xref: /netbsd-src/sys/kern/kern_synch.c (revision 453f6b99a313f2f372963fe81f55bf6f811e3f55)
1 /*	$NetBSD: kern_synch.c,v 1.124 2003/01/22 12:52:15 yamt Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*-
41  * Copyright (c) 1982, 1986, 1990, 1991, 1993
42  *	The Regents of the University of California.  All rights reserved.
43  * (c) UNIX System Laboratories, Inc.
44  * All or some portions of this file are derived from material licensed
45  * to the University of California by American Telephone and Telegraph
46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47  * the permission of UNIX System Laboratories, Inc.
48  *
49  * Redistribution and use in source and binary forms, with or without
50  * modification, are permitted provided that the following conditions
51  * are met:
52  * 1. Redistributions of source code must retain the above copyright
53  *    notice, this list of conditions and the following disclaimer.
54  * 2. Redistributions in binary form must reproduce the above copyright
55  *    notice, this list of conditions and the following disclaimer in the
56  *    documentation and/or other materials provided with the distribution.
57  * 3. All advertising materials mentioning features or use of this software
58  *    must display the following acknowledgement:
59  *	This product includes software developed by the University of
60  *	California, Berkeley and its contributors.
61  * 4. Neither the name of the University nor the names of its contributors
62  *    may be used to endorse or promote products derived from this software
63  *    without specific prior written permission.
64  *
65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75  * SUCH DAMAGE.
76  *
77  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
78  */
79 
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.124 2003/01/22 12:52:15 yamt Exp $");
82 
83 #include "opt_ddb.h"
84 #include "opt_ktrace.h"
85 #include "opt_kstack.h"
86 #include "opt_lockdebug.h"
87 #include "opt_multiprocessor.h"
88 #include "opt_perfctrs.h"
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/callout.h>
93 #include <sys/proc.h>
94 #include <sys/kernel.h>
95 #include <sys/buf.h>
96 #if defined(PERFCTRS)
97 #include <sys/pmc.h>
98 #endif
99 #include <sys/signalvar.h>
100 #include <sys/resourcevar.h>
101 #include <sys/sched.h>
102 #include <sys/sa.h>
103 #include <sys/savar.h>
104 
105 #include <uvm/uvm_extern.h>
106 
107 #ifdef KTRACE
108 #include <sys/ktrace.h>
109 #endif
110 
111 #include <machine/cpu.h>
112 
113 int	lbolt;			/* once a second sleep address */
114 int	rrticks;		/* number of hardclock ticks per roundrobin() */
115 
116 /*
117  * The global scheduler state.
118  */
119 struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
120 __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
121 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
122 
123 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
124 
125 void schedcpu(void *);
126 void updatepri(struct lwp *);
127 void endtsleep(void *);
128 
129 __inline void awaken(struct lwp *);
130 
131 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
132 
133 
134 
135 /*
136  * Force switch among equal priority processes every 100ms.
137  * Called from hardclock every hz/10 == rrticks hardclock ticks.
138  */
139 /* ARGSUSED */
140 void
141 roundrobin(struct cpu_info *ci)
142 {
143 	struct schedstate_percpu *spc = &ci->ci_schedstate;
144 
145 	spc->spc_rrticks = rrticks;
146 
147 	if (curlwp != NULL) {
148 		if (spc->spc_flags & SPCF_SEENRR) {
149 			/*
150 			 * The process has already been through a roundrobin
151 			 * without switching and may be hogging the CPU.
152 			 * Indicate that the process should yield.
153 			 */
154 			spc->spc_flags |= SPCF_SHOULDYIELD;
155 		} else
156 			spc->spc_flags |= SPCF_SEENRR;
157 	}
158 	need_resched(curcpu());
159 }
160 
161 /*
162  * Constants for digital decay and forget:
163  *	90% of (p_estcpu) usage in 5 * loadav time
164  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
165  *          Note that, as ps(1) mentions, this can let percentages
166  *          total over 100% (I've seen 137.9% for 3 processes).
167  *
168  * Note that hardclock updates p_estcpu and p_cpticks independently.
169  *
170  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
171  * That is, the system wants to compute a value of decay such
172  * that the following for loop:
173  * 	for (i = 0; i < (5 * loadavg); i++)
174  * 		p_estcpu *= decay;
175  * will compute
176  * 	p_estcpu *= 0.1;
177  * for all values of loadavg:
178  *
179  * Mathematically this loop can be expressed by saying:
180  * 	decay ** (5 * loadavg) ~= .1
181  *
182  * The system computes decay as:
183  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
184  *
185  * We wish to prove that the system's computation of decay
186  * will always fulfill the equation:
187  * 	decay ** (5 * loadavg) ~= .1
188  *
189  * If we compute b as:
190  * 	b = 2 * loadavg
191  * then
192  * 	decay = b / (b + 1)
193  *
194  * We now need to prove two things:
195  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
196  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
197  *
198  * Facts:
199  *         For x close to zero, exp(x) =~ 1 + x, since
200  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
201  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
202  *         For x close to zero, ln(1+x) =~ x, since
203  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
204  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
205  *         ln(.1) =~ -2.30
206  *
207  * Proof of (1):
208  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
209  *	solving for factor,
210  *      ln(factor) =~ (-2.30/5*loadav), or
211  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
212  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
213  *
214  * Proof of (2):
215  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
216  *	solving for power,
217  *      power*ln(b/(b+1)) =~ -2.30, or
218  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
219  *
220  * Actual power values for the implemented algorithm are as follows:
221  *      loadav: 1       2       3       4
222  *      power:  5.68    10.32   14.94   19.55
223  */
224 
225 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
226 #define	loadfactor(loadav)	(2 * (loadav))
227 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
228 
229 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
230 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
231 
232 /*
233  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
234  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
235  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
236  *
237  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
238  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
239  *
240  * If you dont want to bother with the faster/more-accurate formula, you
241  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
242  * (more general) method of calculating the %age of CPU used by a process.
243  */
244 #define	CCPU_SHIFT	11
245 
246 /*
247  * Recompute process priorities, every hz ticks.
248  */
249 /* ARGSUSED */
250 void
251 schedcpu(void *arg)
252 {
253 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
254 	struct lwp *l;
255 	struct proc *p;
256 	int s, minslp;
257 	unsigned int newcpu;
258 	int clkhz;
259 
260 	proclist_lock_read();
261 	LIST_FOREACH(p, &allproc, p_list) {
262 		/*
263 		 * Increment time in/out of memory and sleep time
264 		 * (if sleeping).  We ignore overflow; with 16-bit int's
265 		 * (remember them?) overflow takes 45 days.
266 		 */
267 		minslp = 2;
268 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
269 			l->l_swtime++;
270 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
271 			    l->l_stat == LSSUSPENDED) {
272 				l->l_slptime++;
273 				minslp = min(minslp, l->l_slptime);
274 			} else
275 				minslp = 0;
276 		}
277 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
278 		/*
279 		 * If the process has slept the entire second,
280 		 * stop recalculating its priority until it wakes up.
281 		 */
282 		if (minslp > 1)
283 			continue;
284 		s = splstatclock();	/* prevent state changes */
285 		/*
286 		 * p_pctcpu is only for ps.
287 		 */
288 		clkhz = stathz != 0 ? stathz : hz;
289 #if	(FSHIFT >= CCPU_SHIFT)
290 		p->p_pctcpu += (clkhz == 100)?
291 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
292                 	100 * (((fixpt_t) p->p_cpticks)
293 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
294 #else
295 		p->p_pctcpu += ((FSCALE - ccpu) *
296 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
297 #endif
298 		p->p_cpticks = 0;
299 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
300 		p->p_estcpu = newcpu;
301 		splx(s);	/* Done with the process CPU ticks update */
302 		SCHED_LOCK(s);
303 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
304 			if (l->l_slptime > 1)
305 				continue;
306 			resetpriority(l);
307 			if (l->l_priority >= PUSER) {
308 				if (l->l_stat == LSRUN &&
309 				    (l->l_flag & L_INMEM) &&
310 				    (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
311 					remrunqueue(l);
312 					l->l_priority = l->l_usrpri;
313 					setrunqueue(l);
314 				} else
315 					l->l_priority = l->l_usrpri;
316 			}
317 		}
318 		SCHED_UNLOCK(s);
319 	}
320 	proclist_unlock_read();
321 	uvm_meter();
322 	wakeup((caddr_t)&lbolt);
323 	callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
324 }
325 
326 /*
327  * Recalculate the priority of a process after it has slept for a while.
328  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
329  * least six times the loadfactor will decay p_estcpu to zero.
330  */
331 void
332 updatepri(struct lwp *l)
333 {
334 	struct proc *p = l->l_proc;
335 	unsigned int newcpu;
336 	fixpt_t loadfac;
337 
338 	SCHED_ASSERT_LOCKED();
339 
340 	newcpu = p->p_estcpu;
341 	loadfac = loadfactor(averunnable.ldavg[0]);
342 
343 	if (l->l_slptime > 5 * loadfac)
344 		p->p_estcpu = 0; /* XXX NJWLWP */
345 	else {
346 		l->l_slptime--;	/* the first time was done in schedcpu */
347 		while (newcpu && --l->l_slptime)
348 			newcpu = (int) decay_cpu(loadfac, newcpu);
349 		p->p_estcpu = newcpu;
350 	}
351 	resetpriority(l);
352 }
353 
354 /*
355  * During autoconfiguration or after a panic, a sleep will simply
356  * lower the priority briefly to allow interrupts, then return.
357  * The priority to be used (safepri) is machine-dependent, thus this
358  * value is initialized and maintained in the machine-dependent layers.
359  * This priority will typically be 0, or the lowest priority
360  * that is safe for use on the interrupt stack; it can be made
361  * higher to block network software interrupts after panics.
362  */
363 int safepri;
364 
365 /*
366  * General sleep call.  Suspends the current process until a wakeup is
367  * performed on the specified identifier.  The process will then be made
368  * runnable with the specified priority.  Sleeps at most timo/hz seconds
369  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
370  * before and after sleeping, else signals are not checked.  Returns 0 if
371  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
372  * signal needs to be delivered, ERESTART is returned if the current system
373  * call should be restarted if possible, and EINTR is returned if the system
374  * call should be interrupted by the signal (return EINTR).
375  *
376  * The interlock is held until the scheduler_slock is acquired.  The
377  * interlock will be locked before returning back to the caller
378  * unless the PNORELOCK flag is specified, in which case the
379  * interlock will always be unlocked upon return.
380  */
381 int
382 ltsleep(void *ident, int priority, const char *wmesg, int timo,
383     __volatile struct simplelock *interlock)
384 {
385 	struct lwp *l = curlwp;
386 	struct proc *p = l ? l->l_proc : NULL;
387 	struct slpque *qp;
388 	int sig, s;
389 	int catch = priority & PCATCH;
390 	int relock = (priority & PNORELOCK) == 0;
391 	int exiterr = (priority & PNOEXITERR) == 0;
392 
393 	/*
394 	 * XXXSMP
395 	 * This is probably bogus.  Figure out what the right
396 	 * thing to do here really is.
397 	 * Note that not sleeping if ltsleep is called with curlwp == NULL
398 	 * in the shutdown case is disgusting but partly necessary given
399 	 * how shutdown (barely) works.
400 	 */
401 	if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
402 		/*
403 		 * After a panic, or during autoconfiguration,
404 		 * just give interrupts a chance, then just return;
405 		 * don't run any other procs or panic below,
406 		 * in case this is the idle process and already asleep.
407 		 */
408 		s = splhigh();
409 		splx(safepri);
410 		splx(s);
411 		if (interlock != NULL && relock == 0)
412 			simple_unlock(interlock);
413 		return (0);
414 	}
415 
416 	KASSERT(p != NULL);
417 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
418 
419 #ifdef KTRACE
420 	if (KTRPOINT(p, KTR_CSW))
421 		ktrcsw(p, 1, 0);
422 #endif
423 
424 	SCHED_LOCK(s);
425 
426 #ifdef DIAGNOSTIC
427 	if (ident == NULL)
428 		panic("ltsleep: ident == NULL");
429 	if (l->l_stat != LSONPROC)
430 		panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
431 	if (l->l_back != NULL)
432 		panic("ltsleep: p_back != NULL");
433 #endif
434 
435 	l->l_wchan = ident;
436 	l->l_wmesg = wmesg;
437 	l->l_slptime = 0;
438 	l->l_priority = priority & PRIMASK;
439 
440 	qp = SLPQUE(ident);
441 	if (qp->sq_head == 0)
442 		qp->sq_head = l;
443 	else {
444 		*qp->sq_tailp = l;
445 	}
446 	*(qp->sq_tailp = &l->l_forw) = 0;
447 
448 	if (timo)
449 		callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
450 
451 	/*
452 	 * We can now release the interlock; the scheduler_slock
453 	 * is held, so a thread can't get in to do wakeup() before
454 	 * we do the switch.
455 	 *
456 	 * XXX We leave the code block here, after inserting ourselves
457 	 * on the sleep queue, because we might want a more clever
458 	 * data structure for the sleep queues at some point.
459 	 */
460 	if (interlock != NULL)
461 		simple_unlock(interlock);
462 
463 	/*
464 	 * We put ourselves on the sleep queue and start our timeout
465 	 * before calling CURSIG, as we could stop there, and a wakeup
466 	 * or a SIGCONT (or both) could occur while we were stopped.
467 	 * A SIGCONT would cause us to be marked as SSLEEP
468 	 * without resuming us, thus we must be ready for sleep
469 	 * when CURSIG is called.  If the wakeup happens while we're
470 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
471 	 */
472 	if (catch) {
473 		l->l_flag |= L_SINTR;
474 		if ((sig = CURSIG(l)) != 0) {
475 			if (l->l_wchan != NULL)
476 				unsleep(l);
477 			l->l_stat = LSONPROC;
478 			SCHED_UNLOCK(s);
479 			goto resume;
480 		}
481 		if (l->l_wchan == NULL) {
482 			catch = 0;
483 			SCHED_UNLOCK(s);
484 			goto resume;
485 		}
486 	} else
487 		sig = 0;
488 	l->l_stat = LSSLEEP;
489 	p->p_nrlwps--;
490 	p->p_stats->p_ru.ru_nvcsw++;
491 	SCHED_ASSERT_LOCKED();
492 	if (l->l_flag & L_SA)
493 		sa_switch(l, SA_UPCALL_BLOCKED);
494 	else
495 		mi_switch(l, NULL);
496 
497 #if	defined(DDB) && !defined(GPROF)
498 	/* handy breakpoint location after process "wakes" */
499 	__asm(".globl bpendtsleep ; bpendtsleep:");
500 #endif
501 	/*
502 	 * p->p_nrlwps is incremented by whoever made us runnable again,
503 	 * either setrunnable() or awaken().
504 	 */
505 
506 	SCHED_ASSERT_UNLOCKED();
507 	splx(s);
508 
509  resume:
510 	KDASSERT(l->l_cpu != NULL);
511 	KDASSERT(l->l_cpu == curcpu());
512 	l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
513 
514 	l->l_flag &= ~L_SINTR;
515 	if (l->l_flag & L_TIMEOUT) {
516 		l->l_flag &= ~L_TIMEOUT;
517 		if (sig == 0) {
518 #ifdef KTRACE
519 			if (KTRPOINT(p, KTR_CSW))
520 				ktrcsw(p, 0, 0);
521 #endif
522 			if (relock && interlock != NULL)
523 				simple_lock(interlock);
524 			return (EWOULDBLOCK);
525 		}
526 	} else if (timo)
527 		callout_stop(&l->l_tsleep_ch);
528 	if (catch && (sig != 0 || (sig = CURSIG(l)) != 0)) {
529 #ifdef KTRACE
530 		if (KTRPOINT(p, KTR_CSW))
531 			ktrcsw(p, 0, 0);
532 #endif
533 		if (relock && interlock != NULL)
534 			simple_lock(interlock);
535 		if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
536 			return (EINTR);
537 		return (ERESTART);
538 	}
539 	/* XXXNJW this is very much a kluge.
540 	 * revisit. a better way of preventing looping/hanging syscalls like
541 	 * wait4() and _lwp_wait() from wedging an exiting process
542 	 * would be preferred.
543 	 */
544 	if (catch && ((p->p_flag & P_WEXIT) && exiterr))
545 		return (EINTR);
546 #ifdef KTRACE
547 	if (KTRPOINT(p, KTR_CSW))
548 		ktrcsw(p, 0, 0);
549 #endif
550 	if (relock && interlock != NULL)
551 		simple_lock(interlock);
552 	return (0);
553 }
554 
555 /*
556  * Implement timeout for tsleep.
557  * If process hasn't been awakened (wchan non-zero),
558  * set timeout flag and undo the sleep.  If proc
559  * is stopped, just unsleep so it will remain stopped.
560  */
561 void
562 endtsleep(void *arg)
563 {
564 	struct lwp *l;
565 	int s;
566 
567 	l = (struct lwp *)arg;
568 	SCHED_LOCK(s);
569 	if (l->l_wchan) {
570 		if (l->l_stat == LSSLEEP)
571 			setrunnable(l);
572 		else
573 			unsleep(l);
574 		l->l_flag |= L_TIMEOUT;
575 	}
576 	SCHED_UNLOCK(s);
577 }
578 
579 /*
580  * Remove a process from its wait queue
581  */
582 void
583 unsleep(struct lwp *l)
584 {
585 	struct slpque *qp;
586 	struct lwp **hp;
587 
588 	SCHED_ASSERT_LOCKED();
589 
590 	if (l->l_wchan) {
591 		hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
592 		while (*hp != l)
593 			hp = &(*hp)->l_forw;
594 		*hp = l->l_forw;
595 		if (qp->sq_tailp == &l->l_forw)
596 			qp->sq_tailp = hp;
597 		l->l_wchan = 0;
598 	}
599 }
600 
601 /*
602  * Optimized-for-wakeup() version of setrunnable().
603  */
604 __inline void
605 awaken(struct lwp *l)
606 {
607 
608 	SCHED_ASSERT_LOCKED();
609 
610 	if (l->l_slptime > 1)
611 		updatepri(l);
612 	l->l_slptime = 0;
613 	l->l_stat = LSRUN;
614 	l->l_proc->p_nrlwps++;
615 	/*
616 	 * Since curpriority is a user priority, p->p_priority
617 	 * is always better than curpriority on the last CPU on
618 	 * which it ran.
619 	 *
620 	 * XXXSMP See affinity comment in resched_proc().
621 	 */
622 	if (l->l_flag & L_INMEM) {
623 		setrunqueue(l);
624 		if (l->l_flag & L_SA)
625 			l->l_proc->p_sa->sa_woken = l;
626 		KASSERT(l->l_cpu != NULL);
627 		need_resched(l->l_cpu);
628 	} else
629 		sched_wakeup(&proc0);
630 }
631 
632 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
633 void
634 sched_unlock_idle(void)
635 {
636 
637 	simple_unlock(&sched_lock);
638 }
639 
640 void
641 sched_lock_idle(void)
642 {
643 
644 	simple_lock(&sched_lock);
645 }
646 #endif /* MULTIPROCESSOR || LOCKDEBUG */
647 
648 /*
649  * Make all processes sleeping on the specified identifier runnable.
650  */
651 
652 void
653 wakeup(void *ident)
654 {
655 	int s;
656 
657 	SCHED_ASSERT_UNLOCKED();
658 
659 	SCHED_LOCK(s);
660 	sched_wakeup(ident);
661 	SCHED_UNLOCK(s);
662 }
663 
664 void
665 sched_wakeup(void *ident)
666 {
667 	struct slpque *qp;
668 	struct lwp *l, **q;
669 
670 	SCHED_ASSERT_LOCKED();
671 
672 	qp = SLPQUE(ident);
673  restart:
674 	for (q = &qp->sq_head; (l = *q) != NULL; ) {
675 #ifdef DIAGNOSTIC
676 		if (l->l_back || (l->l_stat != LSSLEEP &&
677 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
678 			panic("wakeup");
679 #endif
680 		if (l->l_wchan == ident) {
681 			l->l_wchan = 0;
682 			*q = l->l_forw;
683 			if (qp->sq_tailp == &l->l_forw)
684 				qp->sq_tailp = q;
685 			if (l->l_stat == LSSLEEP) {
686 				awaken(l);
687 				goto restart;
688 			}
689 		} else
690 			q = &l->l_forw;
691 	}
692 }
693 
694 /*
695  * Make the highest priority process first in line on the specified
696  * identifier runnable.
697  */
698 void
699 wakeup_one(void *ident)
700 {
701 	struct slpque *qp;
702 	struct lwp *l, **q;
703 	struct lwp *best_sleepp, **best_sleepq;
704 	struct lwp *best_stopp, **best_stopq;
705 	int s;
706 
707 	best_sleepp = best_stopp = NULL;
708 	best_sleepq = best_stopq = NULL;
709 
710 	SCHED_LOCK(s);
711 
712 	qp = SLPQUE(ident);
713 
714 	for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
715 #ifdef DIAGNOSTIC
716 		if (l->l_back || (l->l_stat != LSSLEEP &&
717 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
718 			panic("wakeup_one");
719 #endif
720 		if (l->l_wchan == ident) {
721 			if (l->l_stat == LSSLEEP) {
722 				if (best_sleepp == NULL ||
723 				    l->l_priority < best_sleepp->l_priority) {
724 					best_sleepp = l;
725 					best_sleepq = q;
726 				}
727 			} else {
728 				if (best_stopp == NULL ||
729 				    l->l_priority < best_stopp->l_priority) {
730 				    	best_stopp = l;
731 					best_stopq = q;
732 				}
733 			}
734 		}
735 	}
736 
737 	/*
738 	 * Consider any SSLEEP process higher than the highest priority SSTOP
739 	 * process.
740 	 */
741 	if (best_sleepp != NULL) {
742 		l = best_sleepp;
743 		q = best_sleepq;
744 	} else {
745 		l = best_stopp;
746 		q = best_stopq;
747 	}
748 
749 	if (l != NULL) {
750 		l->l_wchan = NULL;
751 		*q = l->l_forw;
752 		if (qp->sq_tailp == &l->l_forw)
753 			qp->sq_tailp = q;
754 		if (l->l_stat == LSSLEEP)
755 			awaken(l);
756 	}
757 	SCHED_UNLOCK(s);
758 }
759 
760 /*
761  * General yield call.  Puts the current process back on its run queue and
762  * performs a voluntary context switch.  Should only be called when the
763  * current process explicitly requests it (eg sched_yield(2) in compat code).
764  */
765 void
766 yield(void)
767 {
768 	struct lwp *l = curlwp;
769 	int s;
770 
771 	SCHED_LOCK(s);
772 	l->l_priority = l->l_usrpri;
773 	l->l_stat = LSRUN;
774 	setrunqueue(l);
775 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
776 	mi_switch(l, NULL);
777 	SCHED_ASSERT_UNLOCKED();
778 	splx(s);
779 }
780 
781 /*
782  * General preemption call.  Puts the current process back on its run queue
783  * and performs an involuntary context switch.  If a process is supplied,
784  * we switch to that process.  Otherwise, we use the normal process selection
785  * criteria.
786  */
787 
788 void
789 preempt(int more)
790 {
791 	struct lwp *l = curlwp;
792 	int r, s;
793 
794 	SCHED_LOCK(s);
795 	l->l_priority = l->l_usrpri;
796 	l->l_stat = LSRUN;
797 	setrunqueue(l);
798 	l->l_proc->p_stats->p_ru.ru_nivcsw++;
799 	r = mi_switch(l, NULL);
800 	SCHED_ASSERT_UNLOCKED();
801 	splx(s);
802 	if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
803 		sa_preempt(l);
804 }
805 
806 /*
807  * The machine independent parts of context switch.
808  * Must be called at splsched() (no higher!) and with
809  * the sched_lock held.
810  * Switch to "new" if non-NULL, otherwise let cpu_switch choose
811  * the next lwp.
812  *
813  * Returns 1 if another process was actually run.
814  */
815 int
816 mi_switch(struct lwp *l, struct lwp *newl)
817 {
818 	struct schedstate_percpu *spc;
819 	struct rlimit *rlim;
820 	long s, u;
821 	struct timeval tv;
822 #if defined(MULTIPROCESSOR)
823 	int hold_count;
824 #endif
825 	struct proc *p = l->l_proc;
826 	int retval;
827 
828 	SCHED_ASSERT_LOCKED();
829 
830 #if defined(MULTIPROCESSOR)
831 	/*
832 	 * Release the kernel_lock, as we are about to yield the CPU.
833 	 * The scheduler lock is still held until cpu_switch()
834 	 * selects a new process and removes it from the run queue.
835 	 */
836 	if (l->l_flag & L_BIGLOCK)
837 		hold_count = spinlock_release_all(&kernel_lock);
838 #endif
839 
840 	KDASSERT(l->l_cpu != NULL);
841 	KDASSERT(l->l_cpu == curcpu());
842 
843 	spc = &l->l_cpu->ci_schedstate;
844 
845 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
846 	spinlock_switchcheck();
847 #endif
848 #ifdef LOCKDEBUG
849 	simple_lock_switchcheck();
850 #endif
851 
852 	/*
853 	 * Compute the amount of time during which the current
854 	 * process was running.
855 	 */
856 	microtime(&tv);
857 	u = p->p_rtime.tv_usec +
858 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
859 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
860 	if (u < 0) {
861 		u += 1000000;
862 		s--;
863 	} else if (u >= 1000000) {
864 		u -= 1000000;
865 		s++;
866 	}
867 	p->p_rtime.tv_usec = u;
868 	p->p_rtime.tv_sec = s;
869 
870 	/*
871 	 * Check if the process exceeds its cpu resource allocation.
872 	 * If over max, kill it.  In any case, if it has run for more
873 	 * than 10 minutes, reduce priority to give others a chance.
874 	 */
875 	rlim = &p->p_rlimit[RLIMIT_CPU];
876 	if (s >= rlim->rlim_cur) {
877 		/*
878 		 * XXXSMP: we're inside the scheduler lock perimeter;
879 		 * use sched_psignal.
880 		 */
881 		if (s >= rlim->rlim_max)
882 			sched_psignal(p, SIGKILL);
883 		else {
884 			sched_psignal(p, SIGXCPU);
885 			if (rlim->rlim_cur < rlim->rlim_max)
886 				rlim->rlim_cur += 5;
887 		}
888 	}
889 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
890 	    p->p_nice == NZERO) {
891 		p->p_nice = autoniceval + NZERO;
892 		resetpriority(l);
893 	}
894 
895 	/*
896 	 * Process is about to yield the CPU; clear the appropriate
897 	 * scheduling flags.
898 	 */
899 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
900 
901 #ifdef KSTACK_CHECK_MAGIC
902 	kstack_check_magic(l);
903 #endif
904 
905 	/*
906 	 * If we are using h/w performance counters, save context.
907 	 */
908 #if PERFCTRS
909 	if (PMC_ENABLED(p))
910 		pmc_save_context(p);
911 #endif
912 
913 	/*
914 	 * Switch to the new current process.  When we
915 	 * run again, we'll return back here.
916 	 */
917 	uvmexp.swtch++;
918 	if (newl == NULL) {
919 		retval = cpu_switch(l, NULL);
920 	} else {
921 		remrunqueue(newl);
922 		cpu_switchto(l, newl);
923 		retval = 0;
924 	}
925 
926 	/*
927 	 * If we are using h/w performance counters, restore context.
928 	 */
929 #if PERFCTRS
930 	if (PMC_ENABLED(p))
931 		pmc_restore_context(p);
932 #endif
933 
934 	/*
935 	 * Make sure that MD code released the scheduler lock before
936 	 * resuming us.
937 	 */
938 	SCHED_ASSERT_UNLOCKED();
939 
940 	/*
941 	 * We're running again; record our new start time.  We might
942 	 * be running on a new CPU now, so don't use the cache'd
943 	 * schedstate_percpu pointer.
944 	 */
945 	KDASSERT(l->l_cpu != NULL);
946 	KDASSERT(l->l_cpu == curcpu());
947 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
948 
949 #if defined(MULTIPROCESSOR)
950 	/*
951 	 * Reacquire the kernel_lock now.  We do this after we've
952 	 * released the scheduler lock to avoid deadlock, and before
953 	 * we reacquire the interlock.
954 	 */
955 	if (l->l_flag & L_BIGLOCK)
956 		spinlock_acquire_count(&kernel_lock, hold_count);
957 #endif
958 
959 	return retval;
960 }
961 
962 /*
963  * Initialize the (doubly-linked) run queues
964  * to be empty.
965  */
966 void
967 rqinit()
968 {
969 	int i;
970 
971 	for (i = 0; i < RUNQUE_NQS; i++)
972 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
973 		    (struct lwp *)&sched_qs[i];
974 }
975 
976 static __inline void
977 resched_proc(struct lwp *l, u_char pri)
978 {
979 	struct cpu_info *ci;
980 
981 	/*
982 	 * XXXSMP
983 	 * Since l->l_cpu persists across a context switch,
984 	 * this gives us *very weak* processor affinity, in
985 	 * that we notify the CPU on which the process last
986 	 * ran that it should try to switch.
987 	 *
988 	 * This does not guarantee that the process will run on
989 	 * that processor next, because another processor might
990 	 * grab it the next time it performs a context switch.
991 	 *
992 	 * This also does not handle the case where its last
993 	 * CPU is running a higher-priority process, but every
994 	 * other CPU is running a lower-priority process.  There
995 	 * are ways to handle this situation, but they're not
996 	 * currently very pretty, and we also need to weigh the
997 	 * cost of moving a process from one CPU to another.
998 	 *
999 	 * XXXSMP
1000 	 * There is also the issue of locking the other CPU's
1001 	 * sched state, which we currently do not do.
1002 	 */
1003 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
1004 	if (pri < ci->ci_schedstate.spc_curpriority)
1005 		need_resched(ci);
1006 }
1007 
1008 /*
1009  * Change process state to be runnable,
1010  * placing it on the run queue if it is in memory,
1011  * and awakening the swapper if it isn't in memory.
1012  */
1013 void
1014 setrunnable(struct lwp *l)
1015 {
1016 	struct proc *p = l->l_proc;
1017 
1018 	SCHED_ASSERT_LOCKED();
1019 
1020 	switch (l->l_stat) {
1021 	case 0:
1022 	case LSRUN:
1023 	case LSONPROC:
1024 	case LSZOMB:
1025 	case LSDEAD:
1026 	default:
1027 		panic("setrunnable");
1028 	case LSSTOP:
1029 		/*
1030 		 * If we're being traced (possibly because someone attached us
1031 		 * while we were stopped), check for a signal from the debugger.
1032 		 */
1033 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
1034 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
1035 			CHECKSIGS(p);
1036 		}
1037 	case LSSLEEP:
1038 		unsleep(l);		/* e.g. when sending signals */
1039 		break;
1040 
1041 	case LSIDL:
1042 		break;
1043 	case LSSUSPENDED:
1044 		break;
1045 	}
1046 	l->l_stat = LSRUN;
1047 	p->p_nrlwps++;
1048 
1049 	if (l->l_flag & L_INMEM)
1050 		setrunqueue(l);
1051 
1052 	if (l->l_slptime > 1)
1053 		updatepri(l);
1054 	l->l_slptime = 0;
1055 	if ((l->l_flag & L_INMEM) == 0)
1056 		sched_wakeup((caddr_t)&proc0);
1057 	else
1058 		resched_proc(l, l->l_priority);
1059 }
1060 
1061 /*
1062  * Compute the priority of a process when running in user mode.
1063  * Arrange to reschedule if the resulting priority is better
1064  * than that of the current process.
1065  */
1066 void
1067 resetpriority(struct lwp *l)
1068 {
1069 	unsigned int newpriority;
1070 	struct proc *p = l->l_proc;
1071 
1072 	SCHED_ASSERT_LOCKED();
1073 
1074 	newpriority = PUSER + p->p_estcpu +
1075 			NICE_WEIGHT * (p->p_nice - NZERO);
1076 	newpriority = min(newpriority, MAXPRI);
1077 	l->l_usrpri = newpriority;
1078 	resched_proc(l, l->l_usrpri);
1079 }
1080 
1081 /*
1082  * Recompute priority for all LWPs in a process.
1083  */
1084 void
1085 resetprocpriority(struct proc *p)
1086 {
1087 	struct lwp *l;
1088 
1089 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
1090 	    resetpriority(l);
1091 }
1092 
1093 /*
1094  * We adjust the priority of the current process.  The priority of a process
1095  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
1096  * is increased here.  The formula for computing priorities (in kern_synch.c)
1097  * will compute a different value each time p_estcpu increases. This can
1098  * cause a switch, but unless the priority crosses a PPQ boundary the actual
1099  * queue will not change.  The cpu usage estimator ramps up quite quickly
1100  * when the process is running (linearly), and decays away exponentially, at
1101  * a rate which is proportionally slower when the system is busy.  The basic
1102  * principle is that the system will 90% forget that the process used a lot
1103  * of CPU time in 5 * loadav seconds.  This causes the system to favor
1104  * processes which haven't run much recently, and to round-robin among other
1105  * processes.
1106  */
1107 
1108 void
1109 schedclock(struct lwp *l)
1110 {
1111 	struct proc *p = l->l_proc;
1112 	int s;
1113 
1114 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1115 	SCHED_LOCK(s);
1116 	resetpriority(l);
1117 	SCHED_UNLOCK(s);
1118 
1119 	if (l->l_priority >= PUSER)
1120 		l->l_priority = l->l_usrpri;
1121 }
1122 
1123 void
1124 suspendsched()
1125 {
1126 	struct lwp *l;
1127 	int s;
1128 
1129 	/*
1130 	 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
1131 	 * LSSUSPENDED.
1132 	 */
1133 	proclist_lock_read();
1134 	SCHED_LOCK(s);
1135 	LIST_FOREACH(l, &alllwp, l_list) {
1136 		if ((l->l_proc->p_flag & P_SYSTEM) != 0)
1137 			continue;
1138 
1139 		switch (l->l_stat) {
1140 		case LSRUN:
1141 			l->l_proc->p_nrlwps--;
1142 			if ((l->l_flag & L_INMEM) != 0)
1143 				remrunqueue(l);
1144 			/* FALLTHROUGH */
1145 		case LSSLEEP:
1146 			l->l_stat = LSSUSPENDED;
1147 			break;
1148 		case LSONPROC:
1149 			/*
1150 			 * XXX SMP: we need to deal with processes on
1151 			 * others CPU !
1152 			 */
1153 			break;
1154 		default:
1155 			break;
1156 		}
1157 	}
1158 	SCHED_UNLOCK(s);
1159 	proclist_unlock_read();
1160 }
1161 
1162 /*
1163  * Low-level routines to access the run queue.  Optimised assembler
1164  * routines can override these.
1165  */
1166 
1167 #ifndef __HAVE_MD_RUNQUEUE
1168 
1169 /*
1170  * The primitives that manipulate the run queues.  whichqs tells which
1171  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
1172  * into queues, remrunqueue removes them from queues.  The running process is
1173  * on no queue, other processes are on a queue related to p->p_priority,
1174  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1175  * available queues.
1176  */
1177 
1178 void
1179 setrunqueue(struct lwp *l)
1180 {
1181 	struct prochd *rq;
1182 	struct lwp *prev;
1183 	int whichq;
1184 
1185 #ifdef DIAGNOSTIC
1186 	if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
1187 		panic("setrunqueue");
1188 #endif
1189 	whichq = l->l_priority / 4;
1190 	sched_whichqs |= (1<<whichq);
1191 	rq = &sched_qs[whichq];
1192 	prev = rq->ph_rlink;
1193 	l->l_forw = (struct lwp *)rq;
1194 	rq->ph_rlink = l;
1195 	prev->l_forw = l;
1196 	l->l_back = prev;
1197 }
1198 
1199 void
1200 remrunqueue(struct lwp *l)
1201 {
1202 	struct lwp *prev, *next;
1203 	int whichq;
1204 
1205 	whichq = l->l_priority / 4;
1206 #ifdef DIAGNOSTIC
1207 	if (((sched_whichqs & (1<<whichq)) == 0))
1208 		panic("remrunqueue");
1209 #endif
1210 	prev = l->l_back;
1211 	l->l_back = NULL;
1212 	next = l->l_forw;
1213 	prev->l_forw = next;
1214 	next->l_back = prev;
1215 	if (prev == next)
1216 		sched_whichqs &= ~(1<<whichq);
1217 }
1218 
1219 #endif
1220