1 /* $NetBSD: kern_resource.c,v 1.152 2009/05/26 06:57:38 elad Exp $ */ 2 3 /*- 4 * Copyright (c) 1982, 1986, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95 37 */ 38 39 #include <sys/cdefs.h> 40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.152 2009/05/26 06:57:38 elad Exp $"); 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/file.h> 46 #include <sys/resourcevar.h> 47 #include <sys/malloc.h> 48 #include <sys/kmem.h> 49 #include <sys/namei.h> 50 #include <sys/pool.h> 51 #include <sys/proc.h> 52 #include <sys/sysctl.h> 53 #include <sys/timevar.h> 54 #include <sys/kauth.h> 55 #include <sys/atomic.h> 56 #include <sys/mount.h> 57 #include <sys/syscallargs.h> 58 #include <sys/atomic.h> 59 60 #include <uvm/uvm_extern.h> 61 62 /* 63 * Maximum process data and stack limits. 64 * They are variables so they are patchable. 65 */ 66 rlim_t maxdmap = MAXDSIZ; 67 rlim_t maxsmap = MAXSSIZ; 68 69 static pool_cache_t plimit_cache; 70 static pool_cache_t pstats_cache; 71 72 void 73 resource_init(void) 74 { 75 76 plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0, 77 "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL); 78 pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0, 79 "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL); 80 } 81 82 /* 83 * Resource controls and accounting. 84 */ 85 86 int 87 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap, 88 register_t *retval) 89 { 90 /* { 91 syscallarg(int) which; 92 syscallarg(id_t) who; 93 } */ 94 struct proc *curp = l->l_proc, *p; 95 int low = NZERO + PRIO_MAX + 1; 96 int who = SCARG(uap, who); 97 98 mutex_enter(proc_lock); 99 switch (SCARG(uap, which)) { 100 case PRIO_PROCESS: 101 if (who == 0) 102 p = curp; 103 else 104 p = p_find(who, PFIND_LOCKED); 105 if (p != NULL) 106 low = p->p_nice; 107 break; 108 109 case PRIO_PGRP: { 110 struct pgrp *pg; 111 112 if (who == 0) 113 pg = curp->p_pgrp; 114 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL) 115 break; 116 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 117 if (p->p_nice < low) 118 low = p->p_nice; 119 } 120 break; 121 } 122 123 case PRIO_USER: 124 if (who == 0) 125 who = (int)kauth_cred_geteuid(l->l_cred); 126 PROCLIST_FOREACH(p, &allproc) { 127 if ((p->p_flag & PK_MARKER) != 0) 128 continue; 129 mutex_enter(p->p_lock); 130 if (kauth_cred_geteuid(p->p_cred) == 131 (uid_t)who && p->p_nice < low) 132 low = p->p_nice; 133 mutex_exit(p->p_lock); 134 } 135 break; 136 137 default: 138 mutex_exit(proc_lock); 139 return (EINVAL); 140 } 141 mutex_exit(proc_lock); 142 143 if (low == NZERO + PRIO_MAX + 1) 144 return (ESRCH); 145 *retval = low - NZERO; 146 return (0); 147 } 148 149 /* ARGSUSED */ 150 int 151 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap, 152 register_t *retval) 153 { 154 /* { 155 syscallarg(int) which; 156 syscallarg(id_t) who; 157 syscallarg(int) prio; 158 } */ 159 struct proc *curp = l->l_proc, *p; 160 int found = 0, error = 0; 161 int who = SCARG(uap, who); 162 163 mutex_enter(proc_lock); 164 switch (SCARG(uap, which)) { 165 case PRIO_PROCESS: 166 if (who == 0) 167 p = curp; 168 else 169 p = p_find(who, PFIND_LOCKED); 170 if (p != 0) { 171 mutex_enter(p->p_lock); 172 error = donice(l, p, SCARG(uap, prio)); 173 mutex_exit(p->p_lock); 174 found++; 175 } 176 break; 177 178 case PRIO_PGRP: { 179 struct pgrp *pg; 180 181 if (who == 0) 182 pg = curp->p_pgrp; 183 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL) 184 break; 185 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 186 mutex_enter(p->p_lock); 187 error = donice(l, p, SCARG(uap, prio)); 188 mutex_exit(p->p_lock); 189 found++; 190 } 191 break; 192 } 193 194 case PRIO_USER: 195 if (who == 0) 196 who = (int)kauth_cred_geteuid(l->l_cred); 197 PROCLIST_FOREACH(p, &allproc) { 198 if ((p->p_flag & PK_MARKER) != 0) 199 continue; 200 mutex_enter(p->p_lock); 201 if (kauth_cred_geteuid(p->p_cred) == 202 (uid_t)SCARG(uap, who)) { 203 error = donice(l, p, SCARG(uap, prio)); 204 found++; 205 } 206 mutex_exit(p->p_lock); 207 } 208 break; 209 210 default: 211 mutex_exit(proc_lock); 212 return EINVAL; 213 } 214 mutex_exit(proc_lock); 215 if (found == 0) 216 return (ESRCH); 217 return (error); 218 } 219 220 /* 221 * Renice a process. 222 * 223 * Call with the target process' credentials locked. 224 */ 225 int 226 donice(struct lwp *l, struct proc *chgp, int n) 227 { 228 kauth_cred_t cred = l->l_cred; 229 230 KASSERT(mutex_owned(chgp->p_lock)); 231 232 if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) && 233 kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) && 234 kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred)) 235 return (EPERM); 236 237 if (n > PRIO_MAX) 238 n = PRIO_MAX; 239 if (n < PRIO_MIN) 240 n = PRIO_MIN; 241 n += NZERO; 242 if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp, 243 KAUTH_ARG(n), NULL, NULL)) 244 return (EACCES); 245 sched_nice(chgp, n); 246 return (0); 247 } 248 249 /* ARGSUSED */ 250 int 251 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap, 252 register_t *retval) 253 { 254 /* { 255 syscallarg(int) which; 256 syscallarg(const struct rlimit *) rlp; 257 } */ 258 int which = SCARG(uap, which); 259 struct rlimit alim; 260 int error; 261 262 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit)); 263 if (error) 264 return (error); 265 return (dosetrlimit(l, l->l_proc, which, &alim)); 266 } 267 268 int 269 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp) 270 { 271 struct rlimit *alimp; 272 int error; 273 274 if ((u_int)which >= RLIM_NLIMITS) 275 return (EINVAL); 276 277 if (limp->rlim_cur > limp->rlim_max) { 278 /* 279 * This is programming error. According to SUSv2, we should 280 * return error in this case. 281 */ 282 return (EINVAL); 283 } 284 285 alimp = &p->p_rlimit[which]; 286 /* if we don't change the value, no need to limcopy() */ 287 if (limp->rlim_cur == alimp->rlim_cur && 288 limp->rlim_max == alimp->rlim_max) 289 return 0; 290 291 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT, 292 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which)); 293 if (error) 294 return (error); 295 296 lim_privatise(p, false); 297 /* p->p_limit is now unchangeable */ 298 alimp = &p->p_rlimit[which]; 299 300 switch (which) { 301 302 case RLIMIT_DATA: 303 if (limp->rlim_cur > maxdmap) 304 limp->rlim_cur = maxdmap; 305 if (limp->rlim_max > maxdmap) 306 limp->rlim_max = maxdmap; 307 break; 308 309 case RLIMIT_STACK: 310 if (limp->rlim_cur > maxsmap) 311 limp->rlim_cur = maxsmap; 312 if (limp->rlim_max > maxsmap) 313 limp->rlim_max = maxsmap; 314 315 /* 316 * Return EINVAL if the new stack size limit is lower than 317 * current usage. Otherwise, the process would get SIGSEGV the 318 * moment it would try to access anything on it's current stack. 319 * This conforms to SUSv2. 320 */ 321 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE 322 || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) { 323 return (EINVAL); 324 } 325 326 /* 327 * Stack is allocated to the max at exec time with 328 * only "rlim_cur" bytes accessible (In other words, 329 * allocates stack dividing two contiguous regions at 330 * "rlim_cur" bytes boundary). 331 * 332 * Since allocation is done in terms of page, roundup 333 * "rlim_cur" (otherwise, contiguous regions 334 * overlap). If stack limit is going up make more 335 * accessible, if going down make inaccessible. 336 */ 337 limp->rlim_cur = round_page(limp->rlim_cur); 338 if (limp->rlim_cur != alimp->rlim_cur) { 339 vaddr_t addr; 340 vsize_t size; 341 vm_prot_t prot; 342 343 if (limp->rlim_cur > alimp->rlim_cur) { 344 prot = VM_PROT_READ | VM_PROT_WRITE; 345 size = limp->rlim_cur - alimp->rlim_cur; 346 addr = (vaddr_t)p->p_vmspace->vm_minsaddr - 347 limp->rlim_cur; 348 } else { 349 prot = VM_PROT_NONE; 350 size = alimp->rlim_cur - limp->rlim_cur; 351 addr = (vaddr_t)p->p_vmspace->vm_minsaddr - 352 alimp->rlim_cur; 353 } 354 (void) uvm_map_protect(&p->p_vmspace->vm_map, 355 addr, addr+size, prot, false); 356 } 357 break; 358 359 case RLIMIT_NOFILE: 360 if (limp->rlim_cur > maxfiles) 361 limp->rlim_cur = maxfiles; 362 if (limp->rlim_max > maxfiles) 363 limp->rlim_max = maxfiles; 364 break; 365 366 case RLIMIT_NPROC: 367 if (limp->rlim_cur > maxproc) 368 limp->rlim_cur = maxproc; 369 if (limp->rlim_max > maxproc) 370 limp->rlim_max = maxproc; 371 break; 372 } 373 374 mutex_enter(&p->p_limit->pl_lock); 375 *alimp = *limp; 376 mutex_exit(&p->p_limit->pl_lock); 377 return (0); 378 } 379 380 /* ARGSUSED */ 381 int 382 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap, 383 register_t *retval) 384 { 385 /* { 386 syscallarg(int) which; 387 syscallarg(struct rlimit *) rlp; 388 } */ 389 struct proc *p = l->l_proc; 390 int which = SCARG(uap, which); 391 struct rlimit rl; 392 393 if ((u_int)which >= RLIM_NLIMITS) 394 return (EINVAL); 395 396 mutex_enter(p->p_lock); 397 memcpy(&rl, &p->p_rlimit[which], sizeof(rl)); 398 mutex_exit(p->p_lock); 399 400 return copyout(&rl, SCARG(uap, rlp), sizeof(rl)); 401 } 402 403 /* 404 * Transform the running time and tick information in proc p into user, 405 * system, and interrupt time usage. 406 * 407 * Should be called with p->p_lock held unless called from exit1(). 408 */ 409 void 410 calcru(struct proc *p, struct timeval *up, struct timeval *sp, 411 struct timeval *ip, struct timeval *rp) 412 { 413 uint64_t u, st, ut, it, tot; 414 struct lwp *l; 415 struct bintime tm; 416 struct timeval tv; 417 418 mutex_spin_enter(&p->p_stmutex); 419 st = p->p_sticks; 420 ut = p->p_uticks; 421 it = p->p_iticks; 422 mutex_spin_exit(&p->p_stmutex); 423 424 tm = p->p_rtime; 425 426 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 427 lwp_lock(l); 428 bintime_add(&tm, &l->l_rtime); 429 if ((l->l_pflag & LP_RUNNING) != 0) { 430 struct bintime diff; 431 /* 432 * Adjust for the current time slice. This is 433 * actually fairly important since the error 434 * here is on the order of a time quantum, 435 * which is much greater than the sampling 436 * error. 437 */ 438 binuptime(&diff); 439 bintime_sub(&diff, &l->l_stime); 440 bintime_add(&tm, &diff); 441 } 442 lwp_unlock(l); 443 } 444 445 tot = st + ut + it; 446 bintime2timeval(&tm, &tv); 447 u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec; 448 449 if (tot == 0) { 450 /* No ticks, so can't use to share time out, split 50-50 */ 451 st = ut = u / 2; 452 } else { 453 st = (u * st) / tot; 454 ut = (u * ut) / tot; 455 } 456 if (sp != NULL) { 457 sp->tv_sec = st / 1000000; 458 sp->tv_usec = st % 1000000; 459 } 460 if (up != NULL) { 461 up->tv_sec = ut / 1000000; 462 up->tv_usec = ut % 1000000; 463 } 464 if (ip != NULL) { 465 if (it != 0) 466 it = (u * it) / tot; 467 ip->tv_sec = it / 1000000; 468 ip->tv_usec = it % 1000000; 469 } 470 if (rp != NULL) { 471 *rp = tv; 472 } 473 } 474 475 /* ARGSUSED */ 476 int 477 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap, 478 register_t *retval) 479 { 480 /* { 481 syscallarg(int) who; 482 syscallarg(struct rusage *) rusage; 483 } */ 484 struct rusage ru; 485 struct proc *p = l->l_proc; 486 487 switch (SCARG(uap, who)) { 488 case RUSAGE_SELF: 489 mutex_enter(p->p_lock); 490 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru)); 491 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL); 492 rulwps(p, &ru); 493 mutex_exit(p->p_lock); 494 break; 495 496 case RUSAGE_CHILDREN: 497 mutex_enter(p->p_lock); 498 memcpy(&ru, &p->p_stats->p_cru, sizeof(ru)); 499 mutex_exit(p->p_lock); 500 break; 501 502 default: 503 return EINVAL; 504 } 505 506 return copyout(&ru, SCARG(uap, rusage), sizeof(ru)); 507 } 508 509 void 510 ruadd(struct rusage *ru, struct rusage *ru2) 511 { 512 long *ip, *ip2; 513 int i; 514 515 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime); 516 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime); 517 if (ru->ru_maxrss < ru2->ru_maxrss) 518 ru->ru_maxrss = ru2->ru_maxrss; 519 ip = &ru->ru_first; ip2 = &ru2->ru_first; 520 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) 521 *ip++ += *ip2++; 522 } 523 524 void 525 rulwps(proc_t *p, struct rusage *ru) 526 { 527 lwp_t *l; 528 529 KASSERT(mutex_owned(p->p_lock)); 530 531 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 532 ruadd(ru, &l->l_ru); 533 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 534 ru->ru_nivcsw += l->l_nivcsw; 535 } 536 } 537 538 /* 539 * Make a copy of the plimit structure. 540 * We share these structures copy-on-write after fork, 541 * and copy when a limit is changed. 542 * 543 * Unfortunately (due to PL_SHAREMOD) it is possibly for the structure 544 * we are copying to change beneath our feet! 545 */ 546 struct plimit * 547 lim_copy(struct plimit *lim) 548 { 549 struct plimit *newlim; 550 char *corename; 551 size_t alen, len; 552 553 newlim = pool_cache_get(plimit_cache, PR_WAITOK); 554 mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE); 555 newlim->pl_flags = 0; 556 newlim->pl_refcnt = 1; 557 newlim->pl_sv_limit = NULL; 558 559 mutex_enter(&lim->pl_lock); 560 memcpy(newlim->pl_rlimit, lim->pl_rlimit, 561 sizeof(struct rlimit) * RLIM_NLIMITS); 562 563 alen = 0; 564 corename = NULL; 565 for (;;) { 566 if (lim->pl_corename == defcorename) { 567 newlim->pl_corename = defcorename; 568 break; 569 } 570 len = strlen(lim->pl_corename) + 1; 571 if (len <= alen) { 572 newlim->pl_corename = corename; 573 memcpy(corename, lim->pl_corename, len); 574 corename = NULL; 575 break; 576 } 577 mutex_exit(&lim->pl_lock); 578 if (corename != NULL) 579 free(corename, M_TEMP); 580 alen = len; 581 corename = malloc(alen, M_TEMP, M_WAITOK); 582 mutex_enter(&lim->pl_lock); 583 } 584 mutex_exit(&lim->pl_lock); 585 if (corename != NULL) 586 free(corename, M_TEMP); 587 return newlim; 588 } 589 590 void 591 lim_addref(struct plimit *lim) 592 { 593 atomic_inc_uint(&lim->pl_refcnt); 594 } 595 596 /* 597 * Give a process it's own private plimit structure. 598 * This will only be shared (in fork) if modifications are to be shared. 599 */ 600 void 601 lim_privatise(struct proc *p, bool set_shared) 602 { 603 struct plimit *lim, *newlim; 604 605 lim = p->p_limit; 606 if (lim->pl_flags & PL_WRITEABLE) { 607 if (set_shared) 608 lim->pl_flags |= PL_SHAREMOD; 609 return; 610 } 611 612 if (set_shared && lim->pl_flags & PL_SHAREMOD) 613 return; 614 615 newlim = lim_copy(lim); 616 617 mutex_enter(p->p_lock); 618 if (p->p_limit->pl_flags & PL_WRITEABLE) { 619 /* Someone crept in while we were busy */ 620 mutex_exit(p->p_lock); 621 limfree(newlim); 622 if (set_shared) 623 p->p_limit->pl_flags |= PL_SHAREMOD; 624 return; 625 } 626 627 /* 628 * Since most accesses to p->p_limit aren't locked, we must not 629 * delete the old limit structure yet. 630 */ 631 newlim->pl_sv_limit = p->p_limit; 632 newlim->pl_flags |= PL_WRITEABLE; 633 if (set_shared) 634 newlim->pl_flags |= PL_SHAREMOD; 635 p->p_limit = newlim; 636 mutex_exit(p->p_lock); 637 } 638 639 void 640 limfree(struct plimit *lim) 641 { 642 struct plimit *sv_lim; 643 644 do { 645 if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) 646 return; 647 if (lim->pl_corename != defcorename) 648 free(lim->pl_corename, M_TEMP); 649 sv_lim = lim->pl_sv_limit; 650 mutex_destroy(&lim->pl_lock); 651 pool_cache_put(plimit_cache, lim); 652 } while ((lim = sv_lim) != NULL); 653 } 654 655 struct pstats * 656 pstatscopy(struct pstats *ps) 657 { 658 659 struct pstats *newps; 660 661 newps = pool_cache_get(pstats_cache, PR_WAITOK); 662 663 memset(&newps->pstat_startzero, 0, 664 (unsigned) ((char *)&newps->pstat_endzero - 665 (char *)&newps->pstat_startzero)); 666 memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy, 667 ((char *)&newps->pstat_endcopy - 668 (char *)&newps->pstat_startcopy)); 669 670 return (newps); 671 672 } 673 674 void 675 pstatsfree(struct pstats *ps) 676 { 677 678 pool_cache_put(pstats_cache, ps); 679 } 680 681 /* 682 * sysctl interface in five parts 683 */ 684 685 /* 686 * a routine for sysctl proc subtree helpers that need to pick a valid 687 * process by pid. 688 */ 689 static int 690 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid) 691 { 692 struct proc *ptmp; 693 int error = 0; 694 695 if (pid == PROC_CURPROC) 696 ptmp = l->l_proc; 697 else if ((ptmp = pfind(pid)) == NULL) 698 error = ESRCH; 699 700 *p2 = ptmp; 701 return (error); 702 } 703 704 /* 705 * sysctl helper routine for setting a process's specific corefile 706 * name. picks the process based on the given pid and checks the 707 * correctness of the new value. 708 */ 709 static int 710 sysctl_proc_corename(SYSCTLFN_ARGS) 711 { 712 struct proc *ptmp; 713 struct plimit *lim; 714 int error = 0, len; 715 char *cname; 716 char *ocore; 717 char *tmp; 718 struct sysctlnode node; 719 720 /* 721 * is this all correct? 722 */ 723 if (namelen != 0) 724 return (EINVAL); 725 if (name[-1] != PROC_PID_CORENAME) 726 return (EINVAL); 727 728 /* 729 * whom are we tweaking? 730 */ 731 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]); 732 if (error) 733 return (error); 734 735 /* XXX-elad */ 736 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp, 737 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 738 if (error) 739 return (error); 740 741 if (newp == NULL) { 742 error = kauth_authorize_process(l->l_cred, 743 KAUTH_PROCESS_CORENAME, ptmp, 744 KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL); 745 if (error) 746 return (error); 747 } 748 749 /* 750 * let them modify a temporary copy of the core name 751 */ 752 cname = PNBUF_GET(); 753 lim = ptmp->p_limit; 754 mutex_enter(&lim->pl_lock); 755 strlcpy(cname, lim->pl_corename, MAXPATHLEN); 756 mutex_exit(&lim->pl_lock); 757 758 node = *rnode; 759 node.sysctl_data = cname; 760 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 761 762 /* 763 * if that failed, or they have nothing new to say, or we've 764 * heard it before... 765 */ 766 if (error || newp == NULL) 767 goto done; 768 lim = ptmp->p_limit; 769 mutex_enter(&lim->pl_lock); 770 error = strcmp(cname, lim->pl_corename); 771 mutex_exit(&lim->pl_lock); 772 if (error == 0) 773 /* Unchanged */ 774 goto done; 775 776 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME, 777 ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cname, NULL); 778 if (error) 779 return (error); 780 781 /* 782 * no error yet and cname now has the new core name in it. 783 * let's see if it looks acceptable. it must be either "core" 784 * or end in ".core" or "/core". 785 */ 786 len = strlen(cname); 787 if (len < 4) { 788 error = EINVAL; 789 } else if (strcmp(cname + len - 4, "core") != 0) { 790 error = EINVAL; 791 } else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') { 792 error = EINVAL; 793 } 794 if (error != 0) { 795 goto done; 796 } 797 798 /* 799 * hmm...looks good. now...where do we put it? 800 */ 801 tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL); 802 if (tmp == NULL) { 803 error = ENOMEM; 804 goto done; 805 } 806 memcpy(tmp, cname, len + 1); 807 808 lim_privatise(ptmp, false); 809 lim = ptmp->p_limit; 810 mutex_enter(&lim->pl_lock); 811 ocore = lim->pl_corename; 812 lim->pl_corename = tmp; 813 mutex_exit(&lim->pl_lock); 814 if (ocore != defcorename) 815 free(ocore, M_TEMP); 816 817 done: 818 PNBUF_PUT(cname); 819 return error; 820 } 821 822 /* 823 * sysctl helper routine for checking/setting a process's stop flags, 824 * one for fork and one for exec. 825 */ 826 static int 827 sysctl_proc_stop(SYSCTLFN_ARGS) 828 { 829 struct proc *ptmp; 830 int i, f, error = 0; 831 struct sysctlnode node; 832 833 if (namelen != 0) 834 return (EINVAL); 835 836 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]); 837 if (error) 838 return (error); 839 840 /* XXX-elad */ 841 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp, 842 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 843 if (error) 844 return (error); 845 846 switch (rnode->sysctl_num) { 847 case PROC_PID_STOPFORK: 848 f = PS_STOPFORK; 849 break; 850 case PROC_PID_STOPEXEC: 851 f = PS_STOPEXEC; 852 break; 853 case PROC_PID_STOPEXIT: 854 f = PS_STOPEXIT; 855 break; 856 default: 857 return (EINVAL); 858 } 859 860 i = (ptmp->p_flag & f) ? 1 : 0; 861 node = *rnode; 862 node.sysctl_data = &i; 863 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 864 if (error || newp == NULL) 865 return (error); 866 867 mutex_enter(ptmp->p_lock); 868 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG, 869 ptmp, KAUTH_ARG(f), NULL, NULL); 870 if (!error) { 871 if (i) { 872 ptmp->p_sflag |= f; 873 } else { 874 ptmp->p_sflag &= ~f; 875 } 876 } 877 mutex_exit(ptmp->p_lock); 878 879 return error; 880 } 881 882 /* 883 * sysctl helper routine for a process's rlimits as exposed by sysctl. 884 */ 885 static int 886 sysctl_proc_plimit(SYSCTLFN_ARGS) 887 { 888 struct proc *ptmp; 889 u_int limitno; 890 int which, error = 0; 891 struct rlimit alim; 892 struct sysctlnode node; 893 894 if (namelen != 0) 895 return (EINVAL); 896 897 which = name[-1]; 898 if (which != PROC_PID_LIMIT_TYPE_SOFT && 899 which != PROC_PID_LIMIT_TYPE_HARD) 900 return (EINVAL); 901 902 limitno = name[-2] - 1; 903 if (limitno >= RLIM_NLIMITS) 904 return (EINVAL); 905 906 if (name[-3] != PROC_PID_LIMIT) 907 return (EINVAL); 908 909 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]); 910 if (error) 911 return (error); 912 913 /* XXX-elad */ 914 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp, 915 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 916 if (error) 917 return (error); 918 919 /* Check if we can view limits. */ 920 if (newp == NULL) { 921 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT, 922 ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim, 923 KAUTH_ARG(which)); 924 if (error) 925 return (error); 926 } 927 928 node = *rnode; 929 memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim)); 930 if (which == PROC_PID_LIMIT_TYPE_HARD) 931 node.sysctl_data = &alim.rlim_max; 932 else 933 node.sysctl_data = &alim.rlim_cur; 934 935 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 936 if (error || newp == NULL) 937 return (error); 938 939 return (dosetrlimit(l, ptmp, limitno, &alim)); 940 } 941 942 /* 943 * and finally, the actually glue that sticks it to the tree 944 */ 945 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup") 946 { 947 948 sysctl_createv(clog, 0, NULL, NULL, 949 CTLFLAG_PERMANENT, 950 CTLTYPE_NODE, "proc", NULL, 951 NULL, 0, NULL, 0, 952 CTL_PROC, CTL_EOL); 953 sysctl_createv(clog, 0, NULL, NULL, 954 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER, 955 CTLTYPE_NODE, "curproc", 956 SYSCTL_DESCR("Per-process settings"), 957 NULL, 0, NULL, 0, 958 CTL_PROC, PROC_CURPROC, CTL_EOL); 959 960 sysctl_createv(clog, 0, NULL, NULL, 961 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 962 CTLTYPE_STRING, "corename", 963 SYSCTL_DESCR("Core file name"), 964 sysctl_proc_corename, 0, NULL, MAXPATHLEN, 965 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL); 966 sysctl_createv(clog, 0, NULL, NULL, 967 CTLFLAG_PERMANENT, 968 CTLTYPE_NODE, "rlimit", 969 SYSCTL_DESCR("Process limits"), 970 NULL, 0, NULL, 0, 971 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL); 972 973 #define create_proc_plimit(s, n) do { \ 974 sysctl_createv(clog, 0, NULL, NULL, \ 975 CTLFLAG_PERMANENT, \ 976 CTLTYPE_NODE, s, \ 977 SYSCTL_DESCR("Process " s " limits"), \ 978 NULL, 0, NULL, 0, \ 979 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \ 980 CTL_EOL); \ 981 sysctl_createv(clog, 0, NULL, NULL, \ 982 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \ 983 CTLTYPE_QUAD, "soft", \ 984 SYSCTL_DESCR("Process soft " s " limit"), \ 985 sysctl_proc_plimit, 0, NULL, 0, \ 986 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \ 987 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \ 988 sysctl_createv(clog, 0, NULL, NULL, \ 989 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \ 990 CTLTYPE_QUAD, "hard", \ 991 SYSCTL_DESCR("Process hard " s " limit"), \ 992 sysctl_proc_plimit, 0, NULL, 0, \ 993 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \ 994 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \ 995 } while (0/*CONSTCOND*/) 996 997 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU); 998 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE); 999 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA); 1000 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK); 1001 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE); 1002 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS); 1003 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK); 1004 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC); 1005 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE); 1006 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE); 1007 create_proc_plimit("vmemoryuse", PROC_PID_LIMIT_AS); 1008 1009 #undef create_proc_plimit 1010 1011 sysctl_createv(clog, 0, NULL, NULL, 1012 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 1013 CTLTYPE_INT, "stopfork", 1014 SYSCTL_DESCR("Stop process at fork(2)"), 1015 sysctl_proc_stop, 0, NULL, 0, 1016 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL); 1017 sysctl_createv(clog, 0, NULL, NULL, 1018 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 1019 CTLTYPE_INT, "stopexec", 1020 SYSCTL_DESCR("Stop process at execve(2)"), 1021 sysctl_proc_stop, 0, NULL, 0, 1022 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL); 1023 sysctl_createv(clog, 0, NULL, NULL, 1024 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, 1025 CTLTYPE_INT, "stopexit", 1026 SYSCTL_DESCR("Stop process before completing exit"), 1027 sysctl_proc_stop, 0, NULL, 0, 1028 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL); 1029 } 1030