1 /* $NetBSD: kern_synch.c,v 1.211 2007/12/03 20:26:26 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and 10 * Daniel Sieger. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the NetBSD 23 * Foundation, Inc. and its contributors. 24 * 4. Neither the name of The NetBSD Foundation nor the names of its 25 * contributors may be used to endorse or promote products derived 26 * from this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 38 * POSSIBILITY OF SUCH DAMAGE. 39 */ 40 41 /*- 42 * Copyright (c) 1982, 1986, 1990, 1991, 1993 43 * The Regents of the University of California. All rights reserved. 44 * (c) UNIX System Laboratories, Inc. 45 * All or some portions of this file are derived from material licensed 46 * to the University of California by American Telephone and Telegraph 47 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 48 * the permission of UNIX System Laboratories, Inc. 49 * 50 * Redistribution and use in source and binary forms, with or without 51 * modification, are permitted provided that the following conditions 52 * are met: 53 * 1. Redistributions of source code must retain the above copyright 54 * notice, this list of conditions and the following disclaimer. 55 * 2. Redistributions in binary form must reproduce the above copyright 56 * notice, this list of conditions and the following disclaimer in the 57 * documentation and/or other materials provided with the distribution. 58 * 3. Neither the name of the University nor the names of its contributors 59 * may be used to endorse or promote products derived from this software 60 * without specific prior written permission. 61 * 62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 72 * SUCH DAMAGE. 73 * 74 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95 75 */ 76 77 #include <sys/cdefs.h> 78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.211 2007/12/03 20:26:26 ad Exp $"); 79 80 #include "opt_kstack.h" 81 #include "opt_lockdebug.h" 82 #include "opt_multiprocessor.h" 83 #include "opt_perfctrs.h" 84 85 #define __MUTEX_PRIVATE 86 87 #include <sys/param.h> 88 #include <sys/systm.h> 89 #include <sys/proc.h> 90 #include <sys/kernel.h> 91 #if defined(PERFCTRS) 92 #include <sys/pmc.h> 93 #endif 94 #include <sys/cpu.h> 95 #include <sys/resourcevar.h> 96 #include <sys/sched.h> 97 #include <sys/syscall_stats.h> 98 #include <sys/sleepq.h> 99 #include <sys/lockdebug.h> 100 #include <sys/evcnt.h> 101 #include <sys/intr.h> 102 #include <sys/lwpctl.h> 103 #include <sys/atomic.h> 104 105 #include <uvm/uvm_extern.h> 106 107 callout_t sched_pstats_ch; 108 unsigned int sched_pstats_ticks; 109 110 kcondvar_t lbolt; /* once a second sleep address */ 111 112 static void sched_unsleep(struct lwp *); 113 static void sched_changepri(struct lwp *, pri_t); 114 static void sched_lendpri(struct lwp *, pri_t); 115 116 syncobj_t sleep_syncobj = { 117 SOBJ_SLEEPQ_SORTED, 118 sleepq_unsleep, 119 sleepq_changepri, 120 sleepq_lendpri, 121 syncobj_noowner, 122 }; 123 124 syncobj_t sched_syncobj = { 125 SOBJ_SLEEPQ_SORTED, 126 sched_unsleep, 127 sched_changepri, 128 sched_lendpri, 129 syncobj_noowner, 130 }; 131 132 /* 133 * During autoconfiguration or after a panic, a sleep will simply lower the 134 * priority briefly to allow interrupts, then return. The priority to be 135 * used (safepri) is machine-dependent, thus this value is initialized and 136 * maintained in the machine-dependent layers. This priority will typically 137 * be 0, or the lowest priority that is safe for use on the interrupt stack; 138 * it can be made higher to block network software interrupts after panics. 139 */ 140 int safepri; 141 142 /* 143 * OBSOLETE INTERFACE 144 * 145 * General sleep call. Suspends the current process until a wakeup is 146 * performed on the specified identifier. The process will then be made 147 * runnable with the specified priority. Sleeps at most timo/hz seconds (0 148 * means no timeout). If pri includes PCATCH flag, signals are checked 149 * before and after sleeping, else signals are not checked. Returns 0 if 150 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a 151 * signal needs to be delivered, ERESTART is returned if the current system 152 * call should be restarted if possible, and EINTR is returned if the system 153 * call should be interrupted by the signal (return EINTR). 154 * 155 * The interlock is held until we are on a sleep queue. The interlock will 156 * be locked before returning back to the caller unless the PNORELOCK flag 157 * is specified, in which case the interlock will always be unlocked upon 158 * return. 159 */ 160 int 161 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo, 162 volatile struct simplelock *interlock) 163 { 164 struct lwp *l = curlwp; 165 sleepq_t *sq; 166 int error; 167 168 KASSERT((l->l_pflag & LP_INTR) == 0); 169 170 if (sleepq_dontsleep(l)) { 171 (void)sleepq_abort(NULL, 0); 172 if ((priority & PNORELOCK) != 0) 173 simple_unlock(interlock); 174 return 0; 175 } 176 177 l->l_kpriority = true; 178 sq = sleeptab_lookup(&sleeptab, ident); 179 sleepq_enter(sq, l); 180 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj); 181 182 if (interlock != NULL) { 183 KASSERT(simple_lock_held(interlock)); 184 simple_unlock(interlock); 185 } 186 187 error = sleepq_block(timo, priority & PCATCH); 188 189 if (interlock != NULL && (priority & PNORELOCK) == 0) 190 simple_lock(interlock); 191 192 return error; 193 } 194 195 int 196 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo, 197 kmutex_t *mtx) 198 { 199 struct lwp *l = curlwp; 200 sleepq_t *sq; 201 int error; 202 203 KASSERT((l->l_pflag & LP_INTR) == 0); 204 205 if (sleepq_dontsleep(l)) { 206 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0); 207 return 0; 208 } 209 210 l->l_kpriority = true; 211 sq = sleeptab_lookup(&sleeptab, ident); 212 sleepq_enter(sq, l); 213 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj); 214 mutex_exit(mtx); 215 error = sleepq_block(timo, priority & PCATCH); 216 217 if ((priority & PNORELOCK) == 0) 218 mutex_enter(mtx); 219 220 return error; 221 } 222 223 /* 224 * General sleep call for situations where a wake-up is not expected. 225 */ 226 int 227 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx) 228 { 229 struct lwp *l = curlwp; 230 sleepq_t *sq; 231 int error; 232 233 if (sleepq_dontsleep(l)) 234 return sleepq_abort(NULL, 0); 235 236 if (mtx != NULL) 237 mutex_exit(mtx); 238 l->l_kpriority = true; 239 sq = sleeptab_lookup(&sleeptab, l); 240 sleepq_enter(sq, l); 241 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj); 242 error = sleepq_block(timo, intr); 243 if (mtx != NULL) 244 mutex_enter(mtx); 245 246 return error; 247 } 248 249 /* 250 * OBSOLETE INTERFACE 251 * 252 * Make all processes sleeping on the specified identifier runnable. 253 */ 254 void 255 wakeup(wchan_t ident) 256 { 257 sleepq_t *sq; 258 259 if (cold) 260 return; 261 262 sq = sleeptab_lookup(&sleeptab, ident); 263 sleepq_wake(sq, ident, (u_int)-1); 264 } 265 266 /* 267 * OBSOLETE INTERFACE 268 * 269 * Make the highest priority process first in line on the specified 270 * identifier runnable. 271 */ 272 void 273 wakeup_one(wchan_t ident) 274 { 275 sleepq_t *sq; 276 277 if (cold) 278 return; 279 280 sq = sleeptab_lookup(&sleeptab, ident); 281 sleepq_wake(sq, ident, 1); 282 } 283 284 285 /* 286 * General yield call. Puts the current process back on its run queue and 287 * performs a voluntary context switch. Should only be called when the 288 * current process explicitly requests it (eg sched_yield(2)). 289 */ 290 void 291 yield(void) 292 { 293 struct lwp *l = curlwp; 294 295 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 296 lwp_lock(l); 297 KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock)); 298 KASSERT(l->l_stat == LSONPROC); 299 l->l_kpriority = false; 300 if (l->l_class == SCHED_OTHER) { 301 /* 302 * Only for timeshared threads. It will be reset 303 * by the scheduler in due course. 304 */ 305 l->l_priority = 0; 306 } 307 (void)mi_switch(l); 308 KERNEL_LOCK(l->l_biglocks, l); 309 } 310 311 /* 312 * General preemption call. Puts the current process back on its run queue 313 * and performs an involuntary context switch. 314 */ 315 void 316 preempt(void) 317 { 318 struct lwp *l = curlwp; 319 320 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 321 lwp_lock(l); 322 KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock)); 323 KASSERT(l->l_stat == LSONPROC); 324 l->l_kpriority = false; 325 l->l_nivcsw++; 326 (void)mi_switch(l); 327 KERNEL_LOCK(l->l_biglocks, l); 328 } 329 330 /* 331 * Compute the amount of time during which the current lwp was running. 332 * 333 * - update l_rtime unless it's an idle lwp. 334 */ 335 336 void 337 updatertime(lwp_t *l, const struct timeval *tv) 338 { 339 long s, u; 340 341 if ((l->l_flag & LW_IDLE) != 0) 342 return; 343 344 u = l->l_rtime.tv_usec + (tv->tv_usec - l->l_stime.tv_usec); 345 s = l->l_rtime.tv_sec + (tv->tv_sec - l->l_stime.tv_sec); 346 if (u < 0) { 347 u += 1000000; 348 s--; 349 } else if (u >= 1000000) { 350 u -= 1000000; 351 s++; 352 } 353 l->l_rtime.tv_usec = u; 354 l->l_rtime.tv_sec = s; 355 } 356 357 /* 358 * The machine independent parts of context switch. 359 * 360 * Returns 1 if another LWP was actually run. 361 */ 362 int 363 mi_switch(lwp_t *l) 364 { 365 struct schedstate_percpu *spc; 366 struct lwp *newl; 367 int retval, oldspl; 368 struct cpu_info *ci; 369 struct timeval tv; 370 bool returning; 371 372 KASSERT(lwp_locked(l, NULL)); 373 LOCKDEBUG_BARRIER(l->l_mutex, 1); 374 375 #ifdef KSTACK_CHECK_MAGIC 376 kstack_check_magic(l); 377 #endif 378 379 microtime(&tv); 380 381 KDASSERT(l->l_cpu == curcpu()); 382 ci = l->l_cpu; 383 spc = &ci->ci_schedstate; 384 returning = false; 385 newl = NULL; 386 387 /* 388 * If we have been asked to switch to a specific LWP, then there 389 * is no need to inspect the run queues. If a soft interrupt is 390 * blocking, then return to the interrupted thread without adjusting 391 * VM context or its start time: neither have been changed in order 392 * to take the interrupt. 393 */ 394 if (l->l_switchto != NULL) { 395 if ((l->l_pflag & LP_INTR) != 0) { 396 returning = true; 397 softint_block(l); 398 if ((l->l_flag & LW_TIMEINTR) != 0) 399 updatertime(l, &tv); 400 } 401 newl = l->l_switchto; 402 l->l_switchto = NULL; 403 } 404 #ifndef __HAVE_FAST_SOFTINTS 405 else if (ci->ci_data.cpu_softints != 0) { 406 /* There are pending soft interrupts, so pick one. */ 407 newl = softint_picklwp(); 408 newl->l_stat = LSONPROC; 409 newl->l_flag |= LW_RUNNING; 410 } 411 #endif /* !__HAVE_FAST_SOFTINTS */ 412 413 /* Count time spent in current system call */ 414 if (!returning) { 415 SYSCALL_TIME_SLEEP(l); 416 417 /* 418 * XXXSMP If we are using h/w performance counters, 419 * save context. 420 */ 421 #if PERFCTRS 422 if (PMC_ENABLED(l->l_proc)) { 423 pmc_save_context(l->l_proc); 424 } 425 #endif 426 updatertime(l, &tv); 427 } 428 429 /* 430 * If on the CPU and we have gotten this far, then we must yield. 431 */ 432 mutex_spin_enter(spc->spc_mutex); 433 KASSERT(l->l_stat != LSRUN); 434 if (l->l_stat == LSONPROC && l != newl) { 435 KASSERT(lwp_locked(l, &spc->spc_lwplock)); 436 if ((l->l_flag & LW_IDLE) == 0) { 437 l->l_stat = LSRUN; 438 lwp_setlock(l, spc->spc_mutex); 439 sched_enqueue(l, true); 440 } else 441 l->l_stat = LSIDL; 442 } 443 444 /* 445 * Let sched_nextlwp() select the LWP to run the CPU next. 446 * If no LWP is runnable, select the idle LWP. 447 * 448 * Note that spc_lwplock might not necessary be held, and 449 * new thread would be unlocked after setting the LWP-lock. 450 */ 451 if (newl == NULL) { 452 newl = sched_nextlwp(); 453 if (newl != NULL) { 454 sched_dequeue(newl); 455 KASSERT(lwp_locked(newl, spc->spc_mutex)); 456 newl->l_stat = LSONPROC; 457 newl->l_cpu = ci; 458 newl->l_flag |= LW_RUNNING; 459 lwp_setlock(newl, &spc->spc_lwplock); 460 } else { 461 newl = ci->ci_data.cpu_idlelwp; 462 newl->l_stat = LSONPROC; 463 newl->l_flag |= LW_RUNNING; 464 } 465 /* 466 * Only clear want_resched if there are no 467 * pending (slow) software interrupts. 468 */ 469 ci->ci_want_resched = ci->ci_data.cpu_softints; 470 spc->spc_flags &= ~SPCF_SWITCHCLEAR; 471 spc->spc_curpriority = lwp_eprio(newl); 472 } 473 474 /* Items that must be updated with the CPU locked. */ 475 if (!returning) { 476 /* Update the new LWP's start time. */ 477 newl->l_stime = tv; 478 479 /* 480 * ci_curlwp changes when a fast soft interrupt occurs. 481 * We use cpu_onproc to keep track of which kernel or 482 * user thread is running 'underneath' the software 483 * interrupt. This is important for time accounting, 484 * itimers and forcing user threads to preempt (aston). 485 */ 486 ci->ci_data.cpu_onproc = newl; 487 } 488 489 if (l != newl) { 490 struct lwp *prevlwp; 491 492 /* Release all locks, but leave the current LWP locked */ 493 if (l->l_mutex == spc->spc_mutex) { 494 /* 495 * Drop spc_lwplock, if the current LWP has been moved 496 * to the run queue (it is now locked by spc_mutex). 497 */ 498 mutex_spin_exit(&spc->spc_lwplock); 499 } else { 500 /* 501 * Otherwise, drop the spc_mutex, we are done with the 502 * run queues. 503 */ 504 mutex_spin_exit(spc->spc_mutex); 505 } 506 507 /* 508 * Mark that context switch is going to be perfomed 509 * for this LWP, to protect it from being switched 510 * to on another CPU. 511 */ 512 KASSERT(l->l_ctxswtch == 0); 513 l->l_ctxswtch = 1; 514 l->l_ncsw++; 515 l->l_flag &= ~LW_RUNNING; 516 517 /* 518 * Increase the count of spin-mutexes before the release 519 * of the last lock - we must remain at IPL_SCHED during 520 * the context switch. 521 */ 522 oldspl = MUTEX_SPIN_OLDSPL(ci); 523 ci->ci_mtx_count--; 524 lwp_unlock(l); 525 526 /* Unlocked, but for statistics only. */ 527 uvmexp.swtch++; 528 529 /* Update status for lwpctl, if present. */ 530 if (l->l_lwpctl != NULL) 531 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE; 532 533 /* 534 * Save old VM context, unless a soft interrupt 535 * handler is blocking. 536 */ 537 if (!returning) 538 pmap_deactivate(l); 539 540 /* 541 * We may need to spin-wait for if 'newl' is still 542 * context switching on another CPU. 543 */ 544 if (newl->l_ctxswtch != 0) { 545 u_int count; 546 count = SPINLOCK_BACKOFF_MIN; 547 while (newl->l_ctxswtch) 548 SPINLOCK_BACKOFF(count); 549 } 550 551 /* Switch to the new LWP.. */ 552 prevlwp = cpu_switchto(l, newl, returning); 553 ci = curcpu(); 554 555 /* 556 * Switched away - we have new curlwp. 557 * Restore VM context and IPL. 558 */ 559 pmap_activate(l); 560 if (prevlwp != NULL) { 561 /* Normalize the count of the spin-mutexes */ 562 ci->ci_mtx_count++; 563 /* Unmark the state of context switch */ 564 membar_exit(); 565 prevlwp->l_ctxswtch = 0; 566 } 567 splx(oldspl); 568 569 /* Update status for lwpctl, if present. */ 570 if (l->l_lwpctl != NULL) 571 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci); 572 573 retval = 1; 574 } else { 575 /* Nothing to do - just unlock and return. */ 576 mutex_spin_exit(spc->spc_mutex); 577 lwp_unlock(l); 578 retval = 0; 579 } 580 581 KASSERT(l == curlwp); 582 KASSERT(l->l_stat == LSONPROC); 583 KASSERT(l->l_cpu == ci); 584 585 /* 586 * XXXSMP If we are using h/w performance counters, restore context. 587 */ 588 #if PERFCTRS 589 if (PMC_ENABLED(l->l_proc)) { 590 pmc_restore_context(l->l_proc); 591 } 592 #endif 593 SYSCALL_TIME_WAKEUP(l); 594 LOCKDEBUG_BARRIER(NULL, 1); 595 596 return retval; 597 } 598 599 /* 600 * Change process state to be runnable, placing it on the run queue if it is 601 * in memory, and awakening the swapper if it isn't in memory. 602 * 603 * Call with the process and LWP locked. Will return with the LWP unlocked. 604 */ 605 void 606 setrunnable(struct lwp *l) 607 { 608 struct proc *p = l->l_proc; 609 struct cpu_info *ci; 610 sigset_t *ss; 611 612 KASSERT((l->l_flag & LW_IDLE) == 0); 613 KASSERT(mutex_owned(&p->p_smutex)); 614 KASSERT(lwp_locked(l, NULL)); 615 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex); 616 617 switch (l->l_stat) { 618 case LSSTOP: 619 /* 620 * If we're being traced (possibly because someone attached us 621 * while we were stopped), check for a signal from the debugger. 622 */ 623 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) { 624 if ((sigprop[p->p_xstat] & SA_TOLWP) != 0) 625 ss = &l->l_sigpend.sp_set; 626 else 627 ss = &p->p_sigpend.sp_set; 628 sigaddset(ss, p->p_xstat); 629 signotify(l); 630 } 631 p->p_nrlwps++; 632 break; 633 case LSSUSPENDED: 634 l->l_flag &= ~LW_WSUSPEND; 635 p->p_nrlwps++; 636 cv_broadcast(&p->p_lwpcv); 637 break; 638 case LSSLEEP: 639 KASSERT(l->l_wchan != NULL); 640 break; 641 default: 642 panic("setrunnable: lwp %p state was %d", l, l->l_stat); 643 } 644 645 /* 646 * If the LWP was sleeping interruptably, then it's OK to start it 647 * again. If not, mark it as still sleeping. 648 */ 649 if (l->l_wchan != NULL) { 650 l->l_stat = LSSLEEP; 651 /* lwp_unsleep() will release the lock. */ 652 lwp_unsleep(l); 653 return; 654 } 655 656 /* 657 * If the LWP is still on the CPU, mark it as LSONPROC. It may be 658 * about to call mi_switch(), in which case it will yield. 659 */ 660 if ((l->l_flag & LW_RUNNING) != 0) { 661 l->l_stat = LSONPROC; 662 l->l_slptime = 0; 663 lwp_unlock(l); 664 return; 665 } 666 667 /* 668 * Look for a CPU to run. 669 * Set the LWP runnable. 670 */ 671 ci = sched_takecpu(l); 672 l->l_cpu = ci; 673 if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) { 674 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex); 675 lwp_lock(l); 676 } 677 sched_setrunnable(l); 678 l->l_stat = LSRUN; 679 l->l_slptime = 0; 680 681 /* 682 * If thread is swapped out - wake the swapper to bring it back in. 683 * Otherwise, enter it into a run queue. 684 */ 685 if (l->l_flag & LW_INMEM) { 686 sched_enqueue(l, false); 687 resched_cpu(l); 688 lwp_unlock(l); 689 } else { 690 lwp_unlock(l); 691 uvm_kick_scheduler(); 692 } 693 } 694 695 /* 696 * suspendsched: 697 * 698 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED. 699 */ 700 void 701 suspendsched(void) 702 { 703 CPU_INFO_ITERATOR cii; 704 struct cpu_info *ci; 705 struct lwp *l; 706 struct proc *p; 707 708 /* 709 * We do this by process in order not to violate the locking rules. 710 */ 711 mutex_enter(&proclist_lock); 712 PROCLIST_FOREACH(p, &allproc) { 713 mutex_enter(&p->p_smutex); 714 715 if ((p->p_flag & PK_SYSTEM) != 0) { 716 mutex_exit(&p->p_smutex); 717 continue; 718 } 719 720 p->p_stat = SSTOP; 721 722 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 723 if (l == curlwp) 724 continue; 725 726 lwp_lock(l); 727 728 /* 729 * Set L_WREBOOT so that the LWP will suspend itself 730 * when it tries to return to user mode. We want to 731 * try and get to get as many LWPs as possible to 732 * the user / kernel boundary, so that they will 733 * release any locks that they hold. 734 */ 735 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND); 736 737 if (l->l_stat == LSSLEEP && 738 (l->l_flag & LW_SINTR) != 0) { 739 /* setrunnable() will release the lock. */ 740 setrunnable(l); 741 continue; 742 } 743 744 lwp_unlock(l); 745 } 746 747 mutex_exit(&p->p_smutex); 748 } 749 mutex_exit(&proclist_lock); 750 751 /* 752 * Kick all CPUs to make them preempt any LWPs running in user mode. 753 * They'll trap into the kernel and suspend themselves in userret(). 754 */ 755 for (CPU_INFO_FOREACH(cii, ci)) { 756 spc_lock(ci); 757 cpu_need_resched(ci, RESCHED_IMMED); 758 spc_unlock(ci); 759 } 760 } 761 762 /* 763 * sched_unsleep: 764 * 765 * The is called when the LWP has not been awoken normally but instead 766 * interrupted: for example, if the sleep timed out. Because of this, 767 * it's not a valid action for running or idle LWPs. 768 */ 769 static void 770 sched_unsleep(struct lwp *l) 771 { 772 773 lwp_unlock(l); 774 panic("sched_unsleep"); 775 } 776 777 void 778 resched_cpu(struct lwp *l) 779 { 780 struct cpu_info *ci; 781 782 /* 783 * XXXSMP 784 * Since l->l_cpu persists across a context switch, 785 * this gives us *very weak* processor affinity, in 786 * that we notify the CPU on which the process last 787 * ran that it should try to switch. 788 * 789 * This does not guarantee that the process will run on 790 * that processor next, because another processor might 791 * grab it the next time it performs a context switch. 792 * 793 * This also does not handle the case where its last 794 * CPU is running a higher-priority process, but every 795 * other CPU is running a lower-priority process. There 796 * are ways to handle this situation, but they're not 797 * currently very pretty, and we also need to weigh the 798 * cost of moving a process from one CPU to another. 799 */ 800 ci = l->l_cpu; 801 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority) 802 cpu_need_resched(ci, 0); 803 } 804 805 static void 806 sched_changepri(struct lwp *l, pri_t pri) 807 { 808 809 KASSERT(lwp_locked(l, NULL)); 810 811 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) { 812 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex)); 813 sched_dequeue(l); 814 l->l_priority = pri; 815 sched_enqueue(l, false); 816 } else { 817 l->l_priority = pri; 818 } 819 resched_cpu(l); 820 } 821 822 static void 823 sched_lendpri(struct lwp *l, pri_t pri) 824 { 825 826 KASSERT(lwp_locked(l, NULL)); 827 828 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) { 829 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex)); 830 sched_dequeue(l); 831 l->l_inheritedprio = pri; 832 sched_enqueue(l, false); 833 } else { 834 l->l_inheritedprio = pri; 835 } 836 resched_cpu(l); 837 } 838 839 struct lwp * 840 syncobj_noowner(wchan_t wchan) 841 { 842 843 return NULL; 844 } 845 846 847 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ 848 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ 849 850 /* 851 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the 852 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below 853 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT). 854 * 855 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used: 856 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits). 857 * 858 * If you dont want to bother with the faster/more-accurate formula, you 859 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate 860 * (more general) method of calculating the %age of CPU used by a process. 861 */ 862 #define CCPU_SHIFT (FSHIFT + 1) 863 864 /* 865 * sched_pstats: 866 * 867 * Update process statistics and check CPU resource allocation. 868 * Call scheduler-specific hook to eventually adjust process/LWP 869 * priorities. 870 */ 871 /* ARGSUSED */ 872 void 873 sched_pstats(void *arg) 874 { 875 struct rlimit *rlim; 876 struct lwp *l; 877 struct proc *p; 878 int sig, clkhz; 879 long runtm; 880 881 sched_pstats_ticks++; 882 883 mutex_enter(&proclist_lock); 884 PROCLIST_FOREACH(p, &allproc) { 885 /* 886 * Increment time in/out of memory and sleep time (if 887 * sleeping). We ignore overflow; with 16-bit int's 888 * (remember them?) overflow takes 45 days. 889 */ 890 mutex_enter(&p->p_smutex); 891 mutex_spin_enter(&p->p_stmutex); 892 runtm = p->p_rtime.tv_sec; 893 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 894 if ((l->l_flag & LW_IDLE) != 0) 895 continue; 896 lwp_lock(l); 897 runtm += l->l_rtime.tv_sec; 898 l->l_swtime++; 899 sched_pstats_hook(l); 900 lwp_unlock(l); 901 902 /* 903 * p_pctcpu is only for ps. 904 */ 905 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT; 906 if (l->l_slptime < 1) { 907 clkhz = stathz != 0 ? stathz : hz; 908 #if (FSHIFT >= CCPU_SHIFT) 909 l->l_pctcpu += (clkhz == 100) ? 910 ((fixpt_t)l->l_cpticks) << 911 (FSHIFT - CCPU_SHIFT) : 912 100 * (((fixpt_t) p->p_cpticks) 913 << (FSHIFT - CCPU_SHIFT)) / clkhz; 914 #else 915 l->l_pctcpu += ((FSCALE - ccpu) * 916 (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT; 917 #endif 918 l->l_cpticks = 0; 919 } 920 } 921 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; 922 mutex_spin_exit(&p->p_stmutex); 923 924 /* 925 * Check if the process exceeds its CPU resource allocation. 926 * If over max, kill it. 927 */ 928 rlim = &p->p_rlimit[RLIMIT_CPU]; 929 sig = 0; 930 if (runtm >= rlim->rlim_cur) { 931 if (runtm >= rlim->rlim_max) 932 sig = SIGKILL; 933 else { 934 sig = SIGXCPU; 935 if (rlim->rlim_cur < rlim->rlim_max) 936 rlim->rlim_cur += 5; 937 } 938 } 939 mutex_exit(&p->p_smutex); 940 if (sig) { 941 psignal(p, sig); 942 } 943 } 944 mutex_exit(&proclist_lock); 945 uvm_meter(); 946 cv_wakeup(&lbolt); 947 callout_schedule(&sched_pstats_ch, hz); 948 } 949 950 void 951 sched_init(void) 952 { 953 954 cv_init(&lbolt, "lbolt"); 955 callout_init(&sched_pstats_ch, 0); 956 callout_setfunc(&sched_pstats_ch, sched_pstats, NULL); 957 sched_setup(); 958 sched_pstats(NULL); 959 } 960