xref: /netbsd-src/sys/kern/kern_sig.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: kern_sig.c,v 1.262 2007/12/05 07:06:53 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Copyright (c) 1982, 1986, 1989, 1991, 1993
41  *	The Regents of the University of California.  All rights reserved.
42  * (c) UNIX System Laboratories, Inc.
43  * All or some portions of this file are derived from material licensed
44  * to the University of California by American Telephone and Telegraph
45  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
46  * the permission of UNIX System Laboratories, Inc.
47  *
48  * Redistribution and use in source and binary forms, with or without
49  * modification, are permitted provided that the following conditions
50  * are met:
51  * 1. Redistributions of source code must retain the above copyright
52  *    notice, this list of conditions and the following disclaimer.
53  * 2. Redistributions in binary form must reproduce the above copyright
54  *    notice, this list of conditions and the following disclaimer in the
55  *    documentation and/or other materials provided with the distribution.
56  * 3. Neither the name of the University nor the names of its contributors
57  *    may be used to endorse or promote products derived from this software
58  *    without specific prior written permission.
59  *
60  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70  * SUCH DAMAGE.
71  *
72  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
73  */
74 
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.262 2007/12/05 07:06:53 ad Exp $");
77 
78 #include "opt_ptrace.h"
79 #include "opt_multiprocessor.h"
80 #include "opt_compat_sunos.h"
81 #include "opt_compat_netbsd.h"
82 #include "opt_compat_netbsd32.h"
83 #include "opt_pax.h"
84 
85 #define	SIGPROP		/* include signal properties table */
86 #include <sys/param.h>
87 #include <sys/signalvar.h>
88 #include <sys/proc.h>
89 #include <sys/systm.h>
90 #include <sys/wait.h>
91 #include <sys/ktrace.h>
92 #include <sys/syslog.h>
93 #include <sys/filedesc.h>
94 #include <sys/file.h>
95 #include <sys/malloc.h>
96 #include <sys/pool.h>
97 #include <sys/ucontext.h>
98 #include <sys/exec.h>
99 #include <sys/kauth.h>
100 #include <sys/acct.h>
101 #include <sys/callout.h>
102 #include <sys/atomic.h>
103 #include <sys/cpu.h>
104 
105 #ifdef PAX_SEGVGUARD
106 #include <sys/pax.h>
107 #endif /* PAX_SEGVGUARD */
108 
109 #include <uvm/uvm.h>
110 #include <uvm/uvm_extern.h>
111 
112 static void	ksiginfo_exechook(struct proc *, void *);
113 static void	proc_stop_callout(void *);
114 
115 int	sigunwait(struct proc *, const ksiginfo_t *);
116 void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
117 int	sigpost(struct lwp *, sig_t, int, int);
118 int	sigchecktrace(sigpend_t **);
119 void	sigswitch(bool, int, int);
120 void	sigrealloc(ksiginfo_t *);
121 
122 sigset_t	contsigmask, stopsigmask, sigcantmask;
123 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
124 static void	sigacts_poolpage_free(struct pool *, void *);
125 static void	*sigacts_poolpage_alloc(struct pool *, int);
126 static callout_t proc_stop_ch;
127 
128 static struct pool_allocator sigactspool_allocator = {
129         .pa_alloc = sigacts_poolpage_alloc,
130 	.pa_free = sigacts_poolpage_free,
131 };
132 
133 #ifdef DEBUG
134 int	kern_logsigexit = 1;
135 #else
136 int	kern_logsigexit = 0;
137 #endif
138 
139 static	const char logcoredump[] =
140     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
141 static	const char lognocoredump[] =
142     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
143 
144 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
145     &pool_allocator_nointr, IPL_NONE);
146 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
147     NULL, IPL_VM);
148 
149 /*
150  * signal_init:
151  *
152  * 	Initialize global signal-related data structures.
153  */
154 void
155 signal_init(void)
156 {
157 
158 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
159 
160 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
161 	    sizeof(struct sigacts) > PAGE_SIZE ?
162 	    &sigactspool_allocator : &pool_allocator_nointr,
163 	    IPL_NONE);
164 
165 	exechook_establish(ksiginfo_exechook, NULL);
166 
167 	callout_init(&proc_stop_ch, 0);
168 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
169 }
170 
171 /*
172  * sigacts_poolpage_alloc:
173  *
174  *	 Allocate a page for the sigacts memory pool.
175  */
176 static void *
177 sigacts_poolpage_alloc(struct pool *pp, int flags)
178 {
179 
180 	return (void *)uvm_km_alloc(kernel_map,
181 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
182 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
183 	    | UVM_KMF_WIRED);
184 }
185 
186 /*
187  * sigacts_poolpage_free:
188  *
189  *	 Free a page on behalf of the sigacts memory pool.
190  */
191 static void
192 sigacts_poolpage_free(struct pool *pp, void *v)
193 {
194         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
195 }
196 
197 /*
198  * sigactsinit:
199  *
200  *	 Create an initial sigctx structure, using the same signal state as
201  *	 p.  If 'share' is set, share the sigctx_proc part, otherwise just
202  *	 copy it from parent.
203  */
204 struct sigacts *
205 sigactsinit(struct proc *pp, int share)
206 {
207 	struct sigacts *ps, *ps2;
208 
209 	ps = pp->p_sigacts;
210 
211 	if (share) {
212 		mutex_enter(&ps->sa_mutex);
213 		ps->sa_refcnt++;
214 		mutex_exit(&ps->sa_mutex);
215 		ps2 = ps;
216 	} else {
217 		ps2 = pool_get(&sigacts_pool, PR_WAITOK);
218 		/* XXX IPL_SCHED to match p_smutex */
219 		mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
220 		mutex_enter(&ps->sa_mutex);
221 		memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
222 		    sizeof(ps2->sa_sigdesc));
223 		mutex_exit(&ps->sa_mutex);
224 		ps2->sa_refcnt = 1;
225 	}
226 
227 	return ps2;
228 }
229 
230 /*
231  * sigactsunshare:
232  *
233  *	Make this process not share its sigctx, maintaining all
234  *	signal state.
235  */
236 void
237 sigactsunshare(struct proc *p)
238 {
239 	struct sigacts *ps, *oldps;
240 
241 	oldps = p->p_sigacts;
242 	if (oldps->sa_refcnt == 1)
243 		return;
244 	ps = pool_get(&sigacts_pool, PR_WAITOK);
245 	/* XXX IPL_SCHED to match p_smutex */
246 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
247 	memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
248 	p->p_sigacts = ps;
249 	sigactsfree(oldps);
250 }
251 
252 /*
253  * sigactsfree;
254  *
255  *	Release a sigctx structure.
256  */
257 void
258 sigactsfree(struct sigacts *ps)
259 {
260 	int refcnt;
261 
262 	mutex_enter(&ps->sa_mutex);
263 	refcnt = --ps->sa_refcnt;
264 	mutex_exit(&ps->sa_mutex);
265 
266 	if (refcnt == 0) {
267 		mutex_destroy(&ps->sa_mutex);
268 		pool_put(&sigacts_pool, ps);
269 	}
270 }
271 
272 /*
273  * siginit:
274  *
275  *	Initialize signal state for process 0; set to ignore signals that
276  *	are ignored by default and disable the signal stack.  Locking not
277  *	required as the system is still cold.
278  */
279 void
280 siginit(struct proc *p)
281 {
282 	struct lwp *l;
283 	struct sigacts *ps;
284 	int signo, prop;
285 
286 	ps = p->p_sigacts;
287 	sigemptyset(&contsigmask);
288 	sigemptyset(&stopsigmask);
289 	sigemptyset(&sigcantmask);
290 	for (signo = 1; signo < NSIG; signo++) {
291 		prop = sigprop[signo];
292 		if (prop & SA_CONT)
293 			sigaddset(&contsigmask, signo);
294 		if (prop & SA_STOP)
295 			sigaddset(&stopsigmask, signo);
296 		if (prop & SA_CANTMASK)
297 			sigaddset(&sigcantmask, signo);
298 		if (prop & SA_IGNORE && signo != SIGCONT)
299 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
300 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
301 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
302 	}
303 	sigemptyset(&p->p_sigctx.ps_sigcatch);
304 	p->p_sflag &= ~PS_NOCLDSTOP;
305 
306 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
307 	sigemptyset(&p->p_sigpend.sp_set);
308 
309 	/*
310 	 * Reset per LWP state.
311 	 */
312 	l = LIST_FIRST(&p->p_lwps);
313 	l->l_sigwaited = NULL;
314 	l->l_sigstk.ss_flags = SS_DISABLE;
315 	l->l_sigstk.ss_size = 0;
316 	l->l_sigstk.ss_sp = 0;
317 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
318 	sigemptyset(&l->l_sigpend.sp_set);
319 
320 	/* One reference. */
321 	ps->sa_refcnt = 1;
322 }
323 
324 /*
325  * execsigs:
326  *
327  *	Reset signals for an exec of the specified process.
328  */
329 void
330 execsigs(struct proc *p)
331 {
332 	struct sigacts *ps;
333 	struct lwp *l;
334 	int signo, prop;
335 	sigset_t tset;
336 	ksiginfoq_t kq;
337 
338 	KASSERT(p->p_nlwps == 1);
339 
340 	sigactsunshare(p);
341 	ps = p->p_sigacts;
342 
343 	/*
344 	 * Reset caught signals.  Held signals remain held through
345 	 * l->l_sigmask (unless they were caught, and are now ignored
346 	 * by default).
347 	 *
348 	 * No need to lock yet, the process has only one LWP and
349 	 * at this point the sigacts are private to the process.
350 	 */
351 	sigemptyset(&tset);
352 	for (signo = 1; signo < NSIG; signo++) {
353 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
354 			prop = sigprop[signo];
355 			if (prop & SA_IGNORE) {
356 				if ((prop & SA_CONT) == 0)
357 					sigaddset(&p->p_sigctx.ps_sigignore,
358 					    signo);
359 				sigaddset(&tset, signo);
360 			}
361 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
362 		}
363 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
364 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
365 	}
366 	ksiginfo_queue_init(&kq);
367 
368 	mutex_enter(&p->p_smutex);
369 	sigclearall(p, &tset, &kq);
370 	sigemptyset(&p->p_sigctx.ps_sigcatch);
371 
372 	/*
373 	 * Reset no zombies if child dies flag as Solaris does.
374 	 */
375 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
376 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
377 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
378 
379 	/*
380 	 * Reset per-LWP state.
381 	 */
382 	l = LIST_FIRST(&p->p_lwps);
383 	l->l_sigwaited = NULL;
384 	l->l_sigstk.ss_flags = SS_DISABLE;
385 	l->l_sigstk.ss_size = 0;
386 	l->l_sigstk.ss_sp = 0;
387 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
388 	sigemptyset(&l->l_sigpend.sp_set);
389 	mutex_exit(&p->p_smutex);
390 
391 	ksiginfo_queue_drain(&kq);
392 }
393 
394 /*
395  * ksiginfo_exechook:
396  *
397  *	Free all pending ksiginfo entries from a process on exec.
398  *	Additionally, drain any unused ksiginfo structures in the
399  *	system back to the pool.
400  *
401  *	XXX This should not be a hook, every process has signals.
402  */
403 static void
404 ksiginfo_exechook(struct proc *p, void *v)
405 {
406 	ksiginfoq_t kq;
407 
408 	ksiginfo_queue_init(&kq);
409 
410 	mutex_enter(&p->p_smutex);
411 	sigclearall(p, NULL, &kq);
412 	mutex_exit(&p->p_smutex);
413 
414 	ksiginfo_queue_drain(&kq);
415 }
416 
417 /*
418  * ksiginfo_alloc:
419  *
420  *	Allocate a new ksiginfo structure from the pool, and optionally copy
421  *	an existing one.  If the existing ksiginfo_t is from the pool, and
422  *	has not been queued somewhere, then just return it.  Additionally,
423  *	if the existing ksiginfo_t does not contain any information beyond
424  *	the signal number, then just return it.
425  */
426 ksiginfo_t *
427 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
428 {
429 	ksiginfo_t *kp;
430 	int s;
431 
432 	if (ok != NULL) {
433 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
434 		    KSI_FROMPOOL)
435 		    	return ok;
436 		if (KSI_EMPTY_P(ok))
437 			return ok;
438 	}
439 
440 	s = splvm();
441 	kp = pool_get(&ksiginfo_pool, flags);
442 	splx(s);
443 	if (kp == NULL) {
444 #ifdef DIAGNOSTIC
445 		printf("Out of memory allocating ksiginfo for pid %d\n",
446 		    p->p_pid);
447 #endif
448 		return NULL;
449 	}
450 
451 	if (ok != NULL) {
452 		memcpy(kp, ok, sizeof(*kp));
453 		kp->ksi_flags &= ~KSI_QUEUED;
454 	} else
455 		KSI_INIT_EMPTY(kp);
456 
457 	kp->ksi_flags |= KSI_FROMPOOL;
458 
459 	return kp;
460 }
461 
462 /*
463  * ksiginfo_free:
464  *
465  *	If the given ksiginfo_t is from the pool and has not been queued,
466  *	then free it.
467  */
468 void
469 ksiginfo_free(ksiginfo_t *kp)
470 {
471 	int s;
472 
473 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
474 		return;
475 	s = splvm();
476 	pool_put(&ksiginfo_pool, kp);
477 	splx(s);
478 }
479 
480 /*
481  * ksiginfo_queue_drain:
482  *
483  *	Drain a non-empty ksiginfo_t queue.
484  */
485 void
486 ksiginfo_queue_drain0(ksiginfoq_t *kq)
487 {
488 	ksiginfo_t *ksi;
489 	int s;
490 
491 	KASSERT(!CIRCLEQ_EMPTY(kq));
492 
493 	KERNEL_LOCK(1, curlwp);		/* XXXSMP */
494 	while (!CIRCLEQ_EMPTY(kq)) {
495 		ksi = CIRCLEQ_FIRST(kq);
496 		CIRCLEQ_REMOVE(kq, ksi, ksi_list);
497 		s = splvm();
498 		pool_put(&ksiginfo_pool, ksi);
499 		splx(s);
500 	}
501 	KERNEL_UNLOCK_ONE(curlwp);	/* XXXSMP */
502 }
503 
504 /*
505  * sigget:
506  *
507  *	Fetch the first pending signal from a set.  Optionally, also fetch
508  *	or manufacture a ksiginfo element.  Returns the number of the first
509  *	pending signal, or zero.
510  */
511 int
512 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, sigset_t *mask)
513 {
514         ksiginfo_t *ksi;
515 	sigset_t tset;
516 
517 	/* If there's no pending set, the signal is from the debugger. */
518 	if (sp == NULL) {
519 		if (out != NULL) {
520 			KSI_INIT(out);
521 			out->ksi_info._signo = signo;
522 			out->ksi_info._code = SI_USER;
523 		}
524 		return signo;
525 	}
526 
527 	/* Construct mask from signo, and 'mask'. */
528 	if (signo == 0) {
529 		if (mask != NULL) {
530 			tset = *mask;
531 			__sigandset(&sp->sp_set, &tset);
532 		} else
533 			tset = sp->sp_set;
534 
535 		/* If there are no signals pending, that's it. */
536 		if ((signo = firstsig(&tset)) == 0)
537 			return 0;
538 	} else {
539 		KASSERT(sigismember(&sp->sp_set, signo));
540 	}
541 
542 	sigdelset(&sp->sp_set, signo);
543 
544 	/* Find siginfo and copy it out. */
545 	CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
546 		if (ksi->ksi_signo == signo) {
547 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
548 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
549 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
550 			ksi->ksi_flags &= ~KSI_QUEUED;
551 			if (out != NULL) {
552 				memcpy(out, ksi, sizeof(*out));
553 				out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
554 			}
555 			ksiginfo_free(ksi);
556 			return signo;
557 		}
558 	}
559 
560 	/* If there's no siginfo, then manufacture it. */
561 	if (out != NULL) {
562 		KSI_INIT(out);
563 		out->ksi_info._signo = signo;
564 		out->ksi_info._code = SI_USER;
565 	}
566 
567 	return signo;
568 }
569 
570 /*
571  * sigput:
572  *
573  *	Append a new ksiginfo element to the list of pending ksiginfo's, if
574  *	we need to (e.g. SA_SIGINFO was requested).
575  */
576 void
577 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
578 {
579 	ksiginfo_t *kp;
580 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
581 
582 	KASSERT(mutex_owned(&p->p_smutex));
583 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
584 
585 	sigaddset(&sp->sp_set, ksi->ksi_signo);
586 
587 	/*
588 	 * If siginfo is not required, or there is none, then just mark the
589 	 * signal as pending.
590 	 */
591 	if ((sa->sa_flags & SA_SIGINFO) == 0 || KSI_EMPTY_P(ksi))
592 		return;
593 
594 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
595 
596 #ifdef notyet	/* XXX: QUEUING */
597 	if (ksi->ksi_signo < SIGRTMIN)
598 #endif
599 	{
600 		CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
601 			if (kp->ksi_signo == ksi->ksi_signo) {
602 				KSI_COPY(ksi, kp);
603 				kp->ksi_flags |= KSI_QUEUED;
604 				return;
605 			}
606 		}
607 	}
608 
609 	ksi->ksi_flags |= KSI_QUEUED;
610 	CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
611 }
612 
613 /*
614  * sigclear:
615  *
616  *	Clear all pending signals in the specified set.
617  */
618 void
619 sigclear(sigpend_t *sp, sigset_t *mask, ksiginfoq_t *kq)
620 {
621 	ksiginfo_t *ksi, *next;
622 
623 	if (mask == NULL)
624 		sigemptyset(&sp->sp_set);
625 	else
626 		sigminusset(mask, &sp->sp_set);
627 
628 	ksi = CIRCLEQ_FIRST(&sp->sp_info);
629 	for (; ksi != (void *)&sp->sp_info; ksi = next) {
630 		next = CIRCLEQ_NEXT(ksi, ksi_list);
631 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
632 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
633 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
634 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
635 			CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
636 		}
637 	}
638 }
639 
640 /*
641  * sigclearall:
642  *
643  *	Clear all pending signals in the specified set from a process and
644  *	its LWPs.
645  */
646 void
647 sigclearall(struct proc *p, sigset_t *mask, ksiginfoq_t *kq)
648 {
649 	struct lwp *l;
650 
651 	KASSERT(mutex_owned(&p->p_smutex));
652 
653 	sigclear(&p->p_sigpend, mask, kq);
654 
655 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
656 		sigclear(&l->l_sigpend, mask, kq);
657 	}
658 }
659 
660 /*
661  * sigispending:
662  *
663  *	Return true if there are pending signals for the current LWP.  May
664  *	be called unlocked provided that L_PENDSIG is set, and that the
665  *	signal has been posted to the appopriate queue before L_PENDSIG is
666  *	set.
667  */
668 int
669 sigispending(struct lwp *l, int signo)
670 {
671 	struct proc *p = l->l_proc;
672 	sigset_t tset;
673 
674 	membar_consumer();
675 
676 	tset = l->l_sigpend.sp_set;
677 	sigplusset(&p->p_sigpend.sp_set, &tset);
678 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
679 	sigminusset(&l->l_sigmask, &tset);
680 
681 	if (signo == 0) {
682 		if (firstsig(&tset) != 0)
683 			return EINTR;
684 	} else if (sigismember(&tset, signo))
685 		return EINTR;
686 
687 	return 0;
688 }
689 
690 /*
691  * siginfo_alloc:
692  *
693  *	 Allocate a new siginfo_t structure from the pool.
694  */
695 siginfo_t *
696 siginfo_alloc(int flags)
697 {
698 
699 	return pool_get(&siginfo_pool, flags);
700 }
701 
702 /*
703  * siginfo_free:
704  *
705  *	 Return a siginfo_t structure to the pool.
706  */
707 void
708 siginfo_free(void *arg)
709 {
710 
711 	pool_put(&siginfo_pool, arg);
712 }
713 
714 void
715 getucontext(struct lwp *l, ucontext_t *ucp)
716 {
717 	struct proc *p = l->l_proc;
718 
719 	KASSERT(mutex_owned(&p->p_smutex));
720 
721 	ucp->uc_flags = 0;
722 	ucp->uc_link = l->l_ctxlink;
723 
724 	ucp->uc_sigmask = l->l_sigmask;
725 	ucp->uc_flags |= _UC_SIGMASK;
726 
727 	/*
728 	 * The (unsupplied) definition of the `current execution stack'
729 	 * in the System V Interface Definition appears to allow returning
730 	 * the main context stack.
731 	 */
732 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
733 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
734 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
735 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
736 	} else {
737 		/* Simply copy alternate signal execution stack. */
738 		ucp->uc_stack = l->l_sigstk;
739 	}
740 	ucp->uc_flags |= _UC_STACK;
741 	mutex_exit(&p->p_smutex);
742 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
743 	mutex_enter(&p->p_smutex);
744 }
745 
746 int
747 setucontext(struct lwp *l, const ucontext_t *ucp)
748 {
749 	struct proc *p = l->l_proc;
750 	int error;
751 
752 	KASSERT(mutex_owned(&p->p_smutex));
753 
754 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
755 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
756 		if (error != 0)
757 			return error;
758 	}
759 
760 	mutex_exit(&p->p_smutex);
761 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
762 	mutex_enter(&p->p_smutex);
763 	if (error != 0)
764 		return (error);
765 
766 	l->l_ctxlink = ucp->uc_link;
767 
768 	/*
769 	 * If there was stack information, update whether or not we are
770 	 * still running on an alternate signal stack.
771 	 */
772 	if ((ucp->uc_flags & _UC_STACK) != 0) {
773 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
774 			l->l_sigstk.ss_flags |= SS_ONSTACK;
775 		else
776 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
777 	}
778 
779 	return 0;
780 }
781 
782 /*
783  * Common code for kill process group/broadcast kill.  cp is calling
784  * process.
785  */
786 int
787 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
788 {
789 	struct proc	*p, *cp;
790 	kauth_cred_t	pc;
791 	struct pgrp	*pgrp;
792 	int		nfound;
793 	int		signo = ksi->ksi_signo;
794 
795 	cp = l->l_proc;
796 	pc = l->l_cred;
797 	nfound = 0;
798 
799 	mutex_enter(&proclist_lock);
800 	if (all) {
801 		/*
802 		 * broadcast
803 		 */
804 		PROCLIST_FOREACH(p, &allproc) {
805 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM || p == cp)
806 				continue;
807 			mutex_enter(&p->p_mutex);
808 			if (kauth_authorize_process(pc,
809 			    KAUTH_PROCESS_CANSIGNAL, p,
810 			    (void *)(uintptr_t)signo, NULL, NULL) == 0) {
811 				nfound++;
812 				if (signo) {
813 					mutex_enter(&proclist_mutex);
814 					mutex_enter(&p->p_smutex);
815 					kpsignal2(p, ksi);
816 					mutex_exit(&p->p_smutex);
817 					mutex_exit(&proclist_mutex);
818 				}
819 			}
820 			mutex_exit(&p->p_mutex);
821 		}
822 	} else {
823 		if (pgid == 0)
824 			/*
825 			 * zero pgid means send to my process group.
826 			 */
827 			pgrp = cp->p_pgrp;
828 		else {
829 			pgrp = pg_find(pgid, PFIND_LOCKED);
830 			if (pgrp == NULL)
831 				goto out;
832 		}
833 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
834 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
835 				continue;
836 			mutex_enter(&p->p_mutex);
837 			if (kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL,
838 			    p, (void *)(uintptr_t)signo, NULL, NULL) == 0) {
839 				nfound++;
840 				if (signo) {
841 					mutex_enter(&proclist_mutex);
842 					mutex_enter(&p->p_smutex);
843 					if (P_ZOMBIE(p) == 0)
844 						kpsignal2(p, ksi);
845 					mutex_exit(&p->p_smutex);
846 					mutex_exit(&proclist_mutex);
847 				}
848 			}
849 			mutex_exit(&p->p_mutex);
850 		}
851 	}
852   out:
853 	mutex_exit(&proclist_lock);
854 	return (nfound ? 0 : ESRCH);
855 }
856 
857 /*
858  * Send a signal to a process group. If checktty is 1, limit to members
859  * which have a controlling terminal.
860  */
861 void
862 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
863 {
864 	ksiginfo_t ksi;
865 
866 	KASSERT(mutex_owned(&proclist_mutex));
867 
868 	KSI_INIT_EMPTY(&ksi);
869 	ksi.ksi_signo = sig;
870 	kpgsignal(pgrp, &ksi, NULL, checkctty);
871 }
872 
873 void
874 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
875 {
876 	struct proc *p;
877 
878 	KASSERT(mutex_owned(&proclist_mutex));
879 
880 	if (pgrp)
881 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
882 			if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
883 				kpsignal(p, ksi, data);
884 }
885 
886 /*
887  * Send a signal caused by a trap to the current LWP.  If it will be caught
888  * immediately, deliver it with correct code.  Otherwise, post it normally.
889  */
890 void
891 trapsignal(struct lwp *l, ksiginfo_t *ksi)
892 {
893 	struct proc	*p;
894 	struct sigacts	*ps;
895 	int signo = ksi->ksi_signo;
896 
897 	KASSERT(KSI_TRAP_P(ksi));
898 
899 	ksi->ksi_lid = l->l_lid;
900 	p = l->l_proc;
901 
902 	mutex_enter(&proclist_mutex);
903 	mutex_enter(&p->p_smutex);
904 	ps = p->p_sigacts;
905 	if ((p->p_slflag & PSL_TRACED) == 0 &&
906 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
907 	    !sigismember(&l->l_sigmask, signo)) {
908 		mutex_exit(&proclist_mutex);
909 		p->p_stats->p_ru.ru_nsignals++;
910 		kpsendsig(l, ksi, &l->l_sigmask);
911 		mutex_exit(&p->p_smutex);
912 		ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
913 		    &l->l_sigmask, ksi);
914 	} else {
915 		/* XXX for core dump/debugger */
916 		p->p_sigctx.ps_lwp = l->l_lid;
917 		p->p_sigctx.ps_signo = ksi->ksi_signo;
918 		p->p_sigctx.ps_code = ksi->ksi_trap;
919 		kpsignal2(p, ksi);
920 		mutex_exit(&proclist_mutex);
921 		mutex_exit(&p->p_smutex);
922 	}
923 }
924 
925 /*
926  * Fill in signal information and signal the parent for a child status change.
927  */
928 void
929 child_psignal(struct proc *p, int mask)
930 {
931 	ksiginfo_t ksi;
932 	struct proc *q;
933 	int xstat;
934 
935 	KASSERT(mutex_owned(&proclist_mutex));
936 	KASSERT(mutex_owned(&p->p_smutex));
937 
938 	xstat = p->p_xstat;
939 
940 	KSI_INIT(&ksi);
941 	ksi.ksi_signo = SIGCHLD;
942 	ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
943 	ksi.ksi_pid = p->p_pid;
944 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
945 	ksi.ksi_status = xstat;
946 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
947 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
948 
949 	q = p->p_pptr;
950 
951 	mutex_exit(&p->p_smutex);
952 	mutex_enter(&q->p_smutex);
953 
954 	if ((q->p_sflag & mask) == 0)
955 		kpsignal2(q, &ksi);
956 
957 	mutex_exit(&q->p_smutex);
958 	mutex_enter(&p->p_smutex);
959 }
960 
961 void
962 psignal(struct proc *p, int signo)
963 {
964 	ksiginfo_t ksi;
965 
966 	KASSERT(mutex_owned(&proclist_mutex));
967 
968 	KSI_INIT_EMPTY(&ksi);
969 	ksi.ksi_signo = signo;
970 	mutex_enter(&p->p_smutex);
971 	kpsignal2(p, &ksi);
972 	mutex_exit(&p->p_smutex);
973 }
974 
975 void
976 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
977 {
978 
979 	KASSERT(mutex_owned(&proclist_mutex));
980 
981 	/* XXXSMP Why is this here? */
982 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
983 		size_t fd;
984 		struct filedesc *fdp = p->p_fd;
985 
986 		ksi->ksi_fd = -1;
987 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
988 			struct file *fp = fdp->fd_ofiles[fd];
989 			/* XXX: lock? */
990 			if (fp && fp->f_data == data) {
991 				ksi->ksi_fd = fd;
992 				break;
993 			}
994 		}
995 	}
996 	mutex_enter(&p->p_smutex);
997 	kpsignal2(p, ksi);
998 	mutex_exit(&p->p_smutex);
999 }
1000 
1001 /*
1002  * sigismasked:
1003  *
1004  *	 Returns true if signal is ignored or masked for the specified LWP.
1005  */
1006 int
1007 sigismasked(struct lwp *l, int sig)
1008 {
1009 	struct proc *p = l->l_proc;
1010 
1011 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1012 	    sigismember(&l->l_sigmask, sig));
1013 }
1014 
1015 /*
1016  * sigpost:
1017  *
1018  *	 Post a pending signal to an LWP.  Returns non-zero if the LWP was
1019  *	 able to take the signal.
1020  */
1021 int
1022 sigpost(struct lwp *l, sig_t action, int prop, int sig)
1023 {
1024 	int rv, masked;
1025 
1026 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
1027 
1028 	/*
1029 	 * If the LWP is on the way out, sigclear() will be busy draining all
1030 	 * pending signals.  Don't give it more.
1031 	 */
1032 	if (l->l_refcnt == 0)
1033 		return 0;
1034 
1035 	lwp_lock(l);
1036 
1037 	/*
1038 	 * Have the LWP check for signals.  This ensures that even if no LWP
1039 	 * is found to take the signal immediately, it should be taken soon.
1040 	 */
1041 	l->l_flag |= LW_PENDSIG;
1042 
1043 	/*
1044 	 * SIGCONT can be masked, but must always restart stopped LWPs.
1045 	 */
1046 	masked = sigismember(&l->l_sigmask, sig);
1047 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1048 		lwp_unlock(l);
1049 		return 0;
1050 	}
1051 
1052 	/*
1053 	 * If killing the process, make it run fast.
1054 	 */
1055 	if (__predict_false((prop & SA_KILL) != 0) &&
1056 	    action == SIG_DFL && l->l_priority > PUSER)
1057 		lwp_changepri(l, PUSER);
1058 
1059 	/*
1060 	 * If the LWP is running or on a run queue, then we win.  If it's
1061 	 * sleeping interruptably, wake it and make it take the signal.  If
1062 	 * the sleep isn't interruptable, then the chances are it will get
1063 	 * to see the signal soon anyhow.  If suspended, it can't take the
1064 	 * signal right now.  If it's LWP private or for all LWPs, save it
1065 	 * for later; otherwise punt.
1066 	 */
1067 	rv = 0;
1068 
1069 	switch (l->l_stat) {
1070 	case LSRUN:
1071 	case LSONPROC:
1072 		lwp_need_userret(l);
1073 		rv = 1;
1074 		break;
1075 
1076 	case LSSLEEP:
1077 		if ((l->l_flag & LW_SINTR) != 0) {
1078 			/* setrunnable() will release the lock. */
1079 			setrunnable(l);
1080 			return 1;
1081 		}
1082 		break;
1083 
1084 	case LSSUSPENDED:
1085 		if ((prop & SA_KILL) != 0) {
1086 			/* lwp_continue() will release the lock. */
1087 			lwp_continue(l);
1088 			return 1;
1089 		}
1090 		break;
1091 
1092 	case LSSTOP:
1093 		if ((prop & SA_STOP) != 0)
1094 			break;
1095 
1096 		/*
1097 		 * If the LWP is stopped and we are sending a continue
1098 		 * signal, then start it again.
1099 		 */
1100 		if ((prop & SA_CONT) != 0) {
1101 			if (l->l_wchan != NULL) {
1102 				l->l_stat = LSSLEEP;
1103 				l->l_proc->p_nrlwps++;
1104 				rv = 1;
1105 				break;
1106 			}
1107 			/* setrunnable() will release the lock. */
1108 			setrunnable(l);
1109 			return 1;
1110 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1111 			/* setrunnable() will release the lock. */
1112 			setrunnable(l);
1113 			return 1;
1114 		}
1115 		break;
1116 
1117 	default:
1118 		break;
1119 	}
1120 
1121 	lwp_unlock(l);
1122 	return rv;
1123 }
1124 
1125 /*
1126  * Notify an LWP that it has a pending signal.
1127  */
1128 void
1129 signotify(struct lwp *l)
1130 {
1131 	KASSERT(lwp_locked(l, NULL));
1132 
1133 	l->l_flag |= LW_PENDSIG;
1134 	lwp_need_userret(l);
1135 }
1136 
1137 /*
1138  * Find an LWP within process p that is waiting on signal ksi, and hand
1139  * it on.
1140  */
1141 int
1142 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1143 {
1144 	struct lwp *l;
1145 	int signo;
1146 
1147 	KASSERT(mutex_owned(&p->p_smutex));
1148 
1149 	signo = ksi->ksi_signo;
1150 
1151 	if (ksi->ksi_lid != 0) {
1152 		/*
1153 		 * Signal came via _lwp_kill().  Find the LWP and see if
1154 		 * it's interested.
1155 		 */
1156 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1157 			return 0;
1158 		if (l->l_sigwaited == NULL ||
1159 		    !sigismember(&l->l_sigwaitset, signo))
1160 			return 0;
1161 	} else {
1162 		/*
1163 		 * Look for any LWP that may be interested.
1164 		 */
1165 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1166 			KASSERT(l->l_sigwaited != NULL);
1167 			if (sigismember(&l->l_sigwaitset, signo))
1168 				break;
1169 		}
1170 	}
1171 
1172 	if (l != NULL) {
1173 		l->l_sigwaited->ksi_info = ksi->ksi_info;
1174 		l->l_sigwaited = NULL;
1175 		LIST_REMOVE(l, l_sigwaiter);
1176 		cv_signal(&l->l_sigcv);
1177 		return 1;
1178 	}
1179 
1180 	return 0;
1181 }
1182 
1183 /*
1184  * Send the signal to the process.  If the signal has an action, the action
1185  * is usually performed by the target process rather than the caller; we add
1186  * the signal to the set of pending signals for the process.
1187  *
1188  * Exceptions:
1189  *   o When a stop signal is sent to a sleeping process that takes the
1190  *     default action, the process is stopped without awakening it.
1191  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1192  *     regardless of the signal action (eg, blocked or ignored).
1193  *
1194  * Other ignored signals are discarded immediately.
1195  */
1196 void
1197 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1198 {
1199 	int prop, lid, toall, signo = ksi->ksi_signo;
1200 	struct sigacts *sa;
1201 	struct lwp *l;
1202 	ksiginfo_t *kp;
1203 	ksiginfoq_t kq;
1204 	sig_t action;
1205 
1206 	KASSERT(mutex_owned(&proclist_mutex));
1207 	KASSERT(mutex_owned(&p->p_smutex));
1208 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1209 	KASSERT(signo > 0 && signo < NSIG);
1210 
1211 	/*
1212 	 * If the process is being created by fork, is a zombie or is
1213 	 * exiting, then just drop the signal here and bail out.
1214 	 */
1215 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1216 		return;
1217 
1218 	/*
1219 	 * Notify any interested parties of the signal.
1220 	 */
1221 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1222 
1223 	/*
1224 	 * Some signals including SIGKILL must act on the entire process.
1225 	 */
1226 	kp = NULL;
1227 	prop = sigprop[signo];
1228 	toall = ((prop & SA_TOALL) != 0);
1229 
1230 	if (toall)
1231 		lid = 0;
1232 	else
1233 		lid = ksi->ksi_lid;
1234 
1235 	/*
1236 	 * If proc is traced, always give parent a chance.
1237 	 */
1238 	if (p->p_slflag & PSL_TRACED) {
1239 		action = SIG_DFL;
1240 
1241 		if (lid == 0) {
1242 			/*
1243 			 * If the process is being traced and the signal
1244 			 * is being caught, make sure to save any ksiginfo.
1245 			 */
1246 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1247 				return;
1248 			sigput(&p->p_sigpend, p, kp);
1249 		}
1250 	} else {
1251 		/*
1252 		 * If the signal was the result of a trap and is not being
1253 		 * caught, then reset it to default action so that the
1254 		 * process dumps core immediately.
1255 		 */
1256 		if (KSI_TRAP_P(ksi)) {
1257 			sa = p->p_sigacts;
1258 			mutex_enter(&sa->sa_mutex);
1259 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1260 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
1261 				SIGACTION(p, signo).sa_handler = SIG_DFL;
1262 			}
1263 			mutex_exit(&sa->sa_mutex);
1264 		}
1265 
1266 		/*
1267 		 * If the signal is being ignored, then drop it.  Note: we
1268 		 * don't set SIGCONT in ps_sigignore, and if it is set to
1269 		 * SIG_IGN, action will be SIG_DFL here.
1270 		 */
1271 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1272 			return;
1273 
1274 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1275 			action = SIG_CATCH;
1276 		else {
1277 			action = SIG_DFL;
1278 
1279 			/*
1280 			 * If sending a tty stop signal to a member of an
1281 			 * orphaned process group, discard the signal here if
1282 			 * the action is default; don't stop the process below
1283 			 * if sleeping, and don't clear any pending SIGCONT.
1284 			 */
1285 			if (prop & SA_TTYSTOP &&
1286 			    (p->p_sflag & PS_ORPHANPG) != 0)
1287 				return;
1288 
1289 			if (prop & SA_KILL && p->p_nice > NZERO)
1290 				p->p_nice = NZERO;
1291 		}
1292 	}
1293 
1294 	/*
1295 	 * If stopping or continuing a process, discard any pending
1296 	 * signals that would do the inverse.
1297 	 */
1298 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
1299 		ksiginfo_queue_init(&kq);
1300 		if ((prop & SA_CONT) != 0)
1301 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
1302 		if ((prop & SA_STOP) != 0)
1303 			sigclear(&p->p_sigpend, &contsigmask, &kq);
1304 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
1305 	}
1306 
1307 	/*
1308 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1309 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
1310 	 * the signal info.  The signal won't be processed further here.
1311 	 */
1312 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1313 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1314 	    sigunwait(p, ksi))
1315 		return;
1316 
1317 	/*
1318 	 * XXXSMP Should be allocated by the caller, we're holding locks
1319 	 * here.
1320 	 */
1321 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1322 		return;
1323 
1324 	/*
1325 	 * LWP private signals are easy - just find the LWP and post
1326 	 * the signal to it.
1327 	 */
1328 	if (lid != 0) {
1329 		l = lwp_find(p, lid);
1330 		if (l != NULL) {
1331 			sigput(&l->l_sigpend, p, kp);
1332 			membar_producer();
1333 			(void)sigpost(l, action, prop, kp->ksi_signo);
1334 		}
1335 		goto out;
1336 	}
1337 
1338 	/*
1339 	 * Some signals go to all LWPs, even if posted with _lwp_kill().
1340 	 */
1341 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1342 		if ((p->p_slflag & PSL_TRACED) != 0)
1343 			goto deliver;
1344 
1345 		/*
1346 		 * If SIGCONT is default (or ignored) and process is
1347 		 * asleep, we are finished; the process should not
1348 		 * be awakened.
1349 		 */
1350 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1351 			goto out;
1352 
1353 		if ((prop & SA_STOP) != 0 && action == SIG_DFL) {
1354 			/*
1355 			 * If a child holding parent blocked, stopping could
1356 			 * cause deadlock: discard the signal.
1357 			 */
1358 			if ((p->p_sflag & PS_PPWAIT) == 0) {
1359 				p->p_xstat = signo;
1360 				proc_stop(p, 1, signo);
1361 			}
1362 			goto out;
1363 		} else {
1364 			/*
1365 			 * Stop signals with the default action are handled
1366 			 * specially in issignal(), and so are not enqueued.
1367 			 */
1368 			sigput(&p->p_sigpend, p, kp);
1369 		}
1370 	} else {
1371 		/*
1372 		 * Process is stopped or stopping.  If traced, then no
1373 		 * further action is necessary.
1374 		 */
1375 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
1376 			goto out;
1377 
1378 		if ((prop & (SA_CONT | SA_KILL)) != 0) {
1379 			/*
1380 			 * Re-adjust p_nstopchild if the process wasn't
1381 			 * collected by its parent.
1382 			 */
1383 			p->p_stat = SACTIVE;
1384 			p->p_sflag &= ~PS_STOPPING;
1385 			if (!p->p_waited)
1386 				p->p_pptr->p_nstopchild--;
1387 
1388 			/*
1389 			 * If SIGCONT is default (or ignored), we continue
1390 			 * the process but don't leave the signal in
1391 			 * ps_siglist, as it has no further action.  If
1392 			 * SIGCONT is held, we continue the process and
1393 			 * leave the signal in ps_siglist.  If the process
1394 			 * catches SIGCONT, let it handle the signal itself.
1395 			 * If it isn't waiting on an event, then it goes
1396 			 * back to run state.  Otherwise, process goes back
1397 			 * to sleep state.
1398 			 */
1399 			if ((prop & SA_CONT) == 0 || action != SIG_DFL)
1400 				sigput(&p->p_sigpend, p, kp);
1401 		} else if ((prop & SA_STOP) != 0) {
1402 			/*
1403 			 * Already stopped, don't need to stop again.
1404 			 * (If we did the shell could get confused.)
1405 			 */
1406 			goto out;
1407 		} else
1408 			sigput(&p->p_sigpend, p, kp);
1409 	}
1410 
1411  deliver:
1412 	/*
1413 	 * Before we set L_PENDSIG on any LWP, ensure that the signal is
1414 	 * visible on the per process list (for sigispending()).  This
1415 	 * is unlikely to be needed in practice, but...
1416 	 */
1417 	membar_producer();
1418 
1419 	/*
1420 	 * Try to find an LWP that can take the signal.
1421 	 */
1422 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
1423 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1424 			break;
1425 
1426  out:
1427  	/*
1428  	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
1429  	 * with locks held.  The caller should take care of this.
1430  	 */
1431  	ksiginfo_free(kp);
1432 }
1433 
1434 void
1435 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1436 {
1437 	struct proc *p = l->l_proc;
1438 
1439 	KASSERT(mutex_owned(&p->p_smutex));
1440 
1441 	(*p->p_emul->e_sendsig)(ksi, mask);
1442 }
1443 
1444 /*
1445  * Stop the current process and switch away when being stopped or traced.
1446  */
1447 void
1448 sigswitch(bool ppsig, int ppmask, int signo)
1449 {
1450 	struct lwp *l = curlwp, *l2;
1451 	struct proc *p = l->l_proc;
1452 #ifdef MULTIPROCESSOR
1453 	int biglocks;
1454 #endif
1455 
1456 	KASSERT(mutex_owned(&p->p_smutex));
1457 	KASSERT(l->l_stat == LSONPROC);
1458 	KASSERT(p->p_nrlwps > 0);
1459 
1460 	/*
1461 	 * On entry we know that the process needs to stop.  If it's
1462 	 * the result of a 'sideways' stop signal that has been sourced
1463 	 * through issignal(), then stop other LWPs in the process too.
1464 	 */
1465 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1466 		/*
1467 		 * Set the stopping indicator and bring all sleeping LWPs
1468 		 * to a halt so they are included in p->p_nrlwps
1469 		 */
1470 		p->p_sflag |= (PS_STOPPING | PS_NOTIFYSTOP);
1471 		membar_producer();
1472 
1473 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1474 			lwp_lock(l2);
1475 			if (l2->l_stat == LSSLEEP &&
1476 			    (l2->l_flag & LW_SINTR) != 0) {
1477 				l2->l_stat = LSSTOP;
1478 				p->p_nrlwps--;
1479 			}
1480 			lwp_unlock(l2);
1481 		}
1482 
1483 		/*
1484 		 * Have the remaining LWPs come to a halt, and trigger
1485 		 * proc_stop_callout() to ensure that they do.
1486 		 */
1487 		KASSERT(signo != 0);
1488 		KASSERT(p->p_nrlwps > 0);
1489 
1490 		if (p->p_nrlwps > 1) {
1491 			LIST_FOREACH(l2, &p->p_lwps, l_sibling)
1492 				sigpost(l2, SIG_DFL, SA_STOP, signo);
1493 			callout_schedule(&proc_stop_ch, 1);
1494 		}
1495 	}
1496 
1497 	/*
1498 	 * If we are the last live LWP, and the stop was a result of
1499 	 * a new signal, then signal the parent.
1500 	 */
1501 	if ((p->p_sflag & PS_STOPPING) != 0) {
1502 		if (!mutex_tryenter(&proclist_mutex)) {
1503 			mutex_exit(&p->p_smutex);
1504 			mutex_enter(&proclist_mutex);
1505 			mutex_enter(&p->p_smutex);
1506 		}
1507 
1508 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1509 			p->p_sflag &= ~PS_STOPPING;
1510 			p->p_stat = SSTOP;
1511 			p->p_waited = 0;
1512 			p->p_pptr->p_nstopchild++;
1513 			if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1514 				/*
1515 				 * Note that child_psignal() will drop
1516 				 * p->p_smutex briefly.
1517 				 */
1518 				if (ppsig)
1519 					child_psignal(p, ppmask);
1520 				cv_broadcast(&p->p_pptr->p_waitcv);
1521 			}
1522 		}
1523 
1524 		mutex_exit(&proclist_mutex);
1525 	}
1526 
1527 	/*
1528 	 * Unlock and switch away.
1529 	 */
1530 	KERNEL_UNLOCK_ALL(l, &biglocks);
1531 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1532 		p->p_nrlwps--;
1533 		lwp_lock(l);
1534 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1535 		l->l_stat = LSSTOP;
1536 		lwp_unlock(l);
1537 	}
1538 
1539 	mutex_exit(&p->p_smutex);
1540 	lwp_lock(l);
1541 	mi_switch(l);
1542 	KERNEL_LOCK(biglocks, l);
1543 	mutex_enter(&p->p_smutex);
1544 }
1545 
1546 /*
1547  * Check for a signal from the debugger.
1548  */
1549 int
1550 sigchecktrace(sigpend_t **spp)
1551 {
1552 	struct lwp *l = curlwp;
1553 	struct proc *p = l->l_proc;
1554 	int signo;
1555 
1556 	KASSERT(mutex_owned(&p->p_smutex));
1557 
1558 	/*
1559 	 * If we are no longer being traced, or the parent didn't
1560 	 * give us a signal, look for more signals.
1561 	 */
1562 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
1563 		return 0;
1564 
1565 	/* If there's a pending SIGKILL, process it immediately. */
1566 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1567 		return 0;
1568 
1569 	/*
1570 	 * If the new signal is being masked, look for other signals.
1571 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1572 	 */
1573 	signo = p->p_xstat;
1574 	p->p_xstat = 0;
1575 	if ((sigprop[signo] & SA_TOLWP) != 0)
1576 		*spp = &l->l_sigpend;
1577 	else
1578 		*spp = &p->p_sigpend;
1579 	if (sigismember(&l->l_sigmask, signo))
1580 		signo = 0;
1581 
1582 	return signo;
1583 }
1584 
1585 /*
1586  * If the current process has received a signal (should be caught or cause
1587  * termination, should interrupt current syscall), return the signal number.
1588  *
1589  * Stop signals with default action are processed immediately, then cleared;
1590  * they aren't returned.  This is checked after each entry to the system for
1591  * a syscall or trap.
1592  *
1593  * We will also return -1 if the process is exiting and the current LWP must
1594  * follow suit.
1595  *
1596  * Note that we may be called while on a sleep queue, so MUST NOT sleep.  We
1597  * can switch away, though.
1598  */
1599 int
1600 issignal(struct lwp *l)
1601 {
1602 	struct proc *p = l->l_proc;
1603 	int signo = 0, prop;
1604 	sigpend_t *sp = NULL;
1605 	sigset_t ss;
1606 
1607 	KASSERT(mutex_owned(&p->p_smutex));
1608 
1609 	for (;;) {
1610 		/* Discard any signals that we have decided not to take. */
1611 		if (signo != 0)
1612 			(void)sigget(sp, NULL, signo, NULL);
1613 
1614 		/*
1615 		 * If the process is stopped/stopping, then stop ourselves
1616 		 * now that we're on the kernel/userspace boundary.  When
1617 		 * we awaken, check for a signal from the debugger.
1618 		 */
1619 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1620 			sigswitch(true, PS_NOCLDSTOP, 0);
1621 			signo = sigchecktrace(&sp);
1622 		} else
1623 			signo = 0;
1624 
1625 		/*
1626 		 * If the debugger didn't provide a signal, find a pending
1627 		 * signal from our set.  Check per-LWP signals first, and
1628 		 * then per-process.
1629 		 */
1630 		if (signo == 0) {
1631 			sp = &l->l_sigpend;
1632 			ss = sp->sp_set;
1633 			if ((p->p_sflag & PS_PPWAIT) != 0)
1634 				sigminusset(&stopsigmask, &ss);
1635 			sigminusset(&l->l_sigmask, &ss);
1636 
1637 			if ((signo = firstsig(&ss)) == 0) {
1638 				sp = &p->p_sigpend;
1639 				ss = sp->sp_set;
1640 				if ((p->p_sflag & PS_PPWAIT) != 0)
1641 					sigminusset(&stopsigmask, &ss);
1642 				sigminusset(&l->l_sigmask, &ss);
1643 
1644 				if ((signo = firstsig(&ss)) == 0) {
1645 					/*
1646 					 * No signal pending - clear the
1647 					 * indicator and bail out.
1648 					 */
1649 					lwp_lock(l);
1650 					l->l_flag &= ~LW_PENDSIG;
1651 					lwp_unlock(l);
1652 					sp = NULL;
1653 					break;
1654 				}
1655 			}
1656 		}
1657 
1658 		/*
1659 		 * We should see pending but ignored signals only if
1660 		 * we are being traced.
1661 		 */
1662 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1663 		    (p->p_slflag & PSL_TRACED) == 0) {
1664 			/* Discard the signal. */
1665 			continue;
1666 		}
1667 
1668 		/*
1669 		 * If traced, always stop, and stay stopped until released
1670 		 * by the debugger.  If the our parent process is waiting
1671 		 * for us, don't hang as we could deadlock.
1672 		 */
1673 		if ((p->p_slflag & PSL_TRACED) != 0 &&
1674 		    (p->p_sflag & PS_PPWAIT) == 0 && signo != SIGKILL) {
1675 			/* Take the signal. */
1676 			(void)sigget(sp, NULL, signo, NULL);
1677 			p->p_xstat = signo;
1678 
1679 			/* Emulation-specific handling of signal trace */
1680 			if (p->p_emul->e_tracesig == NULL ||
1681 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
1682 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1683 				    signo);
1684 
1685 			/* Check for a signal from the debugger. */
1686 			if ((signo = sigchecktrace(&sp)) == 0)
1687 				continue;
1688 		}
1689 
1690 		prop = sigprop[signo];
1691 
1692 		/*
1693 		 * Decide whether the signal should be returned.
1694 		 */
1695 		switch ((long)SIGACTION(p, signo).sa_handler) {
1696 		case (long)SIG_DFL:
1697 			/*
1698 			 * Don't take default actions on system processes.
1699 			 */
1700 			if (p->p_pid <= 1) {
1701 #ifdef DIAGNOSTIC
1702 				/*
1703 				 * Are you sure you want to ignore SIGSEGV
1704 				 * in init? XXX
1705 				 */
1706 				printf_nolog("Process (pid %d) got sig %d\n",
1707 				    p->p_pid, signo);
1708 #endif
1709 				continue;
1710 			}
1711 
1712 			/*
1713 			 * If there is a pending stop signal to process with
1714 			 * default action, stop here, then clear the signal.
1715 			 * However, if process is member of an orphaned
1716 			 * process group, ignore tty stop signals.
1717 			 */
1718 			if (prop & SA_STOP) {
1719 				if (p->p_slflag & PSL_TRACED ||
1720 		    		    ((p->p_sflag & PS_ORPHANPG) != 0 &&
1721 				    prop & SA_TTYSTOP)) {
1722 				    	/* Ignore the signal. */
1723 					continue;
1724 				}
1725 				/* Take the signal. */
1726 				(void)sigget(sp, NULL, signo, NULL);
1727 				p->p_xstat = signo;
1728 				signo = 0;
1729 				sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1730 			} else if (prop & SA_IGNORE) {
1731 				/*
1732 				 * Except for SIGCONT, shouldn't get here.
1733 				 * Default action is to ignore; drop it.
1734 				 */
1735 				continue;
1736 			}
1737 			break;
1738 
1739 		case (long)SIG_IGN:
1740 #ifdef DEBUG_ISSIGNAL
1741 			/*
1742 			 * Masking above should prevent us ever trying
1743 			 * to take action on an ignored signal other
1744 			 * than SIGCONT, unless process is traced.
1745 			 */
1746 			if ((prop & SA_CONT) == 0 &&
1747 			    (p->p_slflag & PSL_TRACED) == 0)
1748 				printf_nolog("issignal\n");
1749 #endif
1750 			continue;
1751 
1752 		default:
1753 			/*
1754 			 * This signal has an action, let postsig() process
1755 			 * it.
1756 			 */
1757 			break;
1758 		}
1759 
1760 		break;
1761 	}
1762 
1763 	l->l_sigpendset = sp;
1764 	return signo;
1765 }
1766 
1767 /*
1768  * Take the action for the specified signal
1769  * from the current set of pending signals.
1770  */
1771 void
1772 postsig(int signo)
1773 {
1774 	struct lwp	*l;
1775 	struct proc	*p;
1776 	struct sigacts	*ps;
1777 	sig_t		action;
1778 	sigset_t	*returnmask;
1779 	ksiginfo_t	ksi;
1780 
1781 	l = curlwp;
1782 	p = l->l_proc;
1783 	ps = p->p_sigacts;
1784 
1785 	KASSERT(mutex_owned(&p->p_smutex));
1786 	KASSERT(signo > 0);
1787 
1788 	/*
1789 	 * Set the new mask value and also defer further occurrences of this
1790 	 * signal.
1791 	 *
1792 	 * Special case: user has done a sigpause.  Here the current mask is
1793 	 * not of interest, but rather the mask from before the sigpause is
1794 	 * what we want restored after the signal processing is completed.
1795 	 */
1796 	if (l->l_sigrestore) {
1797 		returnmask = &l->l_sigoldmask;
1798 		l->l_sigrestore = 0;
1799 	} else
1800 		returnmask = &l->l_sigmask;
1801 
1802 	/*
1803 	 * Commit to taking the signal before releasing the mutex.
1804 	 */
1805 	action = SIGACTION_PS(ps, signo).sa_handler;
1806 	p->p_stats->p_ru.ru_nsignals++;
1807 	sigget(l->l_sigpendset, &ksi, signo, NULL);
1808 
1809 	if (ktrpoint(KTR_PSIG)) {
1810 		mutex_exit(&p->p_smutex);
1811 		ktrpsig(signo, action, returnmask, NULL);
1812 		mutex_enter(&p->p_smutex);
1813 	}
1814 
1815 	if (action == SIG_DFL) {
1816 		/*
1817 		 * Default action, where the default is to kill
1818 		 * the process.  (Other cases were ignored above.)
1819 		 */
1820 		sigexit(l, signo);
1821 		return;
1822 	}
1823 
1824 	/*
1825 	 * If we get here, the signal must be caught.
1826 	 */
1827 #ifdef DIAGNOSTIC
1828 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1829 		panic("postsig action");
1830 #endif
1831 
1832 	kpsendsig(l, &ksi, returnmask);
1833 }
1834 
1835 /*
1836  * sendsig_reset:
1837  *
1838  *	Reset the signal action.  Called from emulation specific sendsig()
1839  *	before unlocking to deliver the signal.
1840  */
1841 void
1842 sendsig_reset(struct lwp *l, int signo)
1843 {
1844 	struct proc *p = l->l_proc;
1845 	struct sigacts *ps = p->p_sigacts;
1846 
1847 	KASSERT(mutex_owned(&p->p_smutex));
1848 
1849 	p->p_sigctx.ps_lwp = 0;
1850 	p->p_sigctx.ps_code = 0;
1851 	p->p_sigctx.ps_signo = 0;
1852 
1853 	mutex_enter(&ps->sa_mutex);
1854 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
1855 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
1856 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
1857 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
1858 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
1859 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
1860 	}
1861 	mutex_exit(&ps->sa_mutex);
1862 }
1863 
1864 /*
1865  * Kill the current process for stated reason.
1866  */
1867 void
1868 killproc(struct proc *p, const char *why)
1869 {
1870 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1871 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
1872 	mutex_enter(&proclist_mutex);	/* XXXSMP */
1873 	psignal(p, SIGKILL);
1874 	mutex_exit(&proclist_mutex);	/* XXXSMP */
1875 }
1876 
1877 /*
1878  * Force the current process to exit with the specified signal, dumping core
1879  * if appropriate.  We bypass the normal tests for masked and caught
1880  * signals, allowing unrecoverable failures to terminate the process without
1881  * changing signal state.  Mark the accounting record with the signal
1882  * termination.  If dumping core, save the signal number for the debugger.
1883  * Calls exit and does not return.
1884  */
1885 void
1886 sigexit(struct lwp *l, int signo)
1887 {
1888 	int exitsig, error, docore;
1889 	struct proc *p;
1890 	struct lwp *t;
1891 
1892 	p = l->l_proc;
1893 
1894 	KASSERT(mutex_owned(&p->p_smutex));
1895 	KERNEL_UNLOCK_ALL(l, NULL);
1896 
1897 	/*
1898 	 * Don't permit coredump() multiple times in the same process.
1899 	 * Call back into sigexit, where we will be suspended until
1900 	 * the deed is done.  Note that this is a recursive call, but
1901 	 * LW_WCORE will prevent us from coming back this way.
1902 	 */
1903 	if ((p->p_sflag & PS_WCORE) != 0) {
1904 		lwp_lock(l);
1905 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
1906 		lwp_unlock(l);
1907 		mutex_exit(&p->p_smutex);
1908 		lwp_userret(l);
1909 #ifdef DIAGNOSTIC
1910 		panic("sigexit");
1911 #endif
1912 		/* NOTREACHED */
1913 	}
1914 
1915 	/*
1916 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
1917 	 * so that their registers are available long enough to be dumped.
1918  	 */
1919 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
1920 		p->p_sflag |= PS_WCORE;
1921 		for (;;) {
1922 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
1923 				lwp_lock(t);
1924 				if (t == l) {
1925 					t->l_flag &= ~LW_WSUSPEND;
1926 					lwp_unlock(t);
1927 					continue;
1928 				}
1929 				t->l_flag |= (LW_WCORE | LW_WEXIT);
1930 				lwp_suspend(l, t);
1931 			}
1932 
1933 			if (p->p_nrlwps == 1)
1934 				break;
1935 
1936 			/*
1937 			 * Kick any LWPs sitting in lwp_wait1(), and wait
1938 			 * for everyone else to stop before proceeding.
1939 			 */
1940 			p->p_nlwpwait++;
1941 			cv_broadcast(&p->p_lwpcv);
1942 			cv_wait(&p->p_lwpcv, &p->p_smutex);
1943 			p->p_nlwpwait--;
1944 		}
1945 	}
1946 
1947 	exitsig = signo;
1948 	p->p_acflag |= AXSIG;
1949 	p->p_sigctx.ps_signo = signo;
1950 	mutex_exit(&p->p_smutex);
1951 
1952 	KERNEL_LOCK(1, l);
1953 
1954 	if (docore) {
1955 		if ((error = coredump(l, NULL)) == 0)
1956 			exitsig |= WCOREFLAG;
1957 
1958 		if (kern_logsigexit) {
1959 			int uid = l->l_cred ?
1960 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
1961 
1962 			if (error)
1963 				log(LOG_INFO, lognocoredump, p->p_pid,
1964 				    p->p_comm, uid, signo, error);
1965 			else
1966 				log(LOG_INFO, logcoredump, p->p_pid,
1967 				    p->p_comm, uid, signo);
1968 		}
1969 
1970 #ifdef PAX_SEGVGUARD
1971 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
1972 #endif /* PAX_SEGVGUARD */
1973 	}
1974 
1975 	/* Acquire the sched state mutex.  exit1() will release it. */
1976 	mutex_enter(&p->p_smutex);
1977 
1978 	/* No longer dumping core. */
1979 	p->p_sflag &= ~PS_WCORE;
1980 
1981 	exit1(l, W_EXITCODE(0, exitsig));
1982 	/* NOTREACHED */
1983 }
1984 
1985 /*
1986  * Put process 'p' into the stopped state and optionally, notify the parent.
1987  */
1988 void
1989 proc_stop(struct proc *p, int notify, int signo)
1990 {
1991 	struct lwp *l;
1992 
1993 	KASSERT(mutex_owned(&proclist_mutex));
1994 	KASSERT(mutex_owned(&p->p_smutex));
1995 
1996 	/*
1997 	 * First off, set the stopping indicator and bring all sleeping
1998 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
1999 	 * unlock between here and the p->p_nrlwps check below.
2000 	 */
2001 	p->p_sflag |= PS_STOPPING;
2002 	membar_producer();
2003 
2004 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2005 		lwp_lock(l);
2006 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
2007 			l->l_stat = LSSTOP;
2008 			p->p_nrlwps--;
2009 		}
2010 		lwp_unlock(l);
2011 	}
2012 
2013 	/*
2014 	 * If there are no LWPs available to take the signal, then we
2015 	 * signal the parent process immediately.  Otherwise, the last
2016 	 * LWP to stop will take care of it.
2017 	 */
2018 	if (notify)
2019 		p->p_sflag |= PS_NOTIFYSTOP;
2020 	else
2021 		p->p_sflag &= ~PS_NOTIFYSTOP;
2022 
2023 	if (p->p_nrlwps == 0) {
2024 		p->p_sflag &= ~PS_STOPPING;
2025 		p->p_stat = SSTOP;
2026 		p->p_waited = 0;
2027 		p->p_pptr->p_nstopchild++;
2028 
2029 		if (notify) {
2030 			child_psignal(p, PS_NOCLDSTOP);
2031 			cv_broadcast(&p->p_pptr->p_waitcv);
2032 		}
2033 	} else {
2034 		/*
2035 		 * Have the remaining LWPs come to a halt, and trigger
2036 		 * proc_stop_callout() to ensure that they do.
2037 		 */
2038 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
2039 			sigpost(l, SIG_DFL, SA_STOP, signo);
2040 		callout_schedule(&proc_stop_ch, 1);
2041 	}
2042 }
2043 
2044 /*
2045  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2046  * but wait for them to come to a halt at the kernel-user boundary.  This is
2047  * to allow LWPs to release any locks that they may hold before stopping.
2048  *
2049  * Non-interruptable sleeps can be long, and there is the potential for an
2050  * LWP to begin sleeping interruptably soon after the process has been set
2051  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
2052  * stopping, and so complete halt of the process and the return of status
2053  * information to the parent could be delayed indefinitely.
2054  *
2055  * To handle this race, proc_stop_callout() runs once per tick while there
2056  * are stopping processes in the system.  It sets LWPs that are sleeping
2057  * interruptably into the LSSTOP state.
2058  *
2059  * Note that we are not concerned about keeping all LWPs stopped while the
2060  * process is stopped: stopped LWPs can awaken briefly to handle signals.
2061  * What we do need to ensure is that all LWPs in a stopping process have
2062  * stopped at least once, so that notification can be sent to the parent
2063  * process.
2064  */
2065 static void
2066 proc_stop_callout(void *cookie)
2067 {
2068 	bool more, restart;
2069 	struct proc *p;
2070 	struct lwp *l;
2071 
2072 	(void)cookie;
2073 
2074 	do {
2075 		restart = false;
2076 		more = false;
2077 
2078 		mutex_enter(&proclist_lock);
2079 		mutex_enter(&proclist_mutex);
2080 		PROCLIST_FOREACH(p, &allproc) {
2081 			mutex_enter(&p->p_smutex);
2082 
2083 			if ((p->p_sflag & PS_STOPPING) == 0) {
2084 				mutex_exit(&p->p_smutex);
2085 				continue;
2086 			}
2087 
2088 			/* Stop any LWPs sleeping interruptably. */
2089 			LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2090 				lwp_lock(l);
2091 				if (l->l_stat == LSSLEEP &&
2092 				    (l->l_flag & LW_SINTR) != 0) {
2093 				    	l->l_stat = LSSTOP;
2094 				    	p->p_nrlwps--;
2095 				}
2096 				lwp_unlock(l);
2097 			}
2098 
2099 			if (p->p_nrlwps == 0) {
2100 				/*
2101 				 * We brought the process to a halt.
2102 				 * Mark it as stopped and notify the
2103 				 * parent.
2104 				 */
2105 				p->p_sflag &= ~PS_STOPPING;
2106 				p->p_stat = SSTOP;
2107 				p->p_waited = 0;
2108 				p->p_pptr->p_nstopchild++;
2109 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2110 					/*
2111 					 * Note that child_psignal() will
2112 					 * drop p->p_smutex briefly.
2113 					 * Arrange to restart and check
2114 					 * all processes again.
2115 					 */
2116 					restart = true;
2117 					child_psignal(p, PS_NOCLDSTOP);
2118 					cv_broadcast(&p->p_pptr->p_waitcv);
2119 				}
2120 			} else
2121 				more = true;
2122 
2123 			mutex_exit(&p->p_smutex);
2124 			if (restart)
2125 				break;
2126 		}
2127 		mutex_exit(&proclist_mutex);
2128 		mutex_exit(&proclist_lock);
2129 	} while (restart);
2130 
2131 	/*
2132 	 * If we noted processes that are stopping but still have
2133 	 * running LWPs, then arrange to check again in 1 tick.
2134 	 */
2135 	if (more)
2136 		callout_schedule(&proc_stop_ch, 1);
2137 }
2138 
2139 /*
2140  * Given a process in state SSTOP, set the state back to SACTIVE and
2141  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2142  */
2143 void
2144 proc_unstop(struct proc *p)
2145 {
2146 	struct lwp *l;
2147 	int sig;
2148 
2149 	KASSERT(mutex_owned(&proclist_mutex));
2150 	KASSERT(mutex_owned(&p->p_smutex));
2151 
2152 	p->p_stat = SACTIVE;
2153 	p->p_sflag &= ~PS_STOPPING;
2154 	sig = p->p_xstat;
2155 
2156 	if (!p->p_waited)
2157 		p->p_pptr->p_nstopchild--;
2158 
2159 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2160 		lwp_lock(l);
2161 		if (l->l_stat != LSSTOP) {
2162 			lwp_unlock(l);
2163 			continue;
2164 		}
2165 		if (l->l_wchan == NULL) {
2166 			setrunnable(l);
2167 			continue;
2168 		}
2169 		if (sig && (l->l_flag & LW_SINTR) != 0) {
2170 		        setrunnable(l);
2171 		        sig = 0;
2172 		} else {
2173 			l->l_stat = LSSLEEP;
2174 			p->p_nrlwps++;
2175 			lwp_unlock(l);
2176 		}
2177 	}
2178 }
2179 
2180 static int
2181 filt_sigattach(struct knote *kn)
2182 {
2183 	struct proc *p = curproc;
2184 
2185 	kn->kn_ptr.p_proc = p;
2186 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
2187 
2188 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2189 
2190 	return (0);
2191 }
2192 
2193 static void
2194 filt_sigdetach(struct knote *kn)
2195 {
2196 	struct proc *p = kn->kn_ptr.p_proc;
2197 
2198 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2199 }
2200 
2201 /*
2202  * signal knotes are shared with proc knotes, so we apply a mask to
2203  * the hint in order to differentiate them from process hints.  This
2204  * could be avoided by using a signal-specific knote list, but probably
2205  * isn't worth the trouble.
2206  */
2207 static int
2208 filt_signal(struct knote *kn, long hint)
2209 {
2210 
2211 	if (hint & NOTE_SIGNAL) {
2212 		hint &= ~NOTE_SIGNAL;
2213 
2214 		if (kn->kn_id == hint)
2215 			kn->kn_data++;
2216 	}
2217 	return (kn->kn_data != 0);
2218 }
2219 
2220 const struct filterops sig_filtops = {
2221 	0, filt_sigattach, filt_sigdetach, filt_signal
2222 };
2223