xref: /netbsd-src/sys/kern/kern_resource.c (revision a536ee5124e62c9a0051a252f7833dc8f50f44c9)
1 /*	$NetBSD: kern_resource.c,v 1.171 2012/12/21 19:39:48 njoly Exp $	*/
2 
3 /*-
4  * Copyright (c) 1982, 1986, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_resource.c	8.8 (Berkeley) 2/14/95
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.171 2012/12/21 19:39:48 njoly Exp $");
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/kmem.h>
48 #include <sys/namei.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/sysctl.h>
52 #include <sys/timevar.h>
53 #include <sys/kauth.h>
54 #include <sys/atomic.h>
55 #include <sys/mount.h>
56 #include <sys/syscallargs.h>
57 #include <sys/atomic.h>
58 
59 #include <uvm/uvm_extern.h>
60 
61 /*
62  * Maximum process data and stack limits.
63  * They are variables so they are patchable.
64  */
65 rlim_t			maxdmap = MAXDSIZ;
66 rlim_t			maxsmap = MAXSSIZ;
67 
68 static pool_cache_t	plimit_cache	__read_mostly;
69 static pool_cache_t	pstats_cache	__read_mostly;
70 
71 static kauth_listener_t	resource_listener;
72 static struct sysctllog	*proc_sysctllog;
73 
74 static int	donice(struct lwp *, struct proc *, int);
75 static void	sysctl_proc_setup(void);
76 
77 static int
78 resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
79     void *arg0, void *arg1, void *arg2, void *arg3)
80 {
81 	struct proc *p;
82 	int result;
83 
84 	result = KAUTH_RESULT_DEFER;
85 	p = arg0;
86 
87 	switch (action) {
88 	case KAUTH_PROCESS_NICE:
89 		if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
90 		    kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
91 			break;
92 		}
93 
94 		if ((u_long)arg1 >= p->p_nice)
95 			result = KAUTH_RESULT_ALLOW;
96 
97 		break;
98 
99 	case KAUTH_PROCESS_RLIMIT: {
100 		enum kauth_process_req req;
101 
102 		req = (enum kauth_process_req)(unsigned long)arg1;
103 
104 		switch (req) {
105 		case KAUTH_REQ_PROCESS_RLIMIT_GET:
106 			result = KAUTH_RESULT_ALLOW;
107 			break;
108 
109 		case KAUTH_REQ_PROCESS_RLIMIT_SET: {
110 			struct rlimit *new_rlimit;
111 			u_long which;
112 
113 			if ((p != curlwp->l_proc) &&
114 			    (proc_uidmatch(cred, p->p_cred) != 0))
115 				break;
116 
117 			new_rlimit = arg2;
118 			which = (u_long)arg3;
119 
120 			if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
121 				result = KAUTH_RESULT_ALLOW;
122 
123 			break;
124 			}
125 
126 		default:
127 			break;
128 		}
129 
130 		break;
131 	}
132 
133 	default:
134 		break;
135 	}
136 
137 	return result;
138 }
139 
140 void
141 resource_init(void)
142 {
143 
144 	plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
145 	    "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
146 	pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
147 	    "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
148 
149 	resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
150 	    resource_listener_cb, NULL);
151 
152 	sysctl_proc_setup();
153 }
154 
155 /*
156  * Resource controls and accounting.
157  */
158 
159 int
160 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
161     register_t *retval)
162 {
163 	/* {
164 		syscallarg(int) which;
165 		syscallarg(id_t) who;
166 	} */
167 	struct proc *curp = l->l_proc, *p;
168 	id_t who = SCARG(uap, who);
169 	int low = NZERO + PRIO_MAX + 1;
170 
171 	mutex_enter(proc_lock);
172 	switch (SCARG(uap, which)) {
173 	case PRIO_PROCESS:
174 		p = who ? proc_find(who) : curp;
175 		if (p != NULL)
176 			low = p->p_nice;
177 		break;
178 
179 	case PRIO_PGRP: {
180 		struct pgrp *pg;
181 
182 		if (who == 0)
183 			pg = curp->p_pgrp;
184 		else if ((pg = pgrp_find(who)) == NULL)
185 			break;
186 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
187 			if (p->p_nice < low)
188 				low = p->p_nice;
189 		}
190 		break;
191 	}
192 
193 	case PRIO_USER:
194 		if (who == 0)
195 			who = (int)kauth_cred_geteuid(l->l_cred);
196 		PROCLIST_FOREACH(p, &allproc) {
197 			mutex_enter(p->p_lock);
198 			if (kauth_cred_geteuid(p->p_cred) ==
199 			    (uid_t)who && p->p_nice < low)
200 				low = p->p_nice;
201 			mutex_exit(p->p_lock);
202 		}
203 		break;
204 
205 	default:
206 		mutex_exit(proc_lock);
207 		return EINVAL;
208 	}
209 	mutex_exit(proc_lock);
210 
211 	if (low == NZERO + PRIO_MAX + 1) {
212 		return ESRCH;
213 	}
214 	*retval = low - NZERO;
215 	return 0;
216 }
217 
218 int
219 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
220     register_t *retval)
221 {
222 	/* {
223 		syscallarg(int) which;
224 		syscallarg(id_t) who;
225 		syscallarg(int) prio;
226 	} */
227 	struct proc *curp = l->l_proc, *p;
228 	id_t who = SCARG(uap, who);
229 	int found = 0, error = 0;
230 
231 	mutex_enter(proc_lock);
232 	switch (SCARG(uap, which)) {
233 	case PRIO_PROCESS:
234 		p = who ? proc_find(who) : curp;
235 		if (p != NULL) {
236 			mutex_enter(p->p_lock);
237 			found++;
238 			error = donice(l, p, SCARG(uap, prio));
239 			mutex_exit(p->p_lock);
240 		}
241 		break;
242 
243 	case PRIO_PGRP: {
244 		struct pgrp *pg;
245 
246 		if (who == 0)
247 			pg = curp->p_pgrp;
248 		else if ((pg = pgrp_find(who)) == NULL)
249 			break;
250 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
251 			mutex_enter(p->p_lock);
252 			found++;
253 			error = donice(l, p, SCARG(uap, prio));
254 			mutex_exit(p->p_lock);
255 			if (error)
256 				break;
257 		}
258 		break;
259 	}
260 
261 	case PRIO_USER:
262 		if (who == 0)
263 			who = (int)kauth_cred_geteuid(l->l_cred);
264 		PROCLIST_FOREACH(p, &allproc) {
265 			mutex_enter(p->p_lock);
266 			if (kauth_cred_geteuid(p->p_cred) ==
267 			    (uid_t)SCARG(uap, who)) {
268 				found++;
269 				error = donice(l, p, SCARG(uap, prio));
270 			}
271 			mutex_exit(p->p_lock);
272 			if (error)
273 				break;
274 		}
275 		break;
276 
277 	default:
278 		mutex_exit(proc_lock);
279 		return EINVAL;
280 	}
281 	mutex_exit(proc_lock);
282 
283 	return (found == 0) ? ESRCH : error;
284 }
285 
286 /*
287  * Renice a process.
288  *
289  * Call with the target process' credentials locked.
290  */
291 static int
292 donice(struct lwp *l, struct proc *chgp, int n)
293 {
294 	kauth_cred_t cred = l->l_cred;
295 
296 	KASSERT(mutex_owned(chgp->p_lock));
297 
298 	if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
299 	    kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
300 	    kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
301 		return EPERM;
302 
303 	if (n > PRIO_MAX) {
304 		n = PRIO_MAX;
305 	}
306 	if (n < PRIO_MIN) {
307 		n = PRIO_MIN;
308 	}
309 	n += NZERO;
310 
311 	if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
312 	    KAUTH_ARG(n), NULL, NULL)) {
313 		return EACCES;
314 	}
315 
316 	sched_nice(chgp, n);
317 	return 0;
318 }
319 
320 int
321 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
322     register_t *retval)
323 {
324 	/* {
325 		syscallarg(int) which;
326 		syscallarg(const struct rlimit *) rlp;
327 	} */
328 	int error, which = SCARG(uap, which);
329 	struct rlimit alim;
330 
331 	error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
332 	if (error) {
333 		return error;
334 	}
335 	return dosetrlimit(l, l->l_proc, which, &alim);
336 }
337 
338 int
339 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
340 {
341 	struct rlimit *alimp;
342 	int error;
343 
344 	if ((u_int)which >= RLIM_NLIMITS)
345 		return EINVAL;
346 
347 	if (limp->rlim_cur > limp->rlim_max) {
348 		/*
349 		 * This is programming error. According to SUSv2, we should
350 		 * return error in this case.
351 		 */
352 		return EINVAL;
353 	}
354 
355 	alimp = &p->p_rlimit[which];
356 	/* if we don't change the value, no need to limcopy() */
357 	if (limp->rlim_cur == alimp->rlim_cur &&
358 	    limp->rlim_max == alimp->rlim_max)
359 		return 0;
360 
361 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
362 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
363 	if (error)
364 		return error;
365 
366 	lim_privatise(p);
367 	/* p->p_limit is now unchangeable */
368 	alimp = &p->p_rlimit[which];
369 
370 	switch (which) {
371 
372 	case RLIMIT_DATA:
373 		if (limp->rlim_cur > maxdmap)
374 			limp->rlim_cur = maxdmap;
375 		if (limp->rlim_max > maxdmap)
376 			limp->rlim_max = maxdmap;
377 		break;
378 
379 	case RLIMIT_STACK:
380 		if (limp->rlim_cur > maxsmap)
381 			limp->rlim_cur = maxsmap;
382 		if (limp->rlim_max > maxsmap)
383 			limp->rlim_max = maxsmap;
384 
385 		/*
386 		 * Return EINVAL if the new stack size limit is lower than
387 		 * current usage. Otherwise, the process would get SIGSEGV the
388 		 * moment it would try to access anything on it's current stack.
389 		 * This conforms to SUSv2.
390 		 */
391 		if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE ||
392 		    limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
393 			return EINVAL;
394 		}
395 
396 		/*
397 		 * Stack is allocated to the max at exec time with
398 		 * only "rlim_cur" bytes accessible (In other words,
399 		 * allocates stack dividing two contiguous regions at
400 		 * "rlim_cur" bytes boundary).
401 		 *
402 		 * Since allocation is done in terms of page, roundup
403 		 * "rlim_cur" (otherwise, contiguous regions
404 		 * overlap).  If stack limit is going up make more
405 		 * accessible, if going down make inaccessible.
406 		 */
407 		limp->rlim_cur = round_page(limp->rlim_cur);
408 		if (limp->rlim_cur != alimp->rlim_cur) {
409 			vaddr_t addr;
410 			vsize_t size;
411 			vm_prot_t prot;
412 
413 			if (limp->rlim_cur > alimp->rlim_cur) {
414 				prot = VM_PROT_READ | VM_PROT_WRITE;
415 				size = limp->rlim_cur - alimp->rlim_cur;
416 				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
417 				    limp->rlim_cur;
418 			} else {
419 				prot = VM_PROT_NONE;
420 				size = alimp->rlim_cur - limp->rlim_cur;
421 				addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
422 				     alimp->rlim_cur;
423 			}
424 			(void) uvm_map_protect(&p->p_vmspace->vm_map,
425 			    addr, addr+size, prot, false);
426 		}
427 		break;
428 
429 	case RLIMIT_NOFILE:
430 		if (limp->rlim_cur > maxfiles)
431 			limp->rlim_cur = maxfiles;
432 		if (limp->rlim_max > maxfiles)
433 			limp->rlim_max = maxfiles;
434 		break;
435 
436 	case RLIMIT_NPROC:
437 		if (limp->rlim_cur > maxproc)
438 			limp->rlim_cur = maxproc;
439 		if (limp->rlim_max > maxproc)
440 			limp->rlim_max = maxproc;
441 		break;
442 
443 	case RLIMIT_NTHR:
444 		if (limp->rlim_cur > maxlwp)
445 			limp->rlim_cur = maxlwp;
446 		if (limp->rlim_max > maxlwp)
447 			limp->rlim_max = maxlwp;
448 		break;
449 	}
450 
451 	mutex_enter(&p->p_limit->pl_lock);
452 	*alimp = *limp;
453 	mutex_exit(&p->p_limit->pl_lock);
454 	return 0;
455 }
456 
457 int
458 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
459     register_t *retval)
460 {
461 	/* {
462 		syscallarg(int) which;
463 		syscallarg(struct rlimit *) rlp;
464 	} */
465 	struct proc *p = l->l_proc;
466 	int which = SCARG(uap, which);
467 	struct rlimit rl;
468 
469 	if ((u_int)which >= RLIM_NLIMITS)
470 		return EINVAL;
471 
472 	mutex_enter(p->p_lock);
473 	memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
474 	mutex_exit(p->p_lock);
475 
476 	return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
477 }
478 
479 /*
480  * Transform the running time and tick information in proc p into user,
481  * system, and interrupt time usage.
482  *
483  * Should be called with p->p_lock held unless called from exit1().
484  */
485 void
486 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
487     struct timeval *ip, struct timeval *rp)
488 {
489 	uint64_t u, st, ut, it, tot;
490 	struct lwp *l;
491 	struct bintime tm;
492 	struct timeval tv;
493 
494 	KASSERT(p->p_stat == SDEAD || mutex_owned(p->p_lock));
495 
496 	mutex_spin_enter(&p->p_stmutex);
497 	st = p->p_sticks;
498 	ut = p->p_uticks;
499 	it = p->p_iticks;
500 	mutex_spin_exit(&p->p_stmutex);
501 
502 	tm = p->p_rtime;
503 
504 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
505 		lwp_lock(l);
506 		bintime_add(&tm, &l->l_rtime);
507 		if ((l->l_pflag & LP_RUNNING) != 0) {
508 			struct bintime diff;
509 			/*
510 			 * Adjust for the current time slice.  This is
511 			 * actually fairly important since the error
512 			 * here is on the order of a time quantum,
513 			 * which is much greater than the sampling
514 			 * error.
515 			 */
516 			binuptime(&diff);
517 			bintime_sub(&diff, &l->l_stime);
518 			bintime_add(&tm, &diff);
519 		}
520 		lwp_unlock(l);
521 	}
522 
523 	tot = st + ut + it;
524 	bintime2timeval(&tm, &tv);
525 	u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
526 
527 	if (tot == 0) {
528 		/* No ticks, so can't use to share time out, split 50-50 */
529 		st = ut = u / 2;
530 	} else {
531 		st = (u * st) / tot;
532 		ut = (u * ut) / tot;
533 	}
534 	if (sp != NULL) {
535 		sp->tv_sec = st / 1000000;
536 		sp->tv_usec = st % 1000000;
537 	}
538 	if (up != NULL) {
539 		up->tv_sec = ut / 1000000;
540 		up->tv_usec = ut % 1000000;
541 	}
542 	if (ip != NULL) {
543 		if (it != 0)
544 			it = (u * it) / tot;
545 		ip->tv_sec = it / 1000000;
546 		ip->tv_usec = it % 1000000;
547 	}
548 	if (rp != NULL) {
549 		*rp = tv;
550 	}
551 }
552 
553 int
554 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
555     register_t *retval)
556 {
557 	/* {
558 		syscallarg(int) who;
559 		syscallarg(struct rusage *) rusage;
560 	} */
561 	int error;
562 	struct rusage ru;
563 	struct proc *p = l->l_proc;
564 
565 	error = getrusage1(p, SCARG(uap, who), &ru);
566 	if (error != 0)
567 		return error;
568 
569 	return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
570 }
571 
572 int
573 getrusage1(struct proc *p, int who, struct rusage *ru) {
574 
575 	switch (who) {
576 	case RUSAGE_SELF:
577 		mutex_enter(p->p_lock);
578 		memcpy(ru, &p->p_stats->p_ru, sizeof(*ru));
579 		calcru(p, &ru->ru_utime, &ru->ru_stime, NULL, NULL);
580 		rulwps(p, ru);
581 		mutex_exit(p->p_lock);
582 		break;
583 	case RUSAGE_CHILDREN:
584 		mutex_enter(p->p_lock);
585 		memcpy(ru, &p->p_stats->p_cru, sizeof(*ru));
586 		mutex_exit(p->p_lock);
587 		break;
588 	default:
589 		return EINVAL;
590 	}
591 
592 	return 0;
593 }
594 
595 void
596 ruadd(struct rusage *ru, struct rusage *ru2)
597 {
598 	long *ip, *ip2;
599 	int i;
600 
601 	timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
602 	timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
603 	if (ru->ru_maxrss < ru2->ru_maxrss)
604 		ru->ru_maxrss = ru2->ru_maxrss;
605 	ip = &ru->ru_first; ip2 = &ru2->ru_first;
606 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
607 		*ip++ += *ip2++;
608 }
609 
610 void
611 rulwps(proc_t *p, struct rusage *ru)
612 {
613 	lwp_t *l;
614 
615 	KASSERT(mutex_owned(p->p_lock));
616 
617 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
618 		ruadd(ru, &l->l_ru);
619 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
620 		ru->ru_nivcsw += l->l_nivcsw;
621 	}
622 }
623 
624 /*
625  * lim_copy: make a copy of the plimit structure.
626  *
627  * We use copy-on-write after fork, and copy when a limit is changed.
628  */
629 struct plimit *
630 lim_copy(struct plimit *lim)
631 {
632 	struct plimit *newlim;
633 	char *corename;
634 	size_t alen, len;
635 
636 	newlim = pool_cache_get(plimit_cache, PR_WAITOK);
637 	mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
638 	newlim->pl_writeable = false;
639 	newlim->pl_refcnt = 1;
640 	newlim->pl_sv_limit = NULL;
641 
642 	mutex_enter(&lim->pl_lock);
643 	memcpy(newlim->pl_rlimit, lim->pl_rlimit,
644 	    sizeof(struct rlimit) * RLIM_NLIMITS);
645 
646 	/*
647 	 * Note: the common case is a use of default core name.
648 	 */
649 	alen = 0;
650 	corename = NULL;
651 	for (;;) {
652 		if (lim->pl_corename == defcorename) {
653 			newlim->pl_corename = defcorename;
654 			newlim->pl_cnlen = 0;
655 			break;
656 		}
657 		len = lim->pl_cnlen;
658 		if (len == alen) {
659 			newlim->pl_corename = corename;
660 			newlim->pl_cnlen = len;
661 			memcpy(corename, lim->pl_corename, len);
662 			corename = NULL;
663 			break;
664 		}
665 		mutex_exit(&lim->pl_lock);
666 		if (corename) {
667 			kmem_free(corename, alen);
668 		}
669 		alen = len;
670 		corename = kmem_alloc(alen, KM_SLEEP);
671 		mutex_enter(&lim->pl_lock);
672 	}
673 	mutex_exit(&lim->pl_lock);
674 
675 	if (corename) {
676 		kmem_free(corename, alen);
677 	}
678 	return newlim;
679 }
680 
681 void
682 lim_addref(struct plimit *lim)
683 {
684 	atomic_inc_uint(&lim->pl_refcnt);
685 }
686 
687 /*
688  * lim_privatise: give a process its own private plimit structure.
689  */
690 void
691 lim_privatise(proc_t *p)
692 {
693 	struct plimit *lim = p->p_limit, *newlim;
694 
695 	if (lim->pl_writeable) {
696 		return;
697 	}
698 
699 	newlim = lim_copy(lim);
700 
701 	mutex_enter(p->p_lock);
702 	if (p->p_limit->pl_writeable) {
703 		/* Other thread won the race. */
704 		mutex_exit(p->p_lock);
705 		lim_free(newlim);
706 		return;
707 	}
708 
709 	/*
710 	 * Since p->p_limit can be accessed without locked held,
711 	 * old limit structure must not be deleted yet.
712 	 */
713 	newlim->pl_sv_limit = p->p_limit;
714 	newlim->pl_writeable = true;
715 	p->p_limit = newlim;
716 	mutex_exit(p->p_lock);
717 }
718 
719 void
720 lim_setcorename(proc_t *p, char *name, size_t len)
721 {
722 	struct plimit *lim;
723 	char *oname;
724 	size_t olen;
725 
726 	lim_privatise(p);
727 	lim = p->p_limit;
728 
729 	mutex_enter(&lim->pl_lock);
730 	oname = lim->pl_corename;
731 	olen = lim->pl_cnlen;
732 	lim->pl_corename = name;
733 	lim->pl_cnlen = len;
734 	mutex_exit(&lim->pl_lock);
735 
736 	if (oname != defcorename) {
737 		kmem_free(oname, olen);
738 	}
739 }
740 
741 void
742 lim_free(struct plimit *lim)
743 {
744 	struct plimit *sv_lim;
745 
746 	do {
747 		if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) {
748 			return;
749 		}
750 		if (lim->pl_corename != defcorename) {
751 			kmem_free(lim->pl_corename, lim->pl_cnlen);
752 		}
753 		sv_lim = lim->pl_sv_limit;
754 		mutex_destroy(&lim->pl_lock);
755 		pool_cache_put(plimit_cache, lim);
756 	} while ((lim = sv_lim) != NULL);
757 }
758 
759 struct pstats *
760 pstatscopy(struct pstats *ps)
761 {
762 	struct pstats *nps;
763 	size_t len;
764 
765 	nps = pool_cache_get(pstats_cache, PR_WAITOK);
766 
767 	len = (char *)&nps->pstat_endzero - (char *)&nps->pstat_startzero;
768 	memset(&nps->pstat_startzero, 0, len);
769 
770 	len = (char *)&nps->pstat_endcopy - (char *)&nps->pstat_startcopy;
771 	memcpy(&nps->pstat_startcopy, &ps->pstat_startcopy, len);
772 
773 	return nps;
774 }
775 
776 void
777 pstatsfree(struct pstats *ps)
778 {
779 
780 	pool_cache_put(pstats_cache, ps);
781 }
782 
783 /*
784  * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
785  * need to pick a valid process by PID.
786  *
787  * => Hold a reference on the process, on success.
788  */
789 static int
790 sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
791 {
792 	proc_t *p;
793 	int error;
794 
795 	if (pid == PROC_CURPROC) {
796 		p = l->l_proc;
797 	} else {
798 		mutex_enter(proc_lock);
799 		p = proc_find(pid);
800 		if (p == NULL) {
801 			mutex_exit(proc_lock);
802 			return ESRCH;
803 		}
804 	}
805 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
806 	if (pid != PROC_CURPROC) {
807 		mutex_exit(proc_lock);
808 	}
809 	*p2 = p;
810 	return error;
811 }
812 
813 /*
814  * sysctl_proc_corename: helper routine to get or set the core file name
815  * for a process specified by PID.
816  */
817 static int
818 sysctl_proc_corename(SYSCTLFN_ARGS)
819 {
820 	struct proc *p;
821 	struct plimit *lim;
822 	char *cnbuf, *cname;
823 	struct sysctlnode node;
824 	size_t len;
825 	int error;
826 
827 	/* First, validate the request. */
828 	if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
829 		return EINVAL;
830 
831 	/* Find the process.  Hold a reference (p_reflock), if found. */
832 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
833 	if (error)
834 		return error;
835 
836 	/* XXX-elad */
837 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
838 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
839 	if (error) {
840 		rw_exit(&p->p_reflock);
841 		return error;
842 	}
843 
844 	cnbuf = PNBUF_GET();
845 
846 	if (oldp) {
847 		/* Get case: copy the core name into the buffer. */
848 		error = kauth_authorize_process(l->l_cred,
849 		    KAUTH_PROCESS_CORENAME, p,
850 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
851 		if (error) {
852 			goto done;
853 		}
854 		lim = p->p_limit;
855 		mutex_enter(&lim->pl_lock);
856 		strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
857 		mutex_exit(&lim->pl_lock);
858 	}
859 
860 	node = *rnode;
861 	node.sysctl_data = cnbuf;
862 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
863 
864 	/* Return if error, or if caller is only getting the core name. */
865 	if (error || newp == NULL) {
866 		goto done;
867 	}
868 
869 	/*
870 	 * Set case.  Check permission and then validate new core name.
871 	 * It must be either "core", "/core", or end in ".core".
872 	 */
873 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
874 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
875 	if (error) {
876 		goto done;
877 	}
878 	len = strlen(cnbuf);
879 	if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
880 	    (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
881 		error = EINVAL;
882 		goto done;
883 	}
884 
885 	/* Allocate, copy and set the new core name for plimit structure. */
886 	cname = kmem_alloc(++len, KM_NOSLEEP);
887 	if (cname == NULL) {
888 		error = ENOMEM;
889 		goto done;
890 	}
891 	memcpy(cname, cnbuf, len);
892 	lim_setcorename(p, cname, len);
893 done:
894 	rw_exit(&p->p_reflock);
895 	PNBUF_PUT(cnbuf);
896 	return error;
897 }
898 
899 /*
900  * sysctl_proc_stop: helper routine for checking/setting the stop flags.
901  */
902 static int
903 sysctl_proc_stop(SYSCTLFN_ARGS)
904 {
905 	struct proc *p;
906 	int isset, flag, error = 0;
907 	struct sysctlnode node;
908 
909 	if (namelen != 0)
910 		return EINVAL;
911 
912 	/* Find the process.  Hold a reference (p_reflock), if found. */
913 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
914 	if (error)
915 		return error;
916 
917 	/* XXX-elad */
918 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
919 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
920 	if (error) {
921 		goto out;
922 	}
923 
924 	/* Determine the flag. */
925 	switch (rnode->sysctl_num) {
926 	case PROC_PID_STOPFORK:
927 		flag = PS_STOPFORK;
928 		break;
929 	case PROC_PID_STOPEXEC:
930 		flag = PS_STOPEXEC;
931 		break;
932 	case PROC_PID_STOPEXIT:
933 		flag = PS_STOPEXIT;
934 		break;
935 	default:
936 		error = EINVAL;
937 		goto out;
938 	}
939 	isset = (p->p_flag & flag) ? 1 : 0;
940 	node = *rnode;
941 	node.sysctl_data = &isset;
942 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
943 
944 	/* Return if error, or if callers is only getting the flag. */
945 	if (error || newp == NULL) {
946 		goto out;
947 	}
948 
949 	/* Check if caller can set the flags. */
950 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
951 	    p, KAUTH_ARG(flag), NULL, NULL);
952 	if (error) {
953 		goto out;
954 	}
955 	mutex_enter(p->p_lock);
956 	if (isset) {
957 		p->p_sflag |= flag;
958 	} else {
959 		p->p_sflag &= ~flag;
960 	}
961 	mutex_exit(p->p_lock);
962 out:
963 	rw_exit(&p->p_reflock);
964 	return error;
965 }
966 
967 /*
968  * sysctl_proc_plimit: helper routine to get/set rlimits of a process.
969  */
970 static int
971 sysctl_proc_plimit(SYSCTLFN_ARGS)
972 {
973 	struct proc *p;
974 	u_int limitno;
975 	int which, error = 0;
976         struct rlimit alim;
977 	struct sysctlnode node;
978 
979 	if (namelen != 0)
980 		return EINVAL;
981 
982 	which = name[-1];
983 	if (which != PROC_PID_LIMIT_TYPE_SOFT &&
984 	    which != PROC_PID_LIMIT_TYPE_HARD)
985 		return EINVAL;
986 
987 	limitno = name[-2] - 1;
988 	if (limitno >= RLIM_NLIMITS)
989 		return EINVAL;
990 
991 	if (name[-3] != PROC_PID_LIMIT)
992 		return EINVAL;
993 
994 	/* Find the process.  Hold a reference (p_reflock), if found. */
995 	error = sysctl_proc_findproc(l, (pid_t)name[-4], &p);
996 	if (error)
997 		return error;
998 
999 	/* XXX-elad */
1000 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
1001 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
1002 	if (error)
1003 		goto out;
1004 
1005 	/* Check if caller can retrieve the limits. */
1006 	if (newp == NULL) {
1007 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
1008 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
1009 		    KAUTH_ARG(which));
1010 		if (error)
1011 			goto out;
1012 	}
1013 
1014 	/* Retrieve the limits. */
1015 	node = *rnode;
1016 	memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim));
1017 	if (which == PROC_PID_LIMIT_TYPE_HARD) {
1018 		node.sysctl_data = &alim.rlim_max;
1019 	} else {
1020 		node.sysctl_data = &alim.rlim_cur;
1021 	}
1022 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1023 
1024 	/* Return if error, or if we are only retrieving the limits. */
1025 	if (error || newp == NULL) {
1026 		goto out;
1027 	}
1028 	error = dosetrlimit(l, p, limitno, &alim);
1029 out:
1030 	rw_exit(&p->p_reflock);
1031 	return error;
1032 }
1033 
1034 /*
1035  * Setup sysctl nodes.
1036  */
1037 static void
1038 sysctl_proc_setup(void)
1039 {
1040 
1041 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1042 		       CTLFLAG_PERMANENT,
1043 		       CTLTYPE_NODE, "proc", NULL,
1044 		       NULL, 0, NULL, 0,
1045 		       CTL_PROC, CTL_EOL);
1046 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1047 		       CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
1048 		       CTLTYPE_NODE, "curproc",
1049 		       SYSCTL_DESCR("Per-process settings"),
1050 		       NULL, 0, NULL, 0,
1051 		       CTL_PROC, PROC_CURPROC, CTL_EOL);
1052 
1053 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1054 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1055 		       CTLTYPE_STRING, "corename",
1056 		       SYSCTL_DESCR("Core file name"),
1057 		       sysctl_proc_corename, 0, NULL, MAXPATHLEN,
1058 		       CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
1059 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1060 		       CTLFLAG_PERMANENT,
1061 		       CTLTYPE_NODE, "rlimit",
1062 		       SYSCTL_DESCR("Process limits"),
1063 		       NULL, 0, NULL, 0,
1064 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
1065 
1066 #define create_proc_plimit(s, n) do {					\
1067 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
1068 		       CTLFLAG_PERMANENT,				\
1069 		       CTLTYPE_NODE, s,					\
1070 		       SYSCTL_DESCR("Process " s " limits"),		\
1071 		       NULL, 0, NULL, 0,				\
1072 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
1073 		       CTL_EOL);					\
1074 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
1075 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1076 		       CTLTYPE_QUAD, "soft",				\
1077 		       SYSCTL_DESCR("Process soft " s " limit"),	\
1078 		       sysctl_proc_plimit, 0, NULL, 0,			\
1079 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
1080 		       PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL);		\
1081 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
1082 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1083 		       CTLTYPE_QUAD, "hard",				\
1084 		       SYSCTL_DESCR("Process hard " s " limit"),	\
1085 		       sysctl_proc_plimit, 0, NULL, 0,			\
1086 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
1087 		       PROC_PID_LIMIT_TYPE_HARD, CTL_EOL);		\
1088 	} while (0/*CONSTCOND*/)
1089 
1090 	create_proc_plimit("cputime",		PROC_PID_LIMIT_CPU);
1091 	create_proc_plimit("filesize",		PROC_PID_LIMIT_FSIZE);
1092 	create_proc_plimit("datasize",		PROC_PID_LIMIT_DATA);
1093 	create_proc_plimit("stacksize",		PROC_PID_LIMIT_STACK);
1094 	create_proc_plimit("coredumpsize",	PROC_PID_LIMIT_CORE);
1095 	create_proc_plimit("memoryuse",		PROC_PID_LIMIT_RSS);
1096 	create_proc_plimit("memorylocked",	PROC_PID_LIMIT_MEMLOCK);
1097 	create_proc_plimit("maxproc",		PROC_PID_LIMIT_NPROC);
1098 	create_proc_plimit("descriptors",	PROC_PID_LIMIT_NOFILE);
1099 	create_proc_plimit("sbsize",		PROC_PID_LIMIT_SBSIZE);
1100 	create_proc_plimit("vmemoryuse",	PROC_PID_LIMIT_AS);
1101 	create_proc_plimit("maxlwp",		PROC_PID_LIMIT_NTHR);
1102 
1103 #undef create_proc_plimit
1104 
1105 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1106 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1107 		       CTLTYPE_INT, "stopfork",
1108 		       SYSCTL_DESCR("Stop process at fork(2)"),
1109 		       sysctl_proc_stop, 0, NULL, 0,
1110 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
1111 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1112 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1113 		       CTLTYPE_INT, "stopexec",
1114 		       SYSCTL_DESCR("Stop process at execve(2)"),
1115 		       sysctl_proc_stop, 0, NULL, 0,
1116 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
1117 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1118 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1119 		       CTLTYPE_INT, "stopexit",
1120 		       SYSCTL_DESCR("Stop process before completing exit"),
1121 		       sysctl_proc_stop, 0, NULL, 0,
1122 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
1123 }
1124