiply by about 850 without overflowing, but that
609 	 * leaves suitably precise fractions for multiply before divide.
610 	 *
611 	 * Divide before multiply with a fraction of 2199/512 results in a
612 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
613 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
614  	 *
615 	 * We happily sacrifice the lowest of the 64 bits of our result
616 	 * to the goddess of code clarity.
617 	 *
618 	 */
619 	if (s_update) {
620 		scale = (u_int64_t)1 << 63;
621 		scale += (th->th_adjustment / 1024) * 2199;
622 		scale /= th->th_counter->tc_frequency;
623 		th->th_scale = scale * 2;
624 	}
625 	/*
626 	 * Now that the struct timehands is again consistent, set the new
627 	 * generation number, making sure to not make it zero.  Ensure
628 	 * changes are globally visible before changing.
629 	 */
630 	if (++ogen == 0)
631 		ogen = 1;
632 	membar_producer();
633 	th->th_generation = ogen;
634 
635 	/*
636 	 * Go live with the new struct timehands.  Ensure changes are
637 	 * globally visible before changing.
638 	 */
639 	time_second = th->th_microtime.tv_sec;
640 	time_uptime = th->th_offset.sec;
641 	membar_producer();
642 	timehands = th;
643 
644 	/*
645 	 * Force users of the old timehand to move on.  This is
646 	 * necessary for MP systems; we need to ensure that the
647 	 * consumers will move away from the old timehand before
648 	 * we begin updating it again when we eventually wrap
649 	 * around.
650 	 */
651 	if (++tho->th_generation == 0)
652 		tho->th_generation = 1;
653 }
654 
655 /*
656  * RFC 2783 PPS-API implementation.
657  */
658 
659 int
660 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
661 {
662 	pps_params_t *app;
663 	pps_info_t *pipi;
664 #ifdef PPS_SYNC
665 	int *epi;
666 #endif
667 
668 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
669 	switch (cmd) {
670 	case PPS_IOC_CREATE:
671 		return (0);
672 	case PPS_IOC_DESTROY:
673 		return (0);
674 	case PPS_IOC_SETPARAMS:
675 		app = (pps_params_t *)data;
676 		if (app->mode & ~pps->ppscap)
677 			return (EINVAL);
678 		pps->ppsparam = *app;
679 		return (0);
680 	case PPS_IOC_GETPARAMS:
681 		app = (pps_params_t *)data;
682 		*app = pps->ppsparam;
683 		app->api_version = PPS_API_VERS_1;
684 		return (0);
685 	case PPS_IOC_GETCAP:
686 		*(int*)data = pps->ppscap;
687 		return (0);
688 	case PPS_IOC_FETCH:
689 		pipi = (pps_info_t *)data;
690 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
691 		*pipi = pps->ppsinfo;
692 		return (0);
693 	case PPS_IOC_KCBIND:
694 #ifdef PPS_SYNC
695 		epi = (int *)data;
696 		/* XXX Only root should be able to do this */
697 		if (*epi & ~pps->ppscap)
698 			return (EINVAL);
699 		pps->kcmode = *epi;
700 		return (0);
701 #else
702 		return (EOPNOTSUPP);
703 #endif
704 	default:
705 		return (EPASSTHROUGH);
706 	}
707 }
708 
709 void
710 pps_init(struct pps_state *pps)
711 {
712 	pps->ppscap |= PPS_TSFMT_TSPEC;
713 	if (pps->ppscap & PPS_CAPTUREASSERT)
714 		pps->ppscap |= PPS_OFFSETASSERT;
715 	if (pps->ppscap & PPS_CAPTURECLEAR)
716 		pps->ppscap |= PPS_OFFSETCLEAR;
717 }
718 
719 void
720 pps_capture(struct pps_state *pps)
721 {
722 	struct timehands *th;
723 
724 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
725 	th = timehands;
726 	pps->capgen = th->th_generation;
727 	pps->capth = th;
728 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
729 	if (pps->capgen != th->th_generation)
730 		pps->capgen = 0;
731 }
732 
733 void
734 pps_event(struct pps_state *pps, int event)
735 {
736 	struct bintime bt;
737 	struct timespec ts, *tsp, *osp;
738 	u_int tcount, *pcount;
739 	int foff, fhard;
740 	pps_seq_t *pseq;
741 
742 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
743 	/* If the timecounter was wound up underneath us, bail out. */
744 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
745 		return;
746 
747 	/* Things would be easier with arrays. */
748 	if (event == PPS_CAPTUREASSERT) {
749 		tsp = &pps->ppsinfo.assert_timestamp;
750 		osp = &pps->ppsparam.assert_offset;
751 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
752 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
753 		pcount = &pps->ppscount[0];
754 		pseq = &pps->ppsinfo.assert_sequence;
755 	} else {
756 		tsp = &pps->ppsinfo.clear_timestamp;
757 		osp = &pps->ppsparam.clear_offset;
758 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
759 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
760 		pcount = &pps->ppscount[1];
761 		pseq = &pps->ppsinfo.clear_sequence;
762 	}
763 
764 	/*
765 	 * If the timecounter changed, we cannot compare the count values, so
766 	 * we have to drop the rest of the PPS-stuff until the next event.
767 	 */
768 	if (pps->ppstc != pps->capth->th_counter) {
769 		pps->ppstc = pps->capth->th_counter;
770 		*pcount = pps->capcount;
771 		pps->ppscount[2] = pps->capcount;
772 		return;
773 	}
774 
775 	/* Convert the count to a timespec. */
776 	tcount = pps->capcount - pps->capth->th_offset_count;
777 	tcount &= pps->capth->th_counter->tc_counter_mask;
778 	bt = pps->capth->th_offset;
779 	bintime_addx(&bt, pps->capth->th_scale * tcount);
780 	bintime_add(&bt, &timebasebin);
781 	bintime2timespec(&bt, &ts);
782 
783 	/* If the timecounter was wound up underneath us, bail out. */
784 	if (pps->capgen != pps->capth->th_generation)
785 		return;
786 
787 	*pcount = pps->capcount;
788 	(*pseq)++;
789 	*tsp = ts;
790 
791 	if (foff) {
792 		timespecadd(tsp, osp, tsp);
793 		if (tsp->tv_nsec < 0) {
794 			tsp->tv_nsec += 1000000000;
795 			tsp->tv_sec -= 1;
796 		}
797 	}
798 #ifdef PPS_SYNC
799 	if (fhard) {
800 		u_int64_t scale;
801 
802 		/*
803 		 * Feed the NTP PLL/FLL.
804 		 * The FLL wants to know how many (hardware) nanoseconds
805 		 * elapsed since the previous event.
806 		 */
807 		tcount = pps->capcount - pps->ppscount[2];
808 		pps->ppscount[2] = pps->capcount;
809 		tcount &= pps->capth->th_counter->tc_counter_mask;
810 		scale = (u_int64_t)1 << 63;
811 		scale /= pps->capth->th_counter->tc_frequency;
812 		scale *= 2;
813 		bt.sec = 0;
814 		bt.frac = 0;
815 		bintime_addx(&bt, scale * tcount);
816 		bintime2timespec(&bt, &ts);
817 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
818 	}
819 #endif
820 }
821 
822 /*
823  * Timecounters need to be updated every so often to prevent the hardware
824  * counter from overflowing.  Updating also recalculates the cached values
825  * used by the get*() family of functions, so their precision depends on
826  * the update frequency.
827  */
828 
829 static int tc_tick;
830 
831 void
832 tc_ticktock(void)
833 {
834 	static int count;
835 
836 	if (++count < tc_tick)
837 		return;
838 	count = 0;
839 	tc_windup();
840 }
841 
842 void
843 inittimecounter(void)
844 {
845 	u_int p;
846 
847 	/*
848 	 * Set the initial timeout to
849 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
850 	 * People should probably not use the sysctl to set the timeout
851 	 * to smaller than its inital value, since that value is the
852 	 * smallest reasonable one.  If they want better timestamps they
853 	 * should use the non-"get"* functions.
854 	 */
855 	if (hz > 1000)
856 		tc_tick = (hz + 500) / 1000;
857 	else
858 		tc_tick = 1;
859 	p = (tc_tick * 1000000) / hz;
860 	aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
861 	    p / 1000, p % 1000);
862 
863 	/* warm up new timecounter (again) and get rolling. */
864 	(void)timecounter->tc_get_timecount(timecounter);
865 	(void)timecounter->tc_get_timecount(timecounter);
866 }
867 
868 #endif /* __HAVE_TIMECOUNTER */
869