1 /* $NetBSD: kern_sig.c,v 1.190 2004/04/01 16:56:44 matt Exp $ */ 2 3 /* 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95 37 */ 38 39 #include <sys/cdefs.h> 40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.190 2004/04/01 16:56:44 matt Exp $"); 41 42 #include "opt_ktrace.h" 43 #include "opt_compat_sunos.h" 44 #include "opt_compat_netbsd.h" 45 #include "opt_compat_netbsd32.h" 46 47 #define SIGPROP /* include signal properties table */ 48 #include <sys/param.h> 49 #include <sys/signalvar.h> 50 #include <sys/resourcevar.h> 51 #include <sys/namei.h> 52 #include <sys/vnode.h> 53 #include <sys/proc.h> 54 #include <sys/systm.h> 55 #include <sys/timeb.h> 56 #include <sys/times.h> 57 #include <sys/buf.h> 58 #include <sys/acct.h> 59 #include <sys/file.h> 60 #include <sys/kernel.h> 61 #include <sys/wait.h> 62 #include <sys/ktrace.h> 63 #include <sys/syslog.h> 64 #include <sys/stat.h> 65 #include <sys/core.h> 66 #include <sys/filedesc.h> 67 #include <sys/malloc.h> 68 #include <sys/pool.h> 69 #include <sys/ucontext.h> 70 #include <sys/sa.h> 71 #include <sys/savar.h> 72 #include <sys/exec.h> 73 74 #include <sys/mount.h> 75 #include <sys/syscallargs.h> 76 77 #include <machine/cpu.h> 78 79 #include <sys/user.h> /* for coredump */ 80 81 #include <uvm/uvm_extern.h> 82 83 static void child_psignal(struct proc *, int); 84 static int build_corename(struct proc *, char [MAXPATHLEN]); 85 static void ksiginfo_exithook(struct proc *, void *); 86 static void ksiginfo_put(struct proc *, const ksiginfo_t *); 87 static ksiginfo_t *ksiginfo_get(struct proc *, int); 88 static void kpsignal2(struct proc *, const ksiginfo_t *, int); 89 90 sigset_t contsigmask, stopsigmask, sigcantmask, sigtrapmask; 91 92 struct pool sigacts_pool; /* memory pool for sigacts structures */ 93 struct pool siginfo_pool; /* memory pool for siginfo structures */ 94 struct pool ksiginfo_pool; /* memory pool for ksiginfo structures */ 95 96 /* 97 * Can process p, with pcred pc, send the signal signum to process q? 98 */ 99 #define CANSIGNAL(p, pc, q, signum) \ 100 ((pc)->pc_ucred->cr_uid == 0 || \ 101 (pc)->p_ruid == (q)->p_cred->p_ruid || \ 102 (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \ 103 (pc)->p_ruid == (q)->p_ucred->cr_uid || \ 104 (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \ 105 ((signum) == SIGCONT && (q)->p_session == (p)->p_session)) 106 107 /* 108 * Remove and return the first ksiginfo element that matches our requested 109 * signal, or return NULL if one not found. 110 */ 111 static ksiginfo_t * 112 ksiginfo_get(struct proc *p, int signo) 113 { 114 ksiginfo_t *ksi; 115 int s; 116 117 s = splsoftclock(); 118 simple_lock(&p->p_sigctx.ps_silock); 119 CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) { 120 if (ksi->ksi_signo == signo) { 121 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list); 122 goto out; 123 } 124 } 125 ksi = NULL; 126 out: 127 simple_unlock(&p->p_sigctx.ps_silock); 128 splx(s); 129 return ksi; 130 } 131 132 /* 133 * Append a new ksiginfo element to the list of pending ksiginfo's, if 134 * we need to (SA_SIGINFO was requested). We replace non RT signals if 135 * they already existed in the queue and we add new entries for RT signals, 136 * or for non RT signals with non-existing entries. 137 */ 138 static void 139 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi) 140 { 141 ksiginfo_t *kp; 142 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo); 143 int s; 144 145 if ((sa->sa_flags & SA_SIGINFO) == 0) 146 return; 147 148 s = splsoftclock(); 149 simple_lock(&p->p_sigctx.ps_silock); 150 #ifdef notyet /* XXX: QUEUING */ 151 if (ksi->ksi_signo < SIGRTMIN) 152 #endif 153 { 154 CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) { 155 if (kp->ksi_signo == ksi->ksi_signo) { 156 KSI_COPY(ksi, kp); 157 goto out; 158 } 159 } 160 } 161 kp = pool_get(&ksiginfo_pool, PR_NOWAIT); 162 if (kp == NULL) { 163 #ifdef DIAGNOSTIC 164 printf("Out of memory allocating siginfo for pid %d\n", 165 p->p_pid); 166 #endif 167 goto out; 168 } 169 *kp = *ksi; 170 CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list); 171 out: 172 simple_unlock(&p->p_sigctx.ps_silock); 173 splx(s); 174 } 175 176 /* 177 * free all pending ksiginfo on exit 178 */ 179 static void 180 ksiginfo_exithook(struct proc *p, void *v) 181 { 182 int s; 183 184 s = splsoftclock(); 185 simple_lock(&p->p_sigctx.ps_silock); 186 while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) { 187 ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo); 188 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list); 189 pool_put(&ksiginfo_pool, ksi); 190 } 191 simple_unlock(&p->p_sigctx.ps_silock); 192 splx(s); 193 } 194 195 /* 196 * Initialize signal-related data structures. 197 */ 198 void 199 signal_init(void) 200 { 201 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl", 202 &pool_allocator_nointr); 203 pool_init(&siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo", 204 &pool_allocator_nointr); 205 pool_init(&ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", 206 NULL); 207 exithook_establish(ksiginfo_exithook, NULL); 208 exechook_establish(ksiginfo_exithook, NULL); 209 210 sigaddset(&sigtrapmask, SIGSEGV); 211 sigaddset(&sigtrapmask, SIGBUS); 212 sigaddset(&sigtrapmask, SIGILL); 213 sigaddset(&sigtrapmask, SIGFPE); 214 sigaddset(&sigtrapmask, SIGTRAP); 215 } 216 217 /* 218 * Create an initial sigctx structure, using the same signal state 219 * as p. If 'share' is set, share the sigctx_proc part, otherwise just 220 * copy it from parent. 221 */ 222 void 223 sigactsinit(struct proc *np, struct proc *pp, int share) 224 { 225 struct sigacts *ps; 226 227 if (share) { 228 np->p_sigacts = pp->p_sigacts; 229 pp->p_sigacts->sa_refcnt++; 230 } else { 231 ps = pool_get(&sigacts_pool, PR_WAITOK); 232 if (pp) 233 memcpy(ps, pp->p_sigacts, sizeof(struct sigacts)); 234 else 235 memset(ps, '\0', sizeof(struct sigacts)); 236 ps->sa_refcnt = 1; 237 np->p_sigacts = ps; 238 } 239 } 240 241 /* 242 * Make this process not share its sigctx, maintaining all 243 * signal state. 244 */ 245 void 246 sigactsunshare(struct proc *p) 247 { 248 struct sigacts *oldps; 249 250 if (p->p_sigacts->sa_refcnt == 1) 251 return; 252 253 oldps = p->p_sigacts; 254 sigactsinit(p, NULL, 0); 255 256 if (--oldps->sa_refcnt == 0) 257 pool_put(&sigacts_pool, oldps); 258 } 259 260 /* 261 * Release a sigctx structure. 262 */ 263 void 264 sigactsfree(struct proc *p) 265 { 266 struct sigacts *ps; 267 268 ps = p->p_sigacts; 269 if (--ps->sa_refcnt > 0) 270 return; 271 272 pool_put(&sigacts_pool, ps); 273 } 274 275 int 276 sigaction1(struct proc *p, int signum, const struct sigaction *nsa, 277 struct sigaction *osa, const void *tramp, int vers) 278 { 279 struct sigacts *ps; 280 int prop; 281 282 ps = p->p_sigacts; 283 if (signum <= 0 || signum >= NSIG) 284 return (EINVAL); 285 286 /* 287 * Trampoline ABI version 0 is reserved for the legacy 288 * kernel-provided on-stack trampoline. Conversely, if we are 289 * using a non-0 ABI version, we must have a trampoline. Only 290 * validate the vers if a new sigaction was supplied. Emulations 291 * use legacy kernel trampolines with version 0, alternatively 292 * check for that too. 293 */ 294 if ((vers != 0 && tramp == NULL) || 295 #ifdef SIGTRAMP_VALID 296 (nsa != NULL && 297 ((vers == 0) ? 298 (p->p_emul->e_sigcode == NULL) : 299 !SIGTRAMP_VALID(vers))) || 300 #endif 301 (vers == 0 && tramp != NULL)) 302 return (EINVAL); 303 304 if (osa) 305 *osa = SIGACTION_PS(ps, signum); 306 307 if (nsa) { 308 if (nsa->sa_flags & ~SA_ALLBITS) 309 return (EINVAL); 310 311 prop = sigprop[signum]; 312 if (prop & SA_CANTMASK) 313 return (EINVAL); 314 315 (void) splsched(); /* XXXSMP */ 316 SIGACTION_PS(ps, signum) = *nsa; 317 ps->sa_sigdesc[signum].sd_tramp = tramp; 318 ps->sa_sigdesc[signum].sd_vers = vers; 319 sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask); 320 if ((prop & SA_NORESET) != 0) 321 SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND; 322 if (signum == SIGCHLD) { 323 if (nsa->sa_flags & SA_NOCLDSTOP) 324 p->p_flag |= P_NOCLDSTOP; 325 else 326 p->p_flag &= ~P_NOCLDSTOP; 327 if (nsa->sa_flags & SA_NOCLDWAIT) { 328 /* 329 * Paranoia: since SA_NOCLDWAIT is implemented 330 * by reparenting the dying child to PID 1 (and 331 * trust it to reap the zombie), PID 1 itself 332 * is forbidden to set SA_NOCLDWAIT. 333 */ 334 if (p->p_pid == 1) 335 p->p_flag &= ~P_NOCLDWAIT; 336 else 337 p->p_flag |= P_NOCLDWAIT; 338 } else 339 p->p_flag &= ~P_NOCLDWAIT; 340 } 341 if ((nsa->sa_flags & SA_NODEFER) == 0) 342 sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum); 343 else 344 sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum); 345 /* 346 * Set bit in p_sigctx.ps_sigignore for signals that are set to 347 * SIG_IGN, and for signals set to SIG_DFL where the default is 348 * to ignore. However, don't put SIGCONT in 349 * p_sigctx.ps_sigignore, as we have to restart the process. 350 */ 351 if (nsa->sa_handler == SIG_IGN || 352 (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) { 353 /* never to be seen again */ 354 sigdelset(&p->p_sigctx.ps_siglist, signum); 355 if (signum != SIGCONT) { 356 /* easier in psignal */ 357 sigaddset(&p->p_sigctx.ps_sigignore, signum); 358 } 359 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 360 } else { 361 sigdelset(&p->p_sigctx.ps_sigignore, signum); 362 if (nsa->sa_handler == SIG_DFL) 363 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 364 else 365 sigaddset(&p->p_sigctx.ps_sigcatch, signum); 366 } 367 (void) spl0(); 368 } 369 370 return (0); 371 } 372 373 #ifdef COMPAT_16 374 /* ARGSUSED */ 375 int 376 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval) 377 { 378 struct compat_16_sys___sigaction14_args /* { 379 syscallarg(int) signum; 380 syscallarg(const struct sigaction *) nsa; 381 syscallarg(struct sigaction *) osa; 382 } */ *uap = v; 383 struct proc *p; 384 struct sigaction nsa, osa; 385 int error; 386 387 if (SCARG(uap, nsa)) { 388 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa)); 389 if (error) 390 return (error); 391 } 392 p = l->l_proc; 393 error = sigaction1(p, SCARG(uap, signum), 394 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0, 395 NULL, 0); 396 if (error) 397 return (error); 398 if (SCARG(uap, osa)) { 399 error = copyout(&osa, SCARG(uap, osa), sizeof(osa)); 400 if (error) 401 return (error); 402 } 403 return (0); 404 } 405 #endif 406 407 /* ARGSUSED */ 408 int 409 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval) 410 { 411 struct sys___sigaction_sigtramp_args /* { 412 syscallarg(int) signum; 413 syscallarg(const struct sigaction *) nsa; 414 syscallarg(struct sigaction *) osa; 415 syscallarg(void *) tramp; 416 syscallarg(int) vers; 417 } */ *uap = v; 418 struct proc *p = l->l_proc; 419 struct sigaction nsa, osa; 420 int error; 421 422 if (SCARG(uap, nsa)) { 423 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa)); 424 if (error) 425 return (error); 426 } 427 error = sigaction1(p, SCARG(uap, signum), 428 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0, 429 SCARG(uap, tramp), SCARG(uap, vers)); 430 if (error) 431 return (error); 432 if (SCARG(uap, osa)) { 433 error = copyout(&osa, SCARG(uap, osa), sizeof(osa)); 434 if (error) 435 return (error); 436 } 437 return (0); 438 } 439 440 /* 441 * Initialize signal state for process 0; 442 * set to ignore signals that are ignored by default and disable the signal 443 * stack. 444 */ 445 void 446 siginit(struct proc *p) 447 { 448 struct sigacts *ps; 449 int signum, prop; 450 451 ps = p->p_sigacts; 452 sigemptyset(&contsigmask); 453 sigemptyset(&stopsigmask); 454 sigemptyset(&sigcantmask); 455 for (signum = 1; signum < NSIG; signum++) { 456 prop = sigprop[signum]; 457 if (prop & SA_CONT) 458 sigaddset(&contsigmask, signum); 459 if (prop & SA_STOP) 460 sigaddset(&stopsigmask, signum); 461 if (prop & SA_CANTMASK) 462 sigaddset(&sigcantmask, signum); 463 if (prop & SA_IGNORE && signum != SIGCONT) 464 sigaddset(&p->p_sigctx.ps_sigignore, signum); 465 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask); 466 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART; 467 } 468 sigemptyset(&p->p_sigctx.ps_sigcatch); 469 p->p_sigctx.ps_sigwaited = NULL; 470 p->p_flag &= ~P_NOCLDSTOP; 471 472 /* 473 * Reset stack state to the user stack. 474 */ 475 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE; 476 p->p_sigctx.ps_sigstk.ss_size = 0; 477 p->p_sigctx.ps_sigstk.ss_sp = 0; 478 479 /* One reference. */ 480 ps->sa_refcnt = 1; 481 } 482 483 /* 484 * Reset signals for an exec of the specified process. 485 */ 486 void 487 execsigs(struct proc *p) 488 { 489 struct sigacts *ps; 490 int signum, prop; 491 492 sigactsunshare(p); 493 494 ps = p->p_sigacts; 495 496 /* 497 * Reset caught signals. Held signals remain held 498 * through p_sigctx.ps_sigmask (unless they were caught, 499 * and are now ignored by default). 500 */ 501 for (signum = 1; signum < NSIG; signum++) { 502 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) { 503 prop = sigprop[signum]; 504 if (prop & SA_IGNORE) { 505 if ((prop & SA_CONT) == 0) 506 sigaddset(&p->p_sigctx.ps_sigignore, 507 signum); 508 sigdelset(&p->p_sigctx.ps_siglist, signum); 509 } 510 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL; 511 } 512 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask); 513 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART; 514 } 515 sigemptyset(&p->p_sigctx.ps_sigcatch); 516 p->p_sigctx.ps_sigwaited = NULL; 517 p->p_flag &= ~P_NOCLDSTOP; 518 519 /* 520 * Reset stack state to the user stack. 521 */ 522 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE; 523 p->p_sigctx.ps_sigstk.ss_size = 0; 524 p->p_sigctx.ps_sigstk.ss_sp = 0; 525 } 526 527 int 528 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss) 529 { 530 531 if (oss) 532 *oss = p->p_sigctx.ps_sigmask; 533 534 if (nss) { 535 (void)splsched(); /* XXXSMP */ 536 switch (how) { 537 case SIG_BLOCK: 538 sigplusset(nss, &p->p_sigctx.ps_sigmask); 539 break; 540 case SIG_UNBLOCK: 541 sigminusset(nss, &p->p_sigctx.ps_sigmask); 542 CHECKSIGS(p); 543 break; 544 case SIG_SETMASK: 545 p->p_sigctx.ps_sigmask = *nss; 546 CHECKSIGS(p); 547 break; 548 default: 549 (void)spl0(); /* XXXSMP */ 550 return (EINVAL); 551 } 552 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask); 553 (void)spl0(); /* XXXSMP */ 554 } 555 556 return (0); 557 } 558 559 /* 560 * Manipulate signal mask. 561 * Note that we receive new mask, not pointer, 562 * and return old mask as return value; 563 * the library stub does the rest. 564 */ 565 int 566 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval) 567 { 568 struct sys___sigprocmask14_args /* { 569 syscallarg(int) how; 570 syscallarg(const sigset_t *) set; 571 syscallarg(sigset_t *) oset; 572 } */ *uap = v; 573 struct proc *p; 574 sigset_t nss, oss; 575 int error; 576 577 if (SCARG(uap, set)) { 578 error = copyin(SCARG(uap, set), &nss, sizeof(nss)); 579 if (error) 580 return (error); 581 } 582 p = l->l_proc; 583 error = sigprocmask1(p, SCARG(uap, how), 584 SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0); 585 if (error) 586 return (error); 587 if (SCARG(uap, oset)) { 588 error = copyout(&oss, SCARG(uap, oset), sizeof(oss)); 589 if (error) 590 return (error); 591 } 592 return (0); 593 } 594 595 void 596 sigpending1(struct proc *p, sigset_t *ss) 597 { 598 599 *ss = p->p_sigctx.ps_siglist; 600 sigminusset(&p->p_sigctx.ps_sigmask, ss); 601 } 602 603 /* ARGSUSED */ 604 int 605 sys___sigpending14(struct lwp *l, void *v, register_t *retval) 606 { 607 struct sys___sigpending14_args /* { 608 syscallarg(sigset_t *) set; 609 } */ *uap = v; 610 struct proc *p; 611 sigset_t ss; 612 613 p = l->l_proc; 614 sigpending1(p, &ss); 615 return (copyout(&ss, SCARG(uap, set), sizeof(ss))); 616 } 617 618 int 619 sigsuspend1(struct proc *p, const sigset_t *ss) 620 { 621 struct sigacts *ps; 622 623 ps = p->p_sigacts; 624 if (ss) { 625 /* 626 * When returning from sigpause, we want 627 * the old mask to be restored after the 628 * signal handler has finished. Thus, we 629 * save it here and mark the sigctx structure 630 * to indicate this. 631 */ 632 p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask; 633 p->p_sigctx.ps_flags |= SAS_OLDMASK; 634 (void) splsched(); /* XXXSMP */ 635 p->p_sigctx.ps_sigmask = *ss; 636 CHECKSIGS(p); 637 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask); 638 (void) spl0(); /* XXXSMP */ 639 } 640 641 while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0) 642 /* void */; 643 644 /* always return EINTR rather than ERESTART... */ 645 return (EINTR); 646 } 647 648 /* 649 * Suspend process until signal, providing mask to be set 650 * in the meantime. Note nonstandard calling convention: 651 * libc stub passes mask, not pointer, to save a copyin. 652 */ 653 /* ARGSUSED */ 654 int 655 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval) 656 { 657 struct sys___sigsuspend14_args /* { 658 syscallarg(const sigset_t *) set; 659 } */ *uap = v; 660 struct proc *p; 661 sigset_t ss; 662 int error; 663 664 if (SCARG(uap, set)) { 665 error = copyin(SCARG(uap, set), &ss, sizeof(ss)); 666 if (error) 667 return (error); 668 } 669 670 p = l->l_proc; 671 return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0)); 672 } 673 674 int 675 sigaltstack1(struct proc *p, const struct sigaltstack *nss, 676 struct sigaltstack *oss) 677 { 678 679 if (oss) 680 *oss = p->p_sigctx.ps_sigstk; 681 682 if (nss) { 683 if (nss->ss_flags & ~SS_ALLBITS) 684 return (EINVAL); 685 686 if (nss->ss_flags & SS_DISABLE) { 687 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) 688 return (EINVAL); 689 } else { 690 if (nss->ss_size < MINSIGSTKSZ) 691 return (ENOMEM); 692 } 693 p->p_sigctx.ps_sigstk = *nss; 694 } 695 696 return (0); 697 } 698 699 /* ARGSUSED */ 700 int 701 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval) 702 { 703 struct sys___sigaltstack14_args /* { 704 syscallarg(const struct sigaltstack *) nss; 705 syscallarg(struct sigaltstack *) oss; 706 } */ *uap = v; 707 struct proc *p; 708 struct sigaltstack nss, oss; 709 int error; 710 711 if (SCARG(uap, nss)) { 712 error = copyin(SCARG(uap, nss), &nss, sizeof(nss)); 713 if (error) 714 return (error); 715 } 716 p = l->l_proc; 717 error = sigaltstack1(p, 718 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0); 719 if (error) 720 return (error); 721 if (SCARG(uap, oss)) { 722 error = copyout(&oss, SCARG(uap, oss), sizeof(oss)); 723 if (error) 724 return (error); 725 } 726 return (0); 727 } 728 729 /* ARGSUSED */ 730 int 731 sys_kill(struct lwp *l, void *v, register_t *retval) 732 { 733 struct sys_kill_args /* { 734 syscallarg(int) pid; 735 syscallarg(int) signum; 736 } */ *uap = v; 737 struct proc *cp, *p; 738 struct pcred *pc; 739 ksiginfo_t ksi; 740 741 cp = l->l_proc; 742 pc = cp->p_cred; 743 if ((u_int)SCARG(uap, signum) >= NSIG) 744 return (EINVAL); 745 memset(&ksi, 0, sizeof(ksi)); 746 ksi.ksi_signo = SCARG(uap, signum); 747 ksi.ksi_code = SI_USER; 748 ksi.ksi_pid = cp->p_pid; 749 ksi.ksi_uid = cp->p_ucred->cr_uid; 750 if (SCARG(uap, pid) > 0) { 751 /* kill single process */ 752 if ((p = pfind(SCARG(uap, pid))) == NULL) 753 return (ESRCH); 754 if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum))) 755 return (EPERM); 756 if (SCARG(uap, signum)) 757 kpsignal2(p, &ksi, 1); 758 return (0); 759 } 760 switch (SCARG(uap, pid)) { 761 case -1: /* broadcast signal */ 762 return (killpg1(cp, &ksi, 0, 1)); 763 case 0: /* signal own process group */ 764 return (killpg1(cp, &ksi, 0, 0)); 765 default: /* negative explicit process group */ 766 return (killpg1(cp, &ksi, -SCARG(uap, pid), 0)); 767 } 768 /* NOTREACHED */ 769 } 770 771 /* 772 * Common code for kill process group/broadcast kill. 773 * cp is calling process. 774 */ 775 int 776 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all) 777 { 778 struct proc *p; 779 struct pcred *pc; 780 struct pgrp *pgrp; 781 int nfound; 782 int signum = ksi->ksi_signo; 783 784 pc = cp->p_cred; 785 nfound = 0; 786 if (all) { 787 /* 788 * broadcast 789 */ 790 proclist_lock_read(); 791 LIST_FOREACH(p, &allproc, p_list) { 792 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || 793 p == cp || !CANSIGNAL(cp, pc, p, signum)) 794 continue; 795 nfound++; 796 if (signum) 797 kpsignal2(p, ksi, 1); 798 } 799 proclist_unlock_read(); 800 } else { 801 if (pgid == 0) 802 /* 803 * zero pgid means send to my process group. 804 */ 805 pgrp = cp->p_pgrp; 806 else { 807 pgrp = pgfind(pgid); 808 if (pgrp == NULL) 809 return (ESRCH); 810 } 811 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 812 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || 813 !CANSIGNAL(cp, pc, p, signum)) 814 continue; 815 nfound++; 816 if (signum && P_ZOMBIE(p) == 0) 817 kpsignal2(p, ksi, 1); 818 } 819 } 820 return (nfound ? 0 : ESRCH); 821 } 822 823 /* 824 * Send a signal to a process group. 825 */ 826 void 827 gsignal(int pgid, int signum) 828 { 829 ksiginfo_t ksi; 830 memset(&ksi, 0, sizeof(ksi)); 831 ksi.ksi_signo = signum; 832 kgsignal(pgid, &ksi, NULL); 833 } 834 835 void 836 kgsignal(int pgid, ksiginfo_t *ksi, void *data) 837 { 838 struct pgrp *pgrp; 839 840 if (pgid && (pgrp = pgfind(pgid))) 841 kpgsignal(pgrp, ksi, data, 0); 842 } 843 844 /* 845 * Send a signal to a process group. If checktty is 1, 846 * limit to members which have a controlling terminal. 847 */ 848 void 849 pgsignal(struct pgrp *pgrp, int sig, int checkctty) 850 { 851 ksiginfo_t ksi; 852 memset(&ksi, 0, sizeof(ksi)); 853 ksi.ksi_signo = sig; 854 kpgsignal(pgrp, &ksi, NULL, checkctty); 855 } 856 857 void 858 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty) 859 { 860 struct proc *p; 861 862 if (pgrp) 863 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 864 if (checkctty == 0 || p->p_flag & P_CONTROLT) 865 kpsignal(p, ksi, data); 866 } 867 868 /* 869 * Send a signal caused by a trap to the current process. 870 * If it will be caught immediately, deliver it with correct code. 871 * Otherwise, post it normally. 872 */ 873 void 874 trapsignal(struct lwp *l, const ksiginfo_t *ksi) 875 { 876 struct proc *p; 877 struct sigacts *ps; 878 int signum = ksi->ksi_signo; 879 880 KASSERT(KSI_TRAP_P(ksi)); 881 882 p = l->l_proc; 883 ps = p->p_sigacts; 884 if ((p->p_flag & P_TRACED) == 0 && 885 sigismember(&p->p_sigctx.ps_sigcatch, signum) && 886 !sigismember(&p->p_sigctx.ps_sigmask, signum)) { 887 p->p_stats->p_ru.ru_nsignals++; 888 #ifdef KTRACE 889 if (KTRPOINT(p, KTR_PSIG)) 890 ktrpsig(p, signum, SIGACTION_PS(ps, signum).sa_handler, 891 &p->p_sigctx.ps_sigmask, ksi); 892 #endif 893 kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask); 894 (void) splsched(); /* XXXSMP */ 895 sigplusset(&SIGACTION_PS(ps, signum).sa_mask, 896 &p->p_sigctx.ps_sigmask); 897 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) { 898 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 899 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE) 900 sigaddset(&p->p_sigctx.ps_sigignore, signum); 901 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL; 902 } 903 (void) spl0(); /* XXXSMP */ 904 } else { 905 p->p_sigctx.ps_lwp = l->l_lid; 906 /* XXX for core dump/debugger */ 907 p->p_sigctx.ps_signo = ksi->ksi_signo; 908 p->p_sigctx.ps_code = ksi->ksi_trap; 909 kpsignal2(p, ksi, 1); 910 } 911 } 912 913 /* 914 * Fill in signal information and signal the parent for a child status change. 915 */ 916 static void 917 child_psignal(struct proc *p, int dolock) 918 { 919 ksiginfo_t ksi; 920 921 (void)memset(&ksi, 0, sizeof(ksi)); 922 ksi.ksi_signo = SIGCHLD; 923 ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED; 924 ksi.ksi_pid = p->p_pid; 925 ksi.ksi_uid = p->p_ucred->cr_uid; 926 ksi.ksi_status = p->p_xstat; 927 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec; 928 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec; 929 kpsignal2(p->p_pptr, &ksi, dolock); 930 } 931 932 /* 933 * Send the signal to the process. If the signal has an action, the action 934 * is usually performed by the target process rather than the caller; we add 935 * the signal to the set of pending signals for the process. 936 * 937 * Exceptions: 938 * o When a stop signal is sent to a sleeping process that takes the 939 * default action, the process is stopped without awakening it. 940 * o SIGCONT restarts stopped processes (or puts them back to sleep) 941 * regardless of the signal action (eg, blocked or ignored). 942 * 943 * Other ignored signals are discarded immediately. 944 * 945 * XXXSMP: Invoked as psignal() or sched_psignal(). 946 */ 947 void 948 psignal1(struct proc *p, int signum, int dolock) 949 { 950 ksiginfo_t ksi; 951 952 memset(&ksi, 0, sizeof(ksi)); 953 ksi.ksi_signo = signum; 954 kpsignal2(p, &ksi, dolock); 955 } 956 957 void 958 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock) 959 { 960 961 if ((p->p_flag & P_WEXIT) == 0 && data) { 962 size_t fd; 963 struct filedesc *fdp = p->p_fd; 964 965 ksi->ksi_fd = -1; 966 for (fd = 0; fd < fdp->fd_nfiles; fd++) { 967 struct file *fp = fdp->fd_ofiles[fd]; 968 /* XXX: lock? */ 969 if (fp && fp->f_data == data) { 970 ksi->ksi_fd = fd; 971 break; 972 } 973 } 974 } 975 kpsignal2(p, ksi, dolock); 976 } 977 978 static void 979 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock) 980 { 981 struct lwp *l, *suspended = NULL; 982 struct sadata_vp *vp; 983 int s = 0, prop, allsusp; 984 sig_t action; 985 int signum = ksi->ksi_signo; 986 987 #ifdef DIAGNOSTIC 988 if (signum <= 0 || signum >= NSIG) 989 panic("psignal signal number %d", signum); 990 991 /* XXXSMP: works, but icky */ 992 if (dolock) 993 SCHED_ASSERT_UNLOCKED(); 994 else 995 SCHED_ASSERT_LOCKED(); 996 #endif 997 998 /* 999 * Notify any interested parties in the signal. 1000 */ 1001 KNOTE(&p->p_klist, NOTE_SIGNAL | signum); 1002 1003 prop = sigprop[signum]; 1004 1005 /* 1006 * If proc is traced, always give parent a chance. 1007 */ 1008 action = SIG_DFL; 1009 if ((p->p_flag & P_TRACED) == 0) { 1010 if (KSI_TRAP_P(ksi)) { 1011 /* 1012 * If the signal was the result of a trap, only catch 1013 * the signal if it isn't masked and there is a 1014 * non-default non-ignore handler installed for it. 1015 * Otherwise take the default action. 1016 */ 1017 if (!sigismember(&p->p_sigctx.ps_sigmask, signum) && 1018 sigismember(&p->p_sigctx.ps_sigcatch, signum)) 1019 action = SIG_CATCH; 1020 /* 1021 * If we are to take the default action, reset the 1022 * signal back to its defaults. 1023 */ 1024 if (action == SIG_DFL) { 1025 sigdelset(&p->p_sigctx.ps_sigignore, signum); 1026 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 1027 sigdelset(&p->p_sigctx.ps_sigmask, signum); 1028 SIGACTION(p, signum).sa_handler = SIG_DFL; 1029 } 1030 } else { 1031 /* 1032 * If the signal is being ignored, 1033 * then we forget about it immediately. 1034 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore, 1035 * and if it is set to SIG_IGN, 1036 * action will be SIG_DFL here.) 1037 */ 1038 if (sigismember(&p->p_sigctx.ps_sigignore, signum)) 1039 return; 1040 if (sigismember(&p->p_sigctx.ps_sigmask, signum)) 1041 action = SIG_HOLD; 1042 else if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) 1043 action = SIG_CATCH; 1044 } 1045 if (action == SIG_DFL) { 1046 if (prop & SA_KILL && p->p_nice > NZERO) 1047 p->p_nice = NZERO; 1048 1049 /* 1050 * If sending a tty stop signal to a member of an 1051 * orphaned process group, discard the signal here if 1052 * the action is default; don't stop the process below 1053 * if sleeping, and don't clear any pending SIGCONT. 1054 */ 1055 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0) 1056 return; 1057 } 1058 } 1059 1060 if (prop & SA_CONT) 1061 sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist); 1062 1063 if (prop & SA_STOP) 1064 sigminusset(&contsigmask, &p->p_sigctx.ps_siglist); 1065 1066 /* 1067 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL, 1068 * please!), check if anything waits on it. If yes, save the 1069 * info into provided ps_sigwaited, and wake-up the waiter. 1070 * The signal won't be processed further here. 1071 */ 1072 if ((prop & SA_CANTMASK) == 0 1073 && p->p_sigctx.ps_sigwaited 1074 && sigismember(p->p_sigctx.ps_sigwait, signum) 1075 && p->p_stat != SSTOP) { 1076 p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info; 1077 p->p_sigctx.ps_sigwaited = NULL; 1078 if (dolock) 1079 wakeup_one(&p->p_sigctx.ps_sigwait); 1080 else 1081 sched_wakeup(&p->p_sigctx.ps_sigwait); 1082 return; 1083 } 1084 1085 sigaddset(&p->p_sigctx.ps_siglist, signum); 1086 1087 /* CHECKSIGS() is "inlined" here. */ 1088 p->p_sigctx.ps_sigcheck = 1; 1089 1090 /* 1091 * Defer further processing for signals which are held, 1092 * except that stopped processes must be continued by SIGCONT. 1093 */ 1094 if (action == SIG_HOLD && 1095 ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) { 1096 ksiginfo_put(p, ksi); 1097 return; 1098 } 1099 /* XXXSMP: works, but icky */ 1100 if (dolock) 1101 SCHED_LOCK(s); 1102 1103 if (p->p_flag & P_SA) { 1104 allsusp = 0; 1105 l = NULL; 1106 if (p->p_stat == SACTIVE) { 1107 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1108 l = vp->savp_lwp; 1109 KDASSERT(l != NULL); 1110 if (l->l_flag & L_SA_IDLE) { 1111 /* wakeup idle LWP */ 1112 goto found; 1113 /*NOTREACHED*/ 1114 } else if (l->l_flag & L_SA_YIELD) { 1115 /* idle LWP is already waking up */ 1116 goto out; 1117 /*NOTREACHED*/ 1118 } 1119 } 1120 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1121 l = vp->savp_lwp; 1122 if (l->l_stat == LSRUN || 1123 l->l_stat == LSONPROC) { 1124 signotify(p); 1125 goto out; 1126 /*NOTREACHED*/ 1127 } 1128 if (l->l_stat == LSSLEEP && 1129 l->l_flag & L_SINTR) { 1130 /* ok to signal vp lwp */ 1131 } else 1132 l = NULL; 1133 } 1134 if (l == NULL) 1135 allsusp = 1; 1136 } else if (p->p_stat == SSTOP) { 1137 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1138 l = vp->savp_lwp; 1139 if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0) 1140 break; 1141 l = NULL; 1142 } 1143 } 1144 } else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) { 1145 /* 1146 * At least one LWP is running or on a run queue. 1147 * The signal will be noticed when one of them returns 1148 * to userspace. 1149 */ 1150 signotify(p); 1151 /* 1152 * The signal will be noticed very soon. 1153 */ 1154 goto out; 1155 /*NOTREACHED*/ 1156 } else { 1157 /* 1158 * Find out if any of the sleeps are interruptable, 1159 * and if all the live LWPs remaining are suspended. 1160 */ 1161 allsusp = 1; 1162 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1163 if (l->l_stat == LSSLEEP && 1164 l->l_flag & L_SINTR) 1165 break; 1166 if (l->l_stat == LSSUSPENDED) 1167 suspended = l; 1168 else if ((l->l_stat != LSZOMB) && 1169 (l->l_stat != LSDEAD)) 1170 allsusp = 0; 1171 } 1172 } 1173 1174 found: 1175 switch (p->p_stat) { 1176 case SACTIVE: 1177 1178 if (l != NULL && (p->p_flag & P_TRACED)) 1179 goto run; 1180 1181 /* 1182 * If SIGCONT is default (or ignored) and process is 1183 * asleep, we are finished; the process should not 1184 * be awakened. 1185 */ 1186 if ((prop & SA_CONT) && action == SIG_DFL) { 1187 sigdelset(&p->p_sigctx.ps_siglist, signum); 1188 goto done; 1189 } 1190 1191 /* 1192 * When a sleeping process receives a stop 1193 * signal, process immediately if possible. 1194 */ 1195 if ((prop & SA_STOP) && action == SIG_DFL) { 1196 /* 1197 * If a child holding parent blocked, 1198 * stopping could cause deadlock. 1199 */ 1200 if (p->p_flag & P_PPWAIT) { 1201 goto out; 1202 } 1203 sigdelset(&p->p_sigctx.ps_siglist, signum); 1204 p->p_xstat = signum; 1205 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) { 1206 /* 1207 * XXXSMP: recursive call; don't lock 1208 * the second time around. 1209 */ 1210 child_psignal(p, 0); 1211 } 1212 proc_stop(p, 1); /* XXXSMP: recurse? */ 1213 goto done; 1214 } 1215 1216 if (l == NULL) { 1217 /* 1218 * Special case: SIGKILL of a process 1219 * which is entirely composed of 1220 * suspended LWPs should succeed. We 1221 * make this happen by unsuspending one of 1222 * them. 1223 */ 1224 if (allsusp && (signum == SIGKILL)) { 1225 if (p->p_flag & P_SA) { 1226 /* 1227 * get a suspended lwp from 1228 * the cache to send KILL 1229 * signal 1230 * XXXcl add signal checks at resume points 1231 */ 1232 suspended = sa_getcachelwp 1233 (SLIST_FIRST(&p->p_sa->sa_vps)); 1234 } 1235 lwp_continue(suspended); 1236 } 1237 goto done; 1238 } 1239 /* 1240 * All other (caught or default) signals 1241 * cause the process to run. 1242 */ 1243 goto runfast; 1244 /*NOTREACHED*/ 1245 case SSTOP: 1246 /* Process is stopped */ 1247 /* 1248 * If traced process is already stopped, 1249 * then no further action is necessary. 1250 */ 1251 if (p->p_flag & P_TRACED) 1252 goto done; 1253 1254 /* 1255 * Kill signal always sets processes running, 1256 * if possible. 1257 */ 1258 if (signum == SIGKILL) { 1259 l = proc_unstop(p); 1260 if (l) 1261 goto runfast; 1262 goto done; 1263 } 1264 1265 if (prop & SA_CONT) { 1266 /* 1267 * If SIGCONT is default (or ignored), 1268 * we continue the process but don't 1269 * leave the signal in ps_siglist, as 1270 * it has no further action. If 1271 * SIGCONT is held, we continue the 1272 * process and leave the signal in 1273 * ps_siglist. If the process catches 1274 * SIGCONT, let it handle the signal 1275 * itself. If it isn't waiting on an 1276 * event, then it goes back to run 1277 * state. Otherwise, process goes 1278 * back to sleep state. 1279 */ 1280 if (action == SIG_DFL) 1281 sigdelset(&p->p_sigctx.ps_siglist, 1282 signum); 1283 l = proc_unstop(p); 1284 if (l && (action == SIG_CATCH)) 1285 goto runfast; 1286 goto out; 1287 } 1288 1289 if (prop & SA_STOP) { 1290 /* 1291 * Already stopped, don't need to stop again. 1292 * (If we did the shell could get confused.) 1293 */ 1294 sigdelset(&p->p_sigctx.ps_siglist, signum); 1295 goto done; 1296 } 1297 1298 /* 1299 * If a lwp is sleeping interruptibly, then 1300 * wake it up; it will run until the kernel 1301 * boundary, where it will stop in issignal(), 1302 * since p->p_stat is still SSTOP. When the 1303 * process is continued, it will be made 1304 * runnable and can look at the signal. 1305 */ 1306 if (l) 1307 goto run; 1308 goto out; 1309 case SIDL: 1310 /* Process is being created by fork */ 1311 /* XXX: We are not ready to receive signals yet */ 1312 goto done; 1313 default: 1314 /* Else what? */ 1315 panic("psignal: Invalid process state %d.", p->p_stat); 1316 } 1317 /*NOTREACHED*/ 1318 1319 runfast: 1320 if (action == SIG_CATCH) { 1321 ksiginfo_put(p, ksi); 1322 action = SIG_HOLD; 1323 } 1324 /* 1325 * Raise priority to at least PUSER. 1326 */ 1327 if (l->l_priority > PUSER) 1328 l->l_priority = PUSER; 1329 run: 1330 if (action == SIG_CATCH) { 1331 ksiginfo_put(p, ksi); 1332 action = SIG_HOLD; 1333 } 1334 1335 setrunnable(l); /* XXXSMP: recurse? */ 1336 out: 1337 if (action == SIG_CATCH) 1338 ksiginfo_put(p, ksi); 1339 done: 1340 /* XXXSMP: works, but icky */ 1341 if (dolock) 1342 SCHED_UNLOCK(s); 1343 } 1344 1345 void 1346 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask) 1347 { 1348 struct proc *p = l->l_proc; 1349 struct lwp *le, *li; 1350 siginfo_t *si; 1351 int f; 1352 1353 if (p->p_flag & P_SA) { 1354 1355 /* XXXUPSXXX What if not on sa_vp ? */ 1356 1357 f = l->l_flag & L_SA; 1358 l->l_flag &= ~L_SA; 1359 si = pool_get(&siginfo_pool, PR_WAITOK); 1360 si->_info = ksi->ksi_info; 1361 le = li = NULL; 1362 if (KSI_TRAP_P(ksi)) 1363 le = l; 1364 else 1365 li = l; 1366 1367 sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li, 1368 sizeof(siginfo_t), si); 1369 l->l_flag |= f; 1370 return; 1371 } 1372 1373 (*p->p_emul->e_sendsig)(ksi, mask); 1374 } 1375 1376 static __inline int firstsig(const sigset_t *); 1377 1378 static __inline int 1379 firstsig(const sigset_t *ss) 1380 { 1381 int sig; 1382 1383 sig = ffs(ss->__bits[0]); 1384 if (sig != 0) 1385 return (sig); 1386 #if NSIG > 33 1387 sig = ffs(ss->__bits[1]); 1388 if (sig != 0) 1389 return (sig + 32); 1390 #endif 1391 #if NSIG > 65 1392 sig = ffs(ss->__bits[2]); 1393 if (sig != 0) 1394 return (sig + 64); 1395 #endif 1396 #if NSIG > 97 1397 sig = ffs(ss->__bits[3]); 1398 if (sig != 0) 1399 return (sig + 96); 1400 #endif 1401 return (0); 1402 } 1403 1404 /* 1405 * If the current process has received a signal (should be caught or cause 1406 * termination, should interrupt current syscall), return the signal number. 1407 * Stop signals with default action are processed immediately, then cleared; 1408 * they aren't returned. This is checked after each entry to the system for 1409 * a syscall or trap (though this can usually be done without calling issignal 1410 * by checking the pending signal masks in the CURSIG macro.) The normal call 1411 * sequence is 1412 * 1413 * while (signum = CURSIG(curlwp)) 1414 * postsig(signum); 1415 */ 1416 int 1417 issignal(struct lwp *l) 1418 { 1419 struct proc *p = l->l_proc; 1420 int s = 0, signum, prop; 1421 int dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock; 1422 sigset_t ss; 1423 1424 /* Bail out if we do not own the virtual processor */ 1425 if (l->l_flag & L_SA && l->l_savp->savp_lwp != l) 1426 return 0; 1427 1428 if (p->p_stat == SSTOP) { 1429 /* 1430 * The process is stopped/stopping. Stop ourselves now that 1431 * we're on the kernel/userspace boundary. 1432 */ 1433 if (dolock) 1434 SCHED_LOCK(s); 1435 l->l_stat = LSSTOP; 1436 p->p_nrlwps--; 1437 if (p->p_flag & P_TRACED) 1438 goto sigtraceswitch; 1439 else 1440 goto sigswitch; 1441 } 1442 for (;;) { 1443 sigpending1(p, &ss); 1444 if (p->p_flag & P_PPWAIT) 1445 sigminusset(&stopsigmask, &ss); 1446 signum = firstsig(&ss); 1447 if (signum == 0) { /* no signal to send */ 1448 p->p_sigctx.ps_sigcheck = 0; 1449 if (locked && dolock) 1450 SCHED_LOCK(s); 1451 return (0); 1452 } 1453 /* take the signal! */ 1454 sigdelset(&p->p_sigctx.ps_siglist, signum); 1455 1456 /* 1457 * We should see pending but ignored signals 1458 * only if P_TRACED was on when they were posted. 1459 */ 1460 if (sigismember(&p->p_sigctx.ps_sigignore, signum) && 1461 (p->p_flag & P_TRACED) == 0) 1462 continue; 1463 1464 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) { 1465 /* 1466 * If traced, always stop, and stay 1467 * stopped until released by the debugger. 1468 */ 1469 p->p_xstat = signum; 1470 1471 /* Emulation-specific handling of signal trace */ 1472 if ((p->p_emul->e_tracesig != NULL) && 1473 ((*p->p_emul->e_tracesig)(p, signum) != 0)) 1474 goto childresumed; 1475 1476 if ((p->p_flag & P_FSTRACE) == 0) 1477 child_psignal(p, dolock); 1478 if (dolock) 1479 SCHED_LOCK(s); 1480 proc_stop(p, 1); 1481 sigtraceswitch: 1482 mi_switch(l, NULL); 1483 SCHED_ASSERT_UNLOCKED(); 1484 if (dolock) 1485 splx(s); 1486 else 1487 dolock = 1; 1488 1489 childresumed: 1490 /* 1491 * If we are no longer being traced, or the parent 1492 * didn't give us a signal, look for more signals. 1493 */ 1494 if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0) 1495 continue; 1496 1497 /* 1498 * If the new signal is being masked, look for other 1499 * signals. 1500 */ 1501 signum = p->p_xstat; 1502 p->p_xstat = 0; 1503 /* 1504 * `p->p_sigctx.ps_siglist |= mask' is done 1505 * in setrunnable(). 1506 */ 1507 if (sigismember(&p->p_sigctx.ps_sigmask, signum)) 1508 continue; 1509 /* take the signal! */ 1510 sigdelset(&p->p_sigctx.ps_siglist, signum); 1511 } 1512 1513 prop = sigprop[signum]; 1514 1515 /* 1516 * Decide whether the signal should be returned. 1517 * Return the signal's number, or fall through 1518 * to clear it from the pending mask. 1519 */ 1520 switch ((long)SIGACTION(p, signum).sa_handler) { 1521 1522 case (long)SIG_DFL: 1523 /* 1524 * Don't take default actions on system processes. 1525 */ 1526 if (p->p_pid <= 1) { 1527 #ifdef DIAGNOSTIC 1528 /* 1529 * Are you sure you want to ignore SIGSEGV 1530 * in init? XXX 1531 */ 1532 printf("Process (pid %d) got signal %d\n", 1533 p->p_pid, signum); 1534 #endif 1535 break; /* == ignore */ 1536 } 1537 /* 1538 * If there is a pending stop signal to process 1539 * with default action, stop here, 1540 * then clear the signal. However, 1541 * if process is member of an orphaned 1542 * process group, ignore tty stop signals. 1543 */ 1544 if (prop & SA_STOP) { 1545 if (p->p_flag & P_TRACED || 1546 (p->p_pgrp->pg_jobc == 0 && 1547 prop & SA_TTYSTOP)) 1548 break; /* == ignore */ 1549 p->p_xstat = signum; 1550 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) 1551 child_psignal(p, dolock); 1552 if (dolock) 1553 SCHED_LOCK(s); 1554 proc_stop(p, 1); 1555 sigswitch: 1556 mi_switch(l, NULL); 1557 SCHED_ASSERT_UNLOCKED(); 1558 if (dolock) 1559 splx(s); 1560 else 1561 dolock = 1; 1562 break; 1563 } else if (prop & SA_IGNORE) { 1564 /* 1565 * Except for SIGCONT, shouldn't get here. 1566 * Default action is to ignore; drop it. 1567 */ 1568 break; /* == ignore */ 1569 } else 1570 goto keep; 1571 /*NOTREACHED*/ 1572 1573 case (long)SIG_IGN: 1574 /* 1575 * Masking above should prevent us ever trying 1576 * to take action on an ignored signal other 1577 * than SIGCONT, unless process is traced. 1578 */ 1579 #ifdef DEBUG_ISSIGNAL 1580 if ((prop & SA_CONT) == 0 && 1581 (p->p_flag & P_TRACED) == 0) 1582 printf("issignal\n"); 1583 #endif 1584 break; /* == ignore */ 1585 1586 default: 1587 /* 1588 * This signal has an action, let 1589 * postsig() process it. 1590 */ 1591 goto keep; 1592 } 1593 } 1594 /* NOTREACHED */ 1595 1596 keep: 1597 /* leave the signal for later */ 1598 sigaddset(&p->p_sigctx.ps_siglist, signum); 1599 CHECKSIGS(p); 1600 if (locked && dolock) 1601 SCHED_LOCK(s); 1602 return (signum); 1603 } 1604 1605 /* 1606 * Put the argument process into the stopped state and notify the parent 1607 * via wakeup. Signals are handled elsewhere. The process must not be 1608 * on the run queue. 1609 */ 1610 void 1611 proc_stop(struct proc *p, int wakeup) 1612 { 1613 struct lwp *l; 1614 struct proc *parent; 1615 struct sadata_vp *vp; 1616 1617 SCHED_ASSERT_LOCKED(); 1618 1619 /* XXX lock process LWP state */ 1620 p->p_flag &= ~P_WAITED; 1621 p->p_stat = SSTOP; 1622 parent = p->p_pptr; 1623 parent->p_nstopchild++; 1624 1625 if (p->p_flag & P_SA) { 1626 /* 1627 * Only (try to) put the LWP on the VP in stopped 1628 * state. 1629 * All other LWPs will suspend in sa_setwoken() 1630 * because the VP-LWP in stopped state cannot be 1631 * repossessed. 1632 */ 1633 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1634 l = vp->savp_lwp; 1635 if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) { 1636 l->l_stat = LSSTOP; 1637 p->p_nrlwps--; 1638 } else if (l->l_stat == LSRUN) { 1639 /* Remove LWP from the run queue */ 1640 remrunqueue(l); 1641 l->l_stat = LSSTOP; 1642 p->p_nrlwps--; 1643 } else if (l->l_stat == LSSLEEP && 1644 l->l_flag & L_SA_IDLE) { 1645 l->l_flag &= ~L_SA_IDLE; 1646 l->l_stat = LSSTOP; 1647 } 1648 } 1649 goto out; 1650 } 1651 1652 /* 1653 * Put as many LWP's as possible in stopped state. 1654 * Sleeping ones will notice the stopped state as they try to 1655 * return to userspace. 1656 */ 1657 1658 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1659 if (l->l_stat == LSONPROC) { 1660 /* XXX SMP this assumes that a LWP that is LSONPROC 1661 * is curlwp and hence is about to be mi_switched 1662 * away; the only callers of proc_stop() are: 1663 * - psignal 1664 * - issignal() 1665 * For the former, proc_stop() is only called when 1666 * no processes are running, so we don't worry. 1667 * For the latter, proc_stop() is called right 1668 * before mi_switch(). 1669 */ 1670 l->l_stat = LSSTOP; 1671 p->p_nrlwps--; 1672 } else if (l->l_stat == LSRUN) { 1673 /* Remove LWP from the run queue */ 1674 remrunqueue(l); 1675 l->l_stat = LSSTOP; 1676 p->p_nrlwps--; 1677 } else if ((l->l_stat == LSSLEEP) || 1678 (l->l_stat == LSSUSPENDED) || 1679 (l->l_stat == LSZOMB) || 1680 (l->l_stat == LSDEAD)) { 1681 /* 1682 * Don't do anything; let sleeping LWPs 1683 * discover the stopped state of the process 1684 * on their way out of the kernel; otherwise, 1685 * things like NFS threads that sleep with 1686 * locks will block the rest of the system 1687 * from getting any work done. 1688 * 1689 * Suspended/dead/zombie LWPs aren't going 1690 * anywhere, so we don't need to touch them. 1691 */ 1692 } 1693 #ifdef DIAGNOSTIC 1694 else { 1695 panic("proc_stop: process %d lwp %d " 1696 "in unstoppable state %d.\n", 1697 p->p_pid, l->l_lid, l->l_stat); 1698 } 1699 #endif 1700 } 1701 1702 out: 1703 /* XXX unlock process LWP state */ 1704 1705 if (wakeup) 1706 sched_wakeup((caddr_t)p->p_pptr); 1707 } 1708 1709 /* 1710 * Given a process in state SSTOP, set the state back to SACTIVE and 1711 * move LSSTOP'd LWPs to LSSLEEP or make them runnable. 1712 * 1713 * If no LWPs ended up runnable (and therefore able to take a signal), 1714 * return a LWP that is sleeping interruptably. The caller can wake 1715 * that LWP up to take a signal. 1716 */ 1717 struct lwp * 1718 proc_unstop(struct proc *p) 1719 { 1720 struct lwp *l, *lr = NULL; 1721 struct sadata_vp *vp; 1722 int cantake = 0; 1723 1724 SCHED_ASSERT_LOCKED(); 1725 1726 /* 1727 * Our caller wants to be informed if there are only sleeping 1728 * and interruptable LWPs left after we have run so that it 1729 * can invoke setrunnable() if required - return one of the 1730 * interruptable LWPs if this is the case. 1731 */ 1732 1733 if (!(p->p_flag & P_WAITED)) 1734 p->p_pptr->p_nstopchild--; 1735 p->p_stat = SACTIVE; 1736 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1737 if (l->l_stat == LSRUN) { 1738 lr = NULL; 1739 cantake = 1; 1740 } 1741 if (l->l_stat != LSSTOP) 1742 continue; 1743 1744 if (l->l_wchan != NULL) { 1745 l->l_stat = LSSLEEP; 1746 if ((cantake == 0) && (l->l_flag & L_SINTR)) { 1747 lr = l; 1748 cantake = 1; 1749 } 1750 } else { 1751 setrunnable(l); 1752 lr = NULL; 1753 cantake = 1; 1754 } 1755 } 1756 if (p->p_flag & P_SA) { 1757 /* Only consider returning the LWP on the VP. */ 1758 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) { 1759 lr = vp->savp_lwp; 1760 if (lr->l_stat == LSSLEEP) { 1761 if (lr->l_flag & L_SA_YIELD) { 1762 setrunnable(lr); 1763 break; 1764 } else if (lr->l_flag & L_SINTR) 1765 return lr; 1766 } 1767 } 1768 return NULL; 1769 } 1770 return lr; 1771 } 1772 1773 /* 1774 * Take the action for the specified signal 1775 * from the current set of pending signals. 1776 */ 1777 void 1778 postsig(int signum) 1779 { 1780 struct lwp *l; 1781 struct proc *p; 1782 struct sigacts *ps; 1783 sig_t action; 1784 sigset_t *returnmask; 1785 1786 l = curlwp; 1787 p = l->l_proc; 1788 ps = p->p_sigacts; 1789 #ifdef DIAGNOSTIC 1790 if (signum == 0) 1791 panic("postsig"); 1792 #endif 1793 1794 KERNEL_PROC_LOCK(l); 1795 1796 #ifdef MULTIPROCESSOR 1797 /* 1798 * On MP, issignal() can return the same signal to multiple 1799 * LWPs. The LWPs will block above waiting for the kernel 1800 * lock and the first LWP which gets through will then remove 1801 * the signal from ps_siglist. All other LWPs exit here. 1802 */ 1803 if (!sigismember(&p->p_sigctx.ps_siglist, signum)) { 1804 KERNEL_PROC_UNLOCK(l); 1805 return; 1806 } 1807 #endif 1808 sigdelset(&p->p_sigctx.ps_siglist, signum); 1809 action = SIGACTION_PS(ps, signum).sa_handler; 1810 if (action == SIG_DFL) { 1811 #ifdef KTRACE 1812 if (KTRPOINT(p, KTR_PSIG)) 1813 ktrpsig(p, signum, action, 1814 p->p_sigctx.ps_flags & SAS_OLDMASK ? 1815 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask, 1816 NULL); 1817 #endif 1818 /* 1819 * Default action, where the default is to kill 1820 * the process. (Other cases were ignored above.) 1821 */ 1822 sigexit(l, signum); 1823 /* NOTREACHED */ 1824 } else { 1825 ksiginfo_t *ksi; 1826 /* 1827 * If we get here, the signal must be caught. 1828 */ 1829 #ifdef DIAGNOSTIC 1830 if (action == SIG_IGN || 1831 sigismember(&p->p_sigctx.ps_sigmask, signum)) 1832 panic("postsig action"); 1833 #endif 1834 /* 1835 * Set the new mask value and also defer further 1836 * occurrences of this signal. 1837 * 1838 * Special case: user has done a sigpause. Here the 1839 * current mask is not of interest, but rather the 1840 * mask from before the sigpause is what we want 1841 * restored after the signal processing is completed. 1842 */ 1843 if (p->p_sigctx.ps_flags & SAS_OLDMASK) { 1844 returnmask = &p->p_sigctx.ps_oldmask; 1845 p->p_sigctx.ps_flags &= ~SAS_OLDMASK; 1846 } else 1847 returnmask = &p->p_sigctx.ps_sigmask; 1848 p->p_stats->p_ru.ru_nsignals++; 1849 ksi = ksiginfo_get(p, signum); 1850 #ifdef KTRACE 1851 if (KTRPOINT(p, KTR_PSIG)) 1852 ktrpsig(p, signum, action, 1853 p->p_sigctx.ps_flags & SAS_OLDMASK ? 1854 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask, 1855 ksi); 1856 #endif 1857 if (ksi == NULL) { 1858 ksiginfo_t ksi1; 1859 /* 1860 * we did not save any siginfo for this, either 1861 * because the signal was not caught, or because the 1862 * user did not request SA_SIGINFO 1863 */ 1864 (void)memset(&ksi1, 0, sizeof(ksi1)); 1865 ksi1.ksi_signo = signum; 1866 kpsendsig(l, &ksi1, returnmask); 1867 } else { 1868 kpsendsig(l, ksi, returnmask); 1869 pool_put(&ksiginfo_pool, ksi); 1870 } 1871 p->p_sigctx.ps_lwp = 0; 1872 p->p_sigctx.ps_code = 0; 1873 p->p_sigctx.ps_signo = 0; 1874 (void) splsched(); /* XXXSMP */ 1875 sigplusset(&SIGACTION_PS(ps, signum).sa_mask, 1876 &p->p_sigctx.ps_sigmask); 1877 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) { 1878 sigdelset(&p->p_sigctx.ps_sigcatch, signum); 1879 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE) 1880 sigaddset(&p->p_sigctx.ps_sigignore, signum); 1881 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL; 1882 } 1883 (void) spl0(); /* XXXSMP */ 1884 } 1885 1886 KERNEL_PROC_UNLOCK(l); 1887 } 1888 1889 /* 1890 * Kill the current process for stated reason. 1891 */ 1892 void 1893 killproc(struct proc *p, const char *why) 1894 { 1895 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why); 1896 uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why); 1897 psignal(p, SIGKILL); 1898 } 1899 1900 /* 1901 * Force the current process to exit with the specified signal, dumping core 1902 * if appropriate. We bypass the normal tests for masked and caught signals, 1903 * allowing unrecoverable failures to terminate the process without changing 1904 * signal state. Mark the accounting record with the signal termination. 1905 * If dumping core, save the signal number for the debugger. Calls exit and 1906 * does not return. 1907 */ 1908 1909 #if defined(DEBUG) 1910 int kern_logsigexit = 1; /* not static to make public for sysctl */ 1911 #else 1912 int kern_logsigexit = 0; /* not static to make public for sysctl */ 1913 #endif 1914 1915 static const char logcoredump[] = 1916 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n"; 1917 static const char lognocoredump[] = 1918 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n"; 1919 1920 /* Wrapper function for use in p_userret */ 1921 static void 1922 lwp_coredump_hook(struct lwp *l, void *arg) 1923 { 1924 int s; 1925 1926 /* 1927 * Suspend ourselves, so that the kernel stack and therefore 1928 * the userland registers saved in the trapframe are around 1929 * for coredump() to write them out. 1930 */ 1931 KERNEL_PROC_LOCK(l); 1932 l->l_flag &= ~L_DETACHED; 1933 SCHED_LOCK(s); 1934 l->l_stat = LSSUSPENDED; 1935 l->l_proc->p_nrlwps--; 1936 /* XXX NJWLWP check if this makes sense here: */ 1937 l->l_proc->p_stats->p_ru.ru_nvcsw++; 1938 mi_switch(l, NULL); 1939 SCHED_ASSERT_UNLOCKED(); 1940 splx(s); 1941 1942 lwp_exit(l); 1943 } 1944 1945 void 1946 sigexit(struct lwp *l, int signum) 1947 { 1948 struct proc *p; 1949 #if 0 1950 struct lwp *l2; 1951 #endif 1952 int error, exitsig; 1953 1954 p = l->l_proc; 1955 1956 /* 1957 * Don't permit coredump() or exit1() multiple times 1958 * in the same process. 1959 */ 1960 if (p->p_flag & P_WEXIT) { 1961 KERNEL_PROC_UNLOCK(l); 1962 (*p->p_userret)(l, p->p_userret_arg); 1963 } 1964 p->p_flag |= P_WEXIT; 1965 /* We don't want to switch away from exiting. */ 1966 /* XXX multiprocessor: stop LWPs on other processors. */ 1967 #if 0 1968 if (p->p_flag & P_SA) { 1969 LIST_FOREACH(l2, &p->p_lwps, l_sibling) 1970 l2->l_flag &= ~L_SA; 1971 p->p_flag &= ~P_SA; 1972 } 1973 #endif 1974 1975 /* Make other LWPs stick around long enough to be dumped */ 1976 p->p_userret = lwp_coredump_hook; 1977 p->p_userret_arg = NULL; 1978 1979 exitsig = signum; 1980 p->p_acflag |= AXSIG; 1981 if (sigprop[signum] & SA_CORE) { 1982 p->p_sigctx.ps_signo = signum; 1983 if ((error = coredump(l)) == 0) 1984 exitsig |= WCOREFLAG; 1985 1986 if (kern_logsigexit) { 1987 /* XXX What if we ever have really large UIDs? */ 1988 int uid = p->p_cred && p->p_ucred ? 1989 (int) p->p_ucred->cr_uid : -1; 1990 1991 if (error) 1992 log(LOG_INFO, lognocoredump, p->p_pid, 1993 p->p_comm, uid, signum, error); 1994 else 1995 log(LOG_INFO, logcoredump, p->p_pid, 1996 p->p_comm, uid, signum); 1997 } 1998 1999 } 2000 2001 exit1(l, W_EXITCODE(0, exitsig)); 2002 /* NOTREACHED */ 2003 } 2004 2005 /* 2006 * Dump core, into a file named "progname.core" or "core" (depending on the 2007 * value of shortcorename), unless the process was setuid/setgid. 2008 */ 2009 int 2010 coredump(struct lwp *l) 2011 { 2012 struct vnode *vp; 2013 struct proc *p; 2014 struct vmspace *vm; 2015 struct ucred *cred; 2016 struct nameidata nd; 2017 struct vattr vattr; 2018 struct mount *mp; 2019 int error, error1; 2020 char name[MAXPATHLEN]; 2021 2022 p = l->l_proc; 2023 vm = p->p_vmspace; 2024 cred = p->p_cred->pc_ucred; 2025 2026 /* 2027 * Make sure the process has not set-id, to prevent data leaks. 2028 */ 2029 if (p->p_flag & P_SUGID) 2030 return (EPERM); 2031 2032 /* 2033 * Refuse to core if the data + stack + user size is larger than 2034 * the core dump limit. XXX THIS IS WRONG, because of mapped 2035 * data. 2036 */ 2037 if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >= 2038 p->p_rlimit[RLIMIT_CORE].rlim_cur) 2039 return (EFBIG); /* better error code? */ 2040 2041 restart: 2042 /* 2043 * The core dump will go in the current working directory. Make 2044 * sure that the directory is still there and that the mount flags 2045 * allow us to write core dumps there. 2046 */ 2047 vp = p->p_cwdi->cwdi_cdir; 2048 if (vp->v_mount == NULL || 2049 (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0) 2050 return (EPERM); 2051 2052 error = build_corename(p, name); 2053 if (error) 2054 return error; 2055 2056 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p); 2057 error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR); 2058 if (error) 2059 return (error); 2060 vp = nd.ni_vp; 2061 2062 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 2063 VOP_UNLOCK(vp, 0); 2064 if ((error = vn_close(vp, FWRITE, cred, p)) != 0) 2065 return (error); 2066 if ((error = vn_start_write(NULL, &mp, 2067 V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0) 2068 return (error); 2069 goto restart; 2070 } 2071 2072 /* Don't dump to non-regular files or files with links. */ 2073 if (vp->v_type != VREG || 2074 VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) { 2075 error = EINVAL; 2076 goto out; 2077 } 2078 VATTR_NULL(&vattr); 2079 vattr.va_size = 0; 2080 VOP_LEASE(vp, p, cred, LEASE_WRITE); 2081 VOP_SETATTR(vp, &vattr, cred, p); 2082 p->p_acflag |= ACORE; 2083 2084 /* Now dump the actual core file. */ 2085 error = (*p->p_execsw->es_coredump)(l, vp, cred); 2086 out: 2087 VOP_UNLOCK(vp, 0); 2088 vn_finished_write(mp, 0); 2089 error1 = vn_close(vp, FWRITE, cred, p); 2090 if (error == 0) 2091 error = error1; 2092 return (error); 2093 } 2094 2095 /* 2096 * Nonexistent system call-- signal process (may want to handle it). 2097 * Flag error in case process won't see signal immediately (blocked or ignored). 2098 */ 2099 /* ARGSUSED */ 2100 int 2101 sys_nosys(struct lwp *l, void *v, register_t *retval) 2102 { 2103 struct proc *p; 2104 2105 p = l->l_proc; 2106 psignal(p, SIGSYS); 2107 return (ENOSYS); 2108 } 2109 2110 static int 2111 build_corename(struct proc *p, char dst[MAXPATHLEN]) 2112 { 2113 const char *s; 2114 char *d, *end; 2115 int i; 2116 2117 for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN; 2118 *s != '\0'; s++) { 2119 if (*s == '%') { 2120 switch (*(s + 1)) { 2121 case 'n': 2122 i = snprintf(d, end - d, "%s", p->p_comm); 2123 break; 2124 case 'p': 2125 i = snprintf(d, end - d, "%d", p->p_pid); 2126 break; 2127 case 'u': 2128 i = snprintf(d, end - d, "%.*s", 2129 (int)sizeof p->p_pgrp->pg_session->s_login, 2130 p->p_pgrp->pg_session->s_login); 2131 break; 2132 case 't': 2133 i = snprintf(d, end - d, "%ld", 2134 p->p_stats->p_start.tv_sec); 2135 break; 2136 default: 2137 goto copy; 2138 } 2139 d += i; 2140 s++; 2141 } else { 2142 copy: *d = *s; 2143 d++; 2144 } 2145 if (d >= end) 2146 return (ENAMETOOLONG); 2147 } 2148 *d = '\0'; 2149 return 0; 2150 } 2151 2152 void 2153 getucontext(struct lwp *l, ucontext_t *ucp) 2154 { 2155 struct proc *p; 2156 2157 p = l->l_proc; 2158 2159 ucp->uc_flags = 0; 2160 ucp->uc_link = l->l_ctxlink; 2161 2162 (void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask); 2163 ucp->uc_flags |= _UC_SIGMASK; 2164 2165 /* 2166 * The (unsupplied) definition of the `current execution stack' 2167 * in the System V Interface Definition appears to allow returning 2168 * the main context stack. 2169 */ 2170 if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) { 2171 ucp->uc_stack.ss_sp = (void *)USRSTACK; 2172 ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize); 2173 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ 2174 } else { 2175 /* Simply copy alternate signal execution stack. */ 2176 ucp->uc_stack = p->p_sigctx.ps_sigstk; 2177 } 2178 ucp->uc_flags |= _UC_STACK; 2179 2180 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags); 2181 } 2182 2183 /* ARGSUSED */ 2184 int 2185 sys_getcontext(struct lwp *l, void *v, register_t *retval) 2186 { 2187 struct sys_getcontext_args /* { 2188 syscallarg(struct __ucontext *) ucp; 2189 } */ *uap = v; 2190 ucontext_t uc; 2191 2192 getucontext(l, &uc); 2193 2194 return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp)))); 2195 } 2196 2197 int 2198 setucontext(struct lwp *l, const ucontext_t *ucp) 2199 { 2200 struct proc *p; 2201 int error; 2202 2203 p = l->l_proc; 2204 if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0) 2205 return (error); 2206 l->l_ctxlink = ucp->uc_link; 2207 2208 if ((ucp->uc_flags & _UC_SIGMASK) != 0) 2209 sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL); 2210 2211 /* 2212 * If there was stack information, update whether or not we are 2213 * still running on an alternate signal stack. 2214 */ 2215 if ((ucp->uc_flags & _UC_STACK) != 0) { 2216 if (ucp->uc_stack.ss_flags & SS_ONSTACK) 2217 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK; 2218 else 2219 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK; 2220 } 2221 2222 return 0; 2223 } 2224 2225 /* ARGSUSED */ 2226 int 2227 sys_setcontext(struct lwp *l, void *v, register_t *retval) 2228 { 2229 struct sys_setcontext_args /* { 2230 syscallarg(const ucontext_t *) ucp; 2231 } */ *uap = v; 2232 ucontext_t uc; 2233 int error; 2234 2235 if (SCARG(uap, ucp) == NULL) /* i.e. end of uc_link chain */ 2236 exit1(l, W_EXITCODE(0, 0)); 2237 else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 || 2238 (error = setucontext(l, &uc)) != 0) 2239 return (error); 2240 2241 return (EJUSTRETURN); 2242 } 2243 2244 /* 2245 * sigtimedwait(2) system call, used also for implementation 2246 * of sigwaitinfo() and sigwait(). 2247 * 2248 * This only handles single LWP in signal wait. libpthread provides 2249 * it's own sigtimedwait() wrapper to DTRT WRT individual threads. 2250 */ 2251 int 2252 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval) 2253 { 2254 struct sys___sigtimedwait_args /* { 2255 syscallarg(const sigset_t *) set; 2256 syscallarg(siginfo_t *) info; 2257 syscallarg(struct timespec *) timeout; 2258 } */ *uap = v; 2259 sigset_t *waitset, twaitset; 2260 struct proc *p = l->l_proc; 2261 int error, signum, s; 2262 int timo = 0; 2263 struct timeval tvstart; 2264 struct timespec ts; 2265 ksiginfo_t *ksi; 2266 2267 MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK); 2268 2269 if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) { 2270 FREE(waitset, M_TEMP); 2271 return (error); 2272 } 2273 2274 /* 2275 * Silently ignore SA_CANTMASK signals. psignal1() would 2276 * ignore SA_CANTMASK signals in waitset, we do this 2277 * only for the below siglist check. 2278 */ 2279 sigminusset(&sigcantmask, waitset); 2280 2281 /* 2282 * First scan siglist and check if there is signal from 2283 * our waitset already pending. 2284 */ 2285 twaitset = *waitset; 2286 __sigandset(&p->p_sigctx.ps_siglist, &twaitset); 2287 if ((signum = firstsig(&twaitset))) { 2288 /* found pending signal */ 2289 sigdelset(&p->p_sigctx.ps_siglist, signum); 2290 ksi = ksiginfo_get(p, signum); 2291 if (!ksi) { 2292 /* No queued siginfo, manufacture one */ 2293 ksi = pool_get(&ksiginfo_pool, PR_WAITOK); 2294 KSI_INIT(ksi); 2295 ksi->ksi_info._signo = signum; 2296 ksi->ksi_info._code = SI_USER; 2297 } 2298 2299 goto sig; 2300 } 2301 2302 /* 2303 * Calculate timeout, if it was specified. 2304 */ 2305 if (SCARG(uap, timeout)) { 2306 uint64_t ms; 2307 2308 if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts)))) 2309 return (error); 2310 2311 ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000); 2312 timo = mstohz(ms); 2313 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0) 2314 timo = 1; 2315 if (timo <= 0) 2316 return (EAGAIN); 2317 2318 /* 2319 * Remember current mono_time, it would be used in 2320 * ECANCELED/ERESTART case. 2321 */ 2322 s = splclock(); 2323 tvstart = mono_time; 2324 splx(s); 2325 } 2326 2327 /* 2328 * Setup ps_sigwait list. Pass pointer to malloced memory 2329 * here; it's not possible to pass pointer to a structure 2330 * on current process's stack, the current process might 2331 * be swapped out at the time the signal would get delivered. 2332 */ 2333 ksi = pool_get(&ksiginfo_pool, PR_WAITOK); 2334 p->p_sigctx.ps_sigwaited = ksi; 2335 p->p_sigctx.ps_sigwait = waitset; 2336 2337 /* 2338 * Wait for signal to arrive. We can either be woken up or 2339 * time out. 2340 */ 2341 error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo); 2342 2343 /* 2344 * Need to find out if we woke as a result of lwp_wakeup() 2345 * or a signal outside our wait set. 2346 */ 2347 if (error == EINTR && p->p_sigctx.ps_sigwaited 2348 && !firstsig(&p->p_sigctx.ps_siglist)) { 2349 /* wakeup via _lwp_wakeup() */ 2350 error = ECANCELED; 2351 } else if (!error && p->p_sigctx.ps_sigwaited) { 2352 /* spurious wakeup - arrange for syscall restart */ 2353 error = ERESTART; 2354 goto fail; 2355 } 2356 2357 /* 2358 * On error, clear sigwait indication. psignal1() clears it 2359 * in !error case. 2360 */ 2361 if (error) { 2362 p->p_sigctx.ps_sigwaited = NULL; 2363 2364 /* 2365 * If the sleep was interrupted (either by signal or wakeup), 2366 * update the timeout and copyout new value back. 2367 * It would be used when the syscall would be restarted 2368 * or called again. 2369 */ 2370 if (timo && (error == ERESTART || error == ECANCELED)) { 2371 struct timeval tvnow, tvtimo; 2372 int err; 2373 2374 s = splclock(); 2375 tvnow = mono_time; 2376 splx(s); 2377 2378 TIMESPEC_TO_TIMEVAL(&tvtimo, &ts); 2379 2380 /* compute how much time has passed since start */ 2381 timersub(&tvnow, &tvstart, &tvnow); 2382 /* substract passed time from timeout */ 2383 timersub(&tvtimo, &tvnow, &tvtimo); 2384 2385 if (tvtimo.tv_sec < 0) { 2386 error = EAGAIN; 2387 goto fail; 2388 } 2389 2390 TIMEVAL_TO_TIMESPEC(&tvtimo, &ts); 2391 2392 /* copy updated timeout to userland */ 2393 if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts)))) { 2394 error = err; 2395 goto fail; 2396 } 2397 } 2398 2399 goto fail; 2400 } 2401 2402 /* 2403 * If a signal from the wait set arrived, copy it to userland. 2404 * Copy only the used part of siginfo, the padding part is 2405 * left unchanged (userland is not supposed to touch it anyway). 2406 */ 2407 sig: 2408 error = copyout(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info)); 2409 2410 fail: 2411 FREE(waitset, M_TEMP); 2412 pool_put(&ksiginfo_pool, ksi); 2413 p->p_sigctx.ps_sigwait = NULL; 2414 2415 return (error); 2416 } 2417 2418 /* 2419 * Returns true if signal is ignored or masked for passed process. 2420 */ 2421 int 2422 sigismasked(struct proc *p, int sig) 2423 { 2424 2425 return (sigismember(&p->p_sigctx.ps_sigignore, sig) || 2426 sigismember(&p->p_sigctx.ps_sigmask, sig)); 2427 } 2428 2429 static int 2430 filt_sigattach(struct knote *kn) 2431 { 2432 struct proc *p = curproc; 2433 2434 kn->kn_ptr.p_proc = p; 2435 kn->kn_flags |= EV_CLEAR; /* automatically set */ 2436 2437 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 2438 2439 return (0); 2440 } 2441 2442 static void 2443 filt_sigdetach(struct knote *kn) 2444 { 2445 struct proc *p = kn->kn_ptr.p_proc; 2446 2447 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 2448 } 2449 2450 /* 2451 * signal knotes are shared with proc knotes, so we apply a mask to 2452 * the hint in order to differentiate them from process hints. This 2453 * could be avoided by using a signal-specific knote list, but probably 2454 * isn't worth the trouble. 2455 */ 2456 static int 2457 filt_signal(struct knote *kn, long hint) 2458 { 2459 2460 if (hint & NOTE_SIGNAL) { 2461 hint &= ~NOTE_SIGNAL; 2462 2463 if (kn->kn_id == hint) 2464 kn->kn_data++; 2465 } 2466 return (kn->kn_data != 0); 2467 } 2468 2469 const struct filterops sig_filtops = { 2470 0, filt_sigattach, filt_sigdetach, filt_signal 2471 }; 2472