xref: /netbsd-src/sys/kern/kern_sig.c (revision d37a996a49db27ca1b1e656cc3e261bfe3295a71)
1 /*	$NetBSD: kern_sig.c,v 1.144 2003/07/17 18:16:58 fvdl Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.144 2003/07/17 18:16:58 fvdl Exp $");
45 
46 #include "opt_ktrace.h"
47 #include "opt_compat_sunos.h"
48 #include "opt_compat_netbsd32.h"
49 
50 #define	SIGPROP		/* include signal properties table */
51 #include <sys/param.h>
52 #include <sys/signalvar.h>
53 #include <sys/resourcevar.h>
54 #include <sys/namei.h>
55 #include <sys/vnode.h>
56 #include <sys/proc.h>
57 #include <sys/systm.h>
58 #include <sys/timeb.h>
59 #include <sys/times.h>
60 #include <sys/buf.h>
61 #include <sys/acct.h>
62 #include <sys/file.h>
63 #include <sys/kernel.h>
64 #include <sys/wait.h>
65 #include <sys/ktrace.h>
66 #include <sys/syslog.h>
67 #include <sys/stat.h>
68 #include <sys/core.h>
69 #include <sys/filedesc.h>
70 #include <sys/malloc.h>
71 #include <sys/pool.h>
72 #include <sys/ucontext.h>
73 #include <sys/sa.h>
74 #include <sys/savar.h>
75 #include <sys/exec.h>
76 
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 
80 #include <machine/cpu.h>
81 
82 #include <sys/user.h>		/* for coredump */
83 
84 #include <uvm/uvm_extern.h>
85 
86 static void	proc_stop(struct proc *p);
87 static int	build_corename(struct proc *, char [MAXPATHLEN]);
88 sigset_t	contsigmask, stopsigmask, sigcantmask;
89 
90 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
91 struct pool	siginfo_pool;	/* memory pool for siginfo structures */
92 
93 /*
94  * Can process p, with pcred pc, send the signal signum to process q?
95  */
96 #define	CANSIGNAL(p, pc, q, signum) \
97 	((pc)->pc_ucred->cr_uid == 0 || \
98 	    (pc)->p_ruid == (q)->p_cred->p_ruid || \
99 	    (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
100 	    (pc)->p_ruid == (q)->p_ucred->cr_uid || \
101 	    (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
102 	    ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
103 
104 /*
105  * Initialize signal-related data structures.
106  */
107 void
108 signal_init(void)
109 {
110 
111 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
112 	    &pool_allocator_nointr);
113 	pool_init(&siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
114 	    &pool_allocator_nointr);
115 }
116 
117 /*
118  * Create an initial sigctx structure, using the same signal state
119  * as p. If 'share' is set, share the sigctx_proc part, otherwise just
120  * copy it from parent.
121  */
122 void
123 sigactsinit(struct proc *np, struct proc *pp, int share)
124 {
125 	struct sigacts *ps;
126 
127 	if (share) {
128 		np->p_sigacts = pp->p_sigacts;
129 		pp->p_sigacts->sa_refcnt++;
130 	} else {
131 		ps = pool_get(&sigacts_pool, PR_WAITOK);
132 		if (pp)
133 			memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
134 		else
135 			memset(ps, '\0', sizeof(struct sigacts));
136 		ps->sa_refcnt = 1;
137 		np->p_sigacts = ps;
138 	}
139 }
140 
141 /*
142  * Make this process not share its sigctx, maintaining all
143  * signal state.
144  */
145 void
146 sigactsunshare(struct proc *p)
147 {
148 	struct sigacts *oldps;
149 
150 	if (p->p_sigacts->sa_refcnt == 1)
151 		return;
152 
153 	oldps = p->p_sigacts;
154 	sigactsinit(p, NULL, 0);
155 
156 	if (--oldps->sa_refcnt == 0)
157 		pool_put(&sigacts_pool, oldps);
158 }
159 
160 /*
161  * Release a sigctx structure.
162  */
163 void
164 sigactsfree(struct proc *p)
165 {
166 	struct sigacts *ps;
167 
168 	ps = p->p_sigacts;
169 	if (--ps->sa_refcnt > 0)
170 		return;
171 
172 	pool_put(&sigacts_pool, ps);
173 }
174 
175 int
176 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
177 	struct sigaction *osa, void *tramp, int vers)
178 {
179 	struct sigacts	*ps;
180 	int		prop;
181 
182 	ps = p->p_sigacts;
183 	if (signum <= 0 || signum >= NSIG)
184 		return (EINVAL);
185 
186 	/*
187 	 * Trampoline ABI version 0 is reserved for the legacy
188 	 * kernel-provided on-stack trampoline.  Conversely, if
189 	 * we are using a non-0 ABI version, we must have a
190 	 * trampoline.
191 	 */
192 	if ((vers != 0 && tramp == NULL) ||
193 	    (vers == 0 && tramp != NULL))
194 		return (EINVAL);
195 
196 	if (osa)
197 		*osa = SIGACTION_PS(ps, signum);
198 
199 	if (nsa) {
200 		if (nsa->sa_flags & ~SA_ALLBITS)
201 			return (EINVAL);
202 
203 		prop = sigprop[signum];
204 		if (prop & SA_CANTMASK)
205 			return (EINVAL);
206 
207 		(void) splsched();	/* XXXSMP */
208 		SIGACTION_PS(ps, signum) = *nsa;
209 		ps->sa_sigdesc[signum].sd_tramp = tramp;
210 		ps->sa_sigdesc[signum].sd_vers = vers;
211 		sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
212 		if ((prop & SA_NORESET) != 0)
213 			SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
214 		if (signum == SIGCHLD) {
215 			if (nsa->sa_flags & SA_NOCLDSTOP)
216 				p->p_flag |= P_NOCLDSTOP;
217 			else
218 				p->p_flag &= ~P_NOCLDSTOP;
219 			if (nsa->sa_flags & SA_NOCLDWAIT) {
220 				/*
221 				 * Paranoia: since SA_NOCLDWAIT is implemented
222 				 * by reparenting the dying child to PID 1 (and
223 				 * trust it to reap the zombie), PID 1 itself
224 				 * is forbidden to set SA_NOCLDWAIT.
225 				 */
226 				if (p->p_pid == 1)
227 					p->p_flag &= ~P_NOCLDWAIT;
228 				else
229 					p->p_flag |= P_NOCLDWAIT;
230 			} else
231 				p->p_flag &= ~P_NOCLDWAIT;
232 		}
233 		if ((nsa->sa_flags & SA_NODEFER) == 0)
234 			sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
235 		else
236 			sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
237 		/*
238 	 	 * Set bit in p_sigctx.ps_sigignore for signals that are set to
239 		 * SIG_IGN, and for signals set to SIG_DFL where the default is
240 		 * to ignore. However, don't put SIGCONT in
241 		 * p_sigctx.ps_sigignore, as we have to restart the process.
242 	 	 */
243 		if (nsa->sa_handler == SIG_IGN ||
244 		    (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
245 						/* never to be seen again */
246 			sigdelset(&p->p_sigctx.ps_siglist, signum);
247 			if (signum != SIGCONT) {
248 						/* easier in psignal */
249 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
250 			}
251 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
252 		} else {
253 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
254 			if (nsa->sa_handler == SIG_DFL)
255 				sigdelset(&p->p_sigctx.ps_sigcatch, signum);
256 			else
257 				sigaddset(&p->p_sigctx.ps_sigcatch, signum);
258 		}
259 		(void) spl0();
260 	}
261 
262 	return (0);
263 }
264 
265 /* ARGSUSED */
266 int
267 sys___sigaction14(struct lwp *l, void *v, register_t *retval)
268 {
269 	struct sys___sigaction14_args /* {
270 		syscallarg(int)				signum;
271 		syscallarg(const struct sigaction *)	nsa;
272 		syscallarg(struct sigaction *)		osa;
273 	} */ *uap = v;
274 	struct proc		*p;
275 	struct sigaction	nsa, osa;
276 	int			error;
277 
278 	if (SCARG(uap, nsa)) {
279 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
280 		if (error)
281 			return (error);
282 	}
283 	p = l->l_proc;
284 	error = sigaction1(p, SCARG(uap, signum),
285 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
286 	    NULL, 0);
287 	if (error)
288 		return (error);
289 	if (SCARG(uap, osa)) {
290 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
291 		if (error)
292 			return (error);
293 	}
294 	return (0);
295 }
296 
297 /* ARGSUSED */
298 int
299 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
300 {
301 	struct sys___sigaction_sigtramp_args /* {
302 		syscallarg(int)				signum;
303 		syscallarg(const struct sigaction *)	nsa;
304 		syscallarg(struct sigaction *)		osa;
305 		syscallarg(void *)			tramp;
306 		syscallarg(int)				vers;
307 	} */ *uap = v;
308 	struct proc *p = l->l_proc;
309 	struct sigaction nsa, osa;
310 	int error;
311 
312 	if (SCARG(uap, nsa)) {
313 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
314 		if (error)
315 			return (error);
316 	}
317 	error = sigaction1(p, SCARG(uap, signum),
318 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
319 	    SCARG(uap, tramp), SCARG(uap, vers));
320 	if (error)
321 		return (error);
322 	if (SCARG(uap, osa)) {
323 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
324 		if (error)
325 			return (error);
326 	}
327 	return (0);
328 }
329 
330 /*
331  * Initialize signal state for process 0;
332  * set to ignore signals that are ignored by default and disable the signal
333  * stack.
334  */
335 void
336 siginit(struct proc *p)
337 {
338 	struct sigacts	*ps;
339 	int		signum, prop;
340 
341 	ps = p->p_sigacts;
342 	sigemptyset(&contsigmask);
343 	sigemptyset(&stopsigmask);
344 	sigemptyset(&sigcantmask);
345 	for (signum = 1; signum < NSIG; signum++) {
346 		prop = sigprop[signum];
347 		if (prop & SA_CONT)
348 			sigaddset(&contsigmask, signum);
349 		if (prop & SA_STOP)
350 			sigaddset(&stopsigmask, signum);
351 		if (prop & SA_CANTMASK)
352 			sigaddset(&sigcantmask, signum);
353 		if (prop & SA_IGNORE && signum != SIGCONT)
354 			sigaddset(&p->p_sigctx.ps_sigignore, signum);
355 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
356 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
357 	}
358 	sigemptyset(&p->p_sigctx.ps_sigcatch);
359 	p->p_sigctx.ps_sigwaited = 0;
360 	p->p_flag &= ~P_NOCLDSTOP;
361 
362 	/*
363 	 * Reset stack state to the user stack.
364 	 */
365 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
366 	p->p_sigctx.ps_sigstk.ss_size = 0;
367 	p->p_sigctx.ps_sigstk.ss_sp = 0;
368 
369 	/* One reference. */
370 	ps->sa_refcnt = 1;
371 }
372 
373 /*
374  * Reset signals for an exec of the specified process.
375  */
376 void
377 execsigs(struct proc *p)
378 {
379 	struct sigacts	*ps;
380 	int		signum, prop;
381 
382 	sigactsunshare(p);
383 
384 	ps = p->p_sigacts;
385 
386 	/*
387 	 * Reset caught signals.  Held signals remain held
388 	 * through p_sigctx.ps_sigmask (unless they were caught,
389 	 * and are now ignored by default).
390 	 */
391 	for (signum = 1; signum < NSIG; signum++) {
392 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
393 			prop = sigprop[signum];
394 			if (prop & SA_IGNORE) {
395 				if ((prop & SA_CONT) == 0)
396 					sigaddset(&p->p_sigctx.ps_sigignore,
397 					    signum);
398 				sigdelset(&p->p_sigctx.ps_siglist, signum);
399 			}
400 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
401 		}
402 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
403 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
404 	}
405 	sigemptyset(&p->p_sigctx.ps_sigcatch);
406 	p->p_sigctx.ps_sigwaited = 0;
407 	p->p_flag &= ~P_NOCLDSTOP;
408 
409 	/*
410 	 * Reset stack state to the user stack.
411 	 */
412 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
413 	p->p_sigctx.ps_sigstk.ss_size = 0;
414 	p->p_sigctx.ps_sigstk.ss_sp = 0;
415 }
416 
417 int
418 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
419 {
420 
421 	if (oss)
422 		*oss = p->p_sigctx.ps_sigmask;
423 
424 	if (nss) {
425 		(void)splsched();	/* XXXSMP */
426 		switch (how) {
427 		case SIG_BLOCK:
428 			sigplusset(nss, &p->p_sigctx.ps_sigmask);
429 			break;
430 		case SIG_UNBLOCK:
431 			sigminusset(nss, &p->p_sigctx.ps_sigmask);
432 			CHECKSIGS(p);
433 			break;
434 		case SIG_SETMASK:
435 			p->p_sigctx.ps_sigmask = *nss;
436 			CHECKSIGS(p);
437 			break;
438 		default:
439 			(void)spl0();	/* XXXSMP */
440 			return (EINVAL);
441 		}
442 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
443 		(void)spl0();		/* XXXSMP */
444 	}
445 
446 	return (0);
447 }
448 
449 /*
450  * Manipulate signal mask.
451  * Note that we receive new mask, not pointer,
452  * and return old mask as return value;
453  * the library stub does the rest.
454  */
455 int
456 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
457 {
458 	struct sys___sigprocmask14_args /* {
459 		syscallarg(int)			how;
460 		syscallarg(const sigset_t *)	set;
461 		syscallarg(sigset_t *)		oset;
462 	} */ *uap = v;
463 	struct proc	*p;
464 	sigset_t	nss, oss;
465 	int		error;
466 
467 	if (SCARG(uap, set)) {
468 		error = copyin(SCARG(uap, set), &nss, sizeof(nss));
469 		if (error)
470 			return (error);
471 	}
472 	p = l->l_proc;
473 	error = sigprocmask1(p, SCARG(uap, how),
474 	    SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
475 	if (error)
476 		return (error);
477 	if (SCARG(uap, oset)) {
478 		error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
479 		if (error)
480 			return (error);
481 	}
482 	return (0);
483 }
484 
485 void
486 sigpending1(struct proc *p, sigset_t *ss)
487 {
488 
489 	*ss = p->p_sigctx.ps_siglist;
490 	sigminusset(&p->p_sigctx.ps_sigmask, ss);
491 }
492 
493 /* ARGSUSED */
494 int
495 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
496 {
497 	struct sys___sigpending14_args /* {
498 		syscallarg(sigset_t *)	set;
499 	} */ *uap = v;
500 	struct proc	*p;
501 	sigset_t	ss;
502 
503 	p = l->l_proc;
504 	sigpending1(p, &ss);
505 	return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
506 }
507 
508 int
509 sigsuspend1(struct proc *p, const sigset_t *ss)
510 {
511 	struct sigacts *ps;
512 
513 	ps = p->p_sigacts;
514 	if (ss) {
515 		/*
516 		 * When returning from sigpause, we want
517 		 * the old mask to be restored after the
518 		 * signal handler has finished.  Thus, we
519 		 * save it here and mark the sigctx structure
520 		 * to indicate this.
521 		 */
522 		p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
523 		p->p_sigctx.ps_flags |= SAS_OLDMASK;
524 		(void) splsched();	/* XXXSMP */
525 		p->p_sigctx.ps_sigmask = *ss;
526 		CHECKSIGS(p);
527 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
528 		(void) spl0();		/* XXXSMP */
529 	}
530 
531 
532 
533 	while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
534 		;	/* void  */
535 
536 	/* always return EINTR rather than ERESTART... */
537 	return (EINTR);
538 }
539 
540 /*
541  * Suspend process until signal, providing mask to be set
542  * in the meantime.  Note nonstandard calling convention:
543  * libc stub passes mask, not pointer, to save a copyin.
544  */
545 /* ARGSUSED */
546 int
547 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
548 {
549 	struct sys___sigsuspend14_args /* {
550 		syscallarg(const sigset_t *)	set;
551 	} */ *uap = v;
552 	struct proc	*p;
553 	sigset_t	ss;
554 	int		error;
555 
556 	if (SCARG(uap, set)) {
557 		error = copyin(SCARG(uap, set), &ss, sizeof(ss));
558 		if (error)
559 			return (error);
560 	}
561 
562 	p = l->l_proc;
563 	return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
564 }
565 
566 int
567 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
568 	struct sigaltstack *oss)
569 {
570 
571 	if (oss)
572 		*oss = p->p_sigctx.ps_sigstk;
573 
574 	if (nss) {
575 		if (nss->ss_flags & ~SS_ALLBITS)
576 			return (EINVAL);
577 
578 		if (nss->ss_flags & SS_DISABLE) {
579 			if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
580 				return (EINVAL);
581 		} else {
582 			if (nss->ss_size < MINSIGSTKSZ)
583 				return (ENOMEM);
584 		}
585 		p->p_sigctx.ps_sigstk = *nss;
586 	}
587 
588 	return (0);
589 }
590 
591 /* ARGSUSED */
592 int
593 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
594 {
595 	struct sys___sigaltstack14_args /* {
596 		syscallarg(const struct sigaltstack *)	nss;
597 		syscallarg(struct sigaltstack *)	oss;
598 	} */ *uap = v;
599 	struct proc		*p;
600 	struct sigaltstack	nss, oss;
601 	int			error;
602 
603 	if (SCARG(uap, nss)) {
604 		error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
605 		if (error)
606 			return (error);
607 	}
608 	p = l->l_proc;
609 	error = sigaltstack1(p,
610 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
611 	if (error)
612 		return (error);
613 	if (SCARG(uap, oss)) {
614 		error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
615 		if (error)
616 			return (error);
617 	}
618 	return (0);
619 }
620 
621 /* ARGSUSED */
622 int
623 sys_kill(struct lwp *l, void *v, register_t *retval)
624 {
625 	struct sys_kill_args /* {
626 		syscallarg(int)	pid;
627 		syscallarg(int)	signum;
628 	} */ *uap = v;
629 	struct proc	*cp, *p;
630 	struct pcred	*pc;
631 
632 	cp = l->l_proc;
633 	pc = cp->p_cred;
634 	if ((u_int)SCARG(uap, signum) >= NSIG)
635 		return (EINVAL);
636 	if (SCARG(uap, pid) > 0) {
637 		/* kill single process */
638 		if ((p = pfind(SCARG(uap, pid))) == NULL)
639 			return (ESRCH);
640 		if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
641 			return (EPERM);
642 		if (SCARG(uap, signum))
643 			psignal(p, SCARG(uap, signum));
644 		return (0);
645 	}
646 	switch (SCARG(uap, pid)) {
647 	case -1:		/* broadcast signal */
648 		return (killpg1(cp, SCARG(uap, signum), 0, 1));
649 	case 0:			/* signal own process group */
650 		return (killpg1(cp, SCARG(uap, signum), 0, 0));
651 	default:		/* negative explicit process group */
652 		return (killpg1(cp, SCARG(uap, signum), -SCARG(uap, pid), 0));
653 	}
654 	/* NOTREACHED */
655 }
656 
657 /*
658  * Common code for kill process group/broadcast kill.
659  * cp is calling process.
660  */
661 int
662 killpg1(struct proc *cp, int signum, int pgid, int all)
663 {
664 	struct proc	*p;
665 	struct pcred	*pc;
666 	struct pgrp	*pgrp;
667 	int		nfound;
668 
669 	pc = cp->p_cred;
670 	nfound = 0;
671 	if (all) {
672 		/*
673 		 * broadcast
674 		 */
675 		proclist_lock_read();
676 		LIST_FOREACH(p, &allproc, p_list) {
677 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
678 			    p == cp || !CANSIGNAL(cp, pc, p, signum))
679 				continue;
680 			nfound++;
681 			if (signum)
682 				psignal(p, signum);
683 		}
684 		proclist_unlock_read();
685 	} else {
686 		if (pgid == 0)
687 			/*
688 			 * zero pgid means send to my process group.
689 			 */
690 			pgrp = cp->p_pgrp;
691 		else {
692 			pgrp = pgfind(pgid);
693 			if (pgrp == NULL)
694 				return (ESRCH);
695 		}
696 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
697 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
698 			    !CANSIGNAL(cp, pc, p, signum))
699 				continue;
700 			nfound++;
701 			if (signum && P_ZOMBIE(p) == 0)
702 				psignal(p, signum);
703 		}
704 	}
705 	return (nfound ? 0 : ESRCH);
706 }
707 
708 /*
709  * Send a signal to a process group.
710  */
711 void
712 gsignal(int pgid, int signum)
713 {
714 	struct pgrp *pgrp;
715 
716 	if (pgid && (pgrp = pgfind(pgid)))
717 		pgsignal(pgrp, signum, 0);
718 }
719 
720 /*
721  * Send a signal to a process group. If checktty is 1,
722  * limit to members which have a controlling terminal.
723  */
724 void
725 pgsignal(struct pgrp *pgrp, int signum, int checkctty)
726 {
727 	struct proc *p;
728 
729 	if (pgrp)
730 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
731 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
732 				psignal(p, signum);
733 }
734 
735 /*
736  * Send a signal caused by a trap to the current process.
737  * If it will be caught immediately, deliver it with correct code.
738  * Otherwise, post it normally.
739  */
740 void
741 trapsignal(struct lwp *l, int signum, u_long code)
742 {
743 	struct proc	*p;
744 	struct sigacts	*ps;
745 
746 	p = l->l_proc;
747 	ps = p->p_sigacts;
748 	if ((p->p_flag & P_TRACED) == 0 &&
749 	    sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
750 	    !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
751 		p->p_stats->p_ru.ru_nsignals++;
752 #ifdef KTRACE
753 		if (KTRPOINT(p, KTR_PSIG))
754 			ktrpsig(p, signum,
755 			    SIGACTION_PS(ps, signum).sa_handler,
756 			    &p->p_sigctx.ps_sigmask, code);
757 #endif
758 		psendsig(l, signum, &p->p_sigctx.ps_sigmask, code);
759 		(void) splsched();	/* XXXSMP */
760 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
761 		    &p->p_sigctx.ps_sigmask);
762 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
763 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
764 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
765 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
766 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
767 		}
768 		(void) spl0();		/* XXXSMP */
769 	} else {
770 		p->p_sigctx.ps_code = code;	/* XXX for core dump/debugger */
771 		p->p_sigctx.ps_sig = signum;	/* XXX to verify code */
772 		p->p_sigctx.ps_lwp = l->l_lid;
773 		psignal(p, signum);
774 	}
775 }
776 
777 /*
778  * Send the signal to the process.  If the signal has an action, the action
779  * is usually performed by the target process rather than the caller; we add
780  * the signal to the set of pending signals for the process.
781  *
782  * Exceptions:
783  *   o When a stop signal is sent to a sleeping process that takes the
784  *     default action, the process is stopped without awakening it.
785  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
786  *     regardless of the signal action (eg, blocked or ignored).
787  *
788  * Other ignored signals are discarded immediately.
789  *
790  * XXXSMP: Invoked as psignal() or sched_psignal().
791  */
792 void
793 psignal1(struct proc *p, int signum,
794 	int dolock)		/* XXXSMP: works, but icky */
795 {
796 	struct lwp *l, *suspended;
797 	int	s = 0, prop, allsusp;
798 	sig_t	action;
799 
800 #ifdef DIAGNOSTIC
801 	if (signum <= 0 || signum >= NSIG)
802 		panic("psignal signal number");
803 
804 	/* XXXSMP: works, but icky */
805 	if (dolock)
806 		SCHED_ASSERT_UNLOCKED();
807 	else
808 		SCHED_ASSERT_LOCKED();
809 #endif
810 	/*
811 	 * Notify any interested parties in the signal.
812 	 */
813 	KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
814 
815 	prop = sigprop[signum];
816 
817 	/*
818 	 * If proc is traced, always give parent a chance.
819 	 */
820 	if (p->p_flag & P_TRACED)
821 		action = SIG_DFL;
822 	else {
823 		/*
824 		 * If the signal is being ignored,
825 		 * then we forget about it immediately.
826 		 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
827 		 * and if it is set to SIG_IGN,
828 		 * action will be SIG_DFL here.)
829 		 */
830 		if (sigismember(&p->p_sigctx.ps_sigignore, signum))
831 			return;
832 		if (sigismember(&p->p_sigctx.ps_sigmask, signum))
833 			action = SIG_HOLD;
834 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
835 			action = SIG_CATCH;
836 		else {
837 			action = SIG_DFL;
838 
839 			if (prop & SA_KILL && p->p_nice > NZERO)
840 				p->p_nice = NZERO;
841 
842 			/*
843 			 * If sending a tty stop signal to a member of an
844 			 * orphaned process group, discard the signal here if
845 			 * the action is default; don't stop the process below
846 			 * if sleeping, and don't clear any pending SIGCONT.
847 			 */
848 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
849 				return;
850 		}
851 	}
852 
853 	if (prop & SA_CONT)
854 		sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
855 
856 	if (prop & SA_STOP)
857 		sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
858 
859 	sigaddset(&p->p_sigctx.ps_siglist, signum);
860 
861 	/* CHECKSIGS() is "inlined" here. */
862 	p->p_sigctx.ps_sigcheck = 1;
863 
864 	/*
865 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
866 	 * please!), check if anything waits on it. If yes, clear the
867 	 * pending signal from siglist set, save it to ps_sigwaited,
868 	 * clear sigwait list, and wakeup any sigwaiters.
869 	 * The signal won't be processed further here.
870 	 */
871 	if ((prop & SA_CANTMASK) == 0
872 	    && p->p_sigctx.ps_sigwaited < 0
873 	    && sigismember(&p->p_sigctx.ps_sigwait, signum)
874 	    &&  p->p_stat != SSTOP) {
875 		sigdelset(&p->p_sigctx.ps_siglist, signum);
876 		p->p_sigctx.ps_sigwaited = signum;
877 		sigemptyset(&p->p_sigctx.ps_sigwait);
878 
879 		if (dolock)
880 			wakeup_one(&p->p_sigctx.ps_sigwait);
881 		else
882 			sched_wakeup(&p->p_sigctx.ps_sigwait);
883 		return;
884 	}
885 
886 	/*
887 	 * Defer further processing for signals which are held,
888 	 * except that stopped processes must be continued by SIGCONT.
889 	 */
890 	if (action == SIG_HOLD && ((prop & SA_CONT) == 0 || p->p_stat != SSTOP))
891 		return;
892 	/* XXXSMP: works, but icky */
893 	if (dolock)
894 		SCHED_LOCK(s);
895 
896 	/* XXXUPSXXX LWPs might go to sleep without passing signal handling */
897 	if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
898 		/*
899 		 * At least one LWP is running or on a run queue.
900 		 * The signal will be noticed when one of them returns
901 		 * to userspace.
902 		 */
903 		signotify(p);
904 		/*
905 		 * The signal will be noticed very soon.
906 		 */
907 		goto out;
908 	} else {
909 		/* Process is sleeping or stopped */
910 		if (p->p_flag & P_SA) {
911 			struct lwp *l2 = p->p_sa->sa_vp;
912 			l = NULL;
913 			allsusp = 1;
914 
915 			if ((l2->l_stat == LSSLEEP) &&  (l2->l_flag & L_SINTR))
916 				l = l2;
917 			else if (l2->l_stat == LSSUSPENDED)
918 				suspended = l2;
919 			else if ((l2->l_stat != LSZOMB) &&
920 				 (l2->l_stat != LSDEAD))
921 				allsusp = 0;
922 		} else {
923 			/*
924 			 * Find out if any of the sleeps are interruptable,
925 			 * and if all the live LWPs remaining are suspended.
926 			 */
927 			allsusp = 1;
928 			LIST_FOREACH(l, &p->p_lwps, l_sibling) {
929 				if (l->l_stat == LSSLEEP &&
930 				    l->l_flag & L_SINTR)
931 					break;
932 				if (l->l_stat == LSSUSPENDED)
933 					suspended = l;
934 				else if ((l->l_stat != LSZOMB) &&
935 				         (l->l_stat != LSDEAD))
936 					allsusp = 0;
937 			}
938 		}
939 		if (p->p_stat == SACTIVE) {
940 			/* All LWPs must be sleeping */
941 			KDASSERT(((p->p_flag & P_SA) == 0) || (l != NULL));
942 
943 			if (l != NULL && (p->p_flag & P_TRACED))
944 				goto run;
945 
946 			/*
947 			 * If SIGCONT is default (or ignored) and process is
948 			 * asleep, we are finished; the process should not
949 			 * be awakened.
950 			 */
951 			if ((prop & SA_CONT) && action == SIG_DFL) {
952 				sigdelset(&p->p_sigctx.ps_siglist, signum);
953 				goto out;
954 			}
955 
956 
957 			/*
958 			 * When a sleeping process receives a stop
959 			 * signal, process immediately if possible.
960 			 */
961 			if ((prop & SA_STOP) && action == SIG_DFL) {
962 				/*
963 				 * If a child holding parent blocked,
964 				 * stopping could cause deadlock.
965 				 */
966 				if (p->p_flag & P_PPWAIT)
967 					goto out;
968 				sigdelset(&p->p_sigctx.ps_siglist, signum);
969 				p->p_xstat = signum;
970 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
971 					/*
972 					 * XXXSMP: recursive call; don't lock
973 					 * the second time around.
974 					 */
975 					sched_psignal(p->p_pptr, SIGCHLD);
976 				}
977 				proc_stop(p);	/* XXXSMP: recurse? */
978 				goto out;
979 			}
980 
981 
982 			if (l == NULL) {
983 				/*
984 				 * Special case: SIGKILL of a process
985 				 * which is entirely composed of
986 				 * suspended LWPs should succeed. We
987 				 * make this happen by unsuspending one of
988 				 * them.
989 				 */
990 				if (allsusp && (signum == SIGKILL))
991 					lwp_continue(suspended);
992 				goto out;
993 			}
994 			/*
995 			 * All other (caught or default) signals
996 			 * cause the process to run.
997 			 */
998 			goto runfast;
999 			/*NOTREACHED*/
1000 		} else if (p->p_stat == SSTOP) {
1001 			/* Process is stopped */
1002 			/*
1003 			 * If traced process is already stopped,
1004 			 * then no further action is necessary.
1005 			 */
1006 			if (p->p_flag & P_TRACED)
1007 				goto out;
1008 
1009 			/*
1010 			 * Kill signal always sets processes running,
1011 			 * if possible.
1012 			 */
1013 			if (signum == SIGKILL) {
1014 				l = proc_unstop(p);
1015 				if (l)
1016 					goto runfast;
1017 				goto out;
1018 			}
1019 
1020 			if (prop & SA_CONT) {
1021 				/*
1022 				 * If SIGCONT is default (or ignored),
1023 				 * we continue the process but don't
1024 				 * leave the signal in ps_siglist, as
1025 				 * it has no further action.  If
1026 				 * SIGCONT is held, we continue the
1027 				 * process and leave the signal in
1028 				 * ps_siglist.  If the process catches
1029 				 * SIGCONT, let it handle the signal
1030 				 * itself.  If it isn't waiting on an
1031 				 * event, then it goes back to run
1032 				 * state.  Otherwise, process goes
1033 				 * back to sleep state.
1034 				 */
1035 				if (action == SIG_DFL)
1036 					sigdelset(&p->p_sigctx.ps_siglist,
1037 					signum);
1038 				l = proc_unstop(p);
1039 				if (l && (action == SIG_CATCH))
1040 					goto runfast;
1041 				goto out;
1042 			}
1043 
1044 			if (prop & SA_STOP) {
1045 				/*
1046 				 * Already stopped, don't need to stop again.
1047 				 * (If we did the shell could get confused.)
1048 				 */
1049 				sigdelset(&p->p_sigctx.ps_siglist, signum);
1050 				goto out;
1051 			}
1052 
1053 			/*
1054 			 * If a lwp is sleeping interruptibly, then
1055 			 * wake it up; it will run until the kernel
1056 			 * boundary, where it will stop in issignal(),
1057 			 * since p->p_stat is still SSTOP. When the
1058 			 * process is continued, it will be made
1059 			 * runnable and can look at the signal.
1060 			 */
1061 			if (l)
1062 				goto run;
1063 			goto out;
1064 		} else {
1065 			/* Else what? */
1066 			panic("psignal: Invalid process state %d.",
1067 				p->p_stat);
1068 		}
1069 	}
1070 	/*NOTREACHED*/
1071 
1072  runfast:
1073 	/*
1074 	 * Raise priority to at least PUSER.
1075 	 */
1076 	if (l->l_priority > PUSER)
1077 		l->l_priority = PUSER;
1078  run:
1079 
1080 	setrunnable(l);		/* XXXSMP: recurse? */
1081  out:
1082 	/* XXXSMP: works, but icky */
1083 	if (dolock)
1084 		SCHED_UNLOCK(s);
1085 }
1086 
1087 void
1088 psendsig(struct lwp *l, int sig, sigset_t *mask, u_long code)
1089 {
1090 	struct proc *p = l->l_proc;
1091 	struct lwp *le, *li;
1092 	siginfo_t *si;
1093 
1094 	if (p->p_flag & P_SA) {
1095 
1096 		/* XXXUPSXXX What if not on sa_vp ? */
1097 
1098 		int s = l->l_flag & L_SA;
1099 		l->l_flag &= ~L_SA;
1100 		si = pool_get(&siginfo_pool, PR_WAITOK);
1101 		si->si_signo = sig;
1102 		si->si_errno = 0;
1103 		si->si_code = code;
1104 		le = li = NULL;
1105 		if (code)
1106 			le = l;
1107 		else
1108 			li = l;
1109 
1110 		sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1111 			    sizeof(siginfo_t), si);
1112 
1113 
1114 		l->l_flag |= s;
1115 		return;
1116 	}
1117 
1118 	(*p->p_emul->e_sendsig)(sig, mask, code);
1119 }
1120 
1121 static __inline int firstsig(const sigset_t *);
1122 
1123 static __inline int
1124 firstsig(const sigset_t *ss)
1125 {
1126 	int sig;
1127 
1128 	sig = ffs(ss->__bits[0]);
1129 	if (sig != 0)
1130 		return (sig);
1131 #if NSIG > 33
1132 	sig = ffs(ss->__bits[1]);
1133 	if (sig != 0)
1134 		return (sig + 32);
1135 #endif
1136 #if NSIG > 65
1137 	sig = ffs(ss->__bits[2]);
1138 	if (sig != 0)
1139 		return (sig + 64);
1140 #endif
1141 #if NSIG > 97
1142 	sig = ffs(ss->__bits[3]);
1143 	if (sig != 0)
1144 		return (sig + 96);
1145 #endif
1146 	return (0);
1147 }
1148 
1149 /*
1150  * If the current process has received a signal (should be caught or cause
1151  * termination, should interrupt current syscall), return the signal number.
1152  * Stop signals with default action are processed immediately, then cleared;
1153  * they aren't returned.  This is checked after each entry to the system for
1154  * a syscall or trap (though this can usually be done without calling issignal
1155  * by checking the pending signal masks in the CURSIG macro.) The normal call
1156  * sequence is
1157  *
1158  *	while (signum = CURSIG(curlwp))
1159  *		postsig(signum);
1160  */
1161 int
1162 issignal(struct lwp *l)
1163 {
1164 	struct proc	*p = l->l_proc;
1165 	int		s = 0, signum, prop;
1166 	int		dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
1167 	sigset_t	ss;
1168 
1169 
1170 	if (l->l_flag & L_SA) {
1171 		struct sadata *sa = p->p_sa;
1172 
1173 		/* Bail out if we do not own the virtual processor */
1174 		if (sa->sa_vp != l)
1175 			return 0;
1176 	}
1177 
1178 
1179 	if (p->p_stat == SSTOP) {
1180 		/*
1181 		 * The process is stopped/stopping. Stop ourselves now that
1182 		 * we're on the kernel/userspace boundary.
1183 		 */
1184 		if (dolock)
1185 			SCHED_LOCK(s);
1186 		l->l_stat = LSSTOP;
1187 		p->p_nrlwps--;
1188 		if (p->p_flag & P_TRACED)
1189 			goto sigtraceswitch;
1190 		else
1191 			goto sigswitch;
1192 	}
1193 	for (;;) {
1194 		sigpending1(p, &ss);
1195 		if (p->p_flag & P_PPWAIT)
1196 			sigminusset(&stopsigmask, &ss);
1197 		signum = firstsig(&ss);
1198 		if (signum == 0) {		 	/* no signal to send */
1199 			p->p_sigctx.ps_sigcheck = 0;
1200 			if (locked && dolock)
1201 				SCHED_LOCK(s);
1202 			return (0);
1203 		}
1204 							/* take the signal! */
1205 		sigdelset(&p->p_sigctx.ps_siglist, signum);
1206 
1207 		/*
1208 		 * We should see pending but ignored signals
1209 		 * only if P_TRACED was on when they were posted.
1210 		 */
1211 		if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1212 		    (p->p_flag & P_TRACED) == 0)
1213 			continue;
1214 
1215 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1216 			/*
1217 			 * If traced, always stop, and stay
1218 			 * stopped until released by the debugger.
1219 			 */
1220 			p->p_xstat = signum;
1221 			if ((p->p_flag & P_FSTRACE) == 0)
1222 				psignal1(p->p_pptr, SIGCHLD, dolock);
1223 			if (dolock)
1224 				SCHED_LOCK(s);
1225 			proc_stop(p);
1226 		sigtraceswitch:
1227 			mi_switch(l, NULL);
1228 			SCHED_ASSERT_UNLOCKED();
1229 			if (dolock)
1230 				splx(s);
1231 			else
1232 				dolock = 1;
1233 
1234 			/*
1235 			 * If we are no longer being traced, or the parent
1236 			 * didn't give us a signal, look for more signals.
1237 			 */
1238 			if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1239 				continue;
1240 
1241 			/*
1242 			 * If the new signal is being masked, look for other
1243 			 * signals.
1244 			 */
1245 			signum = p->p_xstat;
1246 			p->p_xstat = 0;
1247 			/*
1248 			 * `p->p_sigctx.ps_siglist |= mask' is done
1249 			 * in setrunnable().
1250 			 */
1251 			if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1252 				continue;
1253 							/* take the signal! */
1254 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1255 		}
1256 
1257 		prop = sigprop[signum];
1258 
1259 		/*
1260 		 * Decide whether the signal should be returned.
1261 		 * Return the signal's number, or fall through
1262 		 * to clear it from the pending mask.
1263 		 */
1264 		switch ((long)SIGACTION(p, signum).sa_handler) {
1265 
1266 		case (long)SIG_DFL:
1267 			/*
1268 			 * Don't take default actions on system processes.
1269 			 */
1270 			if (p->p_pid <= 1) {
1271 #ifdef DIAGNOSTIC
1272 				/*
1273 				 * Are you sure you want to ignore SIGSEGV
1274 				 * in init? XXX
1275 				 */
1276 				printf("Process (pid %d) got signal %d\n",
1277 				    p->p_pid, signum);
1278 #endif
1279 				break;		/* == ignore */
1280 			}
1281 			/*
1282 			 * If there is a pending stop signal to process
1283 			 * with default action, stop here,
1284 			 * then clear the signal.  However,
1285 			 * if process is member of an orphaned
1286 			 * process group, ignore tty stop signals.
1287 			 */
1288 			if (prop & SA_STOP) {
1289 				if (p->p_flag & P_TRACED ||
1290 		    		    (p->p_pgrp->pg_jobc == 0 &&
1291 				    prop & SA_TTYSTOP))
1292 					break;	/* == ignore */
1293 				p->p_xstat = signum;
1294 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1295 					psignal1(p->p_pptr, SIGCHLD, dolock);
1296 				if (dolock)
1297 					SCHED_LOCK(s);
1298 				proc_stop(p);
1299 			sigswitch:
1300 				mi_switch(l, NULL);
1301 				SCHED_ASSERT_UNLOCKED();
1302 				if (dolock)
1303 					splx(s);
1304 				else
1305 					dolock = 1;
1306 				break;
1307 			} else if (prop & SA_IGNORE) {
1308 				/*
1309 				 * Except for SIGCONT, shouldn't get here.
1310 				 * Default action is to ignore; drop it.
1311 				 */
1312 				break;		/* == ignore */
1313 			} else
1314 				goto keep;
1315 			/*NOTREACHED*/
1316 
1317 		case (long)SIG_IGN:
1318 			/*
1319 			 * Masking above should prevent us ever trying
1320 			 * to take action on an ignored signal other
1321 			 * than SIGCONT, unless process is traced.
1322 			 */
1323 #ifdef DEBUG_ISSIGNAL
1324 			if ((prop & SA_CONT) == 0 &&
1325 			    (p->p_flag & P_TRACED) == 0)
1326 				printf("issignal\n");
1327 #endif
1328 			break;		/* == ignore */
1329 
1330 		default:
1331 			/*
1332 			 * This signal has an action, let
1333 			 * postsig() process it.
1334 			 */
1335 			goto keep;
1336 		}
1337 	}
1338 	/* NOTREACHED */
1339 
1340  keep:
1341 						/* leave the signal for later */
1342 	sigaddset(&p->p_sigctx.ps_siglist, signum);
1343 	CHECKSIGS(p);
1344 	if (locked && dolock)
1345 		SCHED_LOCK(s);
1346 	return (signum);
1347 }
1348 
1349 /*
1350  * Put the argument process into the stopped state and notify the parent
1351  * via wakeup.  Signals are handled elsewhere.  The process must not be
1352  * on the run queue.
1353  */
1354 static void
1355 proc_stop(struct proc *p)
1356 {
1357 	struct lwp *l;
1358 
1359 	SCHED_ASSERT_LOCKED();
1360 
1361 
1362 
1363 	/* XXX lock process LWP state */
1364 	p->p_stat = SSTOP;
1365 	p->p_flag &= ~P_WAITED;
1366 
1367 	/*
1368 	 * Put as many LWP's as possible in stopped state.
1369 	 * Sleeping ones will notice the stopped state as they try to
1370 	 * return to userspace.
1371 	 */
1372 
1373 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1374 		if ((l->l_stat == LSONPROC) && (l == curlwp)) {
1375 			/* XXX SMP this assumes that a LWP that is LSONPROC
1376 			 * is curlwp and hence is about to be mi_switched
1377 			 * away; the only callers of proc_stop() are:
1378 			 * - psignal
1379 			 * - issignal()
1380 			 * For the former, proc_stop() is only called when
1381 			 * no processes are running, so we don't worry.
1382 			 * For the latter, proc_stop() is called right
1383 			 * before mi_switch().
1384 			 */
1385 			l->l_stat = LSSTOP;
1386 			p->p_nrlwps--;
1387 		}
1388 		 else if ( (l->l_stat == LSSLEEP) && (l->l_flag & L_SINTR)) {
1389 			setrunnable(l);
1390 		}
1391 
1392 /* !!!UPS!!! FIX ME */
1393 #if 0
1394 else if (l->l_stat == LSRUN) {
1395 			/* Remove LWP from the run queue */
1396 			remrunqueue(l);
1397 			l->l_stat = LSSTOP;
1398 			p->p_nrlwps--;
1399 		} else if ((l->l_stat == LSSLEEP) ||
1400 		    (l->l_stat == LSSUSPENDED) ||
1401 		    (l->l_stat == LSZOMB) ||
1402 		    (l->l_stat == LSDEAD)) {
1403 			/*
1404 			 * Don't do anything; let sleeping LWPs
1405 			 * discover the stopped state of the process
1406 			 * on their way out of the kernel; otherwise,
1407 			 * things like NFS threads that sleep with
1408 			 * locks will block the rest of the system
1409 			 * from getting any work done.
1410 			 *
1411 			 * Suspended/dead/zombie LWPs aren't going
1412 			 * anywhere, so we don't need to touch them.
1413 			 */
1414 		}
1415 #ifdef DIAGNOSTIC
1416 		else {
1417 			panic("proc_stop: process %d lwp %d "
1418 			      "in unstoppable state %d.\n",
1419 			    p->p_pid, l->l_lid, l->l_stat);
1420 		}
1421 #endif
1422 #endif
1423 	}
1424 	/* XXX unlock process LWP state */
1425 
1426 
1427 	sched_wakeup((caddr_t)p->p_pptr);
1428 }
1429 
1430 /*
1431  * Given a process in state SSTOP, set the state back to SACTIVE and
1432  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1433  *
1434  * If no LWPs ended up runnable (and therefore able to take a signal),
1435  * return a LWP that is sleeping interruptably. The caller can wake
1436  * that LWP up to take a signal.
1437  */
1438 struct lwp *
1439 proc_unstop(struct proc *p)
1440 {
1441 	struct lwp *l, *lr = NULL;
1442 	int cantake = 0;
1443 
1444 	SCHED_ASSERT_LOCKED();
1445 
1446 	/*
1447 	 * Our caller wants to be informed if there are only sleeping
1448 	 * and interruptable LWPs left after we have run so that it
1449 	 * can invoke setrunnable() if required - return one of the
1450 	 * interruptable LWPs if this is the case.
1451 	 */
1452 
1453 	p->p_stat = SACTIVE;
1454 	if (p->p_flag & P_SA) {
1455 		/*
1456 		 * Preferentially select the idle LWP as the interruptable
1457 		 * LWP to return if it exists.
1458 		 */
1459 		lr = p->p_sa->sa_idle;
1460 		if (lr != NULL)
1461 			cantake = 1;
1462 	}
1463 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1464 		if (l->l_stat == LSRUN) {
1465 			lr = NULL;
1466 			cantake = 1;
1467 		}
1468 		if (l->l_stat != LSSTOP)
1469 			continue;
1470 
1471 		if (l->l_wchan != NULL) {
1472 			l->l_stat = LSSLEEP;
1473 			if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1474 				lr = l;
1475 				cantake = 1;
1476 			}
1477 		} else {
1478 			setrunnable(l);
1479 			lr = NULL;
1480 			cantake = 1;
1481 		}
1482 	}
1483 
1484 	return lr;
1485 }
1486 
1487 /*
1488  * Take the action for the specified signal
1489  * from the current set of pending signals.
1490  */
1491 void
1492 postsig(int signum)
1493 {
1494 	struct lwp *l;
1495 	struct proc	*p;
1496 	struct sigacts	*ps;
1497 	sig_t		action;
1498 	u_long		code;
1499 	sigset_t	*returnmask;
1500 
1501 	l = curlwp;
1502 	p = l->l_proc;
1503 	ps = p->p_sigacts;
1504 #ifdef DIAGNOSTIC
1505 	if (signum == 0)
1506 		panic("postsig");
1507 #endif
1508 
1509 	KERNEL_PROC_LOCK(l);
1510 
1511 	sigdelset(&p->p_sigctx.ps_siglist, signum);
1512 	action = SIGACTION_PS(ps, signum).sa_handler;
1513 #ifdef KTRACE
1514 	if (KTRPOINT(p, KTR_PSIG))
1515 		ktrpsig(p,
1516 		    signum, action, p->p_sigctx.ps_flags & SAS_OLDMASK ?
1517 		    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask, 0);
1518 #endif
1519 	if (action == SIG_DFL) {
1520 		/*
1521 		 * Default action, where the default is to kill
1522 		 * the process.  (Other cases were ignored above.)
1523 		 */
1524 		sigexit(l, signum);
1525 		/* NOTREACHED */
1526 	} else {
1527 		/*
1528 		 * If we get here, the signal must be caught.
1529 		 */
1530 #ifdef DIAGNOSTIC
1531 		if (action == SIG_IGN ||
1532 		    sigismember(&p->p_sigctx.ps_sigmask, signum))
1533 			panic("postsig action");
1534 #endif
1535 		/*
1536 		 * Set the new mask value and also defer further
1537 		 * occurrences of this signal.
1538 		 *
1539 		 * Special case: user has done a sigpause.  Here the
1540 		 * current mask is not of interest, but rather the
1541 		 * mask from before the sigpause is what we want
1542 		 * restored after the signal processing is completed.
1543 		 */
1544 		if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1545 			returnmask = &p->p_sigctx.ps_oldmask;
1546 			p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1547 		} else
1548 			returnmask = &p->p_sigctx.ps_sigmask;
1549 		p->p_stats->p_ru.ru_nsignals++;
1550 		if (p->p_sigctx.ps_sig != signum) {
1551 			code = 0;
1552 		} else {
1553 			code = p->p_sigctx.ps_code;
1554 			p->p_sigctx.ps_code = 0;
1555 			p->p_sigctx.ps_lwp = 0;
1556 			p->p_sigctx.ps_sig = 0;
1557 		}
1558 		psendsig(l, signum, returnmask, code);
1559 		(void) splsched();	/* XXXSMP */
1560 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1561 		    &p->p_sigctx.ps_sigmask);
1562 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1563 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1564 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1565 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
1566 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1567 		}
1568 		(void) spl0();		/* XXXSMP */
1569 	}
1570 
1571 	KERNEL_PROC_UNLOCK(l);
1572 }
1573 
1574 /*
1575  * Kill the current process for stated reason.
1576  */
1577 void
1578 killproc(struct proc *p, const char *why)
1579 {
1580 
1581 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1582 	uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1583 	psignal(p, SIGKILL);
1584 }
1585 
1586 /*
1587  * Force the current process to exit with the specified signal, dumping core
1588  * if appropriate.  We bypass the normal tests for masked and caught signals,
1589  * allowing unrecoverable failures to terminate the process without changing
1590  * signal state.  Mark the accounting record with the signal termination.
1591  * If dumping core, save the signal number for the debugger.  Calls exit and
1592  * does not return.
1593  */
1594 
1595 #if defined(DEBUG)
1596 int	kern_logsigexit = 1;	/* not static to make public for sysctl */
1597 #else
1598 int	kern_logsigexit = 0;	/* not static to make public for sysctl */
1599 #endif
1600 
1601 static	const char logcoredump[] =
1602 	"pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1603 static	const char lognocoredump[] =
1604 	"pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
1605 
1606 /* Wrapper function for use in p_userret */
1607 static void
1608 lwp_coredump_hook(struct lwp *l, void *arg)
1609 {
1610 	int s;
1611 
1612 	/*
1613 	 * Suspend ourselves, so that the kernel stack and therefore
1614 	 * the userland registers saved in the trapframe are around
1615 	 * for coredump() to write them out.
1616 	 */
1617 	KERNEL_PROC_LOCK(l);
1618 	l->l_flag &= ~L_DETACHED;
1619 	SCHED_LOCK(s);
1620 	l->l_stat = LSSUSPENDED;
1621 	l->l_proc->p_nrlwps--;
1622 	/* XXX NJWLWP check if this makes sense here: */
1623 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
1624 	mi_switch(l, NULL);
1625 	SCHED_ASSERT_UNLOCKED();
1626 	splx(s);
1627 
1628 	lwp_exit(l);
1629 }
1630 
1631 void
1632 sigexit(struct lwp *l, int signum)
1633 {
1634 
1635 	struct proc	*p;
1636 #if 0
1637 	struct lwp	*l2;
1638 #endif
1639 	int		error, exitsig;
1640 
1641 	p = l->l_proc;
1642 
1643 	/*
1644 	 * Don't permit coredump() or exit1() multiple times
1645 	 * in the same process.
1646 	 */
1647 	if (p->p_flag & P_WEXIT) {
1648 		KERNEL_PROC_UNLOCK(l);
1649 		(*p->p_userret)(l, p->p_userret_arg);
1650 	}
1651 	p->p_flag |= P_WEXIT;
1652 	/* We don't want to switch away from exiting. */
1653 	/* XXX multiprocessor: stop LWPs on other processors. */
1654 #if 0
1655 	if (p->p_flag & P_SA) {
1656 		LIST_FOREACH(l2, &p->p_lwps, l_sibling)
1657 		    l2->l_flag &= ~L_SA;
1658 		p->p_flag &= ~P_SA;
1659 	}
1660 #endif
1661 
1662 	/* Make other LWPs stick around long enough to be dumped */
1663 	p->p_userret = lwp_coredump_hook;
1664 	p->p_userret_arg = NULL;
1665 
1666 	exitsig = signum;
1667 	p->p_acflag |= AXSIG;
1668 	if (sigprop[signum] & SA_CORE) {
1669 		p->p_sigctx.ps_sig = signum;
1670 		if ((error = coredump(l)) == 0)
1671 			exitsig |= WCOREFLAG;
1672 
1673 		if (kern_logsigexit) {
1674 			/* XXX What if we ever have really large UIDs? */
1675 			int uid = p->p_cred && p->p_ucred ?
1676 				(int) p->p_ucred->cr_uid : -1;
1677 
1678 			if (error)
1679 				log(LOG_INFO, lognocoredump, p->p_pid,
1680 				    p->p_comm, uid, signum, error);
1681 			else
1682 				log(LOG_INFO, logcoredump, p->p_pid,
1683 				    p->p_comm, uid, signum);
1684 		}
1685 
1686 	}
1687 
1688 	exit1(l, W_EXITCODE(0, exitsig));
1689 	/* NOTREACHED */
1690 }
1691 
1692 /*
1693  * Dump core, into a file named "progname.core" or "core" (depending on the
1694  * value of shortcorename), unless the process was setuid/setgid.
1695  */
1696 int
1697 coredump(struct lwp *l)
1698 {
1699 	struct vnode		*vp;
1700 	struct proc		*p;
1701 	struct vmspace		*vm;
1702 	struct ucred		*cred;
1703 	struct nameidata	nd;
1704 	struct vattr		vattr;
1705 	int			error, error1;
1706 	char			name[MAXPATHLEN];
1707 
1708 	p = l->l_proc;
1709 	vm = p->p_vmspace;
1710 	cred = p->p_cred->pc_ucred;
1711 
1712 	/*
1713 	 * Make sure the process has not set-id, to prevent data leaks.
1714 	 */
1715 	if (p->p_flag & P_SUGID)
1716 		return (EPERM);
1717 
1718 	/*
1719 	 * Refuse to core if the data + stack + user size is larger than
1720 	 * the core dump limit.  XXX THIS IS WRONG, because of mapped
1721 	 * data.
1722 	 */
1723 	if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
1724 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
1725 		return (EFBIG);		/* better error code? */
1726 
1727 	/*
1728 	 * The core dump will go in the current working directory.  Make
1729 	 * sure that the directory is still there and that the mount flags
1730 	 * allow us to write core dumps there.
1731 	 */
1732 	vp = p->p_cwdi->cwdi_cdir;
1733 	if (vp->v_mount == NULL ||
1734 	    (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
1735 		return (EPERM);
1736 
1737 	error = build_corename(p, name);
1738 	if (error)
1739 		return error;
1740 
1741 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
1742 	error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
1743 	if (error)
1744 		return (error);
1745 	vp = nd.ni_vp;
1746 
1747 	/* Don't dump to non-regular files or files with links. */
1748 	if (vp->v_type != VREG ||
1749 	    VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) {
1750 		error = EINVAL;
1751 		goto out;
1752 	}
1753 	VATTR_NULL(&vattr);
1754 	vattr.va_size = 0;
1755 	VOP_LEASE(vp, p, cred, LEASE_WRITE);
1756 	VOP_SETATTR(vp, &vattr, cred, p);
1757 	p->p_acflag |= ACORE;
1758 
1759 	/* Now dump the actual core file. */
1760 	error = (*p->p_execsw->es_coredump)(l, vp, cred);
1761  out:
1762 	VOP_UNLOCK(vp, 0);
1763 	error1 = vn_close(vp, FWRITE, cred, p);
1764 	if (error == 0)
1765 		error = error1;
1766 	return (error);
1767 }
1768 
1769 /*
1770  * Nonexistent system call-- signal process (may want to handle it).
1771  * Flag error in case process won't see signal immediately (blocked or ignored).
1772  */
1773 /* ARGSUSED */
1774 int
1775 sys_nosys(struct lwp *l, void *v, register_t *retval)
1776 {
1777 	struct proc 	*p;
1778 
1779 	p = l->l_proc;
1780 	psignal(p, SIGSYS);
1781 	return (ENOSYS);
1782 }
1783 
1784 static int
1785 build_corename(struct proc *p, char dst[MAXPATHLEN])
1786 {
1787 	const char	*s;
1788 	char		*d, *end;
1789 	int		i;
1790 
1791 	for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN;
1792 	    *s != '\0'; s++) {
1793 		if (*s == '%') {
1794 			switch (*(s + 1)) {
1795 			case 'n':
1796 				i = snprintf(d, end - d, "%s", p->p_comm);
1797 				break;
1798 			case 'p':
1799 				i = snprintf(d, end - d, "%d", p->p_pid);
1800 				break;
1801 			case 'u':
1802 				i = snprintf(d, end - d, "%.*s",
1803 				    (int)sizeof p->p_pgrp->pg_session->s_login,
1804 				    p->p_pgrp->pg_session->s_login);
1805 				break;
1806 			case 't':
1807 				i = snprintf(d, end - d, "%ld",
1808 				    p->p_stats->p_start.tv_sec);
1809 				break;
1810 			default:
1811 				goto copy;
1812 			}
1813 			d += i;
1814 			s++;
1815 		} else {
1816  copy:			*d = *s;
1817 			d++;
1818 		}
1819 		if (d >= end)
1820 			return (ENAMETOOLONG);
1821 	}
1822 	*d = '\0';
1823 	return 0;
1824 }
1825 
1826 void
1827 getucontext(struct lwp *l, ucontext_t *ucp)
1828 {
1829 	struct proc	*p;
1830 
1831 	p = l->l_proc;
1832 
1833 	ucp->uc_flags = 0;
1834 	ucp->uc_link = l->l_ctxlink;
1835 
1836 	(void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
1837 	ucp->uc_flags |= _UC_SIGMASK;
1838 
1839 	/*
1840 	 * The (unsupplied) definition of the `current execution stack'
1841 	 * in the System V Interface Definition appears to allow returning
1842 	 * the main context stack.
1843 	 */
1844 	if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
1845 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
1846 		ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
1847 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
1848 	} else {
1849 		/* Simply copy alternate signal execution stack. */
1850 		ucp->uc_stack = p->p_sigctx.ps_sigstk;
1851 	}
1852 	ucp->uc_flags |= _UC_STACK;
1853 
1854 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
1855 }
1856 
1857 /* ARGSUSED */
1858 int
1859 sys_getcontext(struct lwp *l, void *v, register_t *retval)
1860 {
1861 	struct sys_getcontext_args /* {
1862 		syscallarg(struct __ucontext *) ucp;
1863 	} */ *uap = v;
1864 	ucontext_t uc;
1865 
1866 	getucontext(l, &uc);
1867 
1868 	return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
1869 }
1870 
1871 int
1872 setucontext(struct lwp *l, const ucontext_t *ucp)
1873 {
1874 	struct proc	*p;
1875 	int		error;
1876 
1877 	p = l->l_proc;
1878 	if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
1879 		return (error);
1880 	l->l_ctxlink = ucp->uc_link;
1881 	/*
1882 	 * We might want to take care of the stack portion here but currently
1883 	 * don't; see the comment in getucontext().
1884 	 */
1885 	if ((ucp->uc_flags & _UC_SIGMASK) != 0)
1886 		sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
1887 
1888 	return 0;
1889 }
1890 
1891 /* ARGSUSED */
1892 int
1893 sys_setcontext(struct lwp *l, void *v, register_t *retval)
1894 {
1895 	struct sys_setcontext_args /* {
1896 		syscallarg(const ucontext_t *) ucp;
1897 	} */ *uap = v;
1898 	ucontext_t uc;
1899 	int error;
1900 
1901 	if (SCARG(uap, ucp) == NULL)	/* i.e. end of uc_link chain */
1902 		exit1(l, W_EXITCODE(0, 0));
1903 	else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
1904 	    (error = setucontext(l, &uc)) != 0)
1905 		return (error);
1906 
1907 	return (EJUSTRETURN);
1908 }
1909 
1910 /*
1911  * sigtimedwait(2) system call, used also for implementation
1912  * of sigwaitinfo() and sigwait().
1913  *
1914  * This only handles single LWP in signal wait. libpthread provides
1915  * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
1916  *
1917  * XXX no support for queued signals, si_code is always SI_USER.
1918  */
1919 int
1920 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
1921 {
1922 	struct sys___sigtimedwait_args /* {
1923 		syscallarg(const sigset_t *) set;
1924 		syscallarg(siginfo_t *) info;
1925 		syscallarg(struct timespec *) timeout;
1926 	} */ *uap = v;
1927 	sigset_t waitset, twaitset;
1928 	struct proc *p = l->l_proc;
1929 	int error, signum, s;
1930 	int timo = 0;
1931 	struct timeval tvstart;
1932 	struct timespec ts;
1933 
1934 	if ((error = copyin(SCARG(uap, set), &waitset, sizeof(waitset))))
1935 		return (error);
1936 
1937 	/*
1938 	 * Silently ignore SA_CANTMASK signals. psignal1() would
1939 	 * ignore SA_CANTMASK signals in waitset, we do this
1940 	 * only for the below siglist check.
1941 	 */
1942 	sigminusset(&sigcantmask, &waitset);
1943 
1944 	/*
1945 	 * First scan siglist and check if there is signal from
1946 	 * our waitset already pending.
1947 	 */
1948 	twaitset = waitset;
1949 	__sigandset(&p->p_sigctx.ps_siglist, &twaitset);
1950 	if ((signum = firstsig(&twaitset))) {
1951 		/* found pending signal */
1952 		sigdelset(&p->p_sigctx.ps_siglist, signum);
1953 		goto sig;
1954 	}
1955 
1956 	/*
1957 	 * Calculate timeout, if it was specified.
1958 	 */
1959 	if (SCARG(uap, timeout)) {
1960 		uint64_t ms;
1961 
1962 		if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))))
1963 			return (error);
1964 
1965 		ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
1966 		timo = mstohz(ms);
1967 		if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
1968 			timo = 1;
1969 		if (timo <= 0)
1970 			return (EAGAIN);
1971 
1972 		/*
1973 		 * Remember current mono_time, it would be used in
1974 		 * ECANCELED/ERESTART case.
1975 		 */
1976 		s = splclock();
1977 		tvstart = mono_time;
1978 		splx(s);
1979 	}
1980 
1981 	/*
1982 	 * Setup ps_sigwait list.
1983 	 */
1984 	p->p_sigctx.ps_sigwaited = -1;
1985 	p->p_sigctx.ps_sigwait = waitset;
1986 
1987 	/*
1988 	 * Wait for signal to arrive. We can either be woken up or
1989 	 * time out.
1990 	 */
1991 	error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
1992 
1993 	/*
1994 	 * Check if a signal from our wait set has arrived, or if it
1995 	 * was mere wakeup.
1996 	 */
1997 	if (!error) {
1998 		if ((signum = p->p_sigctx.ps_sigwaited) <= 0) {
1999 			/* wakeup via _lwp_wakeup() */
2000 			error = ECANCELED;
2001 		}
2002 	}
2003 
2004 	/*
2005 	 * On error, clear sigwait indication. psignal1() sets it
2006 	 * in !error case.
2007 	 */
2008 	if (error) {
2009 		p->p_sigctx.ps_sigwaited = 0;
2010 
2011 		/*
2012 		 * If the sleep was interrupted (either by signal or wakeup),
2013 		 * update the timeout and copyout new value back.
2014 		 * It would be used when the syscall would be restarted
2015 		 * or called again.
2016 		 */
2017 		if (timo && (error == ERESTART || error == ECANCELED)) {
2018 			struct timeval tvnow, tvtimo;
2019 			int err;
2020 
2021 			s = splclock();
2022 			tvnow = mono_time;
2023 			splx(s);
2024 
2025 			TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
2026 
2027 			/* compute how much time has passed since start */
2028 			timersub(&tvnow, &tvstart, &tvnow);
2029 			/* substract passed time from timeout */
2030 			timersub(&tvtimo, &tvnow, &tvtimo);
2031 
2032 			if (tvtimo.tv_sec < 0)
2033 				return (EAGAIN);
2034 
2035 			TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
2036 
2037 			/* copy updated timeout to userland */
2038 			if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts))))
2039 				return (err);
2040 		}
2041 
2042 		return (error);
2043 	}
2044 
2045 	/*
2046 	 * If a signal from the wait set arrived, copy it to userland.
2047 	 * XXX no queued signals for now
2048 	 */
2049 	if (signum > 0) {
2050 		siginfo_t si;
2051 
2052  sig:
2053 		memset(&si, 0, sizeof(si));
2054 		si.si_signo = signum;
2055 		si.si_code = SI_USER;
2056 
2057 		error = copyout(&si, SCARG(uap, info), sizeof(si));
2058 		if (error)
2059 			return (error);
2060 	}
2061 
2062 	return (0);
2063 }
2064 
2065 /*
2066  * Returns true if signal is ignored or masked for passed process.
2067  */
2068 int
2069 sigismasked(struct proc *p, int sig)
2070 {
2071 
2072 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2073 	    sigismember(&p->p_sigctx.ps_sigmask, sig));
2074 }
2075 
2076 static int
2077 filt_sigattach(struct knote *kn)
2078 {
2079 	struct proc *p = curproc;
2080 
2081 	kn->kn_ptr.p_proc = p;
2082 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
2083 
2084 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2085 
2086 	return (0);
2087 }
2088 
2089 static void
2090 filt_sigdetach(struct knote *kn)
2091 {
2092 	struct proc *p = kn->kn_ptr.p_proc;
2093 
2094 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2095 }
2096 
2097 /*
2098  * signal knotes are shared with proc knotes, so we apply a mask to
2099  * the hint in order to differentiate them from process hints.  This
2100  * could be avoided by using a signal-specific knote list, but probably
2101  * isn't worth the trouble.
2102  */
2103 static int
2104 filt_signal(struct knote *kn, long hint)
2105 {
2106 
2107 	if (hint & NOTE_SIGNAL) {
2108 		hint &= ~NOTE_SIGNAL;
2109 
2110 		if (kn->kn_id == hint)
2111 			kn->kn_data++;
2112 	}
2113 	return (kn->kn_data != 0);
2114 }
2115 
2116 const struct filterops sig_filtops = {
2117 	0, filt_sigattach, filt_sigdetach, filt_signal
2118 };
2119