xref: /netbsd-src/sys/kern/kern_sig.c (revision 33cd1faa348fe1cb7947ea59b0556b9bad76cee9)
1 /*	$NetBSD: kern_sig.c,v 1.190 2004/04/01 16:56:44 matt Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.190 2004/04/01 16:56:44 matt Exp $");
41 
42 #include "opt_ktrace.h"
43 #include "opt_compat_sunos.h"
44 #include "opt_compat_netbsd.h"
45 #include "opt_compat_netbsd32.h"
46 
47 #define	SIGPROP		/* include signal properties table */
48 #include <sys/param.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/namei.h>
52 #include <sys/vnode.h>
53 #include <sys/proc.h>
54 #include <sys/systm.h>
55 #include <sys/timeb.h>
56 #include <sys/times.h>
57 #include <sys/buf.h>
58 #include <sys/acct.h>
59 #include <sys/file.h>
60 #include <sys/kernel.h>
61 #include <sys/wait.h>
62 #include <sys/ktrace.h>
63 #include <sys/syslog.h>
64 #include <sys/stat.h>
65 #include <sys/core.h>
66 #include <sys/filedesc.h>
67 #include <sys/malloc.h>
68 #include <sys/pool.h>
69 #include <sys/ucontext.h>
70 #include <sys/sa.h>
71 #include <sys/savar.h>
72 #include <sys/exec.h>
73 
74 #include <sys/mount.h>
75 #include <sys/syscallargs.h>
76 
77 #include <machine/cpu.h>
78 
79 #include <sys/user.h>		/* for coredump */
80 
81 #include <uvm/uvm_extern.h>
82 
83 static void	child_psignal(struct proc *, int);
84 static int	build_corename(struct proc *, char [MAXPATHLEN]);
85 static void	ksiginfo_exithook(struct proc *, void *);
86 static void	ksiginfo_put(struct proc *, const ksiginfo_t *);
87 static ksiginfo_t *ksiginfo_get(struct proc *, int);
88 static void	kpsignal2(struct proc *, const ksiginfo_t *, int);
89 
90 sigset_t	contsigmask, stopsigmask, sigcantmask, sigtrapmask;
91 
92 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
93 struct pool	siginfo_pool;	/* memory pool for siginfo structures */
94 struct pool	ksiginfo_pool;	/* memory pool for ksiginfo structures */
95 
96 /*
97  * Can process p, with pcred pc, send the signal signum to process q?
98  */
99 #define	CANSIGNAL(p, pc, q, signum) \
100 	((pc)->pc_ucred->cr_uid == 0 || \
101 	    (pc)->p_ruid == (q)->p_cred->p_ruid || \
102 	    (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
103 	    (pc)->p_ruid == (q)->p_ucred->cr_uid || \
104 	    (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
105 	    ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
106 
107 /*
108  * Remove and return the first ksiginfo element that matches our requested
109  * signal, or return NULL if one not found.
110  */
111 static ksiginfo_t *
112 ksiginfo_get(struct proc *p, int signo)
113 {
114 	ksiginfo_t *ksi;
115 	int s;
116 
117 	s = splsoftclock();
118 	simple_lock(&p->p_sigctx.ps_silock);
119 	CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
120 		if (ksi->ksi_signo == signo) {
121 			CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
122 			goto out;
123 		}
124 	}
125 	ksi = NULL;
126 out:
127 	simple_unlock(&p->p_sigctx.ps_silock);
128 	splx(s);
129 	return ksi;
130 }
131 
132 /*
133  * Append a new ksiginfo element to the list of pending ksiginfo's, if
134  * we need to (SA_SIGINFO was requested). We replace non RT signals if
135  * they already existed in the queue and we add new entries for RT signals,
136  * or for non RT signals with non-existing entries.
137  */
138 static void
139 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi)
140 {
141 	ksiginfo_t *kp;
142 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
143 	int s;
144 
145 	if ((sa->sa_flags & SA_SIGINFO) == 0)
146 		return;
147 
148 	s = splsoftclock();
149 	simple_lock(&p->p_sigctx.ps_silock);
150 #ifdef notyet	/* XXX: QUEUING */
151 	if (ksi->ksi_signo < SIGRTMIN)
152 #endif
153 	{
154 		CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
155 			if (kp->ksi_signo == ksi->ksi_signo) {
156 				KSI_COPY(ksi, kp);
157 				goto out;
158 			}
159 		}
160 	}
161 	kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
162 	if (kp == NULL) {
163 #ifdef DIAGNOSTIC
164 		printf("Out of memory allocating siginfo for pid %d\n",
165 		    p->p_pid);
166 #endif
167 		goto out;
168 	}
169 	*kp = *ksi;
170 	CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
171 out:
172 	simple_unlock(&p->p_sigctx.ps_silock);
173 	splx(s);
174 }
175 
176 /*
177  * free all pending ksiginfo on exit
178  */
179 static void
180 ksiginfo_exithook(struct proc *p, void *v)
181 {
182 	int s;
183 
184 	s = splsoftclock();
185 	simple_lock(&p->p_sigctx.ps_silock);
186 	while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
187 		ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
188 		CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
189 		pool_put(&ksiginfo_pool, ksi);
190 	}
191 	simple_unlock(&p->p_sigctx.ps_silock);
192 	splx(s);
193 }
194 
195 /*
196  * Initialize signal-related data structures.
197  */
198 void
199 signal_init(void)
200 {
201 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
202 	    &pool_allocator_nointr);
203 	pool_init(&siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
204 	    &pool_allocator_nointr);
205 	pool_init(&ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
206 	    NULL);
207 	exithook_establish(ksiginfo_exithook, NULL);
208 	exechook_establish(ksiginfo_exithook, NULL);
209 
210 	sigaddset(&sigtrapmask, SIGSEGV);
211 	sigaddset(&sigtrapmask, SIGBUS);
212 	sigaddset(&sigtrapmask, SIGILL);
213 	sigaddset(&sigtrapmask, SIGFPE);
214 	sigaddset(&sigtrapmask, SIGTRAP);
215 }
216 
217 /*
218  * Create an initial sigctx structure, using the same signal state
219  * as p. If 'share' is set, share the sigctx_proc part, otherwise just
220  * copy it from parent.
221  */
222 void
223 sigactsinit(struct proc *np, struct proc *pp, int share)
224 {
225 	struct sigacts *ps;
226 
227 	if (share) {
228 		np->p_sigacts = pp->p_sigacts;
229 		pp->p_sigacts->sa_refcnt++;
230 	} else {
231 		ps = pool_get(&sigacts_pool, PR_WAITOK);
232 		if (pp)
233 			memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
234 		else
235 			memset(ps, '\0', sizeof(struct sigacts));
236 		ps->sa_refcnt = 1;
237 		np->p_sigacts = ps;
238 	}
239 }
240 
241 /*
242  * Make this process not share its sigctx, maintaining all
243  * signal state.
244  */
245 void
246 sigactsunshare(struct proc *p)
247 {
248 	struct sigacts *oldps;
249 
250 	if (p->p_sigacts->sa_refcnt == 1)
251 		return;
252 
253 	oldps = p->p_sigacts;
254 	sigactsinit(p, NULL, 0);
255 
256 	if (--oldps->sa_refcnt == 0)
257 		pool_put(&sigacts_pool, oldps);
258 }
259 
260 /*
261  * Release a sigctx structure.
262  */
263 void
264 sigactsfree(struct proc *p)
265 {
266 	struct sigacts *ps;
267 
268 	ps = p->p_sigacts;
269 	if (--ps->sa_refcnt > 0)
270 		return;
271 
272 	pool_put(&sigacts_pool, ps);
273 }
274 
275 int
276 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
277 	struct sigaction *osa, const void *tramp, int vers)
278 {
279 	struct sigacts	*ps;
280 	int		prop;
281 
282 	ps = p->p_sigacts;
283 	if (signum <= 0 || signum >= NSIG)
284 		return (EINVAL);
285 
286 	/*
287 	 * Trampoline ABI version 0 is reserved for the legacy
288 	 * kernel-provided on-stack trampoline.  Conversely, if we are
289 	 * using a non-0 ABI version, we must have a trampoline.  Only
290 	 * validate the vers if a new sigaction was supplied. Emulations
291 	 * use legacy kernel trampolines with version 0, alternatively
292 	 * check for that too.
293 	 */
294 	if ((vers != 0 && tramp == NULL) ||
295 #ifdef SIGTRAMP_VALID
296 	    (nsa != NULL &&
297 	    ((vers == 0) ?
298 		(p->p_emul->e_sigcode == NULL) :
299 		!SIGTRAMP_VALID(vers))) ||
300 #endif
301 	    (vers == 0 && tramp != NULL))
302 		return (EINVAL);
303 
304 	if (osa)
305 		*osa = SIGACTION_PS(ps, signum);
306 
307 	if (nsa) {
308 		if (nsa->sa_flags & ~SA_ALLBITS)
309 			return (EINVAL);
310 
311 		prop = sigprop[signum];
312 		if (prop & SA_CANTMASK)
313 			return (EINVAL);
314 
315 		(void) splsched();	/* XXXSMP */
316 		SIGACTION_PS(ps, signum) = *nsa;
317 		ps->sa_sigdesc[signum].sd_tramp = tramp;
318 		ps->sa_sigdesc[signum].sd_vers = vers;
319 		sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
320 		if ((prop & SA_NORESET) != 0)
321 			SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
322 		if (signum == SIGCHLD) {
323 			if (nsa->sa_flags & SA_NOCLDSTOP)
324 				p->p_flag |= P_NOCLDSTOP;
325 			else
326 				p->p_flag &= ~P_NOCLDSTOP;
327 			if (nsa->sa_flags & SA_NOCLDWAIT) {
328 				/*
329 				 * Paranoia: since SA_NOCLDWAIT is implemented
330 				 * by reparenting the dying child to PID 1 (and
331 				 * trust it to reap the zombie), PID 1 itself
332 				 * is forbidden to set SA_NOCLDWAIT.
333 				 */
334 				if (p->p_pid == 1)
335 					p->p_flag &= ~P_NOCLDWAIT;
336 				else
337 					p->p_flag |= P_NOCLDWAIT;
338 			} else
339 				p->p_flag &= ~P_NOCLDWAIT;
340 		}
341 		if ((nsa->sa_flags & SA_NODEFER) == 0)
342 			sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
343 		else
344 			sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
345 		/*
346 	 	 * Set bit in p_sigctx.ps_sigignore for signals that are set to
347 		 * SIG_IGN, and for signals set to SIG_DFL where the default is
348 		 * to ignore. However, don't put SIGCONT in
349 		 * p_sigctx.ps_sigignore, as we have to restart the process.
350 	 	 */
351 		if (nsa->sa_handler == SIG_IGN ||
352 		    (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
353 						/* never to be seen again */
354 			sigdelset(&p->p_sigctx.ps_siglist, signum);
355 			if (signum != SIGCONT) {
356 						/* easier in psignal */
357 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
358 			}
359 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
360 		} else {
361 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
362 			if (nsa->sa_handler == SIG_DFL)
363 				sigdelset(&p->p_sigctx.ps_sigcatch, signum);
364 			else
365 				sigaddset(&p->p_sigctx.ps_sigcatch, signum);
366 		}
367 		(void) spl0();
368 	}
369 
370 	return (0);
371 }
372 
373 #ifdef COMPAT_16
374 /* ARGSUSED */
375 int
376 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
377 {
378 	struct compat_16_sys___sigaction14_args /* {
379 		syscallarg(int)				signum;
380 		syscallarg(const struct sigaction *)	nsa;
381 		syscallarg(struct sigaction *)		osa;
382 	} */ *uap = v;
383 	struct proc		*p;
384 	struct sigaction	nsa, osa;
385 	int			error;
386 
387 	if (SCARG(uap, nsa)) {
388 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
389 		if (error)
390 			return (error);
391 	}
392 	p = l->l_proc;
393 	error = sigaction1(p, SCARG(uap, signum),
394 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
395 	    NULL, 0);
396 	if (error)
397 		return (error);
398 	if (SCARG(uap, osa)) {
399 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
400 		if (error)
401 			return (error);
402 	}
403 	return (0);
404 }
405 #endif
406 
407 /* ARGSUSED */
408 int
409 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
410 {
411 	struct sys___sigaction_sigtramp_args /* {
412 		syscallarg(int)				signum;
413 		syscallarg(const struct sigaction *)	nsa;
414 		syscallarg(struct sigaction *)		osa;
415 		syscallarg(void *)			tramp;
416 		syscallarg(int)				vers;
417 	} */ *uap = v;
418 	struct proc *p = l->l_proc;
419 	struct sigaction nsa, osa;
420 	int error;
421 
422 	if (SCARG(uap, nsa)) {
423 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
424 		if (error)
425 			return (error);
426 	}
427 	error = sigaction1(p, SCARG(uap, signum),
428 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
429 	    SCARG(uap, tramp), SCARG(uap, vers));
430 	if (error)
431 		return (error);
432 	if (SCARG(uap, osa)) {
433 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
434 		if (error)
435 			return (error);
436 	}
437 	return (0);
438 }
439 
440 /*
441  * Initialize signal state for process 0;
442  * set to ignore signals that are ignored by default and disable the signal
443  * stack.
444  */
445 void
446 siginit(struct proc *p)
447 {
448 	struct sigacts	*ps;
449 	int		signum, prop;
450 
451 	ps = p->p_sigacts;
452 	sigemptyset(&contsigmask);
453 	sigemptyset(&stopsigmask);
454 	sigemptyset(&sigcantmask);
455 	for (signum = 1; signum < NSIG; signum++) {
456 		prop = sigprop[signum];
457 		if (prop & SA_CONT)
458 			sigaddset(&contsigmask, signum);
459 		if (prop & SA_STOP)
460 			sigaddset(&stopsigmask, signum);
461 		if (prop & SA_CANTMASK)
462 			sigaddset(&sigcantmask, signum);
463 		if (prop & SA_IGNORE && signum != SIGCONT)
464 			sigaddset(&p->p_sigctx.ps_sigignore, signum);
465 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
466 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
467 	}
468 	sigemptyset(&p->p_sigctx.ps_sigcatch);
469 	p->p_sigctx.ps_sigwaited = NULL;
470 	p->p_flag &= ~P_NOCLDSTOP;
471 
472 	/*
473 	 * Reset stack state to the user stack.
474 	 */
475 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
476 	p->p_sigctx.ps_sigstk.ss_size = 0;
477 	p->p_sigctx.ps_sigstk.ss_sp = 0;
478 
479 	/* One reference. */
480 	ps->sa_refcnt = 1;
481 }
482 
483 /*
484  * Reset signals for an exec of the specified process.
485  */
486 void
487 execsigs(struct proc *p)
488 {
489 	struct sigacts	*ps;
490 	int		signum, prop;
491 
492 	sigactsunshare(p);
493 
494 	ps = p->p_sigacts;
495 
496 	/*
497 	 * Reset caught signals.  Held signals remain held
498 	 * through p_sigctx.ps_sigmask (unless they were caught,
499 	 * and are now ignored by default).
500 	 */
501 	for (signum = 1; signum < NSIG; signum++) {
502 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
503 			prop = sigprop[signum];
504 			if (prop & SA_IGNORE) {
505 				if ((prop & SA_CONT) == 0)
506 					sigaddset(&p->p_sigctx.ps_sigignore,
507 					    signum);
508 				sigdelset(&p->p_sigctx.ps_siglist, signum);
509 			}
510 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
511 		}
512 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
513 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
514 	}
515 	sigemptyset(&p->p_sigctx.ps_sigcatch);
516 	p->p_sigctx.ps_sigwaited = NULL;
517 	p->p_flag &= ~P_NOCLDSTOP;
518 
519 	/*
520 	 * Reset stack state to the user stack.
521 	 */
522 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
523 	p->p_sigctx.ps_sigstk.ss_size = 0;
524 	p->p_sigctx.ps_sigstk.ss_sp = 0;
525 }
526 
527 int
528 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
529 {
530 
531 	if (oss)
532 		*oss = p->p_sigctx.ps_sigmask;
533 
534 	if (nss) {
535 		(void)splsched();	/* XXXSMP */
536 		switch (how) {
537 		case SIG_BLOCK:
538 			sigplusset(nss, &p->p_sigctx.ps_sigmask);
539 			break;
540 		case SIG_UNBLOCK:
541 			sigminusset(nss, &p->p_sigctx.ps_sigmask);
542 			CHECKSIGS(p);
543 			break;
544 		case SIG_SETMASK:
545 			p->p_sigctx.ps_sigmask = *nss;
546 			CHECKSIGS(p);
547 			break;
548 		default:
549 			(void)spl0();	/* XXXSMP */
550 			return (EINVAL);
551 		}
552 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
553 		(void)spl0();		/* XXXSMP */
554 	}
555 
556 	return (0);
557 }
558 
559 /*
560  * Manipulate signal mask.
561  * Note that we receive new mask, not pointer,
562  * and return old mask as return value;
563  * the library stub does the rest.
564  */
565 int
566 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
567 {
568 	struct sys___sigprocmask14_args /* {
569 		syscallarg(int)			how;
570 		syscallarg(const sigset_t *)	set;
571 		syscallarg(sigset_t *)		oset;
572 	} */ *uap = v;
573 	struct proc	*p;
574 	sigset_t	nss, oss;
575 	int		error;
576 
577 	if (SCARG(uap, set)) {
578 		error = copyin(SCARG(uap, set), &nss, sizeof(nss));
579 		if (error)
580 			return (error);
581 	}
582 	p = l->l_proc;
583 	error = sigprocmask1(p, SCARG(uap, how),
584 	    SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
585 	if (error)
586 		return (error);
587 	if (SCARG(uap, oset)) {
588 		error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
589 		if (error)
590 			return (error);
591 	}
592 	return (0);
593 }
594 
595 void
596 sigpending1(struct proc *p, sigset_t *ss)
597 {
598 
599 	*ss = p->p_sigctx.ps_siglist;
600 	sigminusset(&p->p_sigctx.ps_sigmask, ss);
601 }
602 
603 /* ARGSUSED */
604 int
605 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
606 {
607 	struct sys___sigpending14_args /* {
608 		syscallarg(sigset_t *)	set;
609 	} */ *uap = v;
610 	struct proc	*p;
611 	sigset_t	ss;
612 
613 	p = l->l_proc;
614 	sigpending1(p, &ss);
615 	return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
616 }
617 
618 int
619 sigsuspend1(struct proc *p, const sigset_t *ss)
620 {
621 	struct sigacts *ps;
622 
623 	ps = p->p_sigacts;
624 	if (ss) {
625 		/*
626 		 * When returning from sigpause, we want
627 		 * the old mask to be restored after the
628 		 * signal handler has finished.  Thus, we
629 		 * save it here and mark the sigctx structure
630 		 * to indicate this.
631 		 */
632 		p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
633 		p->p_sigctx.ps_flags |= SAS_OLDMASK;
634 		(void) splsched();	/* XXXSMP */
635 		p->p_sigctx.ps_sigmask = *ss;
636 		CHECKSIGS(p);
637 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
638 		(void) spl0();		/* XXXSMP */
639 	}
640 
641 	while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
642 		/* void */;
643 
644 	/* always return EINTR rather than ERESTART... */
645 	return (EINTR);
646 }
647 
648 /*
649  * Suspend process until signal, providing mask to be set
650  * in the meantime.  Note nonstandard calling convention:
651  * libc stub passes mask, not pointer, to save a copyin.
652  */
653 /* ARGSUSED */
654 int
655 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
656 {
657 	struct sys___sigsuspend14_args /* {
658 		syscallarg(const sigset_t *)	set;
659 	} */ *uap = v;
660 	struct proc	*p;
661 	sigset_t	ss;
662 	int		error;
663 
664 	if (SCARG(uap, set)) {
665 		error = copyin(SCARG(uap, set), &ss, sizeof(ss));
666 		if (error)
667 			return (error);
668 	}
669 
670 	p = l->l_proc;
671 	return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
672 }
673 
674 int
675 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
676 	struct sigaltstack *oss)
677 {
678 
679 	if (oss)
680 		*oss = p->p_sigctx.ps_sigstk;
681 
682 	if (nss) {
683 		if (nss->ss_flags & ~SS_ALLBITS)
684 			return (EINVAL);
685 
686 		if (nss->ss_flags & SS_DISABLE) {
687 			if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
688 				return (EINVAL);
689 		} else {
690 			if (nss->ss_size < MINSIGSTKSZ)
691 				return (ENOMEM);
692 		}
693 		p->p_sigctx.ps_sigstk = *nss;
694 	}
695 
696 	return (0);
697 }
698 
699 /* ARGSUSED */
700 int
701 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
702 {
703 	struct sys___sigaltstack14_args /* {
704 		syscallarg(const struct sigaltstack *)	nss;
705 		syscallarg(struct sigaltstack *)	oss;
706 	} */ *uap = v;
707 	struct proc		*p;
708 	struct sigaltstack	nss, oss;
709 	int			error;
710 
711 	if (SCARG(uap, nss)) {
712 		error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
713 		if (error)
714 			return (error);
715 	}
716 	p = l->l_proc;
717 	error = sigaltstack1(p,
718 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
719 	if (error)
720 		return (error);
721 	if (SCARG(uap, oss)) {
722 		error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
723 		if (error)
724 			return (error);
725 	}
726 	return (0);
727 }
728 
729 /* ARGSUSED */
730 int
731 sys_kill(struct lwp *l, void *v, register_t *retval)
732 {
733 	struct sys_kill_args /* {
734 		syscallarg(int)	pid;
735 		syscallarg(int)	signum;
736 	} */ *uap = v;
737 	struct proc	*cp, *p;
738 	struct pcred	*pc;
739 	ksiginfo_t	ksi;
740 
741 	cp = l->l_proc;
742 	pc = cp->p_cred;
743 	if ((u_int)SCARG(uap, signum) >= NSIG)
744 		return (EINVAL);
745 	memset(&ksi, 0, sizeof(ksi));
746 	ksi.ksi_signo = SCARG(uap, signum);
747 	ksi.ksi_code = SI_USER;
748 	ksi.ksi_pid = cp->p_pid;
749 	ksi.ksi_uid = cp->p_ucred->cr_uid;
750 	if (SCARG(uap, pid) > 0) {
751 		/* kill single process */
752 		if ((p = pfind(SCARG(uap, pid))) == NULL)
753 			return (ESRCH);
754 		if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
755 			return (EPERM);
756 		if (SCARG(uap, signum))
757 			kpsignal2(p, &ksi, 1);
758 		return (0);
759 	}
760 	switch (SCARG(uap, pid)) {
761 	case -1:		/* broadcast signal */
762 		return (killpg1(cp, &ksi, 0, 1));
763 	case 0:			/* signal own process group */
764 		return (killpg1(cp, &ksi, 0, 0));
765 	default:		/* negative explicit process group */
766 		return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
767 	}
768 	/* NOTREACHED */
769 }
770 
771 /*
772  * Common code for kill process group/broadcast kill.
773  * cp is calling process.
774  */
775 int
776 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
777 {
778 	struct proc	*p;
779 	struct pcred	*pc;
780 	struct pgrp	*pgrp;
781 	int		nfound;
782 	int		signum = ksi->ksi_signo;
783 
784 	pc = cp->p_cred;
785 	nfound = 0;
786 	if (all) {
787 		/*
788 		 * broadcast
789 		 */
790 		proclist_lock_read();
791 		LIST_FOREACH(p, &allproc, p_list) {
792 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
793 			    p == cp || !CANSIGNAL(cp, pc, p, signum))
794 				continue;
795 			nfound++;
796 			if (signum)
797 				kpsignal2(p, ksi, 1);
798 		}
799 		proclist_unlock_read();
800 	} else {
801 		if (pgid == 0)
802 			/*
803 			 * zero pgid means send to my process group.
804 			 */
805 			pgrp = cp->p_pgrp;
806 		else {
807 			pgrp = pgfind(pgid);
808 			if (pgrp == NULL)
809 				return (ESRCH);
810 		}
811 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
812 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
813 			    !CANSIGNAL(cp, pc, p, signum))
814 				continue;
815 			nfound++;
816 			if (signum && P_ZOMBIE(p) == 0)
817 				kpsignal2(p, ksi, 1);
818 		}
819 	}
820 	return (nfound ? 0 : ESRCH);
821 }
822 
823 /*
824  * Send a signal to a process group.
825  */
826 void
827 gsignal(int pgid, int signum)
828 {
829 	ksiginfo_t ksi;
830 	memset(&ksi, 0, sizeof(ksi));
831 	ksi.ksi_signo = signum;
832 	kgsignal(pgid, &ksi, NULL);
833 }
834 
835 void
836 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
837 {
838 	struct pgrp *pgrp;
839 
840 	if (pgid && (pgrp = pgfind(pgid)))
841 		kpgsignal(pgrp, ksi, data, 0);
842 }
843 
844 /*
845  * Send a signal to a process group. If checktty is 1,
846  * limit to members which have a controlling terminal.
847  */
848 void
849 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
850 {
851 	ksiginfo_t ksi;
852 	memset(&ksi, 0, sizeof(ksi));
853 	ksi.ksi_signo = sig;
854 	kpgsignal(pgrp, &ksi, NULL, checkctty);
855 }
856 
857 void
858 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
859 {
860 	struct proc *p;
861 
862 	if (pgrp)
863 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
864 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
865 				kpsignal(p, ksi, data);
866 }
867 
868 /*
869  * Send a signal caused by a trap to the current process.
870  * If it will be caught immediately, deliver it with correct code.
871  * Otherwise, post it normally.
872  */
873 void
874 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
875 {
876 	struct proc	*p;
877 	struct sigacts	*ps;
878 	int signum = ksi->ksi_signo;
879 
880 	KASSERT(KSI_TRAP_P(ksi));
881 
882 	p = l->l_proc;
883 	ps = p->p_sigacts;
884 	if ((p->p_flag & P_TRACED) == 0 &&
885 	    sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
886 	    !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
887 		p->p_stats->p_ru.ru_nsignals++;
888 #ifdef KTRACE
889 		if (KTRPOINT(p, KTR_PSIG))
890 			ktrpsig(p, signum, SIGACTION_PS(ps, signum).sa_handler,
891 			    &p->p_sigctx.ps_sigmask, ksi);
892 #endif
893 		kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
894 		(void) splsched();	/* XXXSMP */
895 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
896 		    &p->p_sigctx.ps_sigmask);
897 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
898 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
899 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
900 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
901 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
902 		}
903 		(void) spl0();		/* XXXSMP */
904 	} else {
905 		p->p_sigctx.ps_lwp = l->l_lid;
906 		/* XXX for core dump/debugger */
907 		p->p_sigctx.ps_signo = ksi->ksi_signo;
908 		p->p_sigctx.ps_code = ksi->ksi_trap;
909 		kpsignal2(p, ksi, 1);
910 	}
911 }
912 
913 /*
914  * Fill in signal information and signal the parent for a child status change.
915  */
916 static void
917 child_psignal(struct proc *p, int dolock)
918 {
919 	ksiginfo_t ksi;
920 
921 	(void)memset(&ksi, 0, sizeof(ksi));
922 	ksi.ksi_signo = SIGCHLD;
923 	ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
924 	ksi.ksi_pid = p->p_pid;
925 	ksi.ksi_uid = p->p_ucred->cr_uid;
926 	ksi.ksi_status = p->p_xstat;
927 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
928 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
929 	kpsignal2(p->p_pptr, &ksi, dolock);
930 }
931 
932 /*
933  * Send the signal to the process.  If the signal has an action, the action
934  * is usually performed by the target process rather than the caller; we add
935  * the signal to the set of pending signals for the process.
936  *
937  * Exceptions:
938  *   o When a stop signal is sent to a sleeping process that takes the
939  *     default action, the process is stopped without awakening it.
940  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
941  *     regardless of the signal action (eg, blocked or ignored).
942  *
943  * Other ignored signals are discarded immediately.
944  *
945  * XXXSMP: Invoked as psignal() or sched_psignal().
946  */
947 void
948 psignal1(struct proc *p, int signum, int dolock)
949 {
950 	ksiginfo_t ksi;
951 
952 	memset(&ksi, 0, sizeof(ksi));
953 	ksi.ksi_signo = signum;
954 	kpsignal2(p, &ksi, dolock);
955 }
956 
957 void
958 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
959 {
960 
961 	if ((p->p_flag & P_WEXIT) == 0 && data) {
962 		size_t fd;
963 		struct filedesc *fdp = p->p_fd;
964 
965 		ksi->ksi_fd = -1;
966 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
967 			struct file *fp = fdp->fd_ofiles[fd];
968 			/* XXX: lock? */
969 			if (fp && fp->f_data == data) {
970 				ksi->ksi_fd = fd;
971 				break;
972 			}
973 		}
974 	}
975 	kpsignal2(p, ksi, dolock);
976 }
977 
978 static void
979 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
980 {
981 	struct lwp *l, *suspended = NULL;
982 	struct sadata_vp *vp;
983 	int	s = 0, prop, allsusp;
984 	sig_t	action;
985 	int	signum = ksi->ksi_signo;
986 
987 #ifdef DIAGNOSTIC
988 	if (signum <= 0 || signum >= NSIG)
989 		panic("psignal signal number %d", signum);
990 
991 	/* XXXSMP: works, but icky */
992 	if (dolock)
993 		SCHED_ASSERT_UNLOCKED();
994 	else
995 		SCHED_ASSERT_LOCKED();
996 #endif
997 
998 	/*
999 	 * Notify any interested parties in the signal.
1000 	 */
1001 	KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
1002 
1003 	prop = sigprop[signum];
1004 
1005 	/*
1006 	 * If proc is traced, always give parent a chance.
1007 	 */
1008 	action = SIG_DFL;
1009 	if ((p->p_flag & P_TRACED) == 0) {
1010 		if (KSI_TRAP_P(ksi)) {
1011 			/*
1012 			 * If the signal was the result of a trap, only catch
1013 			 * the signal if it isn't masked and there is a
1014 			 * non-default non-ignore handler installed for it.
1015 			 * Otherwise take the default action.
1016 			 */
1017 			if (!sigismember(&p->p_sigctx.ps_sigmask, signum) &&
1018 			    sigismember(&p->p_sigctx.ps_sigcatch, signum))
1019 				action = SIG_CATCH;
1020 			/*
1021 			 * If we are to take the default action, reset the
1022 			 * signal back to its defaults.
1023 			 */
1024 			if (action == SIG_DFL) {
1025 				sigdelset(&p->p_sigctx.ps_sigignore, signum);
1026 				sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1027 				sigdelset(&p->p_sigctx.ps_sigmask, signum);
1028 				SIGACTION(p, signum).sa_handler = SIG_DFL;
1029 			}
1030 		} else {
1031 			/*
1032 			 * If the signal is being ignored,
1033 			 * then we forget about it immediately.
1034 			 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
1035 			 * and if it is set to SIG_IGN,
1036 			 * action will be SIG_DFL here.)
1037 			 */
1038 			if (sigismember(&p->p_sigctx.ps_sigignore, signum))
1039 				return;
1040 			if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1041 				action = SIG_HOLD;
1042 			else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1043 				action = SIG_CATCH;
1044 		}
1045 		if (action == SIG_DFL) {
1046 			if (prop & SA_KILL && p->p_nice > NZERO)
1047 				p->p_nice = NZERO;
1048 
1049 			/*
1050 			 * If sending a tty stop signal to a member of an
1051 			 * orphaned process group, discard the signal here if
1052 			 * the action is default; don't stop the process below
1053 			 * if sleeping, and don't clear any pending SIGCONT.
1054 			 */
1055 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1056 				return;
1057 		}
1058 	}
1059 
1060 	if (prop & SA_CONT)
1061 		sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
1062 
1063 	if (prop & SA_STOP)
1064 		sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
1065 
1066 	/*
1067 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1068 	 * please!), check if anything waits on it. If yes, save the
1069 	 * info into provided ps_sigwaited, and wake-up the waiter.
1070 	 * The signal won't be processed further here.
1071 	 */
1072 	if ((prop & SA_CANTMASK) == 0
1073 	    && p->p_sigctx.ps_sigwaited
1074 	    && sigismember(p->p_sigctx.ps_sigwait, signum)
1075 	    && p->p_stat != SSTOP) {
1076 		p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
1077 		p->p_sigctx.ps_sigwaited = NULL;
1078 		if (dolock)
1079 			wakeup_one(&p->p_sigctx.ps_sigwait);
1080 		else
1081 			sched_wakeup(&p->p_sigctx.ps_sigwait);
1082 		return;
1083 	}
1084 
1085 	sigaddset(&p->p_sigctx.ps_siglist, signum);
1086 
1087 	/* CHECKSIGS() is "inlined" here. */
1088 	p->p_sigctx.ps_sigcheck = 1;
1089 
1090 	/*
1091 	 * Defer further processing for signals which are held,
1092 	 * except that stopped processes must be continued by SIGCONT.
1093 	 */
1094 	if (action == SIG_HOLD &&
1095 	    ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
1096 		ksiginfo_put(p, ksi);
1097 		return;
1098 	}
1099 	/* XXXSMP: works, but icky */
1100 	if (dolock)
1101 		SCHED_LOCK(s);
1102 
1103 	if (p->p_flag & P_SA) {
1104 		allsusp = 0;
1105 		l = NULL;
1106 		if (p->p_stat == SACTIVE) {
1107 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1108 				l = vp->savp_lwp;
1109 				KDASSERT(l != NULL);
1110 				if (l->l_flag & L_SA_IDLE) {
1111 					/* wakeup idle LWP */
1112 					goto found;
1113 					/*NOTREACHED*/
1114 				} else if (l->l_flag & L_SA_YIELD) {
1115 					/* idle LWP is already waking up */
1116 					goto out;
1117 					/*NOTREACHED*/
1118 				}
1119 			}
1120 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1121 				l = vp->savp_lwp;
1122 				if (l->l_stat == LSRUN ||
1123 				    l->l_stat == LSONPROC) {
1124 					signotify(p);
1125 					goto out;
1126 					/*NOTREACHED*/
1127 				}
1128 				if (l->l_stat == LSSLEEP &&
1129 				    l->l_flag & L_SINTR) {
1130 					/* ok to signal vp lwp */
1131 				} else
1132 					l = NULL;
1133 			}
1134 			if (l == NULL)
1135 				allsusp = 1;
1136 		} else if (p->p_stat == SSTOP) {
1137 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1138 				l = vp->savp_lwp;
1139 				if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0)
1140 					break;
1141 				l = NULL;
1142 			}
1143 		}
1144 	} else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
1145 		/*
1146 		 * At least one LWP is running or on a run queue.
1147 		 * The signal will be noticed when one of them returns
1148 		 * to userspace.
1149 		 */
1150 		signotify(p);
1151 		/*
1152 		 * The signal will be noticed very soon.
1153 		 */
1154 		goto out;
1155 		/*NOTREACHED*/
1156 	} else {
1157 		/*
1158 		 * Find out if any of the sleeps are interruptable,
1159 		 * and if all the live LWPs remaining are suspended.
1160 		 */
1161 		allsusp = 1;
1162 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1163 			if (l->l_stat == LSSLEEP &&
1164 			    l->l_flag & L_SINTR)
1165 				break;
1166 			if (l->l_stat == LSSUSPENDED)
1167 				suspended = l;
1168 			else if ((l->l_stat != LSZOMB) &&
1169 			    (l->l_stat != LSDEAD))
1170 				allsusp = 0;
1171 		}
1172 	}
1173 
1174  found:
1175 	switch (p->p_stat) {
1176 	case SACTIVE:
1177 
1178 		if (l != NULL && (p->p_flag & P_TRACED))
1179 			goto run;
1180 
1181 		/*
1182 		 * If SIGCONT is default (or ignored) and process is
1183 		 * asleep, we are finished; the process should not
1184 		 * be awakened.
1185 		 */
1186 		if ((prop & SA_CONT) && action == SIG_DFL) {
1187 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1188 			goto done;
1189 		}
1190 
1191 		/*
1192 		 * When a sleeping process receives a stop
1193 		 * signal, process immediately if possible.
1194 		 */
1195 		if ((prop & SA_STOP) && action == SIG_DFL) {
1196 			/*
1197 			 * If a child holding parent blocked,
1198 			 * stopping could cause deadlock.
1199 			 */
1200 			if (p->p_flag & P_PPWAIT) {
1201 				goto out;
1202 			}
1203 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1204 			p->p_xstat = signum;
1205 			if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
1206 				/*
1207 				 * XXXSMP: recursive call; don't lock
1208 				 * the second time around.
1209 				 */
1210 				child_psignal(p, 0);
1211 			}
1212 			proc_stop(p, 1);	/* XXXSMP: recurse? */
1213 			goto done;
1214 		}
1215 
1216 		if (l == NULL) {
1217 			/*
1218 			 * Special case: SIGKILL of a process
1219 			 * which is entirely composed of
1220 			 * suspended LWPs should succeed. We
1221 			 * make this happen by unsuspending one of
1222 			 * them.
1223 			 */
1224 			if (allsusp && (signum == SIGKILL)) {
1225 				if (p->p_flag & P_SA) {
1226 					/*
1227 					 * get a suspended lwp from
1228 					 * the cache to send KILL
1229 					 * signal
1230 					 * XXXcl add signal checks at resume points
1231 					 */
1232 					suspended = sa_getcachelwp
1233 						(SLIST_FIRST(&p->p_sa->sa_vps));
1234 				}
1235 				lwp_continue(suspended);
1236 			}
1237 			goto done;
1238 		}
1239 		/*
1240 		 * All other (caught or default) signals
1241 		 * cause the process to run.
1242 		 */
1243 		goto runfast;
1244 		/*NOTREACHED*/
1245 	case SSTOP:
1246 		/* Process is stopped */
1247 		/*
1248 		 * If traced process is already stopped,
1249 		 * then no further action is necessary.
1250 		 */
1251 		if (p->p_flag & P_TRACED)
1252 			goto done;
1253 
1254 		/*
1255 		 * Kill signal always sets processes running,
1256 		 * if possible.
1257 		 */
1258 		if (signum == SIGKILL) {
1259 			l = proc_unstop(p);
1260 			if (l)
1261 				goto runfast;
1262 			goto done;
1263 		}
1264 
1265 		if (prop & SA_CONT) {
1266 			/*
1267 			 * If SIGCONT is default (or ignored),
1268 			 * we continue the process but don't
1269 			 * leave the signal in ps_siglist, as
1270 			 * it has no further action.  If
1271 			 * SIGCONT is held, we continue the
1272 			 * process and leave the signal in
1273 			 * ps_siglist.  If the process catches
1274 			 * SIGCONT, let it handle the signal
1275 			 * itself.  If it isn't waiting on an
1276 			 * event, then it goes back to run
1277 			 * state.  Otherwise, process goes
1278 			 * back to sleep state.
1279 			 */
1280 			if (action == SIG_DFL)
1281 				sigdelset(&p->p_sigctx.ps_siglist,
1282 				    signum);
1283 			l = proc_unstop(p);
1284 			if (l && (action == SIG_CATCH))
1285 				goto runfast;
1286 			goto out;
1287 		}
1288 
1289 		if (prop & SA_STOP) {
1290 			/*
1291 			 * Already stopped, don't need to stop again.
1292 			 * (If we did the shell could get confused.)
1293 			 */
1294 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1295 			goto done;
1296 		}
1297 
1298 		/*
1299 		 * If a lwp is sleeping interruptibly, then
1300 		 * wake it up; it will run until the kernel
1301 		 * boundary, where it will stop in issignal(),
1302 		 * since p->p_stat is still SSTOP. When the
1303 		 * process is continued, it will be made
1304 		 * runnable and can look at the signal.
1305 		 */
1306 		if (l)
1307 			goto run;
1308 		goto out;
1309 	case SIDL:
1310 		/* Process is being created by fork */
1311 		/* XXX: We are not ready to receive signals yet */
1312 		goto done;
1313 	default:
1314 		/* Else what? */
1315 		panic("psignal: Invalid process state %d.", p->p_stat);
1316 	}
1317 	/*NOTREACHED*/
1318 
1319  runfast:
1320 	if (action == SIG_CATCH) {
1321 		ksiginfo_put(p, ksi);
1322 		action = SIG_HOLD;
1323 	}
1324 	/*
1325 	 * Raise priority to at least PUSER.
1326 	 */
1327 	if (l->l_priority > PUSER)
1328 		l->l_priority = PUSER;
1329  run:
1330 	if (action == SIG_CATCH) {
1331 		ksiginfo_put(p, ksi);
1332 		action = SIG_HOLD;
1333 	}
1334 
1335 	setrunnable(l);		/* XXXSMP: recurse? */
1336  out:
1337 	if (action == SIG_CATCH)
1338 		ksiginfo_put(p, ksi);
1339  done:
1340 	/* XXXSMP: works, but icky */
1341 	if (dolock)
1342 		SCHED_UNLOCK(s);
1343 }
1344 
1345 void
1346 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1347 {
1348 	struct proc *p = l->l_proc;
1349 	struct lwp *le, *li;
1350 	siginfo_t *si;
1351 	int f;
1352 
1353 	if (p->p_flag & P_SA) {
1354 
1355 		/* XXXUPSXXX What if not on sa_vp ? */
1356 
1357 		f = l->l_flag & L_SA;
1358 		l->l_flag &= ~L_SA;
1359 		si = pool_get(&siginfo_pool, PR_WAITOK);
1360 		si->_info = ksi->ksi_info;
1361 		le = li = NULL;
1362 		if (KSI_TRAP_P(ksi))
1363 			le = l;
1364 		else
1365 			li = l;
1366 
1367 		sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1368 			    sizeof(siginfo_t), si);
1369 		l->l_flag |= f;
1370 		return;
1371 	}
1372 
1373 	(*p->p_emul->e_sendsig)(ksi, mask);
1374 }
1375 
1376 static __inline int firstsig(const sigset_t *);
1377 
1378 static __inline int
1379 firstsig(const sigset_t *ss)
1380 {
1381 	int sig;
1382 
1383 	sig = ffs(ss->__bits[0]);
1384 	if (sig != 0)
1385 		return (sig);
1386 #if NSIG > 33
1387 	sig = ffs(ss->__bits[1]);
1388 	if (sig != 0)
1389 		return (sig + 32);
1390 #endif
1391 #if NSIG > 65
1392 	sig = ffs(ss->__bits[2]);
1393 	if (sig != 0)
1394 		return (sig + 64);
1395 #endif
1396 #if NSIG > 97
1397 	sig = ffs(ss->__bits[3]);
1398 	if (sig != 0)
1399 		return (sig + 96);
1400 #endif
1401 	return (0);
1402 }
1403 
1404 /*
1405  * If the current process has received a signal (should be caught or cause
1406  * termination, should interrupt current syscall), return the signal number.
1407  * Stop signals with default action are processed immediately, then cleared;
1408  * they aren't returned.  This is checked after each entry to the system for
1409  * a syscall or trap (though this can usually be done without calling issignal
1410  * by checking the pending signal masks in the CURSIG macro.) The normal call
1411  * sequence is
1412  *
1413  *	while (signum = CURSIG(curlwp))
1414  *		postsig(signum);
1415  */
1416 int
1417 issignal(struct lwp *l)
1418 {
1419 	struct proc	*p = l->l_proc;
1420 	int		s = 0, signum, prop;
1421 	int		dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
1422 	sigset_t	ss;
1423 
1424 	/* Bail out if we do not own the virtual processor */
1425 	if (l->l_flag & L_SA && l->l_savp->savp_lwp != l)
1426 		return 0;
1427 
1428 	if (p->p_stat == SSTOP) {
1429 		/*
1430 		 * The process is stopped/stopping. Stop ourselves now that
1431 		 * we're on the kernel/userspace boundary.
1432 		 */
1433 		if (dolock)
1434 			SCHED_LOCK(s);
1435 		l->l_stat = LSSTOP;
1436 		p->p_nrlwps--;
1437 		if (p->p_flag & P_TRACED)
1438 			goto sigtraceswitch;
1439 		else
1440 			goto sigswitch;
1441 	}
1442 	for (;;) {
1443 		sigpending1(p, &ss);
1444 		if (p->p_flag & P_PPWAIT)
1445 			sigminusset(&stopsigmask, &ss);
1446 		signum = firstsig(&ss);
1447 		if (signum == 0) {		 	/* no signal to send */
1448 			p->p_sigctx.ps_sigcheck = 0;
1449 			if (locked && dolock)
1450 				SCHED_LOCK(s);
1451 			return (0);
1452 		}
1453 							/* take the signal! */
1454 		sigdelset(&p->p_sigctx.ps_siglist, signum);
1455 
1456 		/*
1457 		 * We should see pending but ignored signals
1458 		 * only if P_TRACED was on when they were posted.
1459 		 */
1460 		if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1461 		    (p->p_flag & P_TRACED) == 0)
1462 			continue;
1463 
1464 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1465 			/*
1466 			 * If traced, always stop, and stay
1467 			 * stopped until released by the debugger.
1468 			 */
1469 			p->p_xstat = signum;
1470 
1471 			/* Emulation-specific handling of signal trace */
1472 			if ((p->p_emul->e_tracesig != NULL) &&
1473 			    ((*p->p_emul->e_tracesig)(p, signum) != 0))
1474 				goto childresumed;
1475 
1476 			if ((p->p_flag & P_FSTRACE) == 0)
1477 				child_psignal(p, dolock);
1478 			if (dolock)
1479 				SCHED_LOCK(s);
1480 			proc_stop(p, 1);
1481 		sigtraceswitch:
1482 			mi_switch(l, NULL);
1483 			SCHED_ASSERT_UNLOCKED();
1484 			if (dolock)
1485 				splx(s);
1486 			else
1487 				dolock = 1;
1488 
1489 		childresumed:
1490 			/*
1491 			 * If we are no longer being traced, or the parent
1492 			 * didn't give us a signal, look for more signals.
1493 			 */
1494 			if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1495 				continue;
1496 
1497 			/*
1498 			 * If the new signal is being masked, look for other
1499 			 * signals.
1500 			 */
1501 			signum = p->p_xstat;
1502 			p->p_xstat = 0;
1503 			/*
1504 			 * `p->p_sigctx.ps_siglist |= mask' is done
1505 			 * in setrunnable().
1506 			 */
1507 			if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1508 				continue;
1509 							/* take the signal! */
1510 			sigdelset(&p->p_sigctx.ps_siglist, signum);
1511 		}
1512 
1513 		prop = sigprop[signum];
1514 
1515 		/*
1516 		 * Decide whether the signal should be returned.
1517 		 * Return the signal's number, or fall through
1518 		 * to clear it from the pending mask.
1519 		 */
1520 		switch ((long)SIGACTION(p, signum).sa_handler) {
1521 
1522 		case (long)SIG_DFL:
1523 			/*
1524 			 * Don't take default actions on system processes.
1525 			 */
1526 			if (p->p_pid <= 1) {
1527 #ifdef DIAGNOSTIC
1528 				/*
1529 				 * Are you sure you want to ignore SIGSEGV
1530 				 * in init? XXX
1531 				 */
1532 				printf("Process (pid %d) got signal %d\n",
1533 				    p->p_pid, signum);
1534 #endif
1535 				break;		/* == ignore */
1536 			}
1537 			/*
1538 			 * If there is a pending stop signal to process
1539 			 * with default action, stop here,
1540 			 * then clear the signal.  However,
1541 			 * if process is member of an orphaned
1542 			 * process group, ignore tty stop signals.
1543 			 */
1544 			if (prop & SA_STOP) {
1545 				if (p->p_flag & P_TRACED ||
1546 		    		    (p->p_pgrp->pg_jobc == 0 &&
1547 				    prop & SA_TTYSTOP))
1548 					break;	/* == ignore */
1549 				p->p_xstat = signum;
1550 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1551 					child_psignal(p, dolock);
1552 				if (dolock)
1553 					SCHED_LOCK(s);
1554 				proc_stop(p, 1);
1555 			sigswitch:
1556 				mi_switch(l, NULL);
1557 				SCHED_ASSERT_UNLOCKED();
1558 				if (dolock)
1559 					splx(s);
1560 				else
1561 					dolock = 1;
1562 				break;
1563 			} else if (prop & SA_IGNORE) {
1564 				/*
1565 				 * Except for SIGCONT, shouldn't get here.
1566 				 * Default action is to ignore; drop it.
1567 				 */
1568 				break;		/* == ignore */
1569 			} else
1570 				goto keep;
1571 			/*NOTREACHED*/
1572 
1573 		case (long)SIG_IGN:
1574 			/*
1575 			 * Masking above should prevent us ever trying
1576 			 * to take action on an ignored signal other
1577 			 * than SIGCONT, unless process is traced.
1578 			 */
1579 #ifdef DEBUG_ISSIGNAL
1580 			if ((prop & SA_CONT) == 0 &&
1581 			    (p->p_flag & P_TRACED) == 0)
1582 				printf("issignal\n");
1583 #endif
1584 			break;		/* == ignore */
1585 
1586 		default:
1587 			/*
1588 			 * This signal has an action, let
1589 			 * postsig() process it.
1590 			 */
1591 			goto keep;
1592 		}
1593 	}
1594 	/* NOTREACHED */
1595 
1596  keep:
1597 						/* leave the signal for later */
1598 	sigaddset(&p->p_sigctx.ps_siglist, signum);
1599 	CHECKSIGS(p);
1600 	if (locked && dolock)
1601 		SCHED_LOCK(s);
1602 	return (signum);
1603 }
1604 
1605 /*
1606  * Put the argument process into the stopped state and notify the parent
1607  * via wakeup.  Signals are handled elsewhere.  The process must not be
1608  * on the run queue.
1609  */
1610 void
1611 proc_stop(struct proc *p, int wakeup)
1612 {
1613 	struct lwp *l;
1614 	struct proc *parent;
1615 	struct sadata_vp *vp;
1616 
1617 	SCHED_ASSERT_LOCKED();
1618 
1619 	/* XXX lock process LWP state */
1620 	p->p_flag &= ~P_WAITED;
1621 	p->p_stat = SSTOP;
1622 	parent = p->p_pptr;
1623 	parent->p_nstopchild++;
1624 
1625 	if (p->p_flag & P_SA) {
1626 		/*
1627 		 * Only (try to) put the LWP on the VP in stopped
1628 		 * state.
1629 		 * All other LWPs will suspend in sa_setwoken()
1630 		 * because the VP-LWP in stopped state cannot be
1631 		 * repossessed.
1632 		 */
1633 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1634 			l = vp->savp_lwp;
1635 			if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
1636 				l->l_stat = LSSTOP;
1637 				p->p_nrlwps--;
1638 			} else if (l->l_stat == LSRUN) {
1639 				/* Remove LWP from the run queue */
1640 				remrunqueue(l);
1641 				l->l_stat = LSSTOP;
1642 				p->p_nrlwps--;
1643 			} else if (l->l_stat == LSSLEEP &&
1644 			    l->l_flag & L_SA_IDLE) {
1645 				l->l_flag &= ~L_SA_IDLE;
1646 				l->l_stat = LSSTOP;
1647 			}
1648 		}
1649 		goto out;
1650 	}
1651 
1652 	/*
1653 	 * Put as many LWP's as possible in stopped state.
1654 	 * Sleeping ones will notice the stopped state as they try to
1655 	 * return to userspace.
1656 	 */
1657 
1658 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1659 		if (l->l_stat == LSONPROC) {
1660 			/* XXX SMP this assumes that a LWP that is LSONPROC
1661 			 * is curlwp and hence is about to be mi_switched
1662 			 * away; the only callers of proc_stop() are:
1663 			 * - psignal
1664 			 * - issignal()
1665 			 * For the former, proc_stop() is only called when
1666 			 * no processes are running, so we don't worry.
1667 			 * For the latter, proc_stop() is called right
1668 			 * before mi_switch().
1669 			 */
1670 			l->l_stat = LSSTOP;
1671 			p->p_nrlwps--;
1672 		} else if (l->l_stat == LSRUN) {
1673 			/* Remove LWP from the run queue */
1674 			remrunqueue(l);
1675 			l->l_stat = LSSTOP;
1676 			p->p_nrlwps--;
1677 		} else if ((l->l_stat == LSSLEEP) ||
1678 		    (l->l_stat == LSSUSPENDED) ||
1679 		    (l->l_stat == LSZOMB) ||
1680 		    (l->l_stat == LSDEAD)) {
1681 			/*
1682 			 * Don't do anything; let sleeping LWPs
1683 			 * discover the stopped state of the process
1684 			 * on their way out of the kernel; otherwise,
1685 			 * things like NFS threads that sleep with
1686 			 * locks will block the rest of the system
1687 			 * from getting any work done.
1688 			 *
1689 			 * Suspended/dead/zombie LWPs aren't going
1690 			 * anywhere, so we don't need to touch them.
1691 			 */
1692 		}
1693 #ifdef DIAGNOSTIC
1694 		else {
1695 			panic("proc_stop: process %d lwp %d "
1696 			      "in unstoppable state %d.\n",
1697 			    p->p_pid, l->l_lid, l->l_stat);
1698 		}
1699 #endif
1700 	}
1701 
1702  out:
1703 	/* XXX unlock process LWP state */
1704 
1705 	if (wakeup)
1706 		sched_wakeup((caddr_t)p->p_pptr);
1707 }
1708 
1709 /*
1710  * Given a process in state SSTOP, set the state back to SACTIVE and
1711  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1712  *
1713  * If no LWPs ended up runnable (and therefore able to take a signal),
1714  * return a LWP that is sleeping interruptably. The caller can wake
1715  * that LWP up to take a signal.
1716  */
1717 struct lwp *
1718 proc_unstop(struct proc *p)
1719 {
1720 	struct lwp *l, *lr = NULL;
1721 	struct sadata_vp *vp;
1722 	int cantake = 0;
1723 
1724 	SCHED_ASSERT_LOCKED();
1725 
1726 	/*
1727 	 * Our caller wants to be informed if there are only sleeping
1728 	 * and interruptable LWPs left after we have run so that it
1729 	 * can invoke setrunnable() if required - return one of the
1730 	 * interruptable LWPs if this is the case.
1731 	 */
1732 
1733 	if (!(p->p_flag & P_WAITED))
1734 		p->p_pptr->p_nstopchild--;
1735 	p->p_stat = SACTIVE;
1736 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1737 		if (l->l_stat == LSRUN) {
1738 			lr = NULL;
1739 			cantake = 1;
1740 		}
1741 		if (l->l_stat != LSSTOP)
1742 			continue;
1743 
1744 		if (l->l_wchan != NULL) {
1745 			l->l_stat = LSSLEEP;
1746 			if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1747 				lr = l;
1748 				cantake = 1;
1749 			}
1750 		} else {
1751 			setrunnable(l);
1752 			lr = NULL;
1753 			cantake = 1;
1754 		}
1755 	}
1756 	if (p->p_flag & P_SA) {
1757 		/* Only consider returning the LWP on the VP. */
1758 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1759 			lr = vp->savp_lwp;
1760 			if (lr->l_stat == LSSLEEP) {
1761 				if (lr->l_flag & L_SA_YIELD) {
1762 					setrunnable(lr);
1763 					break;
1764 				} else if (lr->l_flag & L_SINTR)
1765 					return lr;
1766 			}
1767 		}
1768 		return NULL;
1769 	}
1770 	return lr;
1771 }
1772 
1773 /*
1774  * Take the action for the specified signal
1775  * from the current set of pending signals.
1776  */
1777 void
1778 postsig(int signum)
1779 {
1780 	struct lwp *l;
1781 	struct proc	*p;
1782 	struct sigacts	*ps;
1783 	sig_t		action;
1784 	sigset_t	*returnmask;
1785 
1786 	l = curlwp;
1787 	p = l->l_proc;
1788 	ps = p->p_sigacts;
1789 #ifdef DIAGNOSTIC
1790 	if (signum == 0)
1791 		panic("postsig");
1792 #endif
1793 
1794 	KERNEL_PROC_LOCK(l);
1795 
1796 #ifdef MULTIPROCESSOR
1797 	/*
1798 	 * On MP, issignal() can return the same signal to multiple
1799 	 * LWPs.  The LWPs will block above waiting for the kernel
1800 	 * lock and the first LWP which gets through will then remove
1801 	 * the signal from ps_siglist.  All other LWPs exit here.
1802 	 */
1803 	if (!sigismember(&p->p_sigctx.ps_siglist, signum)) {
1804 		KERNEL_PROC_UNLOCK(l);
1805 		return;
1806 	}
1807 #endif
1808 	sigdelset(&p->p_sigctx.ps_siglist, signum);
1809 	action = SIGACTION_PS(ps, signum).sa_handler;
1810 	if (action == SIG_DFL) {
1811 #ifdef KTRACE
1812 		if (KTRPOINT(p, KTR_PSIG))
1813 			ktrpsig(p, signum, action,
1814 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
1815 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1816 			    NULL);
1817 #endif
1818 		/*
1819 		 * Default action, where the default is to kill
1820 		 * the process.  (Other cases were ignored above.)
1821 		 */
1822 		sigexit(l, signum);
1823 		/* NOTREACHED */
1824 	} else {
1825 		ksiginfo_t *ksi;
1826 		/*
1827 		 * If we get here, the signal must be caught.
1828 		 */
1829 #ifdef DIAGNOSTIC
1830 		if (action == SIG_IGN ||
1831 		    sigismember(&p->p_sigctx.ps_sigmask, signum))
1832 			panic("postsig action");
1833 #endif
1834 		/*
1835 		 * Set the new mask value and also defer further
1836 		 * occurrences of this signal.
1837 		 *
1838 		 * Special case: user has done a sigpause.  Here the
1839 		 * current mask is not of interest, but rather the
1840 		 * mask from before the sigpause is what we want
1841 		 * restored after the signal processing is completed.
1842 		 */
1843 		if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1844 			returnmask = &p->p_sigctx.ps_oldmask;
1845 			p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1846 		} else
1847 			returnmask = &p->p_sigctx.ps_sigmask;
1848 		p->p_stats->p_ru.ru_nsignals++;
1849 		ksi = ksiginfo_get(p, signum);
1850 #ifdef KTRACE
1851 		if (KTRPOINT(p, KTR_PSIG))
1852 			ktrpsig(p, signum, action,
1853 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
1854 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1855 			    ksi);
1856 #endif
1857 		if (ksi == NULL) {
1858 			ksiginfo_t ksi1;
1859 			/*
1860 			 * we did not save any siginfo for this, either
1861 			 * because the signal was not caught, or because the
1862 			 * user did not request SA_SIGINFO
1863 			 */
1864 			(void)memset(&ksi1, 0, sizeof(ksi1));
1865 			ksi1.ksi_signo = signum;
1866 			kpsendsig(l, &ksi1, returnmask);
1867 		} else {
1868 			kpsendsig(l, ksi, returnmask);
1869 			pool_put(&ksiginfo_pool, ksi);
1870 		}
1871 		p->p_sigctx.ps_lwp = 0;
1872 		p->p_sigctx.ps_code = 0;
1873 		p->p_sigctx.ps_signo = 0;
1874 		(void) splsched();	/* XXXSMP */
1875 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1876 		    &p->p_sigctx.ps_sigmask);
1877 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1878 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1879 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1880 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
1881 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1882 		}
1883 		(void) spl0();		/* XXXSMP */
1884 	}
1885 
1886 	KERNEL_PROC_UNLOCK(l);
1887 }
1888 
1889 /*
1890  * Kill the current process for stated reason.
1891  */
1892 void
1893 killproc(struct proc *p, const char *why)
1894 {
1895 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1896 	uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1897 	psignal(p, SIGKILL);
1898 }
1899 
1900 /*
1901  * Force the current process to exit with the specified signal, dumping core
1902  * if appropriate.  We bypass the normal tests for masked and caught signals,
1903  * allowing unrecoverable failures to terminate the process without changing
1904  * signal state.  Mark the accounting record with the signal termination.
1905  * If dumping core, save the signal number for the debugger.  Calls exit and
1906  * does not return.
1907  */
1908 
1909 #if defined(DEBUG)
1910 int	kern_logsigexit = 1;	/* not static to make public for sysctl */
1911 #else
1912 int	kern_logsigexit = 0;	/* not static to make public for sysctl */
1913 #endif
1914 
1915 static	const char logcoredump[] =
1916 	"pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1917 static	const char lognocoredump[] =
1918 	"pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
1919 
1920 /* Wrapper function for use in p_userret */
1921 static void
1922 lwp_coredump_hook(struct lwp *l, void *arg)
1923 {
1924 	int s;
1925 
1926 	/*
1927 	 * Suspend ourselves, so that the kernel stack and therefore
1928 	 * the userland registers saved in the trapframe are around
1929 	 * for coredump() to write them out.
1930 	 */
1931 	KERNEL_PROC_LOCK(l);
1932 	l->l_flag &= ~L_DETACHED;
1933 	SCHED_LOCK(s);
1934 	l->l_stat = LSSUSPENDED;
1935 	l->l_proc->p_nrlwps--;
1936 	/* XXX NJWLWP check if this makes sense here: */
1937 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
1938 	mi_switch(l, NULL);
1939 	SCHED_ASSERT_UNLOCKED();
1940 	splx(s);
1941 
1942 	lwp_exit(l);
1943 }
1944 
1945 void
1946 sigexit(struct lwp *l, int signum)
1947 {
1948 	struct proc	*p;
1949 #if 0
1950 	struct lwp	*l2;
1951 #endif
1952 	int		error, exitsig;
1953 
1954 	p = l->l_proc;
1955 
1956 	/*
1957 	 * Don't permit coredump() or exit1() multiple times
1958 	 * in the same process.
1959 	 */
1960 	if (p->p_flag & P_WEXIT) {
1961 		KERNEL_PROC_UNLOCK(l);
1962 		(*p->p_userret)(l, p->p_userret_arg);
1963 	}
1964 	p->p_flag |= P_WEXIT;
1965 	/* We don't want to switch away from exiting. */
1966 	/* XXX multiprocessor: stop LWPs on other processors. */
1967 #if 0
1968 	if (p->p_flag & P_SA) {
1969 		LIST_FOREACH(l2, &p->p_lwps, l_sibling)
1970 		    l2->l_flag &= ~L_SA;
1971 		p->p_flag &= ~P_SA;
1972 	}
1973 #endif
1974 
1975 	/* Make other LWPs stick around long enough to be dumped */
1976 	p->p_userret = lwp_coredump_hook;
1977 	p->p_userret_arg = NULL;
1978 
1979 	exitsig = signum;
1980 	p->p_acflag |= AXSIG;
1981 	if (sigprop[signum] & SA_CORE) {
1982 		p->p_sigctx.ps_signo = signum;
1983 		if ((error = coredump(l)) == 0)
1984 			exitsig |= WCOREFLAG;
1985 
1986 		if (kern_logsigexit) {
1987 			/* XXX What if we ever have really large UIDs? */
1988 			int uid = p->p_cred && p->p_ucred ?
1989 				(int) p->p_ucred->cr_uid : -1;
1990 
1991 			if (error)
1992 				log(LOG_INFO, lognocoredump, p->p_pid,
1993 				    p->p_comm, uid, signum, error);
1994 			else
1995 				log(LOG_INFO, logcoredump, p->p_pid,
1996 				    p->p_comm, uid, signum);
1997 		}
1998 
1999 	}
2000 
2001 	exit1(l, W_EXITCODE(0, exitsig));
2002 	/* NOTREACHED */
2003 }
2004 
2005 /*
2006  * Dump core, into a file named "progname.core" or "core" (depending on the
2007  * value of shortcorename), unless the process was setuid/setgid.
2008  */
2009 int
2010 coredump(struct lwp *l)
2011 {
2012 	struct vnode		*vp;
2013 	struct proc		*p;
2014 	struct vmspace		*vm;
2015 	struct ucred		*cred;
2016 	struct nameidata	nd;
2017 	struct vattr		vattr;
2018 	struct mount		*mp;
2019 	int			error, error1;
2020 	char			name[MAXPATHLEN];
2021 
2022 	p = l->l_proc;
2023 	vm = p->p_vmspace;
2024 	cred = p->p_cred->pc_ucred;
2025 
2026 	/*
2027 	 * Make sure the process has not set-id, to prevent data leaks.
2028 	 */
2029 	if (p->p_flag & P_SUGID)
2030 		return (EPERM);
2031 
2032 	/*
2033 	 * Refuse to core if the data + stack + user size is larger than
2034 	 * the core dump limit.  XXX THIS IS WRONG, because of mapped
2035 	 * data.
2036 	 */
2037 	if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
2038 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
2039 		return (EFBIG);		/* better error code? */
2040 
2041 restart:
2042 	/*
2043 	 * The core dump will go in the current working directory.  Make
2044 	 * sure that the directory is still there and that the mount flags
2045 	 * allow us to write core dumps there.
2046 	 */
2047 	vp = p->p_cwdi->cwdi_cdir;
2048 	if (vp->v_mount == NULL ||
2049 	    (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
2050 		return (EPERM);
2051 
2052 	error = build_corename(p, name);
2053 	if (error)
2054 		return error;
2055 
2056 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
2057 	error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
2058 	if (error)
2059 		return (error);
2060 	vp = nd.ni_vp;
2061 
2062 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2063 		VOP_UNLOCK(vp, 0);
2064 		if ((error = vn_close(vp, FWRITE, cred, p)) != 0)
2065 			return (error);
2066 		if ((error = vn_start_write(NULL, &mp,
2067 		    V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
2068 			return (error);
2069 		goto restart;
2070 	}
2071 
2072 	/* Don't dump to non-regular files or files with links. */
2073 	if (vp->v_type != VREG ||
2074 	    VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) {
2075 		error = EINVAL;
2076 		goto out;
2077 	}
2078 	VATTR_NULL(&vattr);
2079 	vattr.va_size = 0;
2080 	VOP_LEASE(vp, p, cred, LEASE_WRITE);
2081 	VOP_SETATTR(vp, &vattr, cred, p);
2082 	p->p_acflag |= ACORE;
2083 
2084 	/* Now dump the actual core file. */
2085 	error = (*p->p_execsw->es_coredump)(l, vp, cred);
2086  out:
2087 	VOP_UNLOCK(vp, 0);
2088 	vn_finished_write(mp, 0);
2089 	error1 = vn_close(vp, FWRITE, cred, p);
2090 	if (error == 0)
2091 		error = error1;
2092 	return (error);
2093 }
2094 
2095 /*
2096  * Nonexistent system call-- signal process (may want to handle it).
2097  * Flag error in case process won't see signal immediately (blocked or ignored).
2098  */
2099 /* ARGSUSED */
2100 int
2101 sys_nosys(struct lwp *l, void *v, register_t *retval)
2102 {
2103 	struct proc 	*p;
2104 
2105 	p = l->l_proc;
2106 	psignal(p, SIGSYS);
2107 	return (ENOSYS);
2108 }
2109 
2110 static int
2111 build_corename(struct proc *p, char dst[MAXPATHLEN])
2112 {
2113 	const char	*s;
2114 	char		*d, *end;
2115 	int		i;
2116 
2117 	for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN;
2118 	    *s != '\0'; s++) {
2119 		if (*s == '%') {
2120 			switch (*(s + 1)) {
2121 			case 'n':
2122 				i = snprintf(d, end - d, "%s", p->p_comm);
2123 				break;
2124 			case 'p':
2125 				i = snprintf(d, end - d, "%d", p->p_pid);
2126 				break;
2127 			case 'u':
2128 				i = snprintf(d, end - d, "%.*s",
2129 				    (int)sizeof p->p_pgrp->pg_session->s_login,
2130 				    p->p_pgrp->pg_session->s_login);
2131 				break;
2132 			case 't':
2133 				i = snprintf(d, end - d, "%ld",
2134 				    p->p_stats->p_start.tv_sec);
2135 				break;
2136 			default:
2137 				goto copy;
2138 			}
2139 			d += i;
2140 			s++;
2141 		} else {
2142  copy:			*d = *s;
2143 			d++;
2144 		}
2145 		if (d >= end)
2146 			return (ENAMETOOLONG);
2147 	}
2148 	*d = '\0';
2149 	return 0;
2150 }
2151 
2152 void
2153 getucontext(struct lwp *l, ucontext_t *ucp)
2154 {
2155 	struct proc	*p;
2156 
2157 	p = l->l_proc;
2158 
2159 	ucp->uc_flags = 0;
2160 	ucp->uc_link = l->l_ctxlink;
2161 
2162 	(void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
2163 	ucp->uc_flags |= _UC_SIGMASK;
2164 
2165 	/*
2166 	 * The (unsupplied) definition of the `current execution stack'
2167 	 * in the System V Interface Definition appears to allow returning
2168 	 * the main context stack.
2169 	 */
2170 	if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
2171 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
2172 		ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
2173 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
2174 	} else {
2175 		/* Simply copy alternate signal execution stack. */
2176 		ucp->uc_stack = p->p_sigctx.ps_sigstk;
2177 	}
2178 	ucp->uc_flags |= _UC_STACK;
2179 
2180 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
2181 }
2182 
2183 /* ARGSUSED */
2184 int
2185 sys_getcontext(struct lwp *l, void *v, register_t *retval)
2186 {
2187 	struct sys_getcontext_args /* {
2188 		syscallarg(struct __ucontext *) ucp;
2189 	} */ *uap = v;
2190 	ucontext_t uc;
2191 
2192 	getucontext(l, &uc);
2193 
2194 	return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
2195 }
2196 
2197 int
2198 setucontext(struct lwp *l, const ucontext_t *ucp)
2199 {
2200 	struct proc	*p;
2201 	int		error;
2202 
2203 	p = l->l_proc;
2204 	if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
2205 		return (error);
2206 	l->l_ctxlink = ucp->uc_link;
2207 
2208 	if ((ucp->uc_flags & _UC_SIGMASK) != 0)
2209 		sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
2210 
2211 	/*
2212 	 * If there was stack information, update whether or not we are
2213 	 * still running on an alternate signal stack.
2214 	 */
2215 	if ((ucp->uc_flags & _UC_STACK) != 0) {
2216 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
2217 			p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
2218 		else
2219 			p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
2220 	}
2221 
2222 	return 0;
2223 }
2224 
2225 /* ARGSUSED */
2226 int
2227 sys_setcontext(struct lwp *l, void *v, register_t *retval)
2228 {
2229 	struct sys_setcontext_args /* {
2230 		syscallarg(const ucontext_t *) ucp;
2231 	} */ *uap = v;
2232 	ucontext_t uc;
2233 	int error;
2234 
2235 	if (SCARG(uap, ucp) == NULL)	/* i.e. end of uc_link chain */
2236 		exit1(l, W_EXITCODE(0, 0));
2237 	else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
2238 	    (error = setucontext(l, &uc)) != 0)
2239 		return (error);
2240 
2241 	return (EJUSTRETURN);
2242 }
2243 
2244 /*
2245  * sigtimedwait(2) system call, used also for implementation
2246  * of sigwaitinfo() and sigwait().
2247  *
2248  * This only handles single LWP in signal wait. libpthread provides
2249  * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
2250  */
2251 int
2252 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
2253 {
2254 	struct sys___sigtimedwait_args /* {
2255 		syscallarg(const sigset_t *) set;
2256 		syscallarg(siginfo_t *) info;
2257 		syscallarg(struct timespec *) timeout;
2258 	} */ *uap = v;
2259 	sigset_t *waitset, twaitset;
2260 	struct proc *p = l->l_proc;
2261 	int error, signum, s;
2262 	int timo = 0;
2263 	struct timeval tvstart;
2264 	struct timespec ts;
2265 	ksiginfo_t *ksi;
2266 
2267 	MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
2268 
2269 	if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
2270 		FREE(waitset, M_TEMP);
2271 		return (error);
2272 	}
2273 
2274 	/*
2275 	 * Silently ignore SA_CANTMASK signals. psignal1() would
2276 	 * ignore SA_CANTMASK signals in waitset, we do this
2277 	 * only for the below siglist check.
2278 	 */
2279 	sigminusset(&sigcantmask, waitset);
2280 
2281 	/*
2282 	 * First scan siglist and check if there is signal from
2283 	 * our waitset already pending.
2284 	 */
2285 	twaitset = *waitset;
2286 	__sigandset(&p->p_sigctx.ps_siglist, &twaitset);
2287 	if ((signum = firstsig(&twaitset))) {
2288 		/* found pending signal */
2289 		sigdelset(&p->p_sigctx.ps_siglist, signum);
2290 		ksi = ksiginfo_get(p, signum);
2291 		if (!ksi) {
2292 			/* No queued siginfo, manufacture one */
2293 			ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2294 			KSI_INIT(ksi);
2295 			ksi->ksi_info._signo = signum;
2296 			ksi->ksi_info._code = SI_USER;
2297 		}
2298 
2299 		goto sig;
2300 	}
2301 
2302 	/*
2303 	 * Calculate timeout, if it was specified.
2304 	 */
2305 	if (SCARG(uap, timeout)) {
2306 		uint64_t ms;
2307 
2308 		if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))))
2309 			return (error);
2310 
2311 		ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
2312 		timo = mstohz(ms);
2313 		if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
2314 			timo = 1;
2315 		if (timo <= 0)
2316 			return (EAGAIN);
2317 
2318 		/*
2319 		 * Remember current mono_time, it would be used in
2320 		 * ECANCELED/ERESTART case.
2321 		 */
2322 		s = splclock();
2323 		tvstart = mono_time;
2324 		splx(s);
2325 	}
2326 
2327 	/*
2328 	 * Setup ps_sigwait list. Pass pointer to malloced memory
2329 	 * here; it's not possible to pass pointer to a structure
2330 	 * on current process's stack, the current process might
2331 	 * be swapped out at the time the signal would get delivered.
2332 	 */
2333 	ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2334 	p->p_sigctx.ps_sigwaited = ksi;
2335 	p->p_sigctx.ps_sigwait = waitset;
2336 
2337 	/*
2338 	 * Wait for signal to arrive. We can either be woken up or
2339 	 * time out.
2340 	 */
2341 	error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
2342 
2343 	/*
2344 	 * Need to find out if we woke as a result of lwp_wakeup()
2345 	 * or a signal outside our wait set.
2346 	 */
2347 	if (error == EINTR && p->p_sigctx.ps_sigwaited
2348 	    && !firstsig(&p->p_sigctx.ps_siglist)) {
2349 		/* wakeup via _lwp_wakeup() */
2350 		error = ECANCELED;
2351 	} else if (!error && p->p_sigctx.ps_sigwaited) {
2352 		/* spurious wakeup - arrange for syscall restart */
2353 		error = ERESTART;
2354 		goto fail;
2355 	}
2356 
2357 	/*
2358 	 * On error, clear sigwait indication. psignal1() clears it
2359 	 * in !error case.
2360 	 */
2361 	if (error) {
2362 		p->p_sigctx.ps_sigwaited = NULL;
2363 
2364 		/*
2365 		 * If the sleep was interrupted (either by signal or wakeup),
2366 		 * update the timeout and copyout new value back.
2367 		 * It would be used when the syscall would be restarted
2368 		 * or called again.
2369 		 */
2370 		if (timo && (error == ERESTART || error == ECANCELED)) {
2371 			struct timeval tvnow, tvtimo;
2372 			int err;
2373 
2374 			s = splclock();
2375 			tvnow = mono_time;
2376 			splx(s);
2377 
2378 			TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
2379 
2380 			/* compute how much time has passed since start */
2381 			timersub(&tvnow, &tvstart, &tvnow);
2382 			/* substract passed time from timeout */
2383 			timersub(&tvtimo, &tvnow, &tvtimo);
2384 
2385 			if (tvtimo.tv_sec < 0) {
2386 				error = EAGAIN;
2387 				goto fail;
2388 			}
2389 
2390 			TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
2391 
2392 			/* copy updated timeout to userland */
2393 			if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts)))) {
2394 				error = err;
2395 				goto fail;
2396 			}
2397 		}
2398 
2399 		goto fail;
2400 	}
2401 
2402 	/*
2403 	 * If a signal from the wait set arrived, copy it to userland.
2404 	 * Copy only the used part of siginfo, the padding part is
2405 	 * left unchanged (userland is not supposed to touch it anyway).
2406 	 */
2407  sig:
2408 	error = copyout(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
2409 
2410  fail:
2411 	FREE(waitset, M_TEMP);
2412 	pool_put(&ksiginfo_pool, ksi);
2413 	p->p_sigctx.ps_sigwait = NULL;
2414 
2415 	return (error);
2416 }
2417 
2418 /*
2419  * Returns true if signal is ignored or masked for passed process.
2420  */
2421 int
2422 sigismasked(struct proc *p, int sig)
2423 {
2424 
2425 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2426 	    sigismember(&p->p_sigctx.ps_sigmask, sig));
2427 }
2428 
2429 static int
2430 filt_sigattach(struct knote *kn)
2431 {
2432 	struct proc *p = curproc;
2433 
2434 	kn->kn_ptr.p_proc = p;
2435 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
2436 
2437 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2438 
2439 	return (0);
2440 }
2441 
2442 static void
2443 filt_sigdetach(struct knote *kn)
2444 {
2445 	struct proc *p = kn->kn_ptr.p_proc;
2446 
2447 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2448 }
2449 
2450 /*
2451  * signal knotes are shared with proc knotes, so we apply a mask to
2452  * the hint in order to differentiate them from process hints.  This
2453  * could be avoided by using a signal-specific knote list, but probably
2454  * isn't worth the trouble.
2455  */
2456 static int
2457 filt_signal(struct knote *kn, long hint)
2458 {
2459 
2460 	if (hint & NOTE_SIGNAL) {
2461 		hint &= ~NOTE_SIGNAL;
2462 
2463 		if (kn->kn_id == hint)
2464 			kn->kn_data++;
2465 	}
2466 	return (kn->kn_data != 0);
2467 }
2468 
2469 const struct filterops sig_filtops = {
2470 	0, filt_sigattach, filt_sigdetach, filt_signal
2471 };
2472