xref: /netbsd-src/sys/kern/kern_synch.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: kern_synch.c,v 1.211 2007/12/03 20:26:26 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10  * Daniel Sieger.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the NetBSD
23  *	Foundation, Inc. and its contributors.
24  * 4. Neither the name of The NetBSD Foundation nor the names of its
25  *    contributors may be used to endorse or promote products derived
26  *    from this software without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38  * POSSIBILITY OF SUCH DAMAGE.
39  */
40 
41 /*-
42  * Copyright (c) 1982, 1986, 1990, 1991, 1993
43  *	The Regents of the University of California.  All rights reserved.
44  * (c) UNIX System Laboratories, Inc.
45  * All or some portions of this file are derived from material licensed
46  * to the University of California by American Telephone and Telegraph
47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48  * the permission of UNIX System Laboratories, Inc.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
75  */
76 
77 #include <sys/cdefs.h>
78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.211 2007/12/03 20:26:26 ad Exp $");
79 
80 #include "opt_kstack.h"
81 #include "opt_lockdebug.h"
82 #include "opt_multiprocessor.h"
83 #include "opt_perfctrs.h"
84 
85 #define	__MUTEX_PRIVATE
86 
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/proc.h>
90 #include <sys/kernel.h>
91 #if defined(PERFCTRS)
92 #include <sys/pmc.h>
93 #endif
94 #include <sys/cpu.h>
95 #include <sys/resourcevar.h>
96 #include <sys/sched.h>
97 #include <sys/syscall_stats.h>
98 #include <sys/sleepq.h>
99 #include <sys/lockdebug.h>
100 #include <sys/evcnt.h>
101 #include <sys/intr.h>
102 #include <sys/lwpctl.h>
103 #include <sys/atomic.h>
104 
105 #include <uvm/uvm_extern.h>
106 
107 callout_t sched_pstats_ch;
108 unsigned int sched_pstats_ticks;
109 
110 kcondvar_t	lbolt;			/* once a second sleep address */
111 
112 static void	sched_unsleep(struct lwp *);
113 static void	sched_changepri(struct lwp *, pri_t);
114 static void	sched_lendpri(struct lwp *, pri_t);
115 
116 syncobj_t sleep_syncobj = {
117 	SOBJ_SLEEPQ_SORTED,
118 	sleepq_unsleep,
119 	sleepq_changepri,
120 	sleepq_lendpri,
121 	syncobj_noowner,
122 };
123 
124 syncobj_t sched_syncobj = {
125 	SOBJ_SLEEPQ_SORTED,
126 	sched_unsleep,
127 	sched_changepri,
128 	sched_lendpri,
129 	syncobj_noowner,
130 };
131 
132 /*
133  * During autoconfiguration or after a panic, a sleep will simply lower the
134  * priority briefly to allow interrupts, then return.  The priority to be
135  * used (safepri) is machine-dependent, thus this value is initialized and
136  * maintained in the machine-dependent layers.  This priority will typically
137  * be 0, or the lowest priority that is safe for use on the interrupt stack;
138  * it can be made higher to block network software interrupts after panics.
139  */
140 int	safepri;
141 
142 /*
143  * OBSOLETE INTERFACE
144  *
145  * General sleep call.  Suspends the current process until a wakeup is
146  * performed on the specified identifier.  The process will then be made
147  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
148  * means no timeout).  If pri includes PCATCH flag, signals are checked
149  * before and after sleeping, else signals are not checked.  Returns 0 if
150  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
151  * signal needs to be delivered, ERESTART is returned if the current system
152  * call should be restarted if possible, and EINTR is returned if the system
153  * call should be interrupted by the signal (return EINTR).
154  *
155  * The interlock is held until we are on a sleep queue. The interlock will
156  * be locked before returning back to the caller unless the PNORELOCK flag
157  * is specified, in which case the interlock will always be unlocked upon
158  * return.
159  */
160 int
161 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
162 	volatile struct simplelock *interlock)
163 {
164 	struct lwp *l = curlwp;
165 	sleepq_t *sq;
166 	int error;
167 
168 	KASSERT((l->l_pflag & LP_INTR) == 0);
169 
170 	if (sleepq_dontsleep(l)) {
171 		(void)sleepq_abort(NULL, 0);
172 		if ((priority & PNORELOCK) != 0)
173 			simple_unlock(interlock);
174 		return 0;
175 	}
176 
177 	l->l_kpriority = true;
178 	sq = sleeptab_lookup(&sleeptab, ident);
179 	sleepq_enter(sq, l);
180 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
181 
182 	if (interlock != NULL) {
183 		KASSERT(simple_lock_held(interlock));
184 		simple_unlock(interlock);
185 	}
186 
187 	error = sleepq_block(timo, priority & PCATCH);
188 
189 	if (interlock != NULL && (priority & PNORELOCK) == 0)
190 		simple_lock(interlock);
191 
192 	return error;
193 }
194 
195 int
196 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
197 	kmutex_t *mtx)
198 {
199 	struct lwp *l = curlwp;
200 	sleepq_t *sq;
201 	int error;
202 
203 	KASSERT((l->l_pflag & LP_INTR) == 0);
204 
205 	if (sleepq_dontsleep(l)) {
206 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
207 		return 0;
208 	}
209 
210 	l->l_kpriority = true;
211 	sq = sleeptab_lookup(&sleeptab, ident);
212 	sleepq_enter(sq, l);
213 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
214 	mutex_exit(mtx);
215 	error = sleepq_block(timo, priority & PCATCH);
216 
217 	if ((priority & PNORELOCK) == 0)
218 		mutex_enter(mtx);
219 
220 	return error;
221 }
222 
223 /*
224  * General sleep call for situations where a wake-up is not expected.
225  */
226 int
227 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
228 {
229 	struct lwp *l = curlwp;
230 	sleepq_t *sq;
231 	int error;
232 
233 	if (sleepq_dontsleep(l))
234 		return sleepq_abort(NULL, 0);
235 
236 	if (mtx != NULL)
237 		mutex_exit(mtx);
238 	l->l_kpriority = true;
239 	sq = sleeptab_lookup(&sleeptab, l);
240 	sleepq_enter(sq, l);
241 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
242 	error = sleepq_block(timo, intr);
243 	if (mtx != NULL)
244 		mutex_enter(mtx);
245 
246 	return error;
247 }
248 
249 /*
250  * OBSOLETE INTERFACE
251  *
252  * Make all processes sleeping on the specified identifier runnable.
253  */
254 void
255 wakeup(wchan_t ident)
256 {
257 	sleepq_t *sq;
258 
259 	if (cold)
260 		return;
261 
262 	sq = sleeptab_lookup(&sleeptab, ident);
263 	sleepq_wake(sq, ident, (u_int)-1);
264 }
265 
266 /*
267  * OBSOLETE INTERFACE
268  *
269  * Make the highest priority process first in line on the specified
270  * identifier runnable.
271  */
272 void
273 wakeup_one(wchan_t ident)
274 {
275 	sleepq_t *sq;
276 
277 	if (cold)
278 		return;
279 
280 	sq = sleeptab_lookup(&sleeptab, ident);
281 	sleepq_wake(sq, ident, 1);
282 }
283 
284 
285 /*
286  * General yield call.  Puts the current process back on its run queue and
287  * performs a voluntary context switch.  Should only be called when the
288  * current process explicitly requests it (eg sched_yield(2)).
289  */
290 void
291 yield(void)
292 {
293 	struct lwp *l = curlwp;
294 
295 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
296 	lwp_lock(l);
297 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
298 	KASSERT(l->l_stat == LSONPROC);
299 	l->l_kpriority = false;
300 	if (l->l_class == SCHED_OTHER) {
301 		/*
302 		 * Only for timeshared threads.  It will be reset
303 		 * by the scheduler in due course.
304 		 */
305 		l->l_priority = 0;
306 	}
307 	(void)mi_switch(l);
308 	KERNEL_LOCK(l->l_biglocks, l);
309 }
310 
311 /*
312  * General preemption call.  Puts the current process back on its run queue
313  * and performs an involuntary context switch.
314  */
315 void
316 preempt(void)
317 {
318 	struct lwp *l = curlwp;
319 
320 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
321 	lwp_lock(l);
322 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
323 	KASSERT(l->l_stat == LSONPROC);
324 	l->l_kpriority = false;
325 	l->l_nivcsw++;
326 	(void)mi_switch(l);
327 	KERNEL_LOCK(l->l_biglocks, l);
328 }
329 
330 /*
331  * Compute the amount of time during which the current lwp was running.
332  *
333  * - update l_rtime unless it's an idle lwp.
334  */
335 
336 void
337 updatertime(lwp_t *l, const struct timeval *tv)
338 {
339 	long s, u;
340 
341 	if ((l->l_flag & LW_IDLE) != 0)
342 		return;
343 
344 	u = l->l_rtime.tv_usec + (tv->tv_usec - l->l_stime.tv_usec);
345 	s = l->l_rtime.tv_sec + (tv->tv_sec - l->l_stime.tv_sec);
346 	if (u < 0) {
347 		u += 1000000;
348 		s--;
349 	} else if (u >= 1000000) {
350 		u -= 1000000;
351 		s++;
352 	}
353 	l->l_rtime.tv_usec = u;
354 	l->l_rtime.tv_sec = s;
355 }
356 
357 /*
358  * The machine independent parts of context switch.
359  *
360  * Returns 1 if another LWP was actually run.
361  */
362 int
363 mi_switch(lwp_t *l)
364 {
365 	struct schedstate_percpu *spc;
366 	struct lwp *newl;
367 	int retval, oldspl;
368 	struct cpu_info *ci;
369 	struct timeval tv;
370 	bool returning;
371 
372 	KASSERT(lwp_locked(l, NULL));
373 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
374 
375 #ifdef KSTACK_CHECK_MAGIC
376 	kstack_check_magic(l);
377 #endif
378 
379 	microtime(&tv);
380 
381 	KDASSERT(l->l_cpu == curcpu());
382 	ci = l->l_cpu;
383 	spc = &ci->ci_schedstate;
384 	returning = false;
385 	newl = NULL;
386 
387 	/*
388 	 * If we have been asked to switch to a specific LWP, then there
389 	 * is no need to inspect the run queues.  If a soft interrupt is
390 	 * blocking, then return to the interrupted thread without adjusting
391 	 * VM context or its start time: neither have been changed in order
392 	 * to take the interrupt.
393 	 */
394 	if (l->l_switchto != NULL) {
395 		if ((l->l_pflag & LP_INTR) != 0) {
396 			returning = true;
397 			softint_block(l);
398 			if ((l->l_flag & LW_TIMEINTR) != 0)
399 				updatertime(l, &tv);
400 		}
401 		newl = l->l_switchto;
402 		l->l_switchto = NULL;
403 	}
404 #ifndef __HAVE_FAST_SOFTINTS
405 	else if (ci->ci_data.cpu_softints != 0) {
406 		/* There are pending soft interrupts, so pick one. */
407 		newl = softint_picklwp();
408 		newl->l_stat = LSONPROC;
409 		newl->l_flag |= LW_RUNNING;
410 	}
411 #endif	/* !__HAVE_FAST_SOFTINTS */
412 
413 	/* Count time spent in current system call */
414 	if (!returning) {
415 		SYSCALL_TIME_SLEEP(l);
416 
417 		/*
418 		 * XXXSMP If we are using h/w performance counters,
419 		 * save context.
420 		 */
421 #if PERFCTRS
422 		if (PMC_ENABLED(l->l_proc)) {
423 			pmc_save_context(l->l_proc);
424 		}
425 #endif
426 		updatertime(l, &tv);
427 	}
428 
429 	/*
430 	 * If on the CPU and we have gotten this far, then we must yield.
431 	 */
432 	mutex_spin_enter(spc->spc_mutex);
433 	KASSERT(l->l_stat != LSRUN);
434 	if (l->l_stat == LSONPROC && l != newl) {
435 		KASSERT(lwp_locked(l, &spc->spc_lwplock));
436 		if ((l->l_flag & LW_IDLE) == 0) {
437 			l->l_stat = LSRUN;
438 			lwp_setlock(l, spc->spc_mutex);
439 			sched_enqueue(l, true);
440 		} else
441 			l->l_stat = LSIDL;
442 	}
443 
444 	/*
445 	 * Let sched_nextlwp() select the LWP to run the CPU next.
446 	 * If no LWP is runnable, select the idle LWP.
447 	 *
448 	 * Note that spc_lwplock might not necessary be held, and
449 	 * new thread would be unlocked after setting the LWP-lock.
450 	 */
451 	if (newl == NULL) {
452 		newl = sched_nextlwp();
453 		if (newl != NULL) {
454 			sched_dequeue(newl);
455 			KASSERT(lwp_locked(newl, spc->spc_mutex));
456 			newl->l_stat = LSONPROC;
457 			newl->l_cpu = ci;
458 			newl->l_flag |= LW_RUNNING;
459 			lwp_setlock(newl, &spc->spc_lwplock);
460 		} else {
461 			newl = ci->ci_data.cpu_idlelwp;
462 			newl->l_stat = LSONPROC;
463 			newl->l_flag |= LW_RUNNING;
464 		}
465 		/*
466 		 * Only clear want_resched if there are no
467 		 * pending (slow) software interrupts.
468 		 */
469 		ci->ci_want_resched = ci->ci_data.cpu_softints;
470 		spc->spc_flags &= ~SPCF_SWITCHCLEAR;
471 		spc->spc_curpriority = lwp_eprio(newl);
472 	}
473 
474 	/* Items that must be updated with the CPU locked. */
475 	if (!returning) {
476 		/* Update the new LWP's start time. */
477 		newl->l_stime = tv;
478 
479 		/*
480 		 * ci_curlwp changes when a fast soft interrupt occurs.
481 		 * We use cpu_onproc to keep track of which kernel or
482 		 * user thread is running 'underneath' the software
483 		 * interrupt.  This is important for time accounting,
484 		 * itimers and forcing user threads to preempt (aston).
485 		 */
486 		ci->ci_data.cpu_onproc = newl;
487 	}
488 
489 	if (l != newl) {
490 		struct lwp *prevlwp;
491 
492 		/* Release all locks, but leave the current LWP locked */
493 		if (l->l_mutex == spc->spc_mutex) {
494 			/*
495 			 * Drop spc_lwplock, if the current LWP has been moved
496 			 * to the run queue (it is now locked by spc_mutex).
497 			 */
498 			mutex_spin_exit(&spc->spc_lwplock);
499 		} else {
500 			/*
501 			 * Otherwise, drop the spc_mutex, we are done with the
502 			 * run queues.
503 			 */
504 			mutex_spin_exit(spc->spc_mutex);
505 		}
506 
507 		/*
508 		 * Mark that context switch is going to be perfomed
509 		 * for this LWP, to protect it from being switched
510 		 * to on another CPU.
511 		 */
512 		KASSERT(l->l_ctxswtch == 0);
513 		l->l_ctxswtch = 1;
514 		l->l_ncsw++;
515 		l->l_flag &= ~LW_RUNNING;
516 
517 		/*
518 		 * Increase the count of spin-mutexes before the release
519 		 * of the last lock - we must remain at IPL_SCHED during
520 		 * the context switch.
521 		 */
522 		oldspl = MUTEX_SPIN_OLDSPL(ci);
523 		ci->ci_mtx_count--;
524 		lwp_unlock(l);
525 
526 		/* Unlocked, but for statistics only. */
527 		uvmexp.swtch++;
528 
529 		/* Update status for lwpctl, if present. */
530 		if (l->l_lwpctl != NULL)
531 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
532 
533 		/*
534 		 * Save old VM context, unless a soft interrupt
535 		 * handler is blocking.
536 		 */
537 		if (!returning)
538 			pmap_deactivate(l);
539 
540 		/*
541 		 * We may need to spin-wait for if 'newl' is still
542 		 * context switching on another CPU.
543 		 */
544 		if (newl->l_ctxswtch != 0) {
545 			u_int count;
546 			count = SPINLOCK_BACKOFF_MIN;
547 			while (newl->l_ctxswtch)
548 				SPINLOCK_BACKOFF(count);
549 		}
550 
551 		/* Switch to the new LWP.. */
552 		prevlwp = cpu_switchto(l, newl, returning);
553 		ci = curcpu();
554 
555 		/*
556 		 * Switched away - we have new curlwp.
557 		 * Restore VM context and IPL.
558 		 */
559 		pmap_activate(l);
560 		if (prevlwp != NULL) {
561 			/* Normalize the count of the spin-mutexes */
562 			ci->ci_mtx_count++;
563 			/* Unmark the state of context switch */
564 			membar_exit();
565 			prevlwp->l_ctxswtch = 0;
566 		}
567 		splx(oldspl);
568 
569 		/* Update status for lwpctl, if present. */
570 		if (l->l_lwpctl != NULL)
571 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
572 
573 		retval = 1;
574 	} else {
575 		/* Nothing to do - just unlock and return. */
576 		mutex_spin_exit(spc->spc_mutex);
577 		lwp_unlock(l);
578 		retval = 0;
579 	}
580 
581 	KASSERT(l == curlwp);
582 	KASSERT(l->l_stat == LSONPROC);
583 	KASSERT(l->l_cpu == ci);
584 
585 	/*
586 	 * XXXSMP If we are using h/w performance counters, restore context.
587 	 */
588 #if PERFCTRS
589 	if (PMC_ENABLED(l->l_proc)) {
590 		pmc_restore_context(l->l_proc);
591 	}
592 #endif
593 	SYSCALL_TIME_WAKEUP(l);
594 	LOCKDEBUG_BARRIER(NULL, 1);
595 
596 	return retval;
597 }
598 
599 /*
600  * Change process state to be runnable, placing it on the run queue if it is
601  * in memory, and awakening the swapper if it isn't in memory.
602  *
603  * Call with the process and LWP locked.  Will return with the LWP unlocked.
604  */
605 void
606 setrunnable(struct lwp *l)
607 {
608 	struct proc *p = l->l_proc;
609 	struct cpu_info *ci;
610 	sigset_t *ss;
611 
612 	KASSERT((l->l_flag & LW_IDLE) == 0);
613 	KASSERT(mutex_owned(&p->p_smutex));
614 	KASSERT(lwp_locked(l, NULL));
615 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
616 
617 	switch (l->l_stat) {
618 	case LSSTOP:
619 		/*
620 		 * If we're being traced (possibly because someone attached us
621 		 * while we were stopped), check for a signal from the debugger.
622 		 */
623 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
624 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
625 				ss = &l->l_sigpend.sp_set;
626 			else
627 				ss = &p->p_sigpend.sp_set;
628 			sigaddset(ss, p->p_xstat);
629 			signotify(l);
630 		}
631 		p->p_nrlwps++;
632 		break;
633 	case LSSUSPENDED:
634 		l->l_flag &= ~LW_WSUSPEND;
635 		p->p_nrlwps++;
636 		cv_broadcast(&p->p_lwpcv);
637 		break;
638 	case LSSLEEP:
639 		KASSERT(l->l_wchan != NULL);
640 		break;
641 	default:
642 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
643 	}
644 
645 	/*
646 	 * If the LWP was sleeping interruptably, then it's OK to start it
647 	 * again.  If not, mark it as still sleeping.
648 	 */
649 	if (l->l_wchan != NULL) {
650 		l->l_stat = LSSLEEP;
651 		/* lwp_unsleep() will release the lock. */
652 		lwp_unsleep(l);
653 		return;
654 	}
655 
656 	/*
657 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
658 	 * about to call mi_switch(), in which case it will yield.
659 	 */
660 	if ((l->l_flag & LW_RUNNING) != 0) {
661 		l->l_stat = LSONPROC;
662 		l->l_slptime = 0;
663 		lwp_unlock(l);
664 		return;
665 	}
666 
667 	/*
668 	 * Look for a CPU to run.
669 	 * Set the LWP runnable.
670 	 */
671 	ci = sched_takecpu(l);
672 	l->l_cpu = ci;
673 	if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
674 		lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
675 		lwp_lock(l);
676 	}
677 	sched_setrunnable(l);
678 	l->l_stat = LSRUN;
679 	l->l_slptime = 0;
680 
681 	/*
682 	 * If thread is swapped out - wake the swapper to bring it back in.
683 	 * Otherwise, enter it into a run queue.
684 	 */
685 	if (l->l_flag & LW_INMEM) {
686 		sched_enqueue(l, false);
687 		resched_cpu(l);
688 		lwp_unlock(l);
689 	} else {
690 		lwp_unlock(l);
691 		uvm_kick_scheduler();
692 	}
693 }
694 
695 /*
696  * suspendsched:
697  *
698  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
699  */
700 void
701 suspendsched(void)
702 {
703 	CPU_INFO_ITERATOR cii;
704 	struct cpu_info *ci;
705 	struct lwp *l;
706 	struct proc *p;
707 
708 	/*
709 	 * We do this by process in order not to violate the locking rules.
710 	 */
711 	mutex_enter(&proclist_lock);
712 	PROCLIST_FOREACH(p, &allproc) {
713 		mutex_enter(&p->p_smutex);
714 
715 		if ((p->p_flag & PK_SYSTEM) != 0) {
716 			mutex_exit(&p->p_smutex);
717 			continue;
718 		}
719 
720 		p->p_stat = SSTOP;
721 
722 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
723 			if (l == curlwp)
724 				continue;
725 
726 			lwp_lock(l);
727 
728 			/*
729 			 * Set L_WREBOOT so that the LWP will suspend itself
730 			 * when it tries to return to user mode.  We want to
731 			 * try and get to get as many LWPs as possible to
732 			 * the user / kernel boundary, so that they will
733 			 * release any locks that they hold.
734 			 */
735 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
736 
737 			if (l->l_stat == LSSLEEP &&
738 			    (l->l_flag & LW_SINTR) != 0) {
739 				/* setrunnable() will release the lock. */
740 				setrunnable(l);
741 				continue;
742 			}
743 
744 			lwp_unlock(l);
745 		}
746 
747 		mutex_exit(&p->p_smutex);
748 	}
749 	mutex_exit(&proclist_lock);
750 
751 	/*
752 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
753 	 * They'll trap into the kernel and suspend themselves in userret().
754 	 */
755 	for (CPU_INFO_FOREACH(cii, ci)) {
756 		spc_lock(ci);
757 		cpu_need_resched(ci, RESCHED_IMMED);
758 		spc_unlock(ci);
759 	}
760 }
761 
762 /*
763  * sched_unsleep:
764  *
765  *	The is called when the LWP has not been awoken normally but instead
766  *	interrupted: for example, if the sleep timed out.  Because of this,
767  *	it's not a valid action for running or idle LWPs.
768  */
769 static void
770 sched_unsleep(struct lwp *l)
771 {
772 
773 	lwp_unlock(l);
774 	panic("sched_unsleep");
775 }
776 
777 void
778 resched_cpu(struct lwp *l)
779 {
780 	struct cpu_info *ci;
781 
782 	/*
783 	 * XXXSMP
784 	 * Since l->l_cpu persists across a context switch,
785 	 * this gives us *very weak* processor affinity, in
786 	 * that we notify the CPU on which the process last
787 	 * ran that it should try to switch.
788 	 *
789 	 * This does not guarantee that the process will run on
790 	 * that processor next, because another processor might
791 	 * grab it the next time it performs a context switch.
792 	 *
793 	 * This also does not handle the case where its last
794 	 * CPU is running a higher-priority process, but every
795 	 * other CPU is running a lower-priority process.  There
796 	 * are ways to handle this situation, but they're not
797 	 * currently very pretty, and we also need to weigh the
798 	 * cost of moving a process from one CPU to another.
799 	 */
800 	ci = l->l_cpu;
801 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
802 		cpu_need_resched(ci, 0);
803 }
804 
805 static void
806 sched_changepri(struct lwp *l, pri_t pri)
807 {
808 
809 	KASSERT(lwp_locked(l, NULL));
810 
811 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
812 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
813 		sched_dequeue(l);
814 		l->l_priority = pri;
815 		sched_enqueue(l, false);
816 	} else {
817 		l->l_priority = pri;
818 	}
819 	resched_cpu(l);
820 }
821 
822 static void
823 sched_lendpri(struct lwp *l, pri_t pri)
824 {
825 
826 	KASSERT(lwp_locked(l, NULL));
827 
828 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
829 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
830 		sched_dequeue(l);
831 		l->l_inheritedprio = pri;
832 		sched_enqueue(l, false);
833 	} else {
834 		l->l_inheritedprio = pri;
835 	}
836 	resched_cpu(l);
837 }
838 
839 struct lwp *
840 syncobj_noowner(wchan_t wchan)
841 {
842 
843 	return NULL;
844 }
845 
846 
847 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
848 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
849 
850 /*
851  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
852  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
853  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
854  *
855  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
856  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
857  *
858  * If you dont want to bother with the faster/more-accurate formula, you
859  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
860  * (more general) method of calculating the %age of CPU used by a process.
861  */
862 #define	CCPU_SHIFT	(FSHIFT + 1)
863 
864 /*
865  * sched_pstats:
866  *
867  * Update process statistics and check CPU resource allocation.
868  * Call scheduler-specific hook to eventually adjust process/LWP
869  * priorities.
870  */
871 /* ARGSUSED */
872 void
873 sched_pstats(void *arg)
874 {
875 	struct rlimit *rlim;
876 	struct lwp *l;
877 	struct proc *p;
878 	int sig, clkhz;
879 	long runtm;
880 
881 	sched_pstats_ticks++;
882 
883 	mutex_enter(&proclist_lock);
884 	PROCLIST_FOREACH(p, &allproc) {
885 		/*
886 		 * Increment time in/out of memory and sleep time (if
887 		 * sleeping).  We ignore overflow; with 16-bit int's
888 		 * (remember them?) overflow takes 45 days.
889 		 */
890 		mutex_enter(&p->p_smutex);
891 		mutex_spin_enter(&p->p_stmutex);
892 		runtm = p->p_rtime.tv_sec;
893 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
894 			if ((l->l_flag & LW_IDLE) != 0)
895 				continue;
896 			lwp_lock(l);
897 			runtm += l->l_rtime.tv_sec;
898 			l->l_swtime++;
899 			sched_pstats_hook(l);
900 			lwp_unlock(l);
901 
902 			/*
903 			 * p_pctcpu is only for ps.
904 			 */
905 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
906 			if (l->l_slptime < 1) {
907 				clkhz = stathz != 0 ? stathz : hz;
908 #if	(FSHIFT >= CCPU_SHIFT)
909 				l->l_pctcpu += (clkhz == 100) ?
910 				    ((fixpt_t)l->l_cpticks) <<
911 				        (FSHIFT - CCPU_SHIFT) :
912 				    100 * (((fixpt_t) p->p_cpticks)
913 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
914 #else
915 				l->l_pctcpu += ((FSCALE - ccpu) *
916 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
917 #endif
918 				l->l_cpticks = 0;
919 			}
920 		}
921 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
922 		mutex_spin_exit(&p->p_stmutex);
923 
924 		/*
925 		 * Check if the process exceeds its CPU resource allocation.
926 		 * If over max, kill it.
927 		 */
928 		rlim = &p->p_rlimit[RLIMIT_CPU];
929 		sig = 0;
930 		if (runtm >= rlim->rlim_cur) {
931 			if (runtm >= rlim->rlim_max)
932 				sig = SIGKILL;
933 			else {
934 				sig = SIGXCPU;
935 				if (rlim->rlim_cur < rlim->rlim_max)
936 					rlim->rlim_cur += 5;
937 			}
938 		}
939 		mutex_exit(&p->p_smutex);
940 		if (sig) {
941 			psignal(p, sig);
942 		}
943 	}
944 	mutex_exit(&proclist_lock);
945 	uvm_meter();
946 	cv_wakeup(&lbolt);
947 	callout_schedule(&sched_pstats_ch, hz);
948 }
949 
950 void
951 sched_init(void)
952 {
953 
954 	cv_init(&lbolt, "lbolt");
955 	callout_init(&sched_pstats_ch, 0);
956 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
957 	sched_setup();
958 	sched_pstats(NULL);
959 }
960