xref: /netbsd-src/sys/kern/kern_synch.c (revision deb6f0161a9109e7de9b519dc8dfb9478668dcdd)
1 /*	$NetBSD: kern_synch.c,v 1.322 2018/11/30 15:05:35 mlelstv Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
5  *    The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11  * Daniel Sieger.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*-
36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  * (c) UNIX System Laboratories, Inc.
39  * All or some portions of this file are derived from material licensed
40  * to the University of California by American Telephone and Telegraph
41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42  * the permission of UNIX System Laboratories, Inc.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. Neither the name of the University nor the names of its contributors
53  *    may be used to endorse or promote products derived from this software
54  *    without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66  * SUCH DAMAGE.
67  *
68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
69  */
70 
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.322 2018/11/30 15:05:35 mlelstv Exp $");
73 
74 #include "opt_kstack.h"
75 #include "opt_dtrace.h"
76 
77 #define	__MUTEX_PRIVATE
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kernel.h>
83 #include <sys/cpu.h>
84 #include <sys/pserialize.h>
85 #include <sys/resourcevar.h>
86 #include <sys/sched.h>
87 #include <sys/syscall_stats.h>
88 #include <sys/sleepq.h>
89 #include <sys/lockdebug.h>
90 #include <sys/evcnt.h>
91 #include <sys/intr.h>
92 #include <sys/lwpctl.h>
93 #include <sys/atomic.h>
94 #include <sys/syslog.h>
95 
96 #include <uvm/uvm_extern.h>
97 
98 #include <dev/lockstat.h>
99 
100 #include <sys/dtrace_bsd.h>
101 int                             dtrace_vtime_active=0;
102 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
103 
104 static void	sched_unsleep(struct lwp *, bool);
105 static void	sched_changepri(struct lwp *, pri_t);
106 static void	sched_lendpri(struct lwp *, pri_t);
107 static void	resched_cpu(struct lwp *);
108 
109 syncobj_t sleep_syncobj = {
110 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
111 	.sobj_unsleep	= sleepq_unsleep,
112 	.sobj_changepri	= sleepq_changepri,
113 	.sobj_lendpri	= sleepq_lendpri,
114 	.sobj_owner	= syncobj_noowner,
115 };
116 
117 syncobj_t sched_syncobj = {
118 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
119 	.sobj_unsleep	= sched_unsleep,
120 	.sobj_changepri	= sched_changepri,
121 	.sobj_lendpri	= sched_lendpri,
122 	.sobj_owner	= syncobj_noowner,
123 };
124 
125 /* "Lightning bolt": once a second sleep address. */
126 kcondvar_t		lbolt			__cacheline_aligned;
127 
128 u_int			sched_pstats_ticks	__cacheline_aligned;
129 
130 /* Preemption event counters. */
131 static struct evcnt	kpreempt_ev_crit	__cacheline_aligned;
132 static struct evcnt	kpreempt_ev_klock	__cacheline_aligned;
133 static struct evcnt	kpreempt_ev_immed	__cacheline_aligned;
134 
135 void
136 synch_init(void)
137 {
138 
139 	cv_init(&lbolt, "lbolt");
140 
141 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
142 	   "kpreempt", "defer: critical section");
143 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
144 	   "kpreempt", "defer: kernel_lock");
145 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
146 	   "kpreempt", "immediate");
147 }
148 
149 /*
150  * OBSOLETE INTERFACE
151  *
152  * General sleep call.  Suspends the current LWP until a wakeup is
153  * performed on the specified identifier.  The LWP will then be made
154  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
155  * means no timeout).  If pri includes PCATCH flag, signals are checked
156  * before and after sleeping, else signals are not checked.  Returns 0 if
157  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
158  * signal needs to be delivered, ERESTART is returned if the current system
159  * call should be restarted if possible, and EINTR is returned if the system
160  * call should be interrupted by the signal (return EINTR).
161  */
162 int
163 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
164 {
165 	struct lwp *l = curlwp;
166 	sleepq_t *sq;
167 	kmutex_t *mp;
168 
169 	KASSERT((l->l_pflag & LP_INTR) == 0);
170 	KASSERT(ident != &lbolt);
171 
172 	if (sleepq_dontsleep(l)) {
173 		(void)sleepq_abort(NULL, 0);
174 		return 0;
175 	}
176 
177 	l->l_kpriority = true;
178 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
179 	sleepq_enter(sq, l, mp);
180 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
181 	return sleepq_block(timo, priority & PCATCH);
182 }
183 
184 int
185 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
186 	kmutex_t *mtx)
187 {
188 	struct lwp *l = curlwp;
189 	sleepq_t *sq;
190 	kmutex_t *mp;
191 	int error;
192 
193 	KASSERT((l->l_pflag & LP_INTR) == 0);
194 	KASSERT(ident != &lbolt);
195 
196 	if (sleepq_dontsleep(l)) {
197 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
198 		return 0;
199 	}
200 
201 	l->l_kpriority = true;
202 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
203 	sleepq_enter(sq, l, mp);
204 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
205 	mutex_exit(mtx);
206 	error = sleepq_block(timo, priority & PCATCH);
207 
208 	if ((priority & PNORELOCK) == 0)
209 		mutex_enter(mtx);
210 
211 	return error;
212 }
213 
214 /*
215  * General sleep call for situations where a wake-up is not expected.
216  */
217 int
218 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
219 {
220 	struct lwp *l = curlwp;
221 	kmutex_t *mp;
222 	sleepq_t *sq;
223 	int error;
224 
225 	KASSERT(!(timo == 0 && intr == false));
226 
227 	if (sleepq_dontsleep(l))
228 		return sleepq_abort(NULL, 0);
229 
230 	if (mtx != NULL)
231 		mutex_exit(mtx);
232 	l->l_kpriority = true;
233 	sq = sleeptab_lookup(&sleeptab, l, &mp);
234 	sleepq_enter(sq, l, mp);
235 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
236 	error = sleepq_block(timo, intr);
237 	if (mtx != NULL)
238 		mutex_enter(mtx);
239 
240 	return error;
241 }
242 
243 /*
244  * OBSOLETE INTERFACE
245  *
246  * Make all LWPs sleeping on the specified identifier runnable.
247  */
248 void
249 wakeup(wchan_t ident)
250 {
251 	sleepq_t *sq;
252 	kmutex_t *mp;
253 
254 	if (__predict_false(cold))
255 		return;
256 
257 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
258 	sleepq_wake(sq, ident, (u_int)-1, mp);
259 }
260 
261 /*
262  * General yield call.  Puts the current LWP back on its run queue and
263  * performs a voluntary context switch.  Should only be called when the
264  * current LWP explicitly requests it (eg sched_yield(2)).
265  */
266 void
267 yield(void)
268 {
269 	struct lwp *l = curlwp;
270 
271 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
272 	lwp_lock(l);
273 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
274 	KASSERT(l->l_stat == LSONPROC);
275 	l->l_kpriority = false;
276 	(void)mi_switch(l);
277 	KERNEL_LOCK(l->l_biglocks, l);
278 }
279 
280 /*
281  * General preemption call.  Puts the current LWP back on its run queue
282  * and performs an involuntary context switch.
283  */
284 void
285 preempt(void)
286 {
287 	struct lwp *l = curlwp;
288 
289 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
290 	lwp_lock(l);
291 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
292 	KASSERT(l->l_stat == LSONPROC);
293 	l->l_kpriority = false;
294 	l->l_pflag |= LP_PREEMPTING;
295 	(void)mi_switch(l);
296 	KERNEL_LOCK(l->l_biglocks, l);
297 }
298 
299 /*
300  * Handle a request made by another agent to preempt the current LWP
301  * in-kernel.  Usually called when l_dopreempt may be non-zero.
302  *
303  * Character addresses for lockstat only.
304  */
305 static char	in_critical_section;
306 static char	kernel_lock_held;
307 static char	is_softint;
308 static char	cpu_kpreempt_enter_fail;
309 
310 bool
311 kpreempt(uintptr_t where)
312 {
313 	uintptr_t failed;
314 	lwp_t *l;
315 	int s, dop, lsflag;
316 
317 	l = curlwp;
318 	failed = 0;
319 	while ((dop = l->l_dopreempt) != 0) {
320 		if (l->l_stat != LSONPROC) {
321 			/*
322 			 * About to block (or die), let it happen.
323 			 * Doesn't really count as "preemption has
324 			 * been blocked", since we're going to
325 			 * context switch.
326 			 */
327 			l->l_dopreempt = 0;
328 			return true;
329 		}
330 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
331 			/* Can't preempt idle loop, don't count as failure. */
332 			l->l_dopreempt = 0;
333 			return true;
334 		}
335 		if (__predict_false(l->l_nopreempt != 0)) {
336 			/* LWP holds preemption disabled, explicitly. */
337 			if ((dop & DOPREEMPT_COUNTED) == 0) {
338 				kpreempt_ev_crit.ev_count++;
339 			}
340 			failed = (uintptr_t)&in_critical_section;
341 			break;
342 		}
343 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
344 			/* Can't preempt soft interrupts yet. */
345 			l->l_dopreempt = 0;
346 			failed = (uintptr_t)&is_softint;
347 			break;
348 		}
349 		s = splsched();
350 		if (__predict_false(l->l_blcnt != 0 ||
351 		    curcpu()->ci_biglock_wanted != NULL)) {
352 			/* Hold or want kernel_lock, code is not MT safe. */
353 			splx(s);
354 			if ((dop & DOPREEMPT_COUNTED) == 0) {
355 				kpreempt_ev_klock.ev_count++;
356 			}
357 			failed = (uintptr_t)&kernel_lock_held;
358 			break;
359 		}
360 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
361 			/*
362 			 * It may be that the IPL is too high.
363 			 * kpreempt_enter() can schedule an
364 			 * interrupt to retry later.
365 			 */
366 			splx(s);
367 			failed = (uintptr_t)&cpu_kpreempt_enter_fail;
368 			break;
369 		}
370 		/* Do it! */
371 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
372 			kpreempt_ev_immed.ev_count++;
373 		}
374 		lwp_lock(l);
375 		mi_switch(l);
376 		l->l_nopreempt++;
377 		splx(s);
378 
379 		/* Take care of any MD cleanup. */
380 		cpu_kpreempt_exit(where);
381 		l->l_nopreempt--;
382 	}
383 
384 	if (__predict_true(!failed)) {
385 		return false;
386 	}
387 
388 	/* Record preemption failure for reporting via lockstat. */
389 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
390 	lsflag = 0;
391 	LOCKSTAT_ENTER(lsflag);
392 	if (__predict_false(lsflag)) {
393 		if (where == 0) {
394 			where = (uintptr_t)__builtin_return_address(0);
395 		}
396 		/* Preemption is on, might recurse, so make it atomic. */
397 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
398 		    (void *)where) == NULL) {
399 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
400 			l->l_pfaillock = failed;
401 		}
402 	}
403 	LOCKSTAT_EXIT(lsflag);
404 	return true;
405 }
406 
407 /*
408  * Return true if preemption is explicitly disabled.
409  */
410 bool
411 kpreempt_disabled(void)
412 {
413 	const lwp_t *l = curlwp;
414 
415 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
416 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
417 }
418 
419 /*
420  * Disable kernel preemption.
421  */
422 void
423 kpreempt_disable(void)
424 {
425 
426 	KPREEMPT_DISABLE(curlwp);
427 }
428 
429 /*
430  * Reenable kernel preemption.
431  */
432 void
433 kpreempt_enable(void)
434 {
435 
436 	KPREEMPT_ENABLE(curlwp);
437 }
438 
439 /*
440  * Compute the amount of time during which the current lwp was running.
441  *
442  * - update l_rtime unless it's an idle lwp.
443  */
444 
445 void
446 updatertime(lwp_t *l, const struct bintime *now)
447 {
448 
449 	if (__predict_false(l->l_flag & LW_IDLE))
450 		return;
451 
452 	/* rtime += now - stime */
453 	bintime_add(&l->l_rtime, now);
454 	bintime_sub(&l->l_rtime, &l->l_stime);
455 }
456 
457 /*
458  * Select next LWP from the current CPU to run..
459  */
460 static inline lwp_t *
461 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
462 {
463 	lwp_t *newl;
464 
465 	/*
466 	 * Let sched_nextlwp() select the LWP to run the CPU next.
467 	 * If no LWP is runnable, select the idle LWP.
468 	 *
469 	 * Note that spc_lwplock might not necessary be held, and
470 	 * new thread would be unlocked after setting the LWP-lock.
471 	 */
472 	newl = sched_nextlwp();
473 	if (newl != NULL) {
474 		sched_dequeue(newl);
475 		KASSERT(lwp_locked(newl, spc->spc_mutex));
476 		KASSERT(newl->l_cpu == ci);
477 		newl->l_stat = LSONPROC;
478 		newl->l_pflag |= LP_RUNNING;
479 		lwp_setlock(newl, spc->spc_lwplock);
480 	} else {
481 		newl = ci->ci_data.cpu_idlelwp;
482 		newl->l_stat = LSONPROC;
483 		newl->l_pflag |= LP_RUNNING;
484 	}
485 
486 	/*
487 	 * Only clear want_resched if there are no pending (slow)
488 	 * software interrupts.
489 	 */
490 	ci->ci_want_resched = ci->ci_data.cpu_softints;
491 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
492 	spc->spc_curpriority = lwp_eprio(newl);
493 
494 	return newl;
495 }
496 
497 /*
498  * The machine independent parts of context switch.
499  *
500  * Returns 1 if another LWP was actually run.
501  */
502 int
503 mi_switch(lwp_t *l)
504 {
505 	struct cpu_info *ci;
506 	struct schedstate_percpu *spc;
507 	struct lwp *newl;
508 	int retval, oldspl;
509 	struct bintime bt;
510 	bool returning;
511 
512 	KASSERT(lwp_locked(l, NULL));
513 	KASSERT(kpreempt_disabled());
514 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
515 
516 	kstack_check_magic(l);
517 
518 	binuptime(&bt);
519 
520 	KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
521 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
522 	KASSERT(l->l_cpu == curcpu());
523 	ci = l->l_cpu;
524 	spc = &ci->ci_schedstate;
525 	returning = false;
526 	newl = NULL;
527 
528 	/*
529 	 * If we have been asked to switch to a specific LWP, then there
530 	 * is no need to inspect the run queues.  If a soft interrupt is
531 	 * blocking, then return to the interrupted thread without adjusting
532 	 * VM context or its start time: neither have been changed in order
533 	 * to take the interrupt.
534 	 */
535 	if (l->l_switchto != NULL) {
536 		if ((l->l_pflag & LP_INTR) != 0) {
537 			returning = true;
538 			softint_block(l);
539 			if ((l->l_pflag & LP_TIMEINTR) != 0)
540 				updatertime(l, &bt);
541 		}
542 		newl = l->l_switchto;
543 		l->l_switchto = NULL;
544 	}
545 #ifndef __HAVE_FAST_SOFTINTS
546 	else if (ci->ci_data.cpu_softints != 0) {
547 		/* There are pending soft interrupts, so pick one. */
548 		newl = softint_picklwp();
549 		newl->l_stat = LSONPROC;
550 		newl->l_pflag |= LP_RUNNING;
551 	}
552 #endif	/* !__HAVE_FAST_SOFTINTS */
553 
554 	/* Count time spent in current system call */
555 	if (!returning) {
556 		SYSCALL_TIME_SLEEP(l);
557 
558 		updatertime(l, &bt);
559 	}
560 
561 	/* Lock the runqueue */
562 	KASSERT(l->l_stat != LSRUN);
563 	mutex_spin_enter(spc->spc_mutex);
564 
565 	/*
566 	 * If on the CPU and we have gotten this far, then we must yield.
567 	 */
568 	if (l->l_stat == LSONPROC && l != newl) {
569 		KASSERT(lwp_locked(l, spc->spc_lwplock));
570 		if ((l->l_flag & LW_IDLE) == 0) {
571 			l->l_stat = LSRUN;
572 			lwp_setlock(l, spc->spc_mutex);
573 			sched_enqueue(l, true);
574 			/*
575 			 * Handle migration.  Note that "migrating LWP" may
576 			 * be reset here, if interrupt/preemption happens
577 			 * early in idle LWP.
578 			 */
579 			if (l->l_target_cpu != NULL &&
580 			    (l->l_pflag & LP_BOUND) == 0) {
581 				KASSERT((l->l_pflag & LP_INTR) == 0);
582 				spc->spc_migrating = l;
583 			}
584 		} else
585 			l->l_stat = LSIDL;
586 	}
587 
588 	/* Pick new LWP to run. */
589 	if (newl == NULL) {
590 		newl = nextlwp(ci, spc);
591 	}
592 
593 	/* Items that must be updated with the CPU locked. */
594 	if (!returning) {
595 		/* Update the new LWP's start time. */
596 		newl->l_stime = bt;
597 
598 		/*
599 		 * ci_curlwp changes when a fast soft interrupt occurs.
600 		 * We use cpu_onproc to keep track of which kernel or
601 		 * user thread is running 'underneath' the software
602 		 * interrupt.  This is important for time accounting,
603 		 * itimers and forcing user threads to preempt (aston).
604 		 */
605 		ci->ci_data.cpu_onproc = newl;
606 	}
607 
608 	/*
609 	 * Preemption related tasks.  Must be done with the current
610 	 * CPU locked.
611 	 */
612 	cpu_did_resched(l);
613 	l->l_dopreempt = 0;
614 	if (__predict_false(l->l_pfailaddr != 0)) {
615 		LOCKSTAT_FLAG(lsflag);
616 		LOCKSTAT_ENTER(lsflag);
617 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
618 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
619 		    1, l->l_pfailtime, l->l_pfailaddr);
620 		LOCKSTAT_EXIT(lsflag);
621 		l->l_pfailtime = 0;
622 		l->l_pfaillock = 0;
623 		l->l_pfailaddr = 0;
624 	}
625 
626 	if (l != newl) {
627 		struct lwp *prevlwp;
628 
629 		/* Release all locks, but leave the current LWP locked */
630 		if (l->l_mutex == spc->spc_mutex) {
631 			/*
632 			 * Drop spc_lwplock, if the current LWP has been moved
633 			 * to the run queue (it is now locked by spc_mutex).
634 			 */
635 			mutex_spin_exit(spc->spc_lwplock);
636 		} else {
637 			/*
638 			 * Otherwise, drop the spc_mutex, we are done with the
639 			 * run queues.
640 			 */
641 			mutex_spin_exit(spc->spc_mutex);
642 		}
643 
644 		/*
645 		 * Mark that context switch is going to be performed
646 		 * for this LWP, to protect it from being switched
647 		 * to on another CPU.
648 		 */
649 		KASSERT(l->l_ctxswtch == 0);
650 		l->l_ctxswtch = 1;
651 		l->l_ncsw++;
652 		if ((l->l_pflag & LP_PREEMPTING) != 0)
653 			l->l_nivcsw++;
654 		l->l_pflag &= ~LP_PREEMPTING;
655 		KASSERT((l->l_pflag & LP_RUNNING) != 0);
656 		l->l_pflag &= ~LP_RUNNING;
657 
658 		/*
659 		 * Increase the count of spin-mutexes before the release
660 		 * of the last lock - we must remain at IPL_SCHED during
661 		 * the context switch.
662 		 */
663 		KASSERTMSG(ci->ci_mtx_count == -1,
664 		    "%s: cpu%u: ci_mtx_count (%d) != -1 "
665 		    "(block with spin-mutex held)",
666 		     __func__, cpu_index(ci), ci->ci_mtx_count);
667 		oldspl = MUTEX_SPIN_OLDSPL(ci);
668 		ci->ci_mtx_count--;
669 		lwp_unlock(l);
670 
671 		/* Count the context switch on this CPU. */
672 		ci->ci_data.cpu_nswtch++;
673 
674 		/* Update status for lwpctl, if present. */
675 		if (l->l_lwpctl != NULL)
676 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
677 
678 		/*
679 		 * Save old VM context, unless a soft interrupt
680 		 * handler is blocking.
681 		 */
682 		if (!returning)
683 			pmap_deactivate(l);
684 
685 		/*
686 		 * We may need to spin-wait if 'newl' is still
687 		 * context switching on another CPU.
688 		 */
689 		if (__predict_false(newl->l_ctxswtch != 0)) {
690 			u_int count;
691 			count = SPINLOCK_BACKOFF_MIN;
692 			while (newl->l_ctxswtch)
693 				SPINLOCK_BACKOFF(count);
694 		}
695 
696 		/*
697 		 * If DTrace has set the active vtime enum to anything
698 		 * other than INACTIVE (0), then it should have set the
699 		 * function to call.
700 		 */
701 		if (__predict_false(dtrace_vtime_active)) {
702 			(*dtrace_vtime_switch_func)(newl);
703 		}
704 
705 		/*
706 		 * We must ensure not to come here from inside a read section.
707 		 */
708 		KASSERT(pserialize_not_in_read_section());
709 
710 		/* Switch to the new LWP.. */
711 #ifdef MULTIPROCESSOR
712 		KASSERT(curlwp == ci->ci_curlwp);
713 #endif
714 		KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
715 		prevlwp = cpu_switchto(l, newl, returning);
716 		ci = curcpu();
717 #ifdef MULTIPROCESSOR
718 		KASSERT(curlwp == ci->ci_curlwp);
719 #endif
720 		KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
721 		    l, curlwp, prevlwp);
722 
723 		/*
724 		 * Switched away - we have new curlwp.
725 		 * Restore VM context and IPL.
726 		 */
727 		pmap_activate(l);
728 		pcu_switchpoint(l);
729 
730 		if (prevlwp != NULL) {
731 			/* Normalize the count of the spin-mutexes */
732 			ci->ci_mtx_count++;
733 			/* Unmark the state of context switch */
734 			membar_exit();
735 			prevlwp->l_ctxswtch = 0;
736 		}
737 
738 		/* Update status for lwpctl, if present. */
739 		if (l->l_lwpctl != NULL) {
740 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
741 			l->l_lwpctl->lc_pctr++;
742 		}
743 
744 		/* Note trip through cpu_switchto(). */
745 		pserialize_switchpoint();
746 
747 		KASSERT(l->l_cpu == ci);
748 		splx(oldspl);
749 		/*
750 		 * note that, unless the caller disabled preemption,
751 		 * we can be preempted at any time after the above splx() call.
752 		 */
753 		retval = 1;
754 	} else {
755 		/* Nothing to do - just unlock and return. */
756 		pserialize_switchpoint();
757 		mutex_spin_exit(spc->spc_mutex);
758 		l->l_pflag &= ~LP_PREEMPTING;
759 		lwp_unlock(l);
760 		retval = 0;
761 	}
762 
763 	KASSERT(l == curlwp);
764 	KASSERT(l->l_stat == LSONPROC);
765 
766 	SYSCALL_TIME_WAKEUP(l);
767 	LOCKDEBUG_BARRIER(NULL, 1);
768 
769 	return retval;
770 }
771 
772 /*
773  * The machine independent parts of context switch to oblivion.
774  * Does not return.  Call with the LWP unlocked.
775  */
776 void
777 lwp_exit_switchaway(lwp_t *l)
778 {
779 	struct cpu_info *ci;
780 	struct lwp *newl;
781 	struct bintime bt;
782 
783 	ci = l->l_cpu;
784 
785 	KASSERT(kpreempt_disabled());
786 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
787 	KASSERT(ci == curcpu());
788 	LOCKDEBUG_BARRIER(NULL, 0);
789 
790 	kstack_check_magic(l);
791 
792 	/* Count time spent in current system call */
793 	SYSCALL_TIME_SLEEP(l);
794 	binuptime(&bt);
795 	updatertime(l, &bt);
796 
797 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
798 	(void)splsched();
799 
800 	/*
801 	 * Let sched_nextlwp() select the LWP to run the CPU next.
802 	 * If no LWP is runnable, select the idle LWP.
803 	 *
804 	 * Note that spc_lwplock might not necessary be held, and
805 	 * new thread would be unlocked after setting the LWP-lock.
806 	 */
807 	spc_lock(ci);
808 #ifndef __HAVE_FAST_SOFTINTS
809 	if (ci->ci_data.cpu_softints != 0) {
810 		/* There are pending soft interrupts, so pick one. */
811 		newl = softint_picklwp();
812 		newl->l_stat = LSONPROC;
813 		newl->l_pflag |= LP_RUNNING;
814 	} else
815 #endif	/* !__HAVE_FAST_SOFTINTS */
816 	{
817 		newl = nextlwp(ci, &ci->ci_schedstate);
818 	}
819 
820 	/* Update the new LWP's start time. */
821 	newl->l_stime = bt;
822 	l->l_pflag &= ~LP_RUNNING;
823 
824 	/*
825 	 * ci_curlwp changes when a fast soft interrupt occurs.
826 	 * We use cpu_onproc to keep track of which kernel or
827 	 * user thread is running 'underneath' the software
828 	 * interrupt.  This is important for time accounting,
829 	 * itimers and forcing user threads to preempt (aston).
830 	 */
831 	ci->ci_data.cpu_onproc = newl;
832 
833 	/*
834 	 * Preemption related tasks.  Must be done with the current
835 	 * CPU locked.
836 	 */
837 	cpu_did_resched(l);
838 
839 	/* Unlock the run queue. */
840 	spc_unlock(ci);
841 
842 	/* Count the context switch on this CPU. */
843 	ci->ci_data.cpu_nswtch++;
844 
845 	/* Update status for lwpctl, if present. */
846 	if (l->l_lwpctl != NULL)
847 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
848 
849 	/*
850 	 * We may need to spin-wait if 'newl' is still
851 	 * context switching on another CPU.
852 	 */
853 	if (__predict_false(newl->l_ctxswtch != 0)) {
854 		u_int count;
855 		count = SPINLOCK_BACKOFF_MIN;
856 		while (newl->l_ctxswtch)
857 			SPINLOCK_BACKOFF(count);
858 	}
859 
860 	/*
861 	 * If DTrace has set the active vtime enum to anything
862 	 * other than INACTIVE (0), then it should have set the
863 	 * function to call.
864 	 */
865 	if (__predict_false(dtrace_vtime_active)) {
866 		(*dtrace_vtime_switch_func)(newl);
867 	}
868 
869 	/* Switch to the new LWP.. */
870 	(void)cpu_switchto(NULL, newl, false);
871 
872 	for (;;) continue;	/* XXX: convince gcc about "noreturn" */
873 	/* NOTREACHED */
874 }
875 
876 /*
877  * setrunnable: change LWP state to be runnable, placing it on the run queue.
878  *
879  * Call with the process and LWP locked.  Will return with the LWP unlocked.
880  */
881 void
882 setrunnable(struct lwp *l)
883 {
884 	struct proc *p = l->l_proc;
885 	struct cpu_info *ci;
886 
887 	KASSERT((l->l_flag & LW_IDLE) == 0);
888 	KASSERT(mutex_owned(p->p_lock));
889 	KASSERT(lwp_locked(l, NULL));
890 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
891 
892 	switch (l->l_stat) {
893 	case LSSTOP:
894 		/*
895 		 * If we're being traced (possibly because someone attached us
896 		 * while we were stopped), check for a signal from the debugger.
897 		 */
898 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
899 			signotify(l);
900 		p->p_nrlwps++;
901 		break;
902 	case LSSUSPENDED:
903 		l->l_flag &= ~LW_WSUSPEND;
904 		p->p_nrlwps++;
905 		cv_broadcast(&p->p_lwpcv);
906 		break;
907 	case LSSLEEP:
908 		KASSERT(l->l_wchan != NULL);
909 		break;
910 	default:
911 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
912 	}
913 
914 	/*
915 	 * If the LWP was sleeping, start it again.
916 	 */
917 	if (l->l_wchan != NULL) {
918 		l->l_stat = LSSLEEP;
919 		/* lwp_unsleep() will release the lock. */
920 		lwp_unsleep(l, true);
921 		return;
922 	}
923 
924 	/*
925 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
926 	 * about to call mi_switch(), in which case it will yield.
927 	 */
928 	if ((l->l_pflag & LP_RUNNING) != 0) {
929 		l->l_stat = LSONPROC;
930 		l->l_slptime = 0;
931 		lwp_unlock(l);
932 		return;
933 	}
934 
935 	/*
936 	 * Look for a CPU to run.
937 	 * Set the LWP runnable.
938 	 */
939 	ci = sched_takecpu(l);
940 	l->l_cpu = ci;
941 	spc_lock(ci);
942 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
943 	sched_setrunnable(l);
944 	l->l_stat = LSRUN;
945 	l->l_slptime = 0;
946 
947 	sched_enqueue(l, false);
948 	resched_cpu(l);
949 	lwp_unlock(l);
950 }
951 
952 /*
953  * suspendsched:
954  *
955  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
956  */
957 void
958 suspendsched(void)
959 {
960 	CPU_INFO_ITERATOR cii;
961 	struct cpu_info *ci;
962 	struct lwp *l;
963 	struct proc *p;
964 
965 	/*
966 	 * We do this by process in order not to violate the locking rules.
967 	 */
968 	mutex_enter(proc_lock);
969 	PROCLIST_FOREACH(p, &allproc) {
970 		mutex_enter(p->p_lock);
971 		if ((p->p_flag & PK_SYSTEM) != 0) {
972 			mutex_exit(p->p_lock);
973 			continue;
974 		}
975 
976 		if (p->p_stat != SSTOP) {
977 			if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
978 				p->p_pptr->p_nstopchild++;
979 				p->p_waited = 0;
980 			}
981 			p->p_stat = SSTOP;
982 		}
983 
984 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
985 			if (l == curlwp)
986 				continue;
987 
988 			lwp_lock(l);
989 
990 			/*
991 			 * Set L_WREBOOT so that the LWP will suspend itself
992 			 * when it tries to return to user mode.  We want to
993 			 * try and get to get as many LWPs as possible to
994 			 * the user / kernel boundary, so that they will
995 			 * release any locks that they hold.
996 			 */
997 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
998 
999 			if (l->l_stat == LSSLEEP &&
1000 			    (l->l_flag & LW_SINTR) != 0) {
1001 				/* setrunnable() will release the lock. */
1002 				setrunnable(l);
1003 				continue;
1004 			}
1005 
1006 			lwp_unlock(l);
1007 		}
1008 
1009 		mutex_exit(p->p_lock);
1010 	}
1011 	mutex_exit(proc_lock);
1012 
1013 	/*
1014 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
1015 	 * They'll trap into the kernel and suspend themselves in userret().
1016 	 */
1017 	for (CPU_INFO_FOREACH(cii, ci)) {
1018 		spc_lock(ci);
1019 		cpu_need_resched(ci, RESCHED_IMMED);
1020 		spc_unlock(ci);
1021 	}
1022 }
1023 
1024 /*
1025  * sched_unsleep:
1026  *
1027  *	The is called when the LWP has not been awoken normally but instead
1028  *	interrupted: for example, if the sleep timed out.  Because of this,
1029  *	it's not a valid action for running or idle LWPs.
1030  */
1031 static void
1032 sched_unsleep(struct lwp *l, bool cleanup)
1033 {
1034 
1035 	lwp_unlock(l);
1036 	panic("sched_unsleep");
1037 }
1038 
1039 static void
1040 resched_cpu(struct lwp *l)
1041 {
1042 	struct cpu_info *ci = l->l_cpu;
1043 
1044 	KASSERT(lwp_locked(l, NULL));
1045 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1046 		cpu_need_resched(ci, 0);
1047 }
1048 
1049 static void
1050 sched_changepri(struct lwp *l, pri_t pri)
1051 {
1052 
1053 	KASSERT(lwp_locked(l, NULL));
1054 
1055 	if (l->l_stat == LSRUN) {
1056 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1057 		sched_dequeue(l);
1058 		l->l_priority = pri;
1059 		sched_enqueue(l, false);
1060 	} else {
1061 		l->l_priority = pri;
1062 	}
1063 	resched_cpu(l);
1064 }
1065 
1066 static void
1067 sched_lendpri(struct lwp *l, pri_t pri)
1068 {
1069 
1070 	KASSERT(lwp_locked(l, NULL));
1071 
1072 	if (l->l_stat == LSRUN) {
1073 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1074 		sched_dequeue(l);
1075 		l->l_inheritedprio = pri;
1076 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1077 		sched_enqueue(l, false);
1078 	} else {
1079 		l->l_inheritedprio = pri;
1080 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1081 	}
1082 	resched_cpu(l);
1083 }
1084 
1085 struct lwp *
1086 syncobj_noowner(wchan_t wchan)
1087 {
1088 
1089 	return NULL;
1090 }
1091 
1092 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1093 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1094 
1095 /*
1096  * Constants for averages over 1, 5 and 15 minutes when sampling at
1097  * 5 second intervals.
1098  */
1099 static const fixpt_t cexp[ ] = {
1100 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
1101 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
1102 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
1103 };
1104 
1105 /*
1106  * sched_pstats:
1107  *
1108  * => Update process statistics and check CPU resource allocation.
1109  * => Call scheduler-specific hook to eventually adjust LWP priorities.
1110  * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1111  */
1112 void
1113 sched_pstats(void)
1114 {
1115 	extern struct loadavg averunnable;
1116 	struct loadavg *avg = &averunnable;
1117 	const int clkhz = (stathz != 0 ? stathz : hz);
1118 	static bool backwards = false;
1119 	static u_int lavg_count = 0;
1120 	struct proc *p;
1121 	int nrun;
1122 
1123 	sched_pstats_ticks++;
1124 	if (++lavg_count >= 5) {
1125 		lavg_count = 0;
1126 		nrun = 0;
1127 	}
1128 	mutex_enter(proc_lock);
1129 	PROCLIST_FOREACH(p, &allproc) {
1130 		struct lwp *l;
1131 		struct rlimit *rlim;
1132 		time_t runtm;
1133 		int sig;
1134 
1135 		/* Increment sleep time (if sleeping), ignore overflow. */
1136 		mutex_enter(p->p_lock);
1137 		runtm = p->p_rtime.sec;
1138 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1139 			fixpt_t lpctcpu;
1140 			u_int lcpticks;
1141 
1142 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
1143 				continue;
1144 			lwp_lock(l);
1145 			runtm += l->l_rtime.sec;
1146 			l->l_swtime++;
1147 			sched_lwp_stats(l);
1148 
1149 			/* For load average calculation. */
1150 			if (__predict_false(lavg_count == 0) &&
1151 			    (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1152 				switch (l->l_stat) {
1153 				case LSSLEEP:
1154 					if (l->l_slptime > 1) {
1155 						break;
1156 					}
1157 				case LSRUN:
1158 				case LSONPROC:
1159 				case LSIDL:
1160 					nrun++;
1161 				}
1162 			}
1163 			lwp_unlock(l);
1164 
1165 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1166 			if (l->l_slptime != 0)
1167 				continue;
1168 
1169 			lpctcpu = l->l_pctcpu;
1170 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1171 			lpctcpu += ((FSCALE - ccpu) *
1172 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1173 			l->l_pctcpu = lpctcpu;
1174 		}
1175 		/* Calculating p_pctcpu only for ps(1) */
1176 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1177 
1178 		if (__predict_false(runtm < 0)) {
1179 			if (!backwards) {
1180 				backwards = true;
1181 				printf("WARNING: negative runtime; "
1182 				    "monotonic clock has gone backwards\n");
1183 			}
1184 			mutex_exit(p->p_lock);
1185 			continue;
1186 		}
1187 
1188 		/*
1189 		 * Check if the process exceeds its CPU resource allocation.
1190 		 * If over the hard limit, kill it with SIGKILL.
1191 		 * If over the soft limit, send SIGXCPU and raise
1192 		 * the soft limit a little.
1193 		 */
1194 		rlim = &p->p_rlimit[RLIMIT_CPU];
1195 		sig = 0;
1196 		if (__predict_false(runtm >= rlim->rlim_cur)) {
1197 			if (runtm >= rlim->rlim_max) {
1198 				sig = SIGKILL;
1199 				log(LOG_NOTICE,
1200 				    "pid %d, command %s, is killed: %s\n",
1201 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1202 				uprintf("pid %d, command %s, is killed: %s\n",
1203 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1204 			} else {
1205 				sig = SIGXCPU;
1206 				if (rlim->rlim_cur < rlim->rlim_max)
1207 					rlim->rlim_cur += 5;
1208 			}
1209 		}
1210 		mutex_exit(p->p_lock);
1211 		if (__predict_false(sig)) {
1212 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
1213 			psignal(p, sig);
1214 		}
1215 	}
1216 	mutex_exit(proc_lock);
1217 
1218 	/* Load average calculation. */
1219 	if (__predict_false(lavg_count == 0)) {
1220 		int i;
1221 		CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1222 		for (i = 0; i < __arraycount(cexp); i++) {
1223 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1224 			    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1225 		}
1226 	}
1227 
1228 	/* Lightning bolt. */
1229 	cv_broadcast(&lbolt);
1230 }
1231