xref: /netbsd-src/sys/kern/kern_synch.c (revision bada23909e740596d0a3785a73bd3583a9807fb8)
1 /*	$NetBSD: kern_synch.c,v 1.56 1999/02/28 18:14:57 ross Exp $	*/
2 
3 /*-
4  * Copyright (c) 1982, 1986, 1990, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
41  */
42 
43 #include "opt_ddb.h"
44 #include "opt_ktrace.h"
45 #include "opt_uvm.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/kernel.h>
51 #include <sys/buf.h>
52 #include <sys/signalvar.h>
53 #include <sys/resourcevar.h>
54 #include <vm/vm.h>
55 #include <sys/sched.h>
56 
57 #if defined(UVM)
58 #include <uvm/uvm_extern.h>
59 #endif
60 
61 #ifdef KTRACE
62 #include <sys/ktrace.h>
63 #endif
64 
65 #define NICE_WEIGHT 2			/* priorities per nice level */
66 #define	PPQ	(128 / NQS)		/* priorities per queue */
67 
68 #define	ESTCPULIM(e) min((e), NICE_WEIGHT * PRIO_MAX - PPQ)
69 
70 #include <machine/cpu.h>
71 
72 u_char	curpriority;		/* usrpri of curproc */
73 int	lbolt;			/* once a second sleep address */
74 
75 void roundrobin __P((void *));
76 void schedcpu __P((void *));
77 void updatepri __P((struct proc *));
78 void endtsleep __P((void *));
79 
80 /*
81  * Force switch among equal priority processes every 100ms.
82  */
83 /* ARGSUSED */
84 void
85 roundrobin(arg)
86 	void *arg;
87 {
88 
89 	need_resched();
90 	timeout(roundrobin, NULL, hz / 10);
91 }
92 
93 /*
94  * Constants for digital decay and forget:
95  *	90% of (p_estcpu) usage in 5 * loadav time
96  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
97  *          Note that, as ps(1) mentions, this can let percentages
98  *          total over 100% (I've seen 137.9% for 3 processes).
99  *
100  * Note that hardclock updates p_estcpu and p_cpticks independently.
101  *
102  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
103  * That is, the system wants to compute a value of decay such
104  * that the following for loop:
105  * 	for (i = 0; i < (5 * loadavg); i++)
106  * 		p_estcpu *= decay;
107  * will compute
108  * 	p_estcpu *= 0.1;
109  * for all values of loadavg:
110  *
111  * Mathematically this loop can be expressed by saying:
112  * 	decay ** (5 * loadavg) ~= .1
113  *
114  * The system computes decay as:
115  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
116  *
117  * We wish to prove that the system's computation of decay
118  * will always fulfill the equation:
119  * 	decay ** (5 * loadavg) ~= .1
120  *
121  * If we compute b as:
122  * 	b = 2 * loadavg
123  * then
124  * 	decay = b / (b + 1)
125  *
126  * We now need to prove two things:
127  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
128  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
129  *
130  * Facts:
131  *         For x close to zero, exp(x) =~ 1 + x, since
132  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
133  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
134  *         For x close to zero, ln(1+x) =~ x, since
135  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
136  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
137  *         ln(.1) =~ -2.30
138  *
139  * Proof of (1):
140  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
141  *	solving for factor,
142  *      ln(factor) =~ (-2.30/5*loadav), or
143  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
144  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
145  *
146  * Proof of (2):
147  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
148  *	solving for power,
149  *      power*ln(b/(b+1)) =~ -2.30, or
150  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
151  *
152  * Actual power values for the implemented algorithm are as follows:
153  *      loadav: 1       2       3       4
154  *      power:  5.68    10.32   14.94   19.55
155  */
156 
157 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
158 #define	loadfactor(loadav)	(2 * (loadav))
159 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
160 
161 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
162 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
163 
164 /*
165  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
166  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
167  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
168  *
169  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
170  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
171  *
172  * If you dont want to bother with the faster/more-accurate formula, you
173  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
174  * (more general) method of calculating the %age of CPU used by a process.
175  */
176 #define	CCPU_SHIFT	11
177 
178 /*
179  * Recompute process priorities, every hz ticks.
180  */
181 /* ARGSUSED */
182 void
183 schedcpu(arg)
184 	void *arg;
185 {
186 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
187 	register struct proc *p;
188 	register int s;
189 	register unsigned int newcpu;
190 
191 	wakeup((caddr_t)&lbolt);
192 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
193 		/*
194 		 * Increment time in/out of memory and sleep time
195 		 * (if sleeping).  We ignore overflow; with 16-bit int's
196 		 * (remember them?) overflow takes 45 days.
197 		 */
198 		p->p_swtime++;
199 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
200 			p->p_slptime++;
201 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
202 		/*
203 		 * If the process has slept the entire second,
204 		 * stop recalculating its priority until it wakes up.
205 		 */
206 		if (p->p_slptime > 1)
207 			continue;
208 		s = splstatclock();	/* prevent state changes */
209 		/*
210 		 * p_pctcpu is only for ps.
211 		 */
212 		KASSERT(profhz);
213 #if	(FSHIFT >= CCPU_SHIFT)
214 		p->p_pctcpu += (profhz == 100)?
215 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
216                 	100 * (((fixpt_t) p->p_cpticks)
217 				<< (FSHIFT - CCPU_SHIFT)) / profhz;
218 #else
219 		p->p_pctcpu += ((FSCALE - ccpu) *
220 			(p->p_cpticks * FSCALE / profhz)) >> FSHIFT;
221 #endif
222 		p->p_cpticks = 0;
223 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
224 		p->p_estcpu = newcpu;
225 		resetpriority(p);
226 		if (p->p_priority >= PUSER) {
227 			if ((p != curproc) &&
228 			    p->p_stat == SRUN &&
229 			    (p->p_flag & P_INMEM) &&
230 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
231 				remrunqueue(p);
232 				p->p_priority = p->p_usrpri;
233 				setrunqueue(p);
234 			} else
235 				p->p_priority = p->p_usrpri;
236 		}
237 		splx(s);
238 	}
239 #if defined(UVM)
240 	uvm_meter();
241 #else
242 	vmmeter();
243 #endif
244 	timeout(schedcpu, (void *)0, hz);
245 }
246 
247 /*
248  * Recalculate the priority of a process after it has slept for a while.
249  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
250  * least six times the loadfactor will decay p_estcpu to zero.
251  */
252 void
253 updatepri(p)
254 	register struct proc *p;
255 {
256 	register unsigned int newcpu = p->p_estcpu;
257 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
258 
259 	if (p->p_slptime > 5 * loadfac)
260 		p->p_estcpu = 0;
261 	else {
262 		p->p_slptime--;	/* the first time was done in schedcpu */
263 		while (newcpu && --p->p_slptime)
264 			newcpu = (int) decay_cpu(loadfac, newcpu);
265 		p->p_estcpu = newcpu;
266 	}
267 	resetpriority(p);
268 }
269 
270 /*
271  * We're only looking at 7 bits of the address; everything is
272  * aligned to 4, lots of things are aligned to greater powers
273  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
274  */
275 #define TABLESIZE	128
276 #define LOOKUP(x)	(((long)(x) >> 8) & (TABLESIZE - 1))
277 struct slpque {
278 	struct proc *sq_head;
279 	struct proc **sq_tailp;
280 } slpque[TABLESIZE];
281 
282 /*
283  * During autoconfiguration or after a panic, a sleep will simply
284  * lower the priority briefly to allow interrupts, then return.
285  * The priority to be used (safepri) is machine-dependent, thus this
286  * value is initialized and maintained in the machine-dependent layers.
287  * This priority will typically be 0, or the lowest priority
288  * that is safe for use on the interrupt stack; it can be made
289  * higher to block network software interrupts after panics.
290  */
291 int safepri;
292 
293 /*
294  * General sleep call.  Suspends the current process until a wakeup is
295  * performed on the specified identifier.  The process will then be made
296  * runnable with the specified priority.  Sleeps at most timo/hz seconds
297  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
298  * before and after sleeping, else signals are not checked.  Returns 0 if
299  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
300  * signal needs to be delivered, ERESTART is returned if the current system
301  * call should be restarted if possible, and EINTR is returned if the system
302  * call should be interrupted by the signal (return EINTR).
303  */
304 int
305 tsleep(ident, priority, wmesg, timo)
306 	void *ident;
307 	int priority, timo;
308 	const char *wmesg;
309 {
310 	register struct proc *p = curproc;
311 	register struct slpque *qp;
312 	register int s;
313 	int sig, catch = priority & PCATCH;
314 	extern int cold;
315 	void endtsleep __P((void *));
316 
317 	if (cold || panicstr) {
318 		/*
319 		 * After a panic, or during autoconfiguration,
320 		 * just give interrupts a chance, then just return;
321 		 * don't run any other procs or panic below,
322 		 * in case this is the idle process and already asleep.
323 		 */
324 		s = splhigh();
325 		splx(safepri);
326 		splx(s);
327 		return (0);
328 	}
329 
330 #ifdef KTRACE
331 	if (KTRPOINT(p, KTR_CSW))
332 		ktrcsw(p->p_tracep, 1, 0);
333 #endif
334 	s = splhigh();
335 
336 #ifdef DIAGNOSTIC
337 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
338 		panic("tsleep");
339 #endif
340 	p->p_wchan = ident;
341 	p->p_wmesg = wmesg;
342 	p->p_slptime = 0;
343 	p->p_priority = priority & PRIMASK;
344 	qp = &slpque[LOOKUP(ident)];
345 	if (qp->sq_head == 0)
346 		qp->sq_head = p;
347 	else
348 		*qp->sq_tailp = p;
349 	*(qp->sq_tailp = &p->p_forw) = 0;
350 	if (timo)
351 		timeout(endtsleep, (void *)p, timo);
352 	/*
353 	 * We put ourselves on the sleep queue and start our timeout
354 	 * before calling CURSIG, as we could stop there, and a wakeup
355 	 * or a SIGCONT (or both) could occur while we were stopped.
356 	 * A SIGCONT would cause us to be marked as SSLEEP
357 	 * without resuming us, thus we must be ready for sleep
358 	 * when CURSIG is called.  If the wakeup happens while we're
359 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
360 	 */
361 	if (catch) {
362 		p->p_flag |= P_SINTR;
363 		if ((sig = CURSIG(p)) != 0) {
364 			if (p->p_wchan)
365 				unsleep(p);
366 			p->p_stat = SRUN;
367 			goto resume;
368 		}
369 		if (p->p_wchan == 0) {
370 			catch = 0;
371 			goto resume;
372 		}
373 	} else
374 		sig = 0;
375 	p->p_stat = SSLEEP;
376 	p->p_stats->p_ru.ru_nvcsw++;
377 	mi_switch();
378 #ifdef	DDB
379 	/* handy breakpoint location after process "wakes" */
380 	asm(".globl bpendtsleep ; bpendtsleep:");
381 #endif
382 resume:
383 	curpriority = p->p_usrpri;
384 	splx(s);
385 	p->p_flag &= ~P_SINTR;
386 	if (p->p_flag & P_TIMEOUT) {
387 		p->p_flag &= ~P_TIMEOUT;
388 		if (sig == 0) {
389 #ifdef KTRACE
390 			if (KTRPOINT(p, KTR_CSW))
391 				ktrcsw(p->p_tracep, 0, 0);
392 #endif
393 			return (EWOULDBLOCK);
394 		}
395 	} else if (timo)
396 		untimeout(endtsleep, (void *)p);
397 	if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
398 #ifdef KTRACE
399 		if (KTRPOINT(p, KTR_CSW))
400 			ktrcsw(p->p_tracep, 0, 0);
401 #endif
402 		if ((p->p_sigacts->ps_sigact[sig].sa_flags & SA_RESTART) == 0)
403 			return (EINTR);
404 		return (ERESTART);
405 	}
406 #ifdef KTRACE
407 	if (KTRPOINT(p, KTR_CSW))
408 		ktrcsw(p->p_tracep, 0, 0);
409 #endif
410 	return (0);
411 }
412 
413 /*
414  * Implement timeout for tsleep.
415  * If process hasn't been awakened (wchan non-zero),
416  * set timeout flag and undo the sleep.  If proc
417  * is stopped, just unsleep so it will remain stopped.
418  */
419 void
420 endtsleep(arg)
421 	void *arg;
422 {
423 	register struct proc *p;
424 	int s;
425 
426 	p = (struct proc *)arg;
427 	s = splhigh();
428 	if (p->p_wchan) {
429 		if (p->p_stat == SSLEEP)
430 			setrunnable(p);
431 		else
432 			unsleep(p);
433 		p->p_flag |= P_TIMEOUT;
434 	}
435 	splx(s);
436 }
437 
438 /*
439  * Short-term, non-interruptable sleep.
440  */
441 void
442 sleep(ident, priority)
443 	void *ident;
444 	int priority;
445 {
446 	register struct proc *p = curproc;
447 	register struct slpque *qp;
448 	register int s;
449 	extern int cold;
450 
451 #ifdef DIAGNOSTIC
452 	if (priority > PZERO) {
453 		printf("sleep called with priority %d > PZERO, wchan: %p\n",
454 		    priority, ident);
455 		panic("old sleep");
456 	}
457 #endif
458 	s = splhigh();
459 	if (cold || panicstr) {
460 		/*
461 		 * After a panic, or during autoconfiguration,
462 		 * just give interrupts a chance, then just return;
463 		 * don't run any other procs or panic below,
464 		 * in case this is the idle process and already asleep.
465 		 */
466 		splx(safepri);
467 		splx(s);
468 		return;
469 	}
470 #ifdef DIAGNOSTIC
471 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
472 		panic("sleep");
473 #endif
474 	p->p_wchan = ident;
475 	p->p_wmesg = NULL;
476 	p->p_slptime = 0;
477 	p->p_priority = priority;
478 	qp = &slpque[LOOKUP(ident)];
479 	if (qp->sq_head == 0)
480 		qp->sq_head = p;
481 	else
482 		*qp->sq_tailp = p;
483 	*(qp->sq_tailp = &p->p_forw) = 0;
484 	p->p_stat = SSLEEP;
485 	p->p_stats->p_ru.ru_nvcsw++;
486 #ifdef KTRACE
487 	if (KTRPOINT(p, KTR_CSW))
488 		ktrcsw(p->p_tracep, 1, 0);
489 #endif
490 	mi_switch();
491 #ifdef	DDB
492 	/* handy breakpoint location after process "wakes" */
493 	asm(".globl bpendsleep ; bpendsleep:");
494 #endif
495 #ifdef KTRACE
496 	if (KTRPOINT(p, KTR_CSW))
497 		ktrcsw(p->p_tracep, 0, 0);
498 #endif
499 	curpriority = p->p_usrpri;
500 	splx(s);
501 }
502 
503 /*
504  * Remove a process from its wait queue
505  */
506 void
507 unsleep(p)
508 	register struct proc *p;
509 {
510 	register struct slpque *qp;
511 	register struct proc **hp;
512 	int s;
513 
514 	s = splhigh();
515 	if (p->p_wchan) {
516 		hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
517 		while (*hp != p)
518 			hp = &(*hp)->p_forw;
519 		*hp = p->p_forw;
520 		if (qp->sq_tailp == &p->p_forw)
521 			qp->sq_tailp = hp;
522 		p->p_wchan = 0;
523 	}
524 	splx(s);
525 }
526 
527 /*
528  * Make all processes sleeping on the specified identifier runnable.
529  */
530 void
531 wakeup(ident)
532 	register void *ident;
533 {
534 	register struct slpque *qp;
535 	register struct proc *p, **q;
536 	int s;
537 
538 	s = splhigh();
539 	qp = &slpque[LOOKUP(ident)];
540 restart:
541 	for (q = &qp->sq_head; (p = *q) != NULL; ) {
542 #ifdef DIAGNOSTIC
543 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
544 			panic("wakeup");
545 #endif
546 		if (p->p_wchan == ident) {
547 			p->p_wchan = 0;
548 			*q = p->p_forw;
549 			if (qp->sq_tailp == &p->p_forw)
550 				qp->sq_tailp = q;
551 			if (p->p_stat == SSLEEP) {
552 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
553 				if (p->p_slptime > 1)
554 					updatepri(p);
555 				p->p_slptime = 0;
556 				p->p_stat = SRUN;
557 				if (p->p_flag & P_INMEM)
558 					setrunqueue(p);
559 				/*
560 				 * Since curpriority is a user priority,
561 				 * p->p_priority is always better than
562 				 * curpriority.
563 				 */
564 				if ((p->p_flag & P_INMEM) == 0)
565 					wakeup((caddr_t)&proc0);
566 				else
567 					need_resched();
568 				/* END INLINE EXPANSION */
569 				goto restart;
570 			}
571 		} else
572 			q = &p->p_forw;
573 	}
574 	splx(s);
575 }
576 
577 /*
578  * The machine independent parts of mi_switch().
579  * Must be called at splstatclock() or higher.
580  */
581 void
582 mi_switch()
583 {
584 	register struct proc *p = curproc;	/* XXX */
585 	register struct rlimit *rlim;
586 	register long s, u;
587 	struct timeval tv;
588 
589 #ifdef DEBUG
590 	if (p->p_simple_locks) {
591 		printf("p->p_simple_locks %d\n", p->p_simple_locks);
592 #ifdef LOCKDEBUG
593 		simple_lock_dump();
594 #endif
595 		panic("sleep: holding simple lock");
596 	}
597 #endif
598 	/*
599 	 * Compute the amount of time during which the current
600 	 * process was running, and add that to its total so far.
601 	 */
602 	microtime(&tv);
603 	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
604 	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
605 	if (u < 0) {
606 		u += 1000000;
607 		s--;
608 	} else if (u >= 1000000) {
609 		u -= 1000000;
610 		s++;
611 	}
612 	p->p_rtime.tv_usec = u;
613 	p->p_rtime.tv_sec = s;
614 
615 	/*
616 	 * Check if the process exceeds its cpu resource allocation.
617 	 * If over max, kill it.  In any case, if it has run for more
618 	 * than 10 minutes, reduce priority to give others a chance.
619 	 */
620 	rlim = &p->p_rlimit[RLIMIT_CPU];
621 	if (s >= rlim->rlim_cur) {
622 		if (s >= rlim->rlim_max)
623 			psignal(p, SIGKILL);
624 		else {
625 			psignal(p, SIGXCPU);
626 			if (rlim->rlim_cur < rlim->rlim_max)
627 				rlim->rlim_cur += 5;
628 		}
629 	}
630 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid && p->p_nice == NZERO) {
631 		p->p_nice = autoniceval + NZERO;
632 		resetpriority(p);
633 	}
634 
635 	/*
636 	 * Pick a new current process and record its start time.
637 	 */
638 #if defined(UVM)
639 	uvmexp.swtch++;
640 #else
641 	cnt.v_swtch++;
642 #endif
643 	cpu_switch(p);
644 	microtime(&runtime);
645 }
646 
647 /*
648  * Initialize the (doubly-linked) run queues
649  * to be empty.
650  */
651 void
652 rqinit()
653 {
654 	register int i;
655 
656 	for (i = 0; i < NQS; i++)
657 		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
658 }
659 
660 /*
661  * Change process state to be runnable,
662  * placing it on the run queue if it is in memory,
663  * and awakening the swapper if it isn't in memory.
664  */
665 void
666 setrunnable(p)
667 	register struct proc *p;
668 {
669 	register int s;
670 
671 	s = splhigh();
672 	switch (p->p_stat) {
673 	case 0:
674 	case SRUN:
675 	case SZOMB:
676 	default:
677 		panic("setrunnable");
678 	case SSTOP:
679 		/*
680 		 * If we're being traced (possibly because someone attached us
681 		 * while we were stopped), check for a signal from the debugger.
682 		 */
683 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
684 			sigaddset(&p->p_siglist, p->p_xstat);
685 			p->p_sigcheck = 1;
686 		}
687 	case SSLEEP:
688 		unsleep(p);		/* e.g. when sending signals */
689 		break;
690 
691 	case SIDL:
692 		break;
693 	}
694 	p->p_stat = SRUN;
695 	if (p->p_flag & P_INMEM)
696 		setrunqueue(p);
697 	splx(s);
698 	if (p->p_slptime > 1)
699 		updatepri(p);
700 	p->p_slptime = 0;
701 	if ((p->p_flag & P_INMEM) == 0)
702 		wakeup((caddr_t)&proc0);
703 	else if (p->p_priority < curpriority)
704 		need_resched();
705 }
706 
707 /*
708  * Compute the priority of a process when running in user mode.
709  * Arrange to reschedule if the resulting priority is better
710  * than that of the current process.
711  */
712 void
713 resetpriority(p)
714 	register struct proc *p;
715 {
716 	register unsigned int newpriority;
717 
718 	newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
719 	newpriority = min(newpriority, MAXPRI);
720 	p->p_usrpri = newpriority;
721 	if (newpriority < curpriority)
722 		need_resched();
723 }
724 
725 /*
726  * We adjust the priority of the current process.  The priority of a process
727  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
728  * is increased here.  The formula for computing priorities (in kern_synch.c)
729  * will compute a different value each time p_estcpu increases. This can
730  * cause a switch, but unless the priority crosses a PPQ boundary the actual
731  * queue will not change.  The cpu usage estimator ramps up quite quickly
732  * when the process is running (linearly), and decays away exponentially, at
733  * a rate which is proportionally slower when the system is busy.  The basic
734  * principal is that the system will 90% forget that the process used a lot
735  * of CPU time in 5 * loadav seconds.  This causes the system to favor
736  * processes which haven't run much recently, and to round-robin among other
737  * processes.
738  */
739 
740 void
741 schedclock(p)
742 	struct proc *p;
743 {
744 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
745 	resetpriority(p);
746 	if (p->p_priority >= PUSER)
747 		p->p_priority = p->p_usrpri;
748 }
749