1 /* $NetBSD: kern_resource.c,v 1.171 2012/12/21 19:39:48 njoly Exp $ */ 2 3 /*- 4 * Copyright (c) 1982, 1986, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95 37 */ 38 39 #include <sys/cdefs.h> 40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.171 2012/12/21 19:39:48 njoly Exp $"); 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/file.h> 46 #include <sys/resourcevar.h> 47 #include <sys/kmem.h> 48 #include <sys/namei.h> 49 #include <sys/pool.h> 50 #include <sys/proc.h> 51 #include <sys/sysctl.h> 52 #include <sys/timevar.h> 53 #include <sys/kauth.h> 54 #include <sys/atomic.h> 55 #include <sys/mount.h> 56 #include <sys/syscallargs.h> 57 #include <sys/atomic.h> 58 59 #include <uvm/uvm_extern.h> 60 61 /* 62 * Maximum process data and stack limits. 63 * They are variables so they are patchable. 64 */ 65 rlim_t maxdmap = MAXDSIZ; 66 rlim_t maxsmap = MAXSSIZ; 67 68 static pool_cache_t plimit_cache __read_mostly; 69 static pool_cache_t pstats_cache __read_mostly; 70 71 static kauth_listener_t resource_listener; 72 static struct sysctllog *proc_sysctllog; 73 74 static int donice(struct lwp *, struct proc *, int); 75 static void sysctl_proc_setup(void); 76 77 static int 78 resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 79 void *arg0, void *arg1, void *arg2, void *arg3) 80 { 81 struct proc *p; 82 int result; 83 84 result = KAUTH_RESULT_DEFER; 85 p = arg0; 86 87 switch (action) { 88 case KAUTH_PROCESS_NICE: 89 if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) && 90 kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) { 91 break; 92 } 93 94 if ((u_long)arg1 >= p->p_nice) 95 result = KAUTH_RESULT_ALLOW; 96 97 break; 98 99 case KAUTH_PROCESS_RLIMIT: { 100 enum kauth_process_req req; 101 102 req = (enum kauth_process_req)(unsigned long)arg1; 103 104 switch (req) { 105 case KAUTH_REQ_PROCESS_RLIMIT_GET: 106 result = KAUTH_RESULT_ALLOW; 107 break; 108 109 case KAUTH_REQ_PROCESS_RLIMIT_SET: { 110 struct rlimit *new_rlimit; 111 u_long which; 112 113 if ((p != curlwp->l_proc) && 114 (proc_uidmatch(cred, p->p_cred) != 0)) 115 break; 116 117 new_rlimit = arg2; 118 which = (u_long)arg3; 119 120 if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max) 121 result = KAUTH_RESULT_ALLOW; 122 123 break; 124 } 125 126 default: 127 break; 128 } 129 130 break; 131 } 132 133 default: 134 break; 135 } 136 137 return result; 138 } 139 140 void 141 resource_init(void) 142 { 143 144 plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0, 145 "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL); 146 pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0, 147 "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL); 148 149 resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 150 resource_listener_cb, NULL); 151 152 sysctl_proc_setup(); 153 } 154 155 /* 156 * Resource controls and accounting. 157 */ 158 159 int 160 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap, 161 register_t *retval) 162 { 163 /* { 164 syscallarg(int) which; 165 syscallarg(id_t) who; 166 } */ 167 struct proc *curp = l->l_proc, *p; 168 id_t who = SCARG(uap, who); 169 int low = NZERO + PRIO_MAX + 1; 170 171 mutex_enter(proc_lock); 172 switch (SCARG(uap, which)) { 173 case PRIO_PROCESS: 174 p = who ? proc_find(who) : curp; 175 if (p != NULL) 176 low = p->p_nice; 177 break; 178 179 case PRIO_PGRP: { 180 struct pgrp *pg; 181 182 if (who == 0) 183 pg = curp->p_pgrp; 184 else if ((pg = pgrp_find(who)) == NULL) 185 break; 186 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 187 if (p->p_nice < low) 188 low = p->p_nice; 189 } 190 break; 191 } 192 193 case PRIO_USER: 194 if (who == 0) 195 who = (int)kauth_cred_geteuid(l->l_cred); 196 PROCLIST_FOREACH(p, &allproc) { 197 mutex_enter(p->p_lock); 198 if (kauth_cred_geteuid(p->p_cred) == 199 (uid_t)who && p->p_nice < low) 200 low = p->p_nice; 201 mutex_exit(p->p_lock); 202 } 203 break; 204 205 default: 206 mutex_exit(proc_lock); 207 return EINVAL; 208 } 209 mutex_exit(proc_lock); 210 211 if (low == NZERO + PRIO_MAX + 1) { 212 return ESRCH; 213 } 214 *retval = low - NZERO; 215 return 0; 216 } 217 218 int 219 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap, 220 register_t *retval) 221 { 222 /* { 223 syscallarg(int) which; 224 syscallarg(id_t) who; 225 syscallarg(int) prio; 226 } */ 227 struct proc *curp = l->l_proc, *p; 228 id_t who = SCARG(uap, who); 229 int found = 0, error = 0; 230 231 mutex_enter(proc_lock); 232 switch (SCARG(uap, which)) { 233 case PRIO_PROCESS: 234 p = who ? proc_find(who) : curp; 235 if (p != NULL) { 236 mutex_enter(p->p_lock); 237 found++; 238 error = donice(l, p, SCARG(uap, prio)); 239 mutex_exit(p->p_lock); 240 } 241 break; 242 243 case PRIO_PGRP: { 244 struct pgrp *pg; 245 246 if (who == 0) 247 pg = curp->p_pgrp; 248 else if ((pg = pgrp_find(who)) == NULL) 249 break; 250 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 251 mutex_enter(p->p_lock); 252 found++; 253 error = donice(l, p, SCARG(uap, prio)); 254 mutex_exit(p->p_lock); 255 if (error) 256 break; 257 } 258 break; 259 } 260 261 case PRIO_USER: 262 if (who == 0) 263 who = (int)kauth_cred_geteuid(l->l_cred); 264 PROCLIST_FOREACH(p, &allproc) { 265 mutex_enter(p->p_lock); 266 if (kauth_cred_geteuid(p->p_cred) == 267 (uid_t)SCARG(uap, who)) { 268 found++; 269 error = donice(l, p, SCARG(uap, prio)); 270 } 271 mutex_exit(p->p_lock); 272 if (error) 273 break; 274 } 275 break; 276 277 default: 278 mutex_exit(proc_lock); 279 return EINVAL; 280 } 281 mutex_exit(proc_lock); 282 283 return (found == 0) ? ESRCH : error; 284 } 285 286 /* 287 * Renice a process. 288 * 289 * Call with the target process' credentials locked. 290 */ 291 static int 292 donice(struct lwp *l, struct proc *chgp, int n) 293 { 294 kauth_cred_t cred = l->l_cred; 295 296 KASSERT(mutex_owned(chgp->p_lock)); 297 298 if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) && 299 kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) && 300 kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred)) 301 return EPERM; 302 303 if (n > PRIO_MAX) { 304 n = PRIO_MAX; 305 } 306 if (n < PRIO_MIN) { 307 n = PRIO_MIN; 308 } 309 n += NZERO; 310 311 if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp, 312 KAUTH_ARG(n), NULL, NULL)) { 313 return EACCES; 314 } 315 316 sched_nice(chgp, n); 317 return 0; 318 } 319 320 int 321 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap, 322 register_t *retval) 323 { 324 /* { 325 syscallarg(int) which; 326 syscallarg(const struct rlimit *) rlp; 327 } */ 328 int error, which = SCARG(uap, which); 329 struct rlimit alim; 330 331 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit)); 332 if (error) { 333 return error; 334 } 335 return dosetrlimit(l, l->l_proc, which, &alim); 336 } 337 338 int 339 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp) 340 { 341 struct rlimit *alimp; 342 int error; 343 344 if ((u_int)which >= RLIM_NLIMITS) 345 return EINVAL; 346 347 if (limp->rlim_cur > limp->rlim_max) { 348 /* 349 * This is programming error. According to SUSv2, we should 350 * return error in this case. 351 */ 352 return EINVAL; 353 } 354 355 alimp = &p->p_rlimit[which]; 356 /* if we don't change the value, no need to limcopy() */ 357 if (limp->rlim_cur == alimp->rlim_cur && 358 limp->rlim_max == alimp->rlim_max) 359 return 0; 360 361 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT, 362 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which)); 363 if (error) 364 return error; 365 366 lim_privatise(p); 367 /* p->p_limit is now unchangeable */ 368 alimp = &p->p_rlimit[which]; 369 370 switch (which) { 371 372 case RLIMIT_DATA: 373 if (limp->rlim_cur > maxdmap) 374 limp->rlim_cur = maxdmap; 375 if (limp->rlim_max > maxdmap) 376 limp->rlim_max = maxdmap; 377 break; 378 379 case RLIMIT_STACK: 380 if (limp->rlim_cur > maxsmap) 381 limp->rlim_cur = maxsmap; 382 if (limp->rlim_max > maxsmap) 383 limp->rlim_max = maxsmap; 384 385 /* 386 * Return EINVAL if the new stack size limit is lower than 387 * current usage. Otherwise, the process would get SIGSEGV the 388 * moment it would try to access anything on it's current stack. 389 * This conforms to SUSv2. 390 */ 391 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE || 392 limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) { 393 return EINVAL; 394 } 395 396 /* 397 * Stack is allocated to the max at exec time with 398 * only "rlim_cur" bytes accessible (In other words, 399 * allocates stack dividing two contiguous regions at 400 * "rlim_cur" bytes boundary). 401 * 402 * Since allocation is done in terms of page, roundup 403 * "rlim_cur" (otherwise, contiguous regions 404 * overlap). If stack limit is going up make more 405 * accessible, if going down make inaccessible. 406 */ 407 limp->rlim_cur = round_page(limp->rlim_cur); 408 if (limp->rlim_cur != alimp->rlim_cur) { 409 vaddr_t addr; 410 vsize_t size; 411 vm_prot_t prot; 412 413 if (limp->rlim_cur > alimp->rlim_cur) { 414 prot = VM_PROT_READ | VM_PROT_WRITE; 415 size = limp->rlim_cur - alimp->rlim_cur; 416 addr = (vaddr_t)p->p_vmspace->vm_minsaddr - 417 limp->rlim_cur; 418 } else { 419 prot = VM_PROT_NONE; 420 size = alimp->rlim_cur - limp->rlim_cur; 421 addr = (vaddr_t)p->p_vmspace->vm_minsaddr - 422 alimp->rlim_cur; 423 } 424 (void) uvm_map_protect(&p->p_vmspace->vm_map, 425 addr, addr+size, prot, false); 426 } 427 break; 428 429 case RLIMIT_NOFILE: 430 if (limp->rlim_cur > maxfiles) 431 limp->rlim_cur = maxfiles; 432 if (limp->rlim_max > maxfiles) 433 limp->rlim_max = maxfiles; 434 break; 435 436 case RLIMIT_NPROC: 437 if (limp->rlim_cur > maxproc) 438 limp->rlim_cur = maxproc; 439 if (limp->rlim_max > maxproc) 440 limp->rlim_max = maxproc; 441 break; 442 443 case RLIMIT_NTHR: 444 if (limp->rlim_cur > maxlwp) 445 limp->rlim_cur = maxlwp; 446 if (limp->rlim_max > maxlwp) 447 limp->rlim_max = maxlwp; 448 break; 449 } 450 451 mutex_enter(&p->p_limit->pl_lock); 452 *alimp = *limp; 453 mutex_exit(&p->p_limit->pl_lock); 454 return 0; 455 } 456 457 int 458 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap, 459 register_t *retval) 460 { 461 /* { 462 syscallarg(int) which; 463 syscallarg(struct rlimit *) rlp; 464 } */ 465 struct proc *p = l->l_proc; 466 int which = SCARG(uap, which); 467 struct rlimit rl; 468 469 if ((u_int)which >= RLIM_NLIMITS) 470 return EINVAL; 471 472 mutex_enter(p->p_lock); 473 memcpy(&rl, &p->p_rlimit[which], sizeof(rl)); 474 mutex_exit(p->p_lock); 475 476 return copyout(&rl, SCARG(uap, rlp), sizeof(rl)); 477 } 478 479 /* 480 * Transform the running time and tick information in proc p into user, 481 * system, and interrupt time usage. 482 * 483 * Should be called with p->p_lock held unless called from exit1(). 484 */ 485 void 486 calcru(struct proc *p, struct timeval *up, struct timeval *sp, 487 struct timeval *ip, struct timeval *rp) 488 { 489 uint64_t u, st, ut, it, tot; 490 struct lwp *l; 491 struct bintime tm; 492 struct timeval tv; 493 494 KASSERT(p->p_stat == SDEAD || mutex_owned(p->p_lock)); 495 496 mutex_spin_enter(&p->p_stmutex); 497 st = p->p_sticks; 498 ut = p->p_uticks; 499 it = p->p_iticks; 500 mutex_spin_exit(&p->p_stmutex); 501 502 tm = p->p_rtime; 503 504 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 505 lwp_lock(l); 506 bintime_add(&tm, &l->l_rtime); 507 if ((l->l_pflag & LP_RUNNING) != 0) { 508 struct bintime diff; 509 /* 510 * Adjust for the current time slice. This is 511 * actually fairly important since the error 512 * here is on the order of a time quantum, 513 * which is much greater than the sampling 514 * error. 515 */ 516 binuptime(&diff); 517 bintime_sub(&diff, &l->l_stime); 518 bintime_add(&tm, &diff); 519 } 520 lwp_unlock(l); 521 } 522 523 tot = st + ut + it; 524 bintime2timeval(&tm, &tv); 525 u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec; 526 527 if (tot == 0) { 528 /* No ticks, so can't use to share time out, split 50-50 */ 529 st = ut = u / 2; 530 } else { 531 st = (u * st) / tot; 532 ut = (u * ut) / tot; 533 } 534 if (sp != NULL) { 535 sp->tv_sec = st / 1000000; 536 sp->tv_usec = st % 1000000; 537 } 538 if (up != NULL) { 539 up->tv_sec = ut / 1000000; 540 up->tv_usec = ut % 1000000; 541 } 542 if (ip != NULL) { 543 if (it != 0) 544 it = (u * it) / tot; 545 ip->tv_sec = it / 1000000; 546 ip->tv_usec = it % 1000000; 547 } 548 if (rp != NULL) { 549 *rp = tv; 550 } 551 } 552 553 int 554 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap, 555 register_t *retval) 556 { 557 /* { 558 syscallarg(int) who; 559 syscallarg(struct rusage *) rusage; 560 } */ 561 int error; 562 struct rusage ru; 563 struct proc *p = l->l_proc; 564 565 error = getrusage1(p, SCARG(uap, who), &ru); 566 if (error != 0) 567 return error; 568 569 return copyout(&ru, SCARG(uap, rusage), sizeof(ru)); 570 } 571 572 int 573 getrusage1(struct proc *p, int who, struct rusage *ru) { 574 575 switch (who) { 576 case RUSAGE_SELF: 577 mutex_enter(p->p_lock); 578 memcpy(ru, &p->p_stats->p_ru, sizeof(*ru)); 579 calcru(p, &ru->ru_utime, &ru->ru_stime, NULL, NULL); 580 rulwps(p, ru); 581 mutex_exit(p->p_lock); 582 break; 583 case RUSAGE_CHILDREN: 584 mutex_enter(p->p_lock); 585 memcpy(ru, &p->p_stats->p_cru, sizeof(*ru)); 586 mutex_exit(p->p_lock); 587 break; 588 default: 589 return EINVAL; 590 } 591 592 return 0; 593 } 594 595 void 596 ruadd(struct rusage *ru, struct rusage *ru2) 597 { 598 long *ip, *ip2; 599 int i; 600 601 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime); 602 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime); 603 if (ru->ru_maxrss < ru2->ru_maxrss) 604 ru->ru_maxrss = ru2->ru_maxrss; 605 ip = &ru->ru_first; ip2 = &ru2->ru_first; 606 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) 607 *ip++ += *ip2++; 608 } 609 610 void 611 rulwps(proc_t *p, struct rusage *ru) 612 { 613 lwp_t *l; 614 615 KASSERT(mutex_owned(p->p_lock)); 616 617 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 618 ruadd(ru, &l->l_ru); 619 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 620 ru->ru_nivcsw += l->l_nivcsw; 621 } 622 } 623 624 /* 625 * lim_copy: make a copy of the plimit structure. 626 * 627 * We use copy-on-write after fork, and copy when a limit is changed. 628 */ 629 struct plimit * 630 lim_copy(struct plimit *lim) 631 { 632 struct plimit *newlim; 633 char *corename; 634 size_t alen, len; 635 636 newlim = pool_cache_get(plimit_cache, PR_WAITOK); 637 mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE); 638 newlim->pl_writeable = false; 639 newlim->pl_refcnt = 1; 640 newlim->pl_sv_limit = NULL; 641 642 mutex_enter(&lim->pl_lock); 643 memcpy(newlim->pl_rlimit, lim->pl_rlimit, 644 sizeof(struct rlimit) * RLIM_NLIMITS); 645 646 /* 647 * Note: the common case is a use of default core name. 648 */ 649 alen = 0; 650 corename = NULL; 651 for (;;) { 652 if (lim->pl_corename == defcorename) { 653 newlim->pl_corename = defcorename; 654 newlim->pl_cnlen = 0; 655 break; 656 } 657 len = lim->pl_cnlen; 658 if (len == alen) { 659 newlim->pl_corename = corename; 660 newlim->pl_cnlen = len; 661 memcpy(corename, lim->pl_corename, len); 662 corename = NULL; 663 break; 664 } 665 mutex_exit(&lim->pl_lock); 666 if (corename) { 667 kmem_free(corename, alen); 668 } 669 alen = len; 670 corename = kmem_alloc(alen, KM_SLEEP); 671 mutex_enter(&lim->pl_lock); 672 } 673 mutex_exit(&lim->pl_lock); 674 675 if (corename) { 676 kmem_free(corename, alen); 677 } 678 return newlim; 679 } 680 681 void 682 lim_addref(struct plimit *lim) 683 { 684 atomic_inc_uint(&lim->pl_refcnt); 685 } 686 687 /* 688 * lim_privatise: give a process its own private plimit structure. 689 */ 690 void 691 lim_privatise(proc_t *p) 692 { 693 struct plimit *lim = p->p_limit, *newlim; 694 695 if (lim->pl_writeable) { 696 return; 697 } 698 699 newlim = lim_copy(lim); 700 701 mutex_enter(p->p_lock); 702 if (p->p_limit->pl_writeable) { 703 /* Other thread won the race. */ 704 mutex_exit(p->p_lock); 705 lim_free(newlim); 706 return; 707 } 708 709 /* 710 * Since p->p_limit can be accessed without locked held, 711 * old limit structure must not be deleted yet. 712 */ 713 newlim->pl_sv_limit = p->p_limit; 714 newlim->pl_writeable = true; 715 p->p_limit = newlim; 716 mutex_exit(p->p_lock); 717 } 718 719 void 720 lim_setcorename(proc_t *p, char *name, size_t len) 721 { 722 struct plimit *lim; 723 char *oname; 724 size_t olen; 725 726 lim_privatise(p); 727 lim = p->p_limit; 728 729 mutex_enter(&lim->pl_lock); 730 oname = lim->pl_corename; 731 olen = lim->pl_cnlen; 732 lim->pl_corename = name; 733 lim->pl_cnlen = len; 734 mutex_exit(&lim->pl_lock); 735 736 if (oname != defcorename) { 737 kmem_free(oname, olen); 738 } 739 } 740 741 void 742 lim_free(struct plimit *lim) 743 { 744 struct plimit *sv_lim; 745 746 do { 747 if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) { 748 return; 749 } 750 if (lim->pl_corename != defcorename) { 751 kmem_free(lim->pl_corename, lim->pl_cnlen); 752 } 753 sv_lim = lim->pl_sv_limit; 754 mutex_destroy(&lim->pl_lock); 755 pool_cache_put(plimit_cache, lim); 756 } while ((lim = sv_lim) != NULL); 757 } 758 759 struct pstats * 760 pstatscopy(struct pstats *ps) 761 { 762 struct pstats *nps; 763 size_t len; 764 765 nps = pool_cache_get(pstats_cache, PR_WAITOK); 766 767 len = (char *)&nps->pstat_endzero - (char *)&nps->pstat_startzero; 768 memset(&nps->pstat_startzero, 0, len); 769 770 len = (char *)&nps->pstat_endcopy - (char *)&nps->pstat_startcopy; 771 memcpy(&nps->pstat_startcopy, &ps->pstat_startcopy, len); 772 773 return nps; 774 } 775 776 void 777 pstatsfree(struct pstats *ps) 778 { 779 780 pool_cache_put(pstats_cache, ps); 781 } 782 783 /* 784 * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that 785 * need to pick a valid process by PID. 786 * 787 * => Hold a reference on the process, on success. 788 */ 789 static int 790 sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2) 791 { 792 proc_t *p; 793 int error; 794 795 if (pid == PROC_CURPROC) { 796 p = l->l_proc; 797 } else { 798 mutex_enter(proc_lock); 799 p = proc_find(pid); 800 if (p == NULL) { 801 mutex_exit(proc_lock); 802 return ESRCH; 803 } 804 } 805 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY; 806 if (pid != PROC_CURPROC) { 807 mutex_exit(proc_lock); 808 } 809 *p2 = p; 810 return error; 811 } 812 813 /* 814 * sysctl_proc_corename: helper routine to get or set the core file name 815 * for a process specified by PID. 816 */ 817 static int 818 sysctl_proc_corename(SYSCTLFN_ARGS) 819 { 820 struct proc *p; 821 struct plimit *lim; 822 char *cnbuf, *cname; 823 struct sysctlnode node; 824 size_t len; 825 int error; 826 827 /* First, validate the request. */ 828 if (namelen != 0 || name[-1] != PROC_PID_CORENAME) 829 return EINVAL; 830 831 /* Find the process. Hold a reference (p_reflock), if found. */ 832 error = sysctl_proc_findproc(l, (pid_t)name[-2], &p); 833 if (error) 834 return error; 835 836 /* XXX-elad */ 837 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p, 838 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 839 if (error) { 840 rw_exit(&p->p_reflock); 841 return error; 842 } 843 844 cnbuf = PNBUF_GET(); 845 846 if (oldp) { 847 /* Get case: copy the core name into the buffer. */ 848 error = kauth_authorize_process(l->l_cred, 849 KAUTH_PROCESS_CORENAME, p, 850 KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL); 851 if (error) { 852 goto done; 853 } 854 lim = p->p_limit; 855 mutex_enter(&lim->pl_lock); 856 strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN); 857 mutex_exit(&lim->pl_lock); 858 } 859 860 node = *rnode; 861 node.sysctl_data = cnbuf; 862 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 863 864 /* Return if error, or if caller is only getting the core name. */ 865 if (error || newp == NULL) { 866 goto done; 867 } 868 869 /* 870 * Set case. Check permission and then validate new core name. 871 * It must be either "core", "/core", or end in ".core". 872 */ 873 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME, 874 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL); 875 if (error) { 876 goto done; 877 } 878 len = strlen(cnbuf); 879 if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) || 880 (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) { 881 error = EINVAL; 882 goto done; 883 } 884 885 /* Allocate, copy and set the new core name for plimit structure. */ 886 cname = kmem_alloc(++len, KM_NOSLEEP); 887 if (cname == NULL) { 888 error = ENOMEM; 889 goto done; 890 } 891 memcpy(cname, cnbuf, len); 892 lim_setcorename(p, cname, len); 893 done: 894 rw_exit(&p->p_reflock); 895 PNBUF_PUT(cnbuf); 896 return error; 897 } 898 899 /* 900 * sysctl_proc_stop: helper routine for checking/setting the stop flags. 901 */ 902 static int 903 sysctl_proc_stop(SYSCTLFN_ARGS) 904 { 905 struct proc *p; 906 int isset, flag, error = 0; 907 struct sysctlnode node; 908 909 if (namelen != 0) 910 return EINVAL; 911 912 /* Find the process. Hold a reference (p_reflock), if found. */ 913 error = sysctl_proc_findproc(l, (pid_t)name[-2], &p); 914 if (error) 915 return error; 916 917 /* XXX-elad */ 918 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p, 919 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 920 if (error) { 921 goto out; 922 } 923 924 /* Determine the flag. */ 925 switch (rnode->sysctl_num) { 926 case PROC_PID_STOPFORK: 927 flag = PS_STOPFORK; 928 break; 929 case PROC_PID_STOPEXEC: 930 flag = PS_STOPEXEC; 931 break; 932 case PROC_PID_STOPEXIT: 933 flag = PS_STOPEXIT; 934 break; 935 default: 936 error = EINVAL; 937 goto out; 938 } 939 isset = (p->p_flag & flag) ? 1 : 0; 940 node = *rnode; 941 node.sysctl_data = &isset; 942 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 943 944 /* Return if error, or if callers is only getting the flag. */ 945 if (error || newp == NULL) { 946 goto out; 947 } 948 949 /* Check if caller can set the flags. */ 950 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG, 951 p, KAUTH_ARG(flag), NULL, NULL); 952 if (error) { 953 goto out; 954 } 955 mutex_enter(p->p_lock); 956 if (isset) { 957 p->p_sflag |= flag; 958 } else { 959 p->p_sflag &= ~flag; 960 } 961 mutex_exit(p->p_lock); 962 out: 963 rw_exit(&p->p_reflock); 964 return error; 965 } 966 967 /* 968 * sysctl_proc_plimit: helper routine to get/set rlimits of a process. 969 */ 970 static int 971 sysctl_proc_plimit(SYSCTLFN_ARGS) 972 { 973 struct proc *p; 974 u_int limitno; 975 int which, error = 0; 976 struct rlimit alim; 977 struct sysctlnode node; 978 979 if (namelen != 0) 980 return EINVAL; 981 982 which = name[-1]; 983 if (which != PROC_PID_LIMIT_TYPE_SOFT && 984 which != PROC_PID_LIMIT_TYPE_HARD) 985 return EINVAL; 986 987 limitno = name[-2] - 1; 988 if (limitno >= RLIM_NLIMITS) 989 return EINVAL; 990 991 if (name[-3] != PROC_PID_LIMIT) 992 return EINVAL; 993 994 /* Find the process. Hold a reference (p_reflock), if found. */ 995 error = sysctl_proc_findproc(l, (pid_t)name[-4], &p); 996 if (error) 997 return error; 998 999 /* XXX-elad */ 1000 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p, 1001 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 1002 if (error) 1003 goto out; 1004 1005 /* Check if caller can retrieve the limits. */ 1006 if (newp == NULL) { 1007 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT, 1008 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim, 1009 KAUTH_ARG(which)); 1010 if (error) 1011 goto out; 1012 } 1013 1014 /* Retrieve the limits. */ 1015 node = *rnode; 1016 memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim)); 1017 if (which == PROC_PID_LIMIT_TYPE_HARD) { 1018 node.sysctl_data = &alim.rlim_max; 1019 } else { 1020 node.sysctl_data = &alim.rlim_cur; 1021 } 1022 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1023 1024 /* Return if error, or if we are only retrieving the limits. */ 1025 if (error || newp == NULL) { 1026 goto out; 1027 } 1028 error = dosetrlimit(l, p, limitno, &alim); 1029 out: 1030 rw_exit(&p->p_reflock); 1031 return error; 1032 } 1033 1034 /* 1035 * Setup sysctl nodes. 1036 */ 1037 static void 1038 sysctl_proc_setup(void) 1039 { 1040 1041 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, 1042 CTLFLAG_PERMANENT, 1043 CTLTYPE_NODE, "proc", NULL, 1044 NULL, 0, NULL, 0, 1045 CTL_PROC, CTL_EOL); 1046 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, 1047 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER, 1048 CTLTYPE_NODE, "curproc", 1049 SYSCTL_DESCR("Per-process settings"), 1050 NULL, 0, NULL, 0, 1051 CTL_PROC, PROC_CURPROC, CTL_EOL); 1052 1053 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, 1054 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 1055 CTLTYPE_STRING, "corename", 1056 SYSCTL_DESCR("Core file name"), 1057 sysctl_proc_corename, 0, NULL, MAXPATHLEN, 1058 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL); 1059 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, 1060 CTLFLAG_PERMANENT, 1061 CTLTYPE_NODE, "rlimit", 1062 SYSCTL_DESCR("Process limits"), 1063 NULL, 0, NULL, 0, 1064 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL); 1065 1066 #define create_proc_plimit(s, n) do { \ 1067 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \ 1068 CTLFLAG_PERMANENT, \ 1069 CTLTYPE_NODE, s, \ 1070 SYSCTL_DESCR("Process " s " limits"), \ 1071 NULL, 0, NULL, 0, \ 1072 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \ 1073 CTL_EOL); \ 1074 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \ 1075 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \ 1076 CTLTYPE_QUAD, "soft", \ 1077 SYSCTL_DESCR("Process soft " s " limit"), \ 1078 sysctl_proc_plimit, 0, NULL, 0, \ 1079 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \ 1080 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \ 1081 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, \ 1082 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \ 1083 CTLTYPE_QUAD, "hard", \ 1084 SYSCTL_DESCR("Process hard " s " limit"), \ 1085 sysctl_proc_plimit, 0, NULL, 0, \ 1086 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \ 1087 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \ 1088 } while (0/*CONSTCOND*/) 1089 1090 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU); 1091 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE); 1092 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA); 1093 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK); 1094 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE); 1095 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS); 1096 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK); 1097 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC); 1098 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE); 1099 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE); 1100 create_proc_plimit("vmemoryuse", PROC_PID_LIMIT_AS); 1101 create_proc_plimit("maxlwp", PROC_PID_LIMIT_NTHR); 1102 1103 #undef create_proc_plimit 1104 1105 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, 1106 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 1107 CTLTYPE_INT, "stopfork", 1108 SYSCTL_DESCR("Stop process at fork(2)"), 1109 sysctl_proc_stop, 0, NULL, 0, 1110 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL); 1111 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, 1112 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 1113 CTLTYPE_INT, "stopexec", 1114 SYSCTL_DESCR("Stop process at execve(2)"), 1115 sysctl_proc_stop, 0, NULL, 0, 1116 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL); 1117 sysctl_createv(&proc_sysctllog, 0, NULL, NULL, 1118 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 1119 CTLTYPE_INT, "stopexit", 1120 SYSCTL_DESCR("Stop process before completing exit"), 1121 sysctl_proc_stop, 0, NULL, 0, 1122 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL); 1123 } 1124