xref: /netbsd-src/sys/kern/kern_synch.c (revision 0920b4f20b78ab1ccd9f2312fbe10deaf000cbf3)
1 /*	$NetBSD: kern_synch.c,v 1.194 2007/08/06 11:48:23 yamt Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10  * Daniel Sieger.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the NetBSD
23  *	Foundation, Inc. and its contributors.
24  * 4. Neither the name of The NetBSD Foundation nor the names of its
25  *    contributors may be used to endorse or promote products derived
26  *    from this software without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38  * POSSIBILITY OF SUCH DAMAGE.
39  */
40 
41 /*-
42  * Copyright (c) 1982, 1986, 1990, 1991, 1993
43  *	The Regents of the University of California.  All rights reserved.
44  * (c) UNIX System Laboratories, Inc.
45  * All or some portions of this file are derived from material licensed
46  * to the University of California by American Telephone and Telegraph
47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48  * the permission of UNIX System Laboratories, Inc.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
75  */
76 
77 #include <sys/cdefs.h>
78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.194 2007/08/06 11:48:23 yamt Exp $");
79 
80 #include "opt_kstack.h"
81 #include "opt_lockdebug.h"
82 #include "opt_multiprocessor.h"
83 #include "opt_perfctrs.h"
84 
85 #define	__MUTEX_PRIVATE
86 
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/proc.h>
90 #include <sys/kernel.h>
91 #if defined(PERFCTRS)
92 #include <sys/pmc.h>
93 #endif
94 #include <sys/cpu.h>
95 #include <sys/resourcevar.h>
96 #include <sys/sched.h>
97 #include <sys/syscall_stats.h>
98 #include <sys/sleepq.h>
99 #include <sys/lockdebug.h>
100 #include <sys/evcnt.h>
101 
102 #include <uvm/uvm_extern.h>
103 
104 callout_t sched_pstats_ch;
105 unsigned int sched_pstats_ticks;
106 
107 kcondvar_t	lbolt;			/* once a second sleep address */
108 
109 static void	sched_unsleep(struct lwp *);
110 static void	sched_changepri(struct lwp *, pri_t);
111 static void	sched_lendpri(struct lwp *, pri_t);
112 
113 syncobj_t sleep_syncobj = {
114 	SOBJ_SLEEPQ_SORTED,
115 	sleepq_unsleep,
116 	sleepq_changepri,
117 	sleepq_lendpri,
118 	syncobj_noowner,
119 };
120 
121 syncobj_t sched_syncobj = {
122 	SOBJ_SLEEPQ_SORTED,
123 	sched_unsleep,
124 	sched_changepri,
125 	sched_lendpri,
126 	syncobj_noowner,
127 };
128 
129 /*
130  * During autoconfiguration or after a panic, a sleep will simply lower the
131  * priority briefly to allow interrupts, then return.  The priority to be
132  * used (safepri) is machine-dependent, thus this value is initialized and
133  * maintained in the machine-dependent layers.  This priority will typically
134  * be 0, or the lowest priority that is safe for use on the interrupt stack;
135  * it can be made higher to block network software interrupts after panics.
136  */
137 int	safepri;
138 
139 /*
140  * OBSOLETE INTERFACE
141  *
142  * General sleep call.  Suspends the current process until a wakeup is
143  * performed on the specified identifier.  The process will then be made
144  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
145  * means no timeout).  If pri includes PCATCH flag, signals are checked
146  * before and after sleeping, else signals are not checked.  Returns 0 if
147  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
148  * signal needs to be delivered, ERESTART is returned if the current system
149  * call should be restarted if possible, and EINTR is returned if the system
150  * call should be interrupted by the signal (return EINTR).
151  *
152  * The interlock is held until we are on a sleep queue. The interlock will
153  * be locked before returning back to the caller unless the PNORELOCK flag
154  * is specified, in which case the interlock will always be unlocked upon
155  * return.
156  */
157 int
158 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
159 	volatile struct simplelock *interlock)
160 {
161 	struct lwp *l = curlwp;
162 	sleepq_t *sq;
163 	int error;
164 
165 	if (sleepq_dontsleep(l)) {
166 		(void)sleepq_abort(NULL, 0);
167 		if ((priority & PNORELOCK) != 0)
168 			simple_unlock(interlock);
169 		return 0;
170 	}
171 
172 	sq = sleeptab_lookup(&sleeptab, ident);
173 	sleepq_enter(sq, l);
174 	sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
175 
176 	if (interlock != NULL) {
177 		LOCK_ASSERT(simple_lock_held(interlock));
178 		simple_unlock(interlock);
179 	}
180 
181 	error = sleepq_block(timo, priority & PCATCH);
182 
183 	if (interlock != NULL && (priority & PNORELOCK) == 0)
184 		simple_lock(interlock);
185 
186 	return error;
187 }
188 
189 int
190 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
191 	kmutex_t *mtx)
192 {
193 	struct lwp *l = curlwp;
194 	sleepq_t *sq;
195 	int error;
196 
197 	if (sleepq_dontsleep(l)) {
198 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
199 		return 0;
200 	}
201 
202 	sq = sleeptab_lookup(&sleeptab, ident);
203 	sleepq_enter(sq, l);
204 	sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
205 	mutex_exit(mtx);
206 	error = sleepq_block(timo, priority & PCATCH);
207 
208 	if ((priority & PNORELOCK) == 0)
209 		mutex_enter(mtx);
210 
211 	return error;
212 }
213 
214 /*
215  * General sleep call for situations where a wake-up is not expected.
216  */
217 int
218 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
219 {
220 	struct lwp *l = curlwp;
221 	sleepq_t *sq;
222 	int error;
223 
224 	if (sleepq_dontsleep(l))
225 		return sleepq_abort(NULL, 0);
226 
227 	if (mtx != NULL)
228 		mutex_exit(mtx);
229 	sq = sleeptab_lookup(&sleeptab, l);
230 	sleepq_enter(sq, l);
231 	sleepq_enqueue(sq, sched_kpri(l), l, wmesg, &sleep_syncobj);
232 	error = sleepq_block(timo, intr);
233 	if (mtx != NULL)
234 		mutex_enter(mtx);
235 
236 	return error;
237 }
238 
239 /*
240  * OBSOLETE INTERFACE
241  *
242  * Make all processes sleeping on the specified identifier runnable.
243  */
244 void
245 wakeup(wchan_t ident)
246 {
247 	sleepq_t *sq;
248 
249 	if (cold)
250 		return;
251 
252 	sq = sleeptab_lookup(&sleeptab, ident);
253 	sleepq_wake(sq, ident, (u_int)-1);
254 }
255 
256 /*
257  * OBSOLETE INTERFACE
258  *
259  * Make the highest priority process first in line on the specified
260  * identifier runnable.
261  */
262 void
263 wakeup_one(wchan_t ident)
264 {
265 	sleepq_t *sq;
266 
267 	if (cold)
268 		return;
269 
270 	sq = sleeptab_lookup(&sleeptab, ident);
271 	sleepq_wake(sq, ident, 1);
272 }
273 
274 
275 /*
276  * General yield call.  Puts the current process back on its run queue and
277  * performs a voluntary context switch.  Should only be called when the
278  * current process explicitly requests it (eg sched_yield(2) in compat code).
279  */
280 void
281 yield(void)
282 {
283 	struct lwp *l = curlwp;
284 
285 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
286 	lwp_lock(l);
287 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
288 	KASSERT(l->l_stat == LSONPROC);
289 	l->l_priority = l->l_usrpri;
290 	(void)mi_switch(l);
291 	KERNEL_LOCK(l->l_biglocks, l);
292 }
293 
294 /*
295  * General preemption call.  Puts the current process back on its run queue
296  * and performs an involuntary context switch.
297  */
298 void
299 preempt(void)
300 {
301 	struct lwp *l = curlwp;
302 
303 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
304 	lwp_lock(l);
305 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
306 	KASSERT(l->l_stat == LSONPROC);
307 	l->l_priority = l->l_usrpri;
308 	l->l_nivcsw++;
309 	(void)mi_switch(l);
310 	KERNEL_LOCK(l->l_biglocks, l);
311 }
312 
313 /*
314  * Compute the amount of time during which the current lwp was running.
315  *
316  * - update l_rtime unless it's an idle lwp.
317  * - update spc_runtime for the next lwp.
318  */
319 
320 static inline void
321 updatertime(struct lwp *l, struct schedstate_percpu *spc)
322 {
323 	struct timeval tv;
324 	long s, u;
325 
326 	if ((l->l_flag & LW_IDLE) != 0) {
327 		microtime(&spc->spc_runtime);
328 		return;
329 	}
330 
331 	microtime(&tv);
332 	u = l->l_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
333 	s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
334 	if (u < 0) {
335 		u += 1000000;
336 		s--;
337 	} else if (u >= 1000000) {
338 		u -= 1000000;
339 		s++;
340 	}
341 	l->l_rtime.tv_usec = u;
342 	l->l_rtime.tv_sec = s;
343 
344 	spc->spc_runtime = tv;
345 }
346 
347 /*
348  * The machine independent parts of context switch.
349  *
350  * Returns 1 if another LWP was actually run.
351  */
352 int
353 mi_switch(struct lwp *l)
354 {
355 	struct schedstate_percpu *spc;
356 	struct lwp *newl;
357 	int retval, oldspl;
358 
359 	KASSERT(lwp_locked(l, NULL));
360 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
361 
362 #ifdef KSTACK_CHECK_MAGIC
363 	kstack_check_magic(l);
364 #endif
365 
366 	/*
367 	 * It's safe to read the per CPU schedstate unlocked here, as all we
368 	 * are after is the run time and that's guarenteed to have been last
369 	 * updated by this CPU.
370 	 */
371 	KDASSERT(l->l_cpu == curcpu());
372 
373 	/*
374 	 * Process is about to yield the CPU; clear the appropriate
375 	 * scheduling flags.
376 	 */
377 	spc = &l->l_cpu->ci_schedstate;
378 	newl = NULL;
379 
380 	if (l->l_switchto != NULL) {
381 		newl = l->l_switchto;
382 		l->l_switchto = NULL;
383 	}
384 
385 	/* Count time spent in current system call */
386 	SYSCALL_TIME_SLEEP(l);
387 
388 	/*
389 	 * XXXSMP If we are using h/w performance counters,
390 	 * save context.
391 	 */
392 #if PERFCTRS
393 	if (PMC_ENABLED(l->l_proc)) {
394 		pmc_save_context(l->l_proc);
395 	}
396 #endif
397 	updatertime(l, spc);
398 
399 	/*
400 	 * If on the CPU and we have gotten this far, then we must yield.
401 	 */
402 	mutex_spin_enter(spc->spc_mutex);
403 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
404 	KASSERT(l->l_stat != LSRUN);
405 	if (l->l_stat == LSONPROC) {
406 		KASSERT(lwp_locked(l, &spc->spc_lwplock));
407 		if ((l->l_flag & LW_IDLE) == 0) {
408 			l->l_stat = LSRUN;
409 			lwp_setlock(l, spc->spc_mutex);
410 			sched_enqueue(l, true);
411 		} else
412 			l->l_stat = LSIDL;
413 	}
414 
415 	/*
416 	 * Let sched_nextlwp() select the LWP to run the CPU next.
417 	 * If no LWP is runnable, switch to the idle LWP.
418 	 */
419 	if (newl == NULL) {
420 		newl = sched_nextlwp();
421 		if (newl != NULL) {
422 			sched_dequeue(newl);
423 			KASSERT(lwp_locked(newl, spc->spc_mutex));
424 			newl->l_stat = LSONPROC;
425 			newl->l_cpu = l->l_cpu;
426 			newl->l_flag |= LW_RUNNING;
427 			lwp_setlock(newl, &spc->spc_lwplock);
428 		} else {
429 			newl = l->l_cpu->ci_data.cpu_idlelwp;
430 			newl->l_stat = LSONPROC;
431 			newl->l_flag |= LW_RUNNING;
432 		}
433 		spc->spc_curpriority = newl->l_usrpri;
434 		newl->l_priority = newl->l_usrpri;
435 		cpu_did_resched();
436 	}
437 
438 	if (l != newl) {
439 		struct lwp *prevlwp;
440 
441 		/*
442 		 * If the old LWP has been moved to a run queue above,
443 		 * drop the general purpose LWP lock: it's now locked
444 		 * by the scheduler lock.
445 		 *
446 		 * Otherwise, drop the scheduler lock.  We're done with
447 		 * the run queues for now.
448 		 */
449 		if (l->l_mutex == spc->spc_mutex) {
450 			mutex_spin_exit(&spc->spc_lwplock);
451 		} else {
452 			mutex_spin_exit(spc->spc_mutex);
453 		}
454 
455 		/* Unlocked, but for statistics only. */
456 		uvmexp.swtch++;
457 
458 		/* Save old VM context. */
459 		pmap_deactivate(l);
460 
461 		/* Switch to the new LWP.. */
462 		l->l_ncsw++;
463 		l->l_flag &= ~LW_RUNNING;
464 		oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
465 		prevlwp = cpu_switchto(l, newl);
466 
467 		/*
468 		 * .. we have switched away and are now back so we must
469 		 * be the new curlwp.  prevlwp is who we replaced.
470 		 */
471 		curlwp = l;
472 		if (prevlwp != NULL) {
473 			curcpu()->ci_mtx_oldspl = oldspl;
474 			lwp_unlock(prevlwp);
475 		} else {
476 			splx(oldspl);
477 		}
478 
479 		/* Restore VM context. */
480 		pmap_activate(l);
481 		retval = 1;
482 	} else {
483 		/* Nothing to do - just unlock and return. */
484 		mutex_spin_exit(spc->spc_mutex);
485 		lwp_unlock(l);
486 		retval = 0;
487 	}
488 
489 	KASSERT(l == curlwp);
490 	KASSERT(l->l_stat == LSONPROC);
491 
492 	/*
493 	 * XXXSMP If we are using h/w performance counters, restore context.
494 	 */
495 #if PERFCTRS
496 	if (PMC_ENABLED(l->l_proc)) {
497 		pmc_restore_context(l->l_proc);
498 	}
499 #endif
500 
501 	/*
502 	 * We're running again; record our new start time.  We might
503 	 * be running on a new CPU now, so don't use the cached
504 	 * schedstate_percpu pointer.
505 	 */
506 	SYSCALL_TIME_WAKEUP(l);
507 	KDASSERT(l->l_cpu == curcpu());
508 	LOCKDEBUG_BARRIER(NULL, 1);
509 
510 	return retval;
511 }
512 
513 /*
514  * Change process state to be runnable, placing it on the run queue if it is
515  * in memory, and awakening the swapper if it isn't in memory.
516  *
517  * Call with the process and LWP locked.  Will return with the LWP unlocked.
518  */
519 void
520 setrunnable(struct lwp *l)
521 {
522 	struct proc *p = l->l_proc;
523 	sigset_t *ss;
524 
525 	KASSERT((l->l_flag & LW_IDLE) == 0);
526 	KASSERT(mutex_owned(&p->p_smutex));
527 	KASSERT(lwp_locked(l, NULL));
528 
529 	switch (l->l_stat) {
530 	case LSSTOP:
531 		/*
532 		 * If we're being traced (possibly because someone attached us
533 		 * while we were stopped), check for a signal from the debugger.
534 		 */
535 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
536 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
537 				ss = &l->l_sigpend.sp_set;
538 			else
539 				ss = &p->p_sigpend.sp_set;
540 			sigaddset(ss, p->p_xstat);
541 			signotify(l);
542 		}
543 		p->p_nrlwps++;
544 		break;
545 	case LSSUSPENDED:
546 		l->l_flag &= ~LW_WSUSPEND;
547 		p->p_nrlwps++;
548 		cv_broadcast(&p->p_lwpcv);
549 		break;
550 	case LSSLEEP:
551 		KASSERT(l->l_wchan != NULL);
552 		break;
553 	default:
554 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
555 	}
556 
557 	/*
558 	 * If the LWP was sleeping interruptably, then it's OK to start it
559 	 * again.  If not, mark it as still sleeping.
560 	 */
561 	if (l->l_wchan != NULL) {
562 		l->l_stat = LSSLEEP;
563 		/* lwp_unsleep() will release the lock. */
564 		lwp_unsleep(l);
565 		return;
566 	}
567 
568 	/*
569 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
570 	 * about to call mi_switch(), in which case it will yield.
571 	 */
572 	if ((l->l_flag & LW_RUNNING) != 0) {
573 		l->l_stat = LSONPROC;
574 		l->l_slptime = 0;
575 		lwp_unlock(l);
576 		return;
577 	}
578 
579 	/*
580 	 * Set the LWP runnable.  If it's swapped out, we need to wake the swapper
581 	 * to bring it back in.  Otherwise, enter it into a run queue.
582 	 */
583 	if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
584 		spc_lock(l->l_cpu);
585 		lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
586 	}
587 
588 	sched_setrunnable(l);
589 	l->l_stat = LSRUN;
590 	l->l_slptime = 0;
591 
592 	if (l->l_flag & LW_INMEM) {
593 		sched_enqueue(l, false);
594 		resched_cpu(l);
595 		lwp_unlock(l);
596 	} else {
597 		lwp_unlock(l);
598 		uvm_kick_scheduler();
599 	}
600 }
601 
602 /*
603  * suspendsched:
604  *
605  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
606  */
607 void
608 suspendsched(void)
609 {
610 	CPU_INFO_ITERATOR cii;
611 	struct cpu_info *ci;
612 	struct lwp *l;
613 	struct proc *p;
614 
615 	/*
616 	 * We do this by process in order not to violate the locking rules.
617 	 */
618 	mutex_enter(&proclist_mutex);
619 	PROCLIST_FOREACH(p, &allproc) {
620 		mutex_enter(&p->p_smutex);
621 
622 		if ((p->p_flag & PK_SYSTEM) != 0) {
623 			mutex_exit(&p->p_smutex);
624 			continue;
625 		}
626 
627 		p->p_stat = SSTOP;
628 
629 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
630 			if (l == curlwp)
631 				continue;
632 
633 			lwp_lock(l);
634 
635 			/*
636 			 * Set L_WREBOOT so that the LWP will suspend itself
637 			 * when it tries to return to user mode.  We want to
638 			 * try and get to get as many LWPs as possible to
639 			 * the user / kernel boundary, so that they will
640 			 * release any locks that they hold.
641 			 */
642 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
643 
644 			if (l->l_stat == LSSLEEP &&
645 			    (l->l_flag & LW_SINTR) != 0) {
646 				/* setrunnable() will release the lock. */
647 				setrunnable(l);
648 				continue;
649 			}
650 
651 			lwp_unlock(l);
652 		}
653 
654 		mutex_exit(&p->p_smutex);
655 	}
656 	mutex_exit(&proclist_mutex);
657 
658 	/*
659 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
660 	 * They'll trap into the kernel and suspend themselves in userret().
661 	 */
662 	for (CPU_INFO_FOREACH(cii, ci))
663 		cpu_need_resched(ci, 0);
664 }
665 
666 /*
667  * sched_kpri:
668  *
669  *	Scale a priority level to a kernel priority level, usually
670  *	for an LWP that is about to sleep.
671  */
672 pri_t
673 sched_kpri(struct lwp *l)
674 {
675 	/*
676 	 * Scale user priorities (127 -> 50) up to kernel priorities
677 	 * in the range (49 -> 8).  Reserve the top 8 kernel priorities
678 	 * for high priority kthreads.  Kernel priorities passed in
679 	 * are left "as is".  XXX This is somewhat arbitrary.
680 	 */
681 	static const uint8_t kpri_tab[] = {
682 		 0,   1,   2,   3,   4,   5,   6,   7,
683 		 8,   9,  10,  11,  12,  13,  14,  15,
684 		16,  17,  18,  19,  20,  21,  22,  23,
685 		24,  25,  26,  27,  28,  29,  30,  31,
686 		32,  33,  34,  35,  36,  37,  38,  39,
687 		40,  41,  42,  43,  44,  45,  46,  47,
688 		48,  49,   8,   8,   9,   9,  10,  10,
689 		11,  11,  12,  12,  13,  14,  14,  15,
690 		15,  16,  16,  17,  17,  18,  18,  19,
691 		20,  20,  21,  21,  22,  22,  23,  23,
692 		24,  24,  25,  26,  26,  27,  27,  28,
693 		28,  29,  29,  30,  30,  31,  32,  32,
694 		33,  33,  34,  34,  35,  35,  36,  36,
695 		37,  38,  38,  39,  39,  40,  40,  41,
696 		41,  42,  42,  43,  44,  44,  45,  45,
697 		46,  46,  47,  47,  48,  48,  49,  49,
698 	};
699 
700 	return (pri_t)kpri_tab[l->l_usrpri];
701 }
702 
703 /*
704  * sched_unsleep:
705  *
706  *	The is called when the LWP has not been awoken normally but instead
707  *	interrupted: for example, if the sleep timed out.  Because of this,
708  *	it's not a valid action for running or idle LWPs.
709  */
710 static void
711 sched_unsleep(struct lwp *l)
712 {
713 
714 	lwp_unlock(l);
715 	panic("sched_unsleep");
716 }
717 
718 inline void
719 resched_cpu(struct lwp *l)
720 {
721 	struct cpu_info *ci;
722 	const pri_t pri = lwp_eprio(l);
723 
724 	/*
725 	 * XXXSMP
726 	 * Since l->l_cpu persists across a context switch,
727 	 * this gives us *very weak* processor affinity, in
728 	 * that we notify the CPU on which the process last
729 	 * ran that it should try to switch.
730 	 *
731 	 * This does not guarantee that the process will run on
732 	 * that processor next, because another processor might
733 	 * grab it the next time it performs a context switch.
734 	 *
735 	 * This also does not handle the case where its last
736 	 * CPU is running a higher-priority process, but every
737 	 * other CPU is running a lower-priority process.  There
738 	 * are ways to handle this situation, but they're not
739 	 * currently very pretty, and we also need to weigh the
740 	 * cost of moving a process from one CPU to another.
741 	 */
742 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
743 	if (pri < ci->ci_schedstate.spc_curpriority)
744 		cpu_need_resched(ci, 0);
745 }
746 
747 static void
748 sched_changepri(struct lwp *l, pri_t pri)
749 {
750 
751 	KASSERT(lwp_locked(l, NULL));
752 
753 	l->l_usrpri = pri;
754 	if (l->l_priority < PUSER)
755 		return;
756 
757 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
758 		l->l_priority = pri;
759 		return;
760 	}
761 
762 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
763 
764 	sched_dequeue(l);
765 	l->l_priority = pri;
766 	sched_enqueue(l, false);
767 	resched_cpu(l);
768 }
769 
770 static void
771 sched_lendpri(struct lwp *l, pri_t pri)
772 {
773 
774 	KASSERT(lwp_locked(l, NULL));
775 
776 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
777 		l->l_inheritedprio = pri;
778 		return;
779 	}
780 
781 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
782 
783 	sched_dequeue(l);
784 	l->l_inheritedprio = pri;
785 	sched_enqueue(l, false);
786 	resched_cpu(l);
787 }
788 
789 struct lwp *
790 syncobj_noowner(wchan_t wchan)
791 {
792 
793 	return NULL;
794 }
795 
796 
797 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
798 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
799 
800 /*
801  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
802  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
803  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
804  *
805  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
806  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
807  *
808  * If you dont want to bother with the faster/more-accurate formula, you
809  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
810  * (more general) method of calculating the %age of CPU used by a process.
811  */
812 #define	CCPU_SHIFT	(FSHIFT + 1)
813 
814 /*
815  * sched_pstats:
816  *
817  * Update process statistics and check CPU resource allocation.
818  * Call scheduler-specific hook to eventually adjust process/LWP
819  * priorities.
820  *
821  *	XXXSMP This needs to be reorganised in order to reduce the locking
822  *	burden.
823  */
824 /* ARGSUSED */
825 void
826 sched_pstats(void *arg)
827 {
828 	struct rlimit *rlim;
829 	struct lwp *l;
830 	struct proc *p;
831 	int minslp, sig, clkhz;
832 	long runtm;
833 
834 	sched_pstats_ticks++;
835 
836 	mutex_enter(&proclist_mutex);
837 	PROCLIST_FOREACH(p, &allproc) {
838 		/*
839 		 * Increment time in/out of memory and sleep time (if
840 		 * sleeping).  We ignore overflow; with 16-bit int's
841 		 * (remember them?) overflow takes 45 days.
842 		 */
843 		minslp = 2;
844 		mutex_enter(&p->p_smutex);
845 		mutex_spin_enter(&p->p_stmutex);
846 		runtm = p->p_rtime.tv_sec;
847 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
848 			if ((l->l_flag & LW_IDLE) != 0)
849 				continue;
850 			lwp_lock(l);
851 			runtm += l->l_rtime.tv_sec;
852 			l->l_swtime++;
853 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
854 			    l->l_stat == LSSUSPENDED) {
855 				l->l_slptime++;
856 				minslp = min(minslp, l->l_slptime);
857 			} else
858 				minslp = 0;
859 			lwp_unlock(l);
860 
861 			/*
862 			 * p_pctcpu is only for ps.
863 			 */
864 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
865 			if (l->l_slptime < 1) {
866 				clkhz = stathz != 0 ? stathz : hz;
867 #if	(FSHIFT >= CCPU_SHIFT)
868 				l->l_pctcpu += (clkhz == 100) ?
869 				    ((fixpt_t)l->l_cpticks) <<
870 				        (FSHIFT - CCPU_SHIFT) :
871 				    100 * (((fixpt_t) p->p_cpticks)
872 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
873 #else
874 				l->l_pctcpu += ((FSCALE - ccpu) *
875 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
876 #endif
877 				l->l_cpticks = 0;
878 			}
879 		}
880 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
881 		sched_pstats_hook(p, minslp);
882 		mutex_spin_exit(&p->p_stmutex);
883 
884 		/*
885 		 * Check if the process exceeds its CPU resource allocation.
886 		 * If over max, kill it.
887 		 */
888 		rlim = &p->p_rlimit[RLIMIT_CPU];
889 		sig = 0;
890 		if (runtm >= rlim->rlim_cur) {
891 			if (runtm >= rlim->rlim_max)
892 				sig = SIGKILL;
893 			else {
894 				sig = SIGXCPU;
895 				if (rlim->rlim_cur < rlim->rlim_max)
896 					rlim->rlim_cur += 5;
897 			}
898 		}
899 		mutex_exit(&p->p_smutex);
900 		if (sig) {
901 			psignal(p, sig);
902 		}
903 	}
904 	mutex_exit(&proclist_mutex);
905 	uvm_meter();
906 	cv_wakeup(&lbolt);
907 	callout_schedule(&sched_pstats_ch, hz);
908 }
909 
910 void
911 sched_init(void)
912 {
913 
914 	cv_init(&lbolt, "lbolt");
915 	callout_init(&sched_pstats_ch, 0);
916 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
917 	sched_setup();
918 	sched_pstats(NULL);
919 }
920