1 /* $NetBSD: kern_proc.c,v 1.199 2016/11/14 08:55:51 kre Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center, and by Andrew Doran. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1989, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.199 2016/11/14 08:55:51 kre Exp $"); 66 67 #ifdef _KERNEL_OPT 68 #include "opt_kstack.h" 69 #include "opt_maxuprc.h" 70 #include "opt_dtrace.h" 71 #include "opt_compat_netbsd32.h" 72 #endif 73 74 #include <sys/param.h> 75 #include <sys/systm.h> 76 #include <sys/kernel.h> 77 #include <sys/proc.h> 78 #include <sys/resourcevar.h> 79 #include <sys/buf.h> 80 #include <sys/acct.h> 81 #include <sys/wait.h> 82 #include <sys/file.h> 83 #include <ufs/ufs/quota.h> 84 #include <sys/uio.h> 85 #include <sys/pool.h> 86 #include <sys/pset.h> 87 #include <sys/mbuf.h> 88 #include <sys/ioctl.h> 89 #include <sys/tty.h> 90 #include <sys/signalvar.h> 91 #include <sys/ras.h> 92 #include <sys/filedesc.h> 93 #include <sys/syscall_stats.h> 94 #include <sys/kauth.h> 95 #include <sys/sleepq.h> 96 #include <sys/atomic.h> 97 #include <sys/kmem.h> 98 #include <sys/namei.h> 99 #include <sys/dtrace_bsd.h> 100 #include <sys/sysctl.h> 101 #include <sys/exec.h> 102 #include <sys/cpu.h> 103 104 #include <uvm/uvm_extern.h> 105 #include <uvm/uvm.h> 106 107 #ifdef COMPAT_NETBSD32 108 #include <compat/netbsd32/netbsd32.h> 109 #endif 110 111 /* 112 * Process lists. 113 */ 114 115 struct proclist allproc __cacheline_aligned; 116 struct proclist zombproc __cacheline_aligned; 117 118 kmutex_t * proc_lock __cacheline_aligned; 119 120 /* 121 * pid to proc lookup is done by indexing the pid_table array. 122 * Since pid numbers are only allocated when an empty slot 123 * has been found, there is no need to search any lists ever. 124 * (an orphaned pgrp will lock the slot, a session will lock 125 * the pgrp with the same number.) 126 * If the table is too small it is reallocated with twice the 127 * previous size and the entries 'unzipped' into the two halves. 128 * A linked list of free entries is passed through the pt_proc 129 * field of 'free' items - set odd to be an invalid ptr. 130 */ 131 132 struct pid_table { 133 struct proc *pt_proc; 134 struct pgrp *pt_pgrp; 135 pid_t pt_pid; 136 }; 137 #if 1 /* strongly typed cast - should be a noop */ 138 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; } 139 #else 140 #define p2u(p) ((uint)p) 141 #endif 142 #define P_VALID(p) (!(p2u(p) & 1)) 143 #define P_NEXT(p) (p2u(p) >> 1) 144 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1)) 145 146 /* 147 * Table of process IDs (PIDs). 148 */ 149 static struct pid_table *pid_table __read_mostly; 150 151 #define INITIAL_PID_TABLE_SIZE (1 << 5) 152 153 /* Table mask, threshold for growing and number of allocated PIDs. */ 154 static u_int pid_tbl_mask __read_mostly; 155 static u_int pid_alloc_lim __read_mostly; 156 static u_int pid_alloc_cnt __cacheline_aligned; 157 158 /* Next free, last free and maximum PIDs. */ 159 static u_int next_free_pt __cacheline_aligned; 160 static u_int last_free_pt __cacheline_aligned; 161 static pid_t pid_max __read_mostly; 162 163 /* Components of the first process -- never freed. */ 164 165 extern struct emul emul_netbsd; /* defined in kern_exec.c */ 166 167 struct session session0 = { 168 .s_count = 1, 169 .s_sid = 0, 170 }; 171 struct pgrp pgrp0 = { 172 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members), 173 .pg_session = &session0, 174 }; 175 filedesc_t filedesc0; 176 struct cwdinfo cwdi0 = { 177 .cwdi_cmask = CMASK, 178 .cwdi_refcnt = 1, 179 }; 180 struct plimit limit0; 181 struct pstats pstat0; 182 struct vmspace vmspace0; 183 struct sigacts sigacts0; 184 struct proc proc0 = { 185 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps), 186 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters), 187 .p_nlwps = 1, 188 .p_nrlwps = 1, 189 .p_nlwpid = 1, /* must match lwp0.l_lid */ 190 .p_pgrp = &pgrp0, 191 .p_comm = "system", 192 /* 193 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8) 194 * when they exit. init(8) can easily wait them out for us. 195 */ 196 .p_flag = PK_SYSTEM | PK_NOCLDWAIT, 197 .p_stat = SACTIVE, 198 .p_nice = NZERO, 199 .p_emul = &emul_netbsd, 200 .p_cwdi = &cwdi0, 201 .p_limit = &limit0, 202 .p_fd = &filedesc0, 203 .p_vmspace = &vmspace0, 204 .p_stats = &pstat0, 205 .p_sigacts = &sigacts0, 206 #ifdef PROC0_MD_INITIALIZERS 207 PROC0_MD_INITIALIZERS 208 #endif 209 }; 210 kauth_cred_t cred0; 211 212 static const int nofile = NOFILE; 213 static const int maxuprc = MAXUPRC; 214 215 static int sysctl_doeproc(SYSCTLFN_PROTO); 216 static int sysctl_kern_proc_args(SYSCTLFN_PROTO); 217 218 /* 219 * The process list descriptors, used during pid allocation and 220 * by sysctl. No locking on this data structure is needed since 221 * it is completely static. 222 */ 223 const struct proclist_desc proclists[] = { 224 { &allproc }, 225 { &zombproc }, 226 { NULL }, 227 }; 228 229 static struct pgrp * pg_remove(pid_t); 230 static void pg_delete(pid_t); 231 static void orphanpg(struct pgrp *); 232 233 static specificdata_domain_t proc_specificdata_domain; 234 235 static pool_cache_t proc_cache; 236 237 static kauth_listener_t proc_listener; 238 239 static int fill_pathname(struct lwp *, pid_t, void *, size_t *); 240 241 static int 242 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 243 void *arg0, void *arg1, void *arg2, void *arg3) 244 { 245 struct proc *p; 246 int result; 247 248 result = KAUTH_RESULT_DEFER; 249 p = arg0; 250 251 switch (action) { 252 case KAUTH_PROCESS_CANSEE: { 253 enum kauth_process_req req; 254 255 req = (enum kauth_process_req)arg1; 256 257 switch (req) { 258 case KAUTH_REQ_PROCESS_CANSEE_ARGS: 259 case KAUTH_REQ_PROCESS_CANSEE_ENTRY: 260 case KAUTH_REQ_PROCESS_CANSEE_OPENFILES: 261 result = KAUTH_RESULT_ALLOW; 262 263 break; 264 265 case KAUTH_REQ_PROCESS_CANSEE_ENV: 266 if (kauth_cred_getuid(cred) != 267 kauth_cred_getuid(p->p_cred) || 268 kauth_cred_getuid(cred) != 269 kauth_cred_getsvuid(p->p_cred)) 270 break; 271 272 result = KAUTH_RESULT_ALLOW; 273 274 break; 275 276 default: 277 break; 278 } 279 280 break; 281 } 282 283 case KAUTH_PROCESS_FORK: { 284 int lnprocs = (int)(unsigned long)arg2; 285 286 /* 287 * Don't allow a nonprivileged user to use the last few 288 * processes. The variable lnprocs is the current number of 289 * processes, maxproc is the limit. 290 */ 291 if (__predict_false((lnprocs >= maxproc - 5))) 292 break; 293 294 result = KAUTH_RESULT_ALLOW; 295 296 break; 297 } 298 299 case KAUTH_PROCESS_CORENAME: 300 case KAUTH_PROCESS_STOPFLAG: 301 if (proc_uidmatch(cred, p->p_cred) == 0) 302 result = KAUTH_RESULT_ALLOW; 303 304 break; 305 306 default: 307 break; 308 } 309 310 return result; 311 } 312 313 /* 314 * Initialize global process hashing structures. 315 */ 316 void 317 procinit(void) 318 { 319 const struct proclist_desc *pd; 320 u_int i; 321 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1)) 322 323 for (pd = proclists; pd->pd_list != NULL; pd++) 324 LIST_INIT(pd->pd_list); 325 326 proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 327 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE 328 * sizeof(struct pid_table), KM_SLEEP); 329 pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1; 330 pid_max = PID_MAX; 331 332 /* Set free list running through table... 333 Preset 'use count' above PID_MAX so we allocate pid 1 next. */ 334 for (i = 0; i <= pid_tbl_mask; i++) { 335 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1); 336 pid_table[i].pt_pgrp = 0; 337 pid_table[i].pt_pid = 0; 338 } 339 /* slot 0 is just grabbed */ 340 next_free_pt = 1; 341 /* Need to fix last entry. */ 342 last_free_pt = pid_tbl_mask; 343 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY); 344 /* point at which we grow table - to avoid reusing pids too often */ 345 pid_alloc_lim = pid_tbl_mask - 1; 346 #undef LINK_EMPTY 347 348 proc_specificdata_domain = specificdata_domain_create(); 349 KASSERT(proc_specificdata_domain != NULL); 350 351 proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0, 352 "procpl", NULL, IPL_NONE, NULL, NULL, NULL); 353 354 proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 355 proc_listener_cb, NULL); 356 } 357 358 void 359 procinit_sysctl(void) 360 { 361 static struct sysctllog *clog; 362 363 sysctl_createv(&clog, 0, NULL, NULL, 364 CTLFLAG_PERMANENT, 365 CTLTYPE_NODE, "proc", 366 SYSCTL_DESCR("System-wide process information"), 367 sysctl_doeproc, 0, NULL, 0, 368 CTL_KERN, KERN_PROC, CTL_EOL); 369 sysctl_createv(&clog, 0, NULL, NULL, 370 CTLFLAG_PERMANENT, 371 CTLTYPE_NODE, "proc2", 372 SYSCTL_DESCR("Machine-independent process information"), 373 sysctl_doeproc, 0, NULL, 0, 374 CTL_KERN, KERN_PROC2, CTL_EOL); 375 sysctl_createv(&clog, 0, NULL, NULL, 376 CTLFLAG_PERMANENT, 377 CTLTYPE_NODE, "proc_args", 378 SYSCTL_DESCR("Process argument information"), 379 sysctl_kern_proc_args, 0, NULL, 0, 380 CTL_KERN, KERN_PROC_ARGS, CTL_EOL); 381 382 /* 383 "nodes" under these: 384 385 KERN_PROC_ALL 386 KERN_PROC_PID pid 387 KERN_PROC_PGRP pgrp 388 KERN_PROC_SESSION sess 389 KERN_PROC_TTY tty 390 KERN_PROC_UID uid 391 KERN_PROC_RUID uid 392 KERN_PROC_GID gid 393 KERN_PROC_RGID gid 394 395 all in all, probably not worth the effort... 396 */ 397 } 398 399 /* 400 * Initialize process 0. 401 */ 402 void 403 proc0_init(void) 404 { 405 struct proc *p; 406 struct pgrp *pg; 407 struct rlimit *rlim; 408 rlim_t lim; 409 int i; 410 411 p = &proc0; 412 pg = &pgrp0; 413 414 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); 415 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE); 416 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 417 418 rw_init(&p->p_reflock); 419 cv_init(&p->p_waitcv, "wait"); 420 cv_init(&p->p_lwpcv, "lwpwait"); 421 422 LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling); 423 424 pid_table[0].pt_proc = p; 425 LIST_INSERT_HEAD(&allproc, p, p_list); 426 427 pid_table[0].pt_pgrp = pg; 428 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist); 429 430 #ifdef __HAVE_SYSCALL_INTERN 431 (*p->p_emul->e_syscall_intern)(p); 432 #endif 433 434 /* Create credentials. */ 435 cred0 = kauth_cred_alloc(); 436 p->p_cred = cred0; 437 438 /* Create the CWD info. */ 439 rw_init(&cwdi0.cwdi_lock); 440 441 /* Create the limits structures. */ 442 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE); 443 444 rlim = limit0.pl_rlimit; 445 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) { 446 rlim[i].rlim_cur = RLIM_INFINITY; 447 rlim[i].rlim_max = RLIM_INFINITY; 448 } 449 450 rlim[RLIMIT_NOFILE].rlim_max = maxfiles; 451 rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile; 452 453 rlim[RLIMIT_NPROC].rlim_max = maxproc; 454 rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc; 455 456 lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free)); 457 rlim[RLIMIT_RSS].rlim_max = lim; 458 rlim[RLIMIT_MEMLOCK].rlim_max = lim; 459 rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3; 460 461 rlim[RLIMIT_NTHR].rlim_max = maxlwp; 462 rlim[RLIMIT_NTHR].rlim_cur = maxlwp < maxuprc ? maxlwp : maxuprc; 463 464 /* Note that default core name has zero length. */ 465 limit0.pl_corename = defcorename; 466 limit0.pl_cnlen = 0; 467 limit0.pl_refcnt = 1; 468 limit0.pl_writeable = false; 469 limit0.pl_sv_limit = NULL; 470 471 /* Configure virtual memory system, set vm rlimits. */ 472 uvm_init_limits(p); 473 474 /* Initialize file descriptor table for proc0. */ 475 fd_init(&filedesc0); 476 477 /* 478 * Initialize proc0's vmspace, which uses the kernel pmap. 479 * All kernel processes (which never have user space mappings) 480 * share proc0's vmspace, and thus, the kernel pmap. 481 */ 482 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS), 483 trunc_page(VM_MAXUSER_ADDRESS), 484 #ifdef __USE_TOPDOWN_VM 485 true 486 #else 487 false 488 #endif 489 ); 490 491 /* Initialize signal state for proc0. XXX IPL_SCHED */ 492 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 493 siginit(p); 494 495 proc_initspecific(p); 496 kdtrace_proc_ctor(NULL, p); 497 } 498 499 /* 500 * Session reference counting. 501 */ 502 503 void 504 proc_sesshold(struct session *ss) 505 { 506 507 KASSERT(mutex_owned(proc_lock)); 508 ss->s_count++; 509 } 510 511 void 512 proc_sessrele(struct session *ss) 513 { 514 515 KASSERT(mutex_owned(proc_lock)); 516 /* 517 * We keep the pgrp with the same id as the session in order to 518 * stop a process being given the same pid. Since the pgrp holds 519 * a reference to the session, it must be a 'zombie' pgrp by now. 520 */ 521 if (--ss->s_count == 0) { 522 struct pgrp *pg; 523 524 pg = pg_remove(ss->s_sid); 525 mutex_exit(proc_lock); 526 527 kmem_free(pg, sizeof(struct pgrp)); 528 kmem_free(ss, sizeof(struct session)); 529 } else { 530 mutex_exit(proc_lock); 531 } 532 } 533 534 /* 535 * Check that the specified process group is in the session of the 536 * specified process. 537 * Treats -ve ids as process ids. 538 * Used to validate TIOCSPGRP requests. 539 */ 540 int 541 pgid_in_session(struct proc *p, pid_t pg_id) 542 { 543 struct pgrp *pgrp; 544 struct session *session; 545 int error; 546 547 mutex_enter(proc_lock); 548 if (pg_id < 0) { 549 struct proc *p1 = proc_find(-pg_id); 550 if (p1 == NULL) { 551 error = EINVAL; 552 goto fail; 553 } 554 pgrp = p1->p_pgrp; 555 } else { 556 pgrp = pgrp_find(pg_id); 557 if (pgrp == NULL) { 558 error = EINVAL; 559 goto fail; 560 } 561 } 562 session = pgrp->pg_session; 563 error = (session != p->p_pgrp->pg_session) ? EPERM : 0; 564 fail: 565 mutex_exit(proc_lock); 566 return error; 567 } 568 569 /* 570 * p_inferior: is p an inferior of q? 571 */ 572 static inline bool 573 p_inferior(struct proc *p, struct proc *q) 574 { 575 576 KASSERT(mutex_owned(proc_lock)); 577 578 for (; p != q; p = p->p_pptr) 579 if (p->p_pid == 0) 580 return false; 581 return true; 582 } 583 584 /* 585 * proc_find: locate a process by the ID. 586 * 587 * => Must be called with proc_lock held. 588 */ 589 proc_t * 590 proc_find_raw(pid_t pid) 591 { 592 struct pid_table *pt; 593 proc_t *p; 594 595 KASSERT(mutex_owned(proc_lock)); 596 pt = &pid_table[pid & pid_tbl_mask]; 597 p = pt->pt_proc; 598 if (__predict_false(!P_VALID(p) || pt->pt_pid != pid)) { 599 return NULL; 600 } 601 return p; 602 } 603 604 proc_t * 605 proc_find(pid_t pid) 606 { 607 proc_t *p; 608 609 p = proc_find_raw(pid); 610 if (__predict_false(p == NULL)) { 611 return NULL; 612 } 613 614 /* 615 * Only allow live processes to be found by PID. 616 * XXX: p_stat might change, since unlocked. 617 */ 618 if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) { 619 return p; 620 } 621 return NULL; 622 } 623 624 /* 625 * pgrp_find: locate a process group by the ID. 626 * 627 * => Must be called with proc_lock held. 628 */ 629 struct pgrp * 630 pgrp_find(pid_t pgid) 631 { 632 struct pgrp *pg; 633 634 KASSERT(mutex_owned(proc_lock)); 635 636 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp; 637 638 /* 639 * Cannot look up a process group that only exists because the 640 * session has not died yet (traditional). 641 */ 642 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) { 643 return NULL; 644 } 645 return pg; 646 } 647 648 static void 649 expand_pid_table(void) 650 { 651 size_t pt_size, tsz; 652 struct pid_table *n_pt, *new_pt; 653 struct proc *proc; 654 struct pgrp *pgrp; 655 pid_t pid, rpid; 656 u_int i; 657 uint new_pt_mask; 658 659 pt_size = pid_tbl_mask + 1; 660 tsz = pt_size * 2 * sizeof(struct pid_table); 661 new_pt = kmem_alloc(tsz, KM_SLEEP); 662 new_pt_mask = pt_size * 2 - 1; 663 664 mutex_enter(proc_lock); 665 if (pt_size != pid_tbl_mask + 1) { 666 /* Another process beat us to it... */ 667 mutex_exit(proc_lock); 668 kmem_free(new_pt, tsz); 669 return; 670 } 671 672 /* 673 * Copy entries from old table into new one. 674 * If 'pid' is 'odd' we need to place in the upper half, 675 * even pid's to the lower half. 676 * Free items stay in the low half so we don't have to 677 * fixup the reference to them. 678 * We stuff free items on the front of the freelist 679 * because we can't write to unmodified entries. 680 * Processing the table backwards maintains a semblance 681 * of issuing pid numbers that increase with time. 682 */ 683 i = pt_size - 1; 684 n_pt = new_pt + i; 685 for (; ; i--, n_pt--) { 686 proc = pid_table[i].pt_proc; 687 pgrp = pid_table[i].pt_pgrp; 688 if (!P_VALID(proc)) { 689 /* Up 'use count' so that link is valid */ 690 pid = (P_NEXT(proc) + pt_size) & ~pt_size; 691 rpid = 0; 692 proc = P_FREE(pid); 693 if (pgrp) 694 pid = pgrp->pg_id; 695 } else { 696 pid = pid_table[i].pt_pid; 697 rpid = pid; 698 } 699 700 /* Save entry in appropriate half of table */ 701 n_pt[pid & pt_size].pt_proc = proc; 702 n_pt[pid & pt_size].pt_pgrp = pgrp; 703 n_pt[pid & pt_size].pt_pid = rpid; 704 705 /* Put other piece on start of free list */ 706 pid = (pid ^ pt_size) & ~pid_tbl_mask; 707 n_pt[pid & pt_size].pt_proc = 708 P_FREE((pid & ~pt_size) | next_free_pt); 709 n_pt[pid & pt_size].pt_pgrp = 0; 710 n_pt[pid & pt_size].pt_pid = 0; 711 712 next_free_pt = i | (pid & pt_size); 713 if (i == 0) 714 break; 715 } 716 717 /* Save old table size and switch tables */ 718 tsz = pt_size * sizeof(struct pid_table); 719 n_pt = pid_table; 720 pid_table = new_pt; 721 pid_tbl_mask = new_pt_mask; 722 723 /* 724 * pid_max starts as PID_MAX (= 30000), once we have 16384 725 * allocated pids we need it to be larger! 726 */ 727 if (pid_tbl_mask > PID_MAX) { 728 pid_max = pid_tbl_mask * 2 + 1; 729 pid_alloc_lim |= pid_alloc_lim << 1; 730 } else 731 pid_alloc_lim <<= 1; /* doubles number of free slots... */ 732 733 mutex_exit(proc_lock); 734 kmem_free(n_pt, tsz); 735 } 736 737 struct proc * 738 proc_alloc(void) 739 { 740 struct proc *p; 741 742 p = pool_cache_get(proc_cache, PR_WAITOK); 743 p->p_stat = SIDL; /* protect against others */ 744 proc_initspecific(p); 745 kdtrace_proc_ctor(NULL, p); 746 p->p_pid = -1; 747 proc_alloc_pid(p); 748 return p; 749 } 750 751 /* 752 * proc_alloc_pid: allocate PID and record the given proc 'p' so that 753 * proc_find_raw() can find it by the PID. 754 */ 755 756 pid_t 757 proc_alloc_pid(struct proc *p) 758 { 759 struct pid_table *pt; 760 pid_t pid; 761 int nxt; 762 763 for (;;expand_pid_table()) { 764 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) 765 /* ensure pids cycle through 2000+ values */ 766 continue; 767 mutex_enter(proc_lock); 768 pt = &pid_table[next_free_pt]; 769 #ifdef DIAGNOSTIC 770 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp)) 771 panic("proc_alloc: slot busy"); 772 #endif 773 nxt = P_NEXT(pt->pt_proc); 774 if (nxt & pid_tbl_mask) 775 break; 776 /* Table full - expand (NB last entry not used....) */ 777 mutex_exit(proc_lock); 778 } 779 780 /* pid is 'saved use count' + 'size' + entry */ 781 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt; 782 if ((uint)pid > (uint)pid_max) 783 pid &= pid_tbl_mask; 784 next_free_pt = nxt & pid_tbl_mask; 785 786 /* Grab table slot */ 787 pt->pt_proc = p; 788 789 KASSERT(pt->pt_pid == 0); 790 pt->pt_pid = pid; 791 if (p->p_pid == -1) { 792 p->p_pid = pid; 793 } 794 pid_alloc_cnt++; 795 mutex_exit(proc_lock); 796 797 return pid; 798 } 799 800 /* 801 * Free a process id - called from proc_free (in kern_exit.c) 802 * 803 * Called with the proc_lock held. 804 */ 805 void 806 proc_free_pid(pid_t pid) 807 { 808 struct pid_table *pt; 809 810 KASSERT(mutex_owned(proc_lock)); 811 812 pt = &pid_table[pid & pid_tbl_mask]; 813 814 /* save pid use count in slot */ 815 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask); 816 KASSERT(pt->pt_pid == pid); 817 pt->pt_pid = 0; 818 819 if (pt->pt_pgrp == NULL) { 820 /* link last freed entry onto ours */ 821 pid &= pid_tbl_mask; 822 pt = &pid_table[last_free_pt]; 823 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid); 824 pt->pt_pid = 0; 825 last_free_pt = pid; 826 pid_alloc_cnt--; 827 } 828 829 atomic_dec_uint(&nprocs); 830 } 831 832 void 833 proc_free_mem(struct proc *p) 834 { 835 836 kdtrace_proc_dtor(NULL, p); 837 pool_cache_put(proc_cache, p); 838 } 839 840 /* 841 * proc_enterpgrp: move p to a new or existing process group (and session). 842 * 843 * If we are creating a new pgrp, the pgid should equal 844 * the calling process' pid. 845 * If is only valid to enter a process group that is in the session 846 * of the process. 847 * Also mksess should only be set if we are creating a process group 848 * 849 * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return. 850 */ 851 int 852 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess) 853 { 854 struct pgrp *new_pgrp, *pgrp; 855 struct session *sess; 856 struct proc *p; 857 int rval; 858 pid_t pg_id = NO_PGID; 859 860 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL; 861 862 /* Allocate data areas we might need before doing any validity checks */ 863 mutex_enter(proc_lock); /* Because pid_table might change */ 864 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) { 865 mutex_exit(proc_lock); 866 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP); 867 mutex_enter(proc_lock); 868 } else 869 new_pgrp = NULL; 870 rval = EPERM; /* most common error (to save typing) */ 871 872 /* Check pgrp exists or can be created */ 873 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp; 874 if (pgrp != NULL && pgrp->pg_id != pgid) 875 goto done; 876 877 /* Can only set another process under restricted circumstances. */ 878 if (pid != curp->p_pid) { 879 /* Must exist and be one of our children... */ 880 p = proc_find(pid); 881 if (p == NULL || !p_inferior(p, curp)) { 882 rval = ESRCH; 883 goto done; 884 } 885 /* ... in the same session... */ 886 if (sess != NULL || p->p_session != curp->p_session) 887 goto done; 888 /* ... existing pgid must be in same session ... */ 889 if (pgrp != NULL && pgrp->pg_session != p->p_session) 890 goto done; 891 /* ... and not done an exec. */ 892 if (p->p_flag & PK_EXEC) { 893 rval = EACCES; 894 goto done; 895 } 896 } else { 897 /* ... setsid() cannot re-enter a pgrp */ 898 if (mksess && (curp->p_pgid == curp->p_pid || 899 pgrp_find(curp->p_pid))) 900 goto done; 901 p = curp; 902 } 903 904 /* Changing the process group/session of a session 905 leader is definitely off limits. */ 906 if (SESS_LEADER(p)) { 907 if (sess == NULL && p->p_pgrp == pgrp) 908 /* unless it's a definite noop */ 909 rval = 0; 910 goto done; 911 } 912 913 /* Can only create a process group with id of process */ 914 if (pgrp == NULL && pgid != pid) 915 goto done; 916 917 /* Can only create a session if creating pgrp */ 918 if (sess != NULL && pgrp != NULL) 919 goto done; 920 921 /* Check we allocated memory for a pgrp... */ 922 if (pgrp == NULL && new_pgrp == NULL) 923 goto done; 924 925 /* Don't attach to 'zombie' pgrp */ 926 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members)) 927 goto done; 928 929 /* Expect to succeed now */ 930 rval = 0; 931 932 if (pgrp == p->p_pgrp) 933 /* nothing to do */ 934 goto done; 935 936 /* Ok all setup, link up required structures */ 937 938 if (pgrp == NULL) { 939 pgrp = new_pgrp; 940 new_pgrp = NULL; 941 if (sess != NULL) { 942 sess->s_sid = p->p_pid; 943 sess->s_leader = p; 944 sess->s_count = 1; 945 sess->s_ttyvp = NULL; 946 sess->s_ttyp = NULL; 947 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET; 948 memcpy(sess->s_login, p->p_session->s_login, 949 sizeof(sess->s_login)); 950 p->p_lflag &= ~PL_CONTROLT; 951 } else { 952 sess = p->p_pgrp->pg_session; 953 proc_sesshold(sess); 954 } 955 pgrp->pg_session = sess; 956 sess = NULL; 957 958 pgrp->pg_id = pgid; 959 LIST_INIT(&pgrp->pg_members); 960 #ifdef DIAGNOSTIC 961 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp)) 962 panic("enterpgrp: pgrp table slot in use"); 963 if (__predict_false(mksess && p != curp)) 964 panic("enterpgrp: mksession and p != curproc"); 965 #endif 966 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp; 967 pgrp->pg_jobc = 0; 968 } 969 970 /* 971 * Adjust eligibility of affected pgrps to participate in job control. 972 * Increment eligibility counts before decrementing, otherwise we 973 * could reach 0 spuriously during the first call. 974 */ 975 fixjobc(p, pgrp, 1); 976 fixjobc(p, p->p_pgrp, 0); 977 978 /* Interlock with ttread(). */ 979 mutex_spin_enter(&tty_lock); 980 981 /* Move process to requested group. */ 982 LIST_REMOVE(p, p_pglist); 983 if (LIST_EMPTY(&p->p_pgrp->pg_members)) 984 /* defer delete until we've dumped the lock */ 985 pg_id = p->p_pgrp->pg_id; 986 p->p_pgrp = pgrp; 987 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 988 989 /* Done with the swap; we can release the tty mutex. */ 990 mutex_spin_exit(&tty_lock); 991 992 done: 993 if (pg_id != NO_PGID) { 994 /* Releases proc_lock. */ 995 pg_delete(pg_id); 996 } else { 997 mutex_exit(proc_lock); 998 } 999 if (sess != NULL) 1000 kmem_free(sess, sizeof(*sess)); 1001 if (new_pgrp != NULL) 1002 kmem_free(new_pgrp, sizeof(*new_pgrp)); 1003 #ifdef DEBUG_PGRP 1004 if (__predict_false(rval)) 1005 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n", 1006 pid, pgid, mksess, curp->p_pid, rval); 1007 #endif 1008 return rval; 1009 } 1010 1011 /* 1012 * proc_leavepgrp: remove a process from its process group. 1013 * => must be called with the proc_lock held, which will be released; 1014 */ 1015 void 1016 proc_leavepgrp(struct proc *p) 1017 { 1018 struct pgrp *pgrp; 1019 1020 KASSERT(mutex_owned(proc_lock)); 1021 1022 /* Interlock with ttread() */ 1023 mutex_spin_enter(&tty_lock); 1024 pgrp = p->p_pgrp; 1025 LIST_REMOVE(p, p_pglist); 1026 p->p_pgrp = NULL; 1027 mutex_spin_exit(&tty_lock); 1028 1029 if (LIST_EMPTY(&pgrp->pg_members)) { 1030 /* Releases proc_lock. */ 1031 pg_delete(pgrp->pg_id); 1032 } else { 1033 mutex_exit(proc_lock); 1034 } 1035 } 1036 1037 /* 1038 * pg_remove: remove a process group from the table. 1039 * => must be called with the proc_lock held; 1040 * => returns process group to free; 1041 */ 1042 static struct pgrp * 1043 pg_remove(pid_t pg_id) 1044 { 1045 struct pgrp *pgrp; 1046 struct pid_table *pt; 1047 1048 KASSERT(mutex_owned(proc_lock)); 1049 1050 pt = &pid_table[pg_id & pid_tbl_mask]; 1051 pgrp = pt->pt_pgrp; 1052 1053 KASSERT(pgrp != NULL); 1054 KASSERT(pgrp->pg_id == pg_id); 1055 KASSERT(LIST_EMPTY(&pgrp->pg_members)); 1056 1057 pt->pt_pgrp = NULL; 1058 1059 if (!P_VALID(pt->pt_proc)) { 1060 /* Orphaned pgrp, put slot onto free list. */ 1061 KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0); 1062 pg_id &= pid_tbl_mask; 1063 pt = &pid_table[last_free_pt]; 1064 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id); 1065 KASSERT(pt->pt_pid == 0); 1066 last_free_pt = pg_id; 1067 pid_alloc_cnt--; 1068 } 1069 return pgrp; 1070 } 1071 1072 /* 1073 * pg_delete: delete and free a process group. 1074 * => must be called with the proc_lock held, which will be released. 1075 */ 1076 static void 1077 pg_delete(pid_t pg_id) 1078 { 1079 struct pgrp *pg; 1080 struct tty *ttyp; 1081 struct session *ss; 1082 1083 KASSERT(mutex_owned(proc_lock)); 1084 1085 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp; 1086 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) { 1087 mutex_exit(proc_lock); 1088 return; 1089 } 1090 1091 ss = pg->pg_session; 1092 1093 /* Remove reference (if any) from tty to this process group */ 1094 mutex_spin_enter(&tty_lock); 1095 ttyp = ss->s_ttyp; 1096 if (ttyp != NULL && ttyp->t_pgrp == pg) { 1097 ttyp->t_pgrp = NULL; 1098 KASSERT(ttyp->t_session == ss); 1099 } 1100 mutex_spin_exit(&tty_lock); 1101 1102 /* 1103 * The leading process group in a session is freed by proc_sessrele(), 1104 * if last reference. Note: proc_sessrele() releases proc_lock. 1105 */ 1106 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL; 1107 proc_sessrele(ss); 1108 1109 if (pg != NULL) { 1110 /* Free it, if was not done by proc_sessrele(). */ 1111 kmem_free(pg, sizeof(struct pgrp)); 1112 } 1113 } 1114 1115 /* 1116 * Adjust pgrp jobc counters when specified process changes process group. 1117 * We count the number of processes in each process group that "qualify" 1118 * the group for terminal job control (those with a parent in a different 1119 * process group of the same session). If that count reaches zero, the 1120 * process group becomes orphaned. Check both the specified process' 1121 * process group and that of its children. 1122 * entering == 0 => p is leaving specified group. 1123 * entering == 1 => p is entering specified group. 1124 * 1125 * Call with proc_lock held. 1126 */ 1127 void 1128 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 1129 { 1130 struct pgrp *hispgrp; 1131 struct session *mysession = pgrp->pg_session; 1132 struct proc *child; 1133 1134 KASSERT(mutex_owned(proc_lock)); 1135 1136 /* 1137 * Check p's parent to see whether p qualifies its own process 1138 * group; if so, adjust count for p's process group. 1139 */ 1140 hispgrp = p->p_pptr->p_pgrp; 1141 if (hispgrp != pgrp && hispgrp->pg_session == mysession) { 1142 if (entering) { 1143 pgrp->pg_jobc++; 1144 p->p_lflag &= ~PL_ORPHANPG; 1145 } else if (--pgrp->pg_jobc == 0) 1146 orphanpg(pgrp); 1147 } 1148 1149 /* 1150 * Check this process' children to see whether they qualify 1151 * their process groups; if so, adjust counts for children's 1152 * process groups. 1153 */ 1154 LIST_FOREACH(child, &p->p_children, p_sibling) { 1155 hispgrp = child->p_pgrp; 1156 if (hispgrp != pgrp && hispgrp->pg_session == mysession && 1157 !P_ZOMBIE(child)) { 1158 if (entering) { 1159 child->p_lflag &= ~PL_ORPHANPG; 1160 hispgrp->pg_jobc++; 1161 } else if (--hispgrp->pg_jobc == 0) 1162 orphanpg(hispgrp); 1163 } 1164 } 1165 } 1166 1167 /* 1168 * A process group has become orphaned; 1169 * if there are any stopped processes in the group, 1170 * hang-up all process in that group. 1171 * 1172 * Call with proc_lock held. 1173 */ 1174 static void 1175 orphanpg(struct pgrp *pg) 1176 { 1177 struct proc *p; 1178 1179 KASSERT(mutex_owned(proc_lock)); 1180 1181 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 1182 if (p->p_stat == SSTOP) { 1183 p->p_lflag |= PL_ORPHANPG; 1184 psignal(p, SIGHUP); 1185 psignal(p, SIGCONT); 1186 } 1187 } 1188 } 1189 1190 #ifdef DDB 1191 #include <ddb/db_output.h> 1192 void pidtbl_dump(void); 1193 void 1194 pidtbl_dump(void) 1195 { 1196 struct pid_table *pt; 1197 struct proc *p; 1198 struct pgrp *pgrp; 1199 int id; 1200 1201 db_printf("pid table %p size %x, next %x, last %x\n", 1202 pid_table, pid_tbl_mask+1, 1203 next_free_pt, last_free_pt); 1204 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) { 1205 p = pt->pt_proc; 1206 if (!P_VALID(p) && !pt->pt_pgrp) 1207 continue; 1208 db_printf(" id %x: ", id); 1209 if (P_VALID(p)) 1210 db_printf("slotpid %d proc %p id %d (0x%x) %s\n", 1211 pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm); 1212 else 1213 db_printf("next %x use %x\n", 1214 P_NEXT(p) & pid_tbl_mask, 1215 P_NEXT(p) & ~pid_tbl_mask); 1216 if ((pgrp = pt->pt_pgrp)) { 1217 db_printf("\tsession %p, sid %d, count %d, login %s\n", 1218 pgrp->pg_session, pgrp->pg_session->s_sid, 1219 pgrp->pg_session->s_count, 1220 pgrp->pg_session->s_login); 1221 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n", 1222 pgrp, pgrp->pg_id, pgrp->pg_jobc, 1223 LIST_FIRST(&pgrp->pg_members)); 1224 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 1225 db_printf("\t\tpid %d addr %p pgrp %p %s\n", 1226 p->p_pid, p, p->p_pgrp, p->p_comm); 1227 } 1228 } 1229 } 1230 } 1231 #endif /* DDB */ 1232 1233 #ifdef KSTACK_CHECK_MAGIC 1234 1235 #define KSTACK_MAGIC 0xdeadbeaf 1236 1237 /* XXX should be per process basis? */ 1238 static int kstackleftmin = KSTACK_SIZE; 1239 static int kstackleftthres = KSTACK_SIZE / 8; 1240 1241 void 1242 kstack_setup_magic(const struct lwp *l) 1243 { 1244 uint32_t *ip; 1245 uint32_t const *end; 1246 1247 KASSERT(l != NULL); 1248 KASSERT(l != &lwp0); 1249 1250 /* 1251 * fill all the stack with magic number 1252 * so that later modification on it can be detected. 1253 */ 1254 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1255 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1256 for (; ip < end; ip++) { 1257 *ip = KSTACK_MAGIC; 1258 } 1259 } 1260 1261 void 1262 kstack_check_magic(const struct lwp *l) 1263 { 1264 uint32_t const *ip, *end; 1265 int stackleft; 1266 1267 KASSERT(l != NULL); 1268 1269 /* don't check proc0 */ /*XXX*/ 1270 if (l == &lwp0) 1271 return; 1272 1273 #ifdef __MACHINE_STACK_GROWS_UP 1274 /* stack grows upwards (eg. hppa) */ 1275 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1276 end = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1277 for (ip--; ip >= end; ip--) 1278 if (*ip != KSTACK_MAGIC) 1279 break; 1280 1281 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip; 1282 #else /* __MACHINE_STACK_GROWS_UP */ 1283 /* stack grows downwards (eg. i386) */ 1284 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1285 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1286 for (; ip < end; ip++) 1287 if (*ip != KSTACK_MAGIC) 1288 break; 1289 1290 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l); 1291 #endif /* __MACHINE_STACK_GROWS_UP */ 1292 1293 if (kstackleftmin > stackleft) { 1294 kstackleftmin = stackleft; 1295 if (stackleft < kstackleftthres) 1296 printf("warning: kernel stack left %d bytes" 1297 "(pid %u:lid %u)\n", stackleft, 1298 (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1299 } 1300 1301 if (stackleft <= 0) { 1302 panic("magic on the top of kernel stack changed for " 1303 "pid %u, lid %u: maybe kernel stack overflow", 1304 (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1305 } 1306 } 1307 #endif /* KSTACK_CHECK_MAGIC */ 1308 1309 int 1310 proclist_foreach_call(struct proclist *list, 1311 int (*callback)(struct proc *, void *arg), void *arg) 1312 { 1313 struct proc marker; 1314 struct proc *p; 1315 int ret = 0; 1316 1317 marker.p_flag = PK_MARKER; 1318 mutex_enter(proc_lock); 1319 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) { 1320 if (p->p_flag & PK_MARKER) { 1321 p = LIST_NEXT(p, p_list); 1322 continue; 1323 } 1324 LIST_INSERT_AFTER(p, &marker, p_list); 1325 ret = (*callback)(p, arg); 1326 KASSERT(mutex_owned(proc_lock)); 1327 p = LIST_NEXT(&marker, p_list); 1328 LIST_REMOVE(&marker, p_list); 1329 } 1330 mutex_exit(proc_lock); 1331 1332 return ret; 1333 } 1334 1335 int 1336 proc_vmspace_getref(struct proc *p, struct vmspace **vm) 1337 { 1338 1339 /* XXXCDC: how should locking work here? */ 1340 1341 /* curproc exception is for coredump. */ 1342 1343 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) || 1344 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */ 1345 return EFAULT; 1346 } 1347 1348 uvmspace_addref(p->p_vmspace); 1349 *vm = p->p_vmspace; 1350 1351 return 0; 1352 } 1353 1354 /* 1355 * Acquire a write lock on the process credential. 1356 */ 1357 void 1358 proc_crmod_enter(void) 1359 { 1360 struct lwp *l = curlwp; 1361 struct proc *p = l->l_proc; 1362 kauth_cred_t oc; 1363 1364 /* Reset what needs to be reset in plimit. */ 1365 if (p->p_limit->pl_corename != defcorename) { 1366 lim_setcorename(p, defcorename, 0); 1367 } 1368 1369 mutex_enter(p->p_lock); 1370 1371 /* Ensure the LWP cached credentials are up to date. */ 1372 if ((oc = l->l_cred) != p->p_cred) { 1373 kauth_cred_hold(p->p_cred); 1374 l->l_cred = p->p_cred; 1375 kauth_cred_free(oc); 1376 } 1377 } 1378 1379 /* 1380 * Set in a new process credential, and drop the write lock. The credential 1381 * must have a reference already. Optionally, free a no-longer required 1382 * credential. The scheduler also needs to inspect p_cred, so we also 1383 * briefly acquire the sched state mutex. 1384 */ 1385 void 1386 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid) 1387 { 1388 struct lwp *l = curlwp, *l2; 1389 struct proc *p = l->l_proc; 1390 kauth_cred_t oc; 1391 1392 KASSERT(mutex_owned(p->p_lock)); 1393 1394 /* Is there a new credential to set in? */ 1395 if (scred != NULL) { 1396 p->p_cred = scred; 1397 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 1398 if (l2 != l) 1399 l2->l_prflag |= LPR_CRMOD; 1400 } 1401 1402 /* Ensure the LWP cached credentials are up to date. */ 1403 if ((oc = l->l_cred) != scred) { 1404 kauth_cred_hold(scred); 1405 l->l_cred = scred; 1406 } 1407 } else 1408 oc = NULL; /* XXXgcc */ 1409 1410 if (sugid) { 1411 /* 1412 * Mark process as having changed credentials, stops 1413 * tracing etc. 1414 */ 1415 p->p_flag |= PK_SUGID; 1416 } 1417 1418 mutex_exit(p->p_lock); 1419 1420 /* If there is a credential to be released, free it now. */ 1421 if (fcred != NULL) { 1422 KASSERT(scred != NULL); 1423 kauth_cred_free(fcred); 1424 if (oc != scred) 1425 kauth_cred_free(oc); 1426 } 1427 } 1428 1429 /* 1430 * proc_specific_key_create -- 1431 * Create a key for subsystem proc-specific data. 1432 */ 1433 int 1434 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) 1435 { 1436 1437 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor)); 1438 } 1439 1440 /* 1441 * proc_specific_key_delete -- 1442 * Delete a key for subsystem proc-specific data. 1443 */ 1444 void 1445 proc_specific_key_delete(specificdata_key_t key) 1446 { 1447 1448 specificdata_key_delete(proc_specificdata_domain, key); 1449 } 1450 1451 /* 1452 * proc_initspecific -- 1453 * Initialize a proc's specificdata container. 1454 */ 1455 void 1456 proc_initspecific(struct proc *p) 1457 { 1458 int error __diagused; 1459 1460 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref); 1461 KASSERT(error == 0); 1462 } 1463 1464 /* 1465 * proc_finispecific -- 1466 * Finalize a proc's specificdata container. 1467 */ 1468 void 1469 proc_finispecific(struct proc *p) 1470 { 1471 1472 specificdata_fini(proc_specificdata_domain, &p->p_specdataref); 1473 } 1474 1475 /* 1476 * proc_getspecific -- 1477 * Return proc-specific data corresponding to the specified key. 1478 */ 1479 void * 1480 proc_getspecific(struct proc *p, specificdata_key_t key) 1481 { 1482 1483 return (specificdata_getspecific(proc_specificdata_domain, 1484 &p->p_specdataref, key)); 1485 } 1486 1487 /* 1488 * proc_setspecific -- 1489 * Set proc-specific data corresponding to the specified key. 1490 */ 1491 void 1492 proc_setspecific(struct proc *p, specificdata_key_t key, void *data) 1493 { 1494 1495 specificdata_setspecific(proc_specificdata_domain, 1496 &p->p_specdataref, key, data); 1497 } 1498 1499 int 1500 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target) 1501 { 1502 int r = 0; 1503 1504 if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) || 1505 kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) { 1506 /* 1507 * suid proc of ours or proc not ours 1508 */ 1509 r = EPERM; 1510 } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) { 1511 /* 1512 * sgid proc has sgid back to us temporarily 1513 */ 1514 r = EPERM; 1515 } else { 1516 /* 1517 * our rgid must be in target's group list (ie, 1518 * sub-processes started by a sgid process) 1519 */ 1520 int ismember = 0; 1521 1522 if (kauth_cred_ismember_gid(cred, 1523 kauth_cred_getgid(target), &ismember) != 0 || 1524 !ismember) 1525 r = EPERM; 1526 } 1527 1528 return (r); 1529 } 1530 1531 /* 1532 * sysctl stuff 1533 */ 1534 1535 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc)) 1536 1537 static const u_int sysctl_flagmap[] = { 1538 PK_ADVLOCK, P_ADVLOCK, 1539 PK_EXEC, P_EXEC, 1540 PK_NOCLDWAIT, P_NOCLDWAIT, 1541 PK_32, P_32, 1542 PK_CLDSIGIGN, P_CLDSIGIGN, 1543 PK_SUGID, P_SUGID, 1544 0 1545 }; 1546 1547 static const u_int sysctl_sflagmap[] = { 1548 PS_NOCLDSTOP, P_NOCLDSTOP, 1549 PS_WEXIT, P_WEXIT, 1550 PS_STOPFORK, P_STOPFORK, 1551 PS_STOPEXEC, P_STOPEXEC, 1552 PS_STOPEXIT, P_STOPEXIT, 1553 0 1554 }; 1555 1556 static const u_int sysctl_slflagmap[] = { 1557 PSL_TRACED, P_TRACED, 1558 PSL_FSTRACE, P_FSTRACE, 1559 PSL_CHTRACED, P_CHTRACED, 1560 PSL_SYSCALL, P_SYSCALL, 1561 0 1562 }; 1563 1564 static const u_int sysctl_lflagmap[] = { 1565 PL_CONTROLT, P_CONTROLT, 1566 PL_PPWAIT, P_PPWAIT, 1567 0 1568 }; 1569 1570 static const u_int sysctl_stflagmap[] = { 1571 PST_PROFIL, P_PROFIL, 1572 0 1573 1574 }; 1575 1576 /* used by kern_lwp also */ 1577 const u_int sysctl_lwpflagmap[] = { 1578 LW_SINTR, L_SINTR, 1579 LW_SYSTEM, L_SYSTEM, 1580 0 1581 }; 1582 1583 /* 1584 * Find the most ``active'' lwp of a process and return it for ps display 1585 * purposes 1586 */ 1587 static struct lwp * 1588 proc_active_lwp(struct proc *p) 1589 { 1590 static const int ostat[] = { 1591 0, 1592 2, /* LSIDL */ 1593 6, /* LSRUN */ 1594 5, /* LSSLEEP */ 1595 4, /* LSSTOP */ 1596 0, /* LSZOMB */ 1597 1, /* LSDEAD */ 1598 7, /* LSONPROC */ 1599 3 /* LSSUSPENDED */ 1600 }; 1601 1602 struct lwp *l, *lp = NULL; 1603 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1604 KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat)); 1605 if (lp == NULL || 1606 ostat[l->l_stat] > ostat[lp->l_stat] || 1607 (ostat[l->l_stat] == ostat[lp->l_stat] && 1608 l->l_cpticks > lp->l_cpticks)) { 1609 lp = l; 1610 continue; 1611 } 1612 } 1613 return lp; 1614 } 1615 1616 static int 1617 sysctl_doeproc(SYSCTLFN_ARGS) 1618 { 1619 union { 1620 struct kinfo_proc kproc; 1621 struct kinfo_proc2 kproc2; 1622 } *kbuf; 1623 struct proc *p, *next, *marker; 1624 char *where, *dp; 1625 int type, op, arg, error; 1626 u_int elem_size, kelem_size, elem_count; 1627 size_t buflen, needed; 1628 bool match, zombie, mmmbrains; 1629 1630 if (namelen == 1 && name[0] == CTL_QUERY) 1631 return (sysctl_query(SYSCTLFN_CALL(rnode))); 1632 1633 dp = where = oldp; 1634 buflen = where != NULL ? *oldlenp : 0; 1635 error = 0; 1636 needed = 0; 1637 type = rnode->sysctl_num; 1638 1639 if (type == KERN_PROC) { 1640 if (namelen == 0) 1641 return EINVAL; 1642 switch (op = name[0]) { 1643 case KERN_PROC_ALL: 1644 if (namelen != 1) 1645 return EINVAL; 1646 arg = 0; 1647 break; 1648 default: 1649 if (namelen != 2) 1650 return EINVAL; 1651 arg = name[1]; 1652 break; 1653 } 1654 elem_count = 0; /* Ditto */ 1655 kelem_size = elem_size = sizeof(kbuf->kproc); 1656 } else { 1657 if (namelen != 4) 1658 return EINVAL; 1659 op = name[0]; 1660 arg = name[1]; 1661 elem_size = name[2]; 1662 elem_count = name[3]; 1663 kelem_size = sizeof(kbuf->kproc2); 1664 } 1665 1666 sysctl_unlock(); 1667 1668 kbuf = kmem_alloc(sizeof(*kbuf), KM_SLEEP); 1669 marker = kmem_alloc(sizeof(*marker), KM_SLEEP); 1670 marker->p_flag = PK_MARKER; 1671 1672 mutex_enter(proc_lock); 1673 mmmbrains = false; 1674 for (p = LIST_FIRST(&allproc);; p = next) { 1675 if (p == NULL) { 1676 if (!mmmbrains) { 1677 p = LIST_FIRST(&zombproc); 1678 mmmbrains = true; 1679 } 1680 if (p == NULL) 1681 break; 1682 } 1683 next = LIST_NEXT(p, p_list); 1684 if ((p->p_flag & PK_MARKER) != 0) 1685 continue; 1686 1687 /* 1688 * Skip embryonic processes. 1689 */ 1690 if (p->p_stat == SIDL) 1691 continue; 1692 1693 mutex_enter(p->p_lock); 1694 error = kauth_authorize_process(l->l_cred, 1695 KAUTH_PROCESS_CANSEE, p, 1696 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 1697 if (error != 0) { 1698 mutex_exit(p->p_lock); 1699 continue; 1700 } 1701 1702 /* 1703 * TODO - make more efficient (see notes below). 1704 * do by session. 1705 */ 1706 switch (op) { 1707 case KERN_PROC_PID: 1708 /* could do this with just a lookup */ 1709 match = (p->p_pid == (pid_t)arg); 1710 break; 1711 1712 case KERN_PROC_PGRP: 1713 /* could do this by traversing pgrp */ 1714 match = (p->p_pgrp->pg_id == (pid_t)arg); 1715 break; 1716 1717 case KERN_PROC_SESSION: 1718 match = (p->p_session->s_sid == (pid_t)arg); 1719 break; 1720 1721 case KERN_PROC_TTY: 1722 match = true; 1723 if (arg == (int) KERN_PROC_TTY_REVOKE) { 1724 if ((p->p_lflag & PL_CONTROLT) == 0 || 1725 p->p_session->s_ttyp == NULL || 1726 p->p_session->s_ttyvp != NULL) { 1727 match = false; 1728 } 1729 } else if ((p->p_lflag & PL_CONTROLT) == 0 || 1730 p->p_session->s_ttyp == NULL) { 1731 if ((dev_t)arg != KERN_PROC_TTY_NODEV) { 1732 match = false; 1733 } 1734 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) { 1735 match = false; 1736 } 1737 break; 1738 1739 case KERN_PROC_UID: 1740 match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg); 1741 break; 1742 1743 case KERN_PROC_RUID: 1744 match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg); 1745 break; 1746 1747 case KERN_PROC_GID: 1748 match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg); 1749 break; 1750 1751 case KERN_PROC_RGID: 1752 match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg); 1753 break; 1754 1755 case KERN_PROC_ALL: 1756 match = true; 1757 /* allow everything */ 1758 break; 1759 1760 default: 1761 error = EINVAL; 1762 mutex_exit(p->p_lock); 1763 goto cleanup; 1764 } 1765 if (!match) { 1766 mutex_exit(p->p_lock); 1767 continue; 1768 } 1769 1770 /* 1771 * Grab a hold on the process. 1772 */ 1773 if (mmmbrains) { 1774 zombie = true; 1775 } else { 1776 zombie = !rw_tryenter(&p->p_reflock, RW_READER); 1777 } 1778 if (zombie) { 1779 LIST_INSERT_AFTER(p, marker, p_list); 1780 } 1781 1782 if (buflen >= elem_size && 1783 (type == KERN_PROC || elem_count > 0)) { 1784 if (type == KERN_PROC) { 1785 kbuf->kproc.kp_proc = *p; 1786 fill_eproc(p, &kbuf->kproc.kp_eproc, zombie); 1787 } else { 1788 fill_kproc2(p, &kbuf->kproc2, zombie); 1789 elem_count--; 1790 } 1791 mutex_exit(p->p_lock); 1792 mutex_exit(proc_lock); 1793 /* 1794 * Copy out elem_size, but not larger than kelem_size 1795 */ 1796 error = sysctl_copyout(l, kbuf, dp, 1797 min(kelem_size, elem_size)); 1798 mutex_enter(proc_lock); 1799 if (error) { 1800 goto bah; 1801 } 1802 dp += elem_size; 1803 buflen -= elem_size; 1804 } else { 1805 mutex_exit(p->p_lock); 1806 } 1807 needed += elem_size; 1808 1809 /* 1810 * Release reference to process. 1811 */ 1812 if (zombie) { 1813 next = LIST_NEXT(marker, p_list); 1814 LIST_REMOVE(marker, p_list); 1815 } else { 1816 rw_exit(&p->p_reflock); 1817 next = LIST_NEXT(p, p_list); 1818 } 1819 } 1820 mutex_exit(proc_lock); 1821 1822 if (where != NULL) { 1823 *oldlenp = dp - where; 1824 if (needed > *oldlenp) { 1825 error = ENOMEM; 1826 goto out; 1827 } 1828 } else { 1829 needed += KERN_PROCSLOP; 1830 *oldlenp = needed; 1831 } 1832 if (kbuf) 1833 kmem_free(kbuf, sizeof(*kbuf)); 1834 if (marker) 1835 kmem_free(marker, sizeof(*marker)); 1836 sysctl_relock(); 1837 return 0; 1838 bah: 1839 if (zombie) 1840 LIST_REMOVE(marker, p_list); 1841 else 1842 rw_exit(&p->p_reflock); 1843 cleanup: 1844 mutex_exit(proc_lock); 1845 out: 1846 if (kbuf) 1847 kmem_free(kbuf, sizeof(*kbuf)); 1848 if (marker) 1849 kmem_free(marker, sizeof(*marker)); 1850 sysctl_relock(); 1851 return error; 1852 } 1853 1854 int 1855 copyin_psstrings(struct proc *p, struct ps_strings *arginfo) 1856 { 1857 1858 #ifdef COMPAT_NETBSD32 1859 if (p->p_flag & PK_32) { 1860 struct ps_strings32 arginfo32; 1861 1862 int error = copyin_proc(p, (void *)p->p_psstrp, &arginfo32, 1863 sizeof(arginfo32)); 1864 if (error) 1865 return error; 1866 arginfo->ps_argvstr = (void *)(uintptr_t)arginfo32.ps_argvstr; 1867 arginfo->ps_nargvstr = arginfo32.ps_nargvstr; 1868 arginfo->ps_envstr = (void *)(uintptr_t)arginfo32.ps_envstr; 1869 arginfo->ps_nenvstr = arginfo32.ps_nenvstr; 1870 return 0; 1871 } 1872 #endif 1873 return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo)); 1874 } 1875 1876 static int 1877 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len) 1878 { 1879 void **cookie = cookie_; 1880 struct lwp *l = cookie[0]; 1881 char *dst = cookie[1]; 1882 1883 return sysctl_copyout(l, src, dst + off, len); 1884 } 1885 1886 /* 1887 * sysctl helper routine for kern.proc_args pseudo-subtree. 1888 */ 1889 static int 1890 sysctl_kern_proc_args(SYSCTLFN_ARGS) 1891 { 1892 struct ps_strings pss; 1893 struct proc *p; 1894 pid_t pid; 1895 int type, error; 1896 void *cookie[2]; 1897 1898 if (namelen == 1 && name[0] == CTL_QUERY) 1899 return (sysctl_query(SYSCTLFN_CALL(rnode))); 1900 1901 if (newp != NULL || namelen != 2) 1902 return (EINVAL); 1903 pid = name[0]; 1904 type = name[1]; 1905 1906 switch (type) { 1907 case KERN_PROC_PATHNAME: 1908 sysctl_unlock(); 1909 error = fill_pathname(l, pid, oldp, oldlenp); 1910 sysctl_relock(); 1911 return error; 1912 1913 case KERN_PROC_ARGV: 1914 case KERN_PROC_NARGV: 1915 case KERN_PROC_ENV: 1916 case KERN_PROC_NENV: 1917 /* ok */ 1918 break; 1919 default: 1920 return (EINVAL); 1921 } 1922 1923 sysctl_unlock(); 1924 1925 /* check pid */ 1926 mutex_enter(proc_lock); 1927 if ((p = proc_find(pid)) == NULL) { 1928 error = EINVAL; 1929 goto out_locked; 1930 } 1931 mutex_enter(p->p_lock); 1932 1933 /* Check permission. */ 1934 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV) 1935 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, 1936 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL); 1937 else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) 1938 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, 1939 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL); 1940 else 1941 error = EINVAL; /* XXXGCC */ 1942 if (error) { 1943 mutex_exit(p->p_lock); 1944 goto out_locked; 1945 } 1946 1947 if (oldp == NULL) { 1948 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) 1949 *oldlenp = sizeof (int); 1950 else 1951 *oldlenp = ARG_MAX; /* XXX XXX XXX */ 1952 error = 0; 1953 mutex_exit(p->p_lock); 1954 goto out_locked; 1955 } 1956 1957 /* 1958 * Zombies don't have a stack, so we can't read their psstrings. 1959 * System processes also don't have a user stack. 1960 */ 1961 if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) { 1962 error = EINVAL; 1963 mutex_exit(p->p_lock); 1964 goto out_locked; 1965 } 1966 1967 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY; 1968 mutex_exit(p->p_lock); 1969 if (error) { 1970 goto out_locked; 1971 } 1972 mutex_exit(proc_lock); 1973 1974 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) { 1975 int value; 1976 if ((error = copyin_psstrings(p, &pss)) == 0) { 1977 if (type == KERN_PROC_NARGV) 1978 value = pss.ps_nargvstr; 1979 else 1980 value = pss.ps_nenvstr; 1981 error = sysctl_copyout(l, &value, oldp, sizeof(value)); 1982 *oldlenp = sizeof(value); 1983 } 1984 } else { 1985 cookie[0] = l; 1986 cookie[1] = oldp; 1987 error = copy_procargs(p, type, oldlenp, 1988 copy_procargs_sysctl_cb, cookie); 1989 } 1990 rw_exit(&p->p_reflock); 1991 sysctl_relock(); 1992 return error; 1993 1994 out_locked: 1995 mutex_exit(proc_lock); 1996 sysctl_relock(); 1997 return error; 1998 } 1999 2000 int 2001 copy_procargs(struct proc *p, int oid, size_t *limit, 2002 int (*cb)(void *, const void *, size_t, size_t), void *cookie) 2003 { 2004 struct ps_strings pss; 2005 size_t len, i, loaded, entry_len; 2006 struct uio auio; 2007 struct iovec aiov; 2008 int error, argvlen; 2009 char *arg; 2010 char **argv; 2011 vaddr_t user_argv; 2012 struct vmspace *vmspace; 2013 2014 /* 2015 * Allocate a temporary buffer to hold the argument vector and 2016 * the arguments themselve. 2017 */ 2018 arg = kmem_alloc(PAGE_SIZE, KM_SLEEP); 2019 argv = kmem_alloc(PAGE_SIZE, KM_SLEEP); 2020 2021 /* 2022 * Lock the process down in memory. 2023 */ 2024 vmspace = p->p_vmspace; 2025 uvmspace_addref(vmspace); 2026 2027 /* 2028 * Read in the ps_strings structure. 2029 */ 2030 if ((error = copyin_psstrings(p, &pss)) != 0) 2031 goto done; 2032 2033 /* 2034 * Now read the address of the argument vector. 2035 */ 2036 switch (oid) { 2037 case KERN_PROC_ARGV: 2038 user_argv = (uintptr_t)pss.ps_argvstr; 2039 argvlen = pss.ps_nargvstr; 2040 break; 2041 case KERN_PROC_ENV: 2042 user_argv = (uintptr_t)pss.ps_envstr; 2043 argvlen = pss.ps_nenvstr; 2044 break; 2045 default: 2046 error = EINVAL; 2047 goto done; 2048 } 2049 2050 if (argvlen < 0) { 2051 error = EIO; 2052 goto done; 2053 } 2054 2055 2056 /* 2057 * Now copy each string. 2058 */ 2059 len = 0; /* bytes written to user buffer */ 2060 loaded = 0; /* bytes from argv already processed */ 2061 i = 0; /* To make compiler happy */ 2062 entry_len = PROC_PTRSZ(p); 2063 2064 for (; argvlen; --argvlen) { 2065 int finished = 0; 2066 vaddr_t base; 2067 size_t xlen; 2068 int j; 2069 2070 if (loaded == 0) { 2071 size_t rem = entry_len * argvlen; 2072 loaded = MIN(rem, PAGE_SIZE); 2073 error = copyin_vmspace(vmspace, 2074 (const void *)user_argv, argv, loaded); 2075 if (error) 2076 break; 2077 user_argv += loaded; 2078 i = 0; 2079 } 2080 2081 #ifdef COMPAT_NETBSD32 2082 if (p->p_flag & PK_32) { 2083 netbsd32_charp *argv32; 2084 2085 argv32 = (netbsd32_charp *)argv; 2086 base = (vaddr_t)NETBSD32PTR64(argv32[i++]); 2087 } else 2088 #endif 2089 base = (vaddr_t)argv[i++]; 2090 loaded -= entry_len; 2091 2092 /* 2093 * The program has messed around with its arguments, 2094 * possibly deleting some, and replacing them with 2095 * NULL's. Treat this as the last argument and not 2096 * a failure. 2097 */ 2098 if (base == 0) 2099 break; 2100 2101 while (!finished) { 2102 xlen = PAGE_SIZE - (base & PAGE_MASK); 2103 2104 aiov.iov_base = arg; 2105 aiov.iov_len = PAGE_SIZE; 2106 auio.uio_iov = &aiov; 2107 auio.uio_iovcnt = 1; 2108 auio.uio_offset = base; 2109 auio.uio_resid = xlen; 2110 auio.uio_rw = UIO_READ; 2111 UIO_SETUP_SYSSPACE(&auio); 2112 error = uvm_io(&vmspace->vm_map, &auio, 0); 2113 if (error) 2114 goto done; 2115 2116 /* Look for the end of the string */ 2117 for (j = 0; j < xlen; j++) { 2118 if (arg[j] == '\0') { 2119 xlen = j + 1; 2120 finished = 1; 2121 break; 2122 } 2123 } 2124 2125 /* Check for user buffer overflow */ 2126 if (len + xlen > *limit) { 2127 finished = 1; 2128 if (len > *limit) 2129 xlen = 0; 2130 else 2131 xlen = *limit - len; 2132 } 2133 2134 /* Copyout the page */ 2135 error = (*cb)(cookie, arg, len, xlen); 2136 if (error) 2137 goto done; 2138 2139 len += xlen; 2140 base += xlen; 2141 } 2142 } 2143 *limit = len; 2144 2145 done: 2146 kmem_free(argv, PAGE_SIZE); 2147 kmem_free(arg, PAGE_SIZE); 2148 uvmspace_free(vmspace); 2149 return error; 2150 } 2151 2152 /* 2153 * Fill in an eproc structure for the specified process. 2154 */ 2155 void 2156 fill_eproc(struct proc *p, struct eproc *ep, bool zombie) 2157 { 2158 struct tty *tp; 2159 struct lwp *l; 2160 2161 KASSERT(mutex_owned(proc_lock)); 2162 KASSERT(mutex_owned(p->p_lock)); 2163 2164 memset(ep, 0, sizeof(*ep)); 2165 2166 ep->e_paddr = p; 2167 ep->e_sess = p->p_session; 2168 if (p->p_cred) { 2169 kauth_cred_topcred(p->p_cred, &ep->e_pcred); 2170 kauth_cred_toucred(p->p_cred, &ep->e_ucred); 2171 } 2172 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) { 2173 struct vmspace *vm = p->p_vmspace; 2174 2175 ep->e_vm.vm_rssize = vm_resident_count(vm); 2176 ep->e_vm.vm_tsize = vm->vm_tsize; 2177 ep->e_vm.vm_dsize = vm->vm_dsize; 2178 ep->e_vm.vm_ssize = vm->vm_ssize; 2179 ep->e_vm.vm_map.size = vm->vm_map.size; 2180 2181 /* Pick the primary (first) LWP */ 2182 l = proc_active_lwp(p); 2183 KASSERT(l != NULL); 2184 lwp_lock(l); 2185 if (l->l_wchan) 2186 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN); 2187 lwp_unlock(l); 2188 } 2189 ep->e_ppid = p->p_ppid; 2190 if (p->p_pgrp && p->p_session) { 2191 ep->e_pgid = p->p_pgrp->pg_id; 2192 ep->e_jobc = p->p_pgrp->pg_jobc; 2193 ep->e_sid = p->p_session->s_sid; 2194 if ((p->p_lflag & PL_CONTROLT) && 2195 (tp = ep->e_sess->s_ttyp)) { 2196 ep->e_tdev = tp->t_dev; 2197 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID; 2198 ep->e_tsess = tp->t_session; 2199 } else 2200 ep->e_tdev = (uint32_t)NODEV; 2201 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0; 2202 if (SESS_LEADER(p)) 2203 ep->e_flag |= EPROC_SLEADER; 2204 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME); 2205 } 2206 ep->e_xsize = ep->e_xrssize = 0; 2207 ep->e_xccount = ep->e_xswrss = 0; 2208 } 2209 2210 /* 2211 * Fill in a kinfo_proc2 structure for the specified process. 2212 */ 2213 void 2214 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie) 2215 { 2216 struct tty *tp; 2217 struct lwp *l, *l2; 2218 struct timeval ut, st, rt; 2219 sigset_t ss1, ss2; 2220 struct rusage ru; 2221 struct vmspace *vm; 2222 2223 KASSERT(mutex_owned(proc_lock)); 2224 KASSERT(mutex_owned(p->p_lock)); 2225 2226 sigemptyset(&ss1); 2227 sigemptyset(&ss2); 2228 memset(ki, 0, sizeof(*ki)); 2229 2230 ki->p_paddr = PTRTOUINT64(p); 2231 ki->p_fd = PTRTOUINT64(p->p_fd); 2232 ki->p_cwdi = PTRTOUINT64(p->p_cwdi); 2233 ki->p_stats = PTRTOUINT64(p->p_stats); 2234 ki->p_limit = PTRTOUINT64(p->p_limit); 2235 ki->p_vmspace = PTRTOUINT64(p->p_vmspace); 2236 ki->p_sigacts = PTRTOUINT64(p->p_sigacts); 2237 ki->p_sess = PTRTOUINT64(p->p_session); 2238 ki->p_tsess = 0; /* may be changed if controlling tty below */ 2239 ki->p_ru = PTRTOUINT64(&p->p_stats->p_ru); 2240 ki->p_eflag = 0; 2241 ki->p_exitsig = p->p_exitsig; 2242 ki->p_flag = L_INMEM; /* Process never swapped out */ 2243 ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag); 2244 ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag); 2245 ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag); 2246 ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag); 2247 ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag); 2248 ki->p_pid = p->p_pid; 2249 ki->p_ppid = p->p_ppid; 2250 ki->p_uid = kauth_cred_geteuid(p->p_cred); 2251 ki->p_ruid = kauth_cred_getuid(p->p_cred); 2252 ki->p_gid = kauth_cred_getegid(p->p_cred); 2253 ki->p_rgid = kauth_cred_getgid(p->p_cred); 2254 ki->p_svuid = kauth_cred_getsvuid(p->p_cred); 2255 ki->p_svgid = kauth_cred_getsvgid(p->p_cred); 2256 ki->p_ngroups = kauth_cred_ngroups(p->p_cred); 2257 kauth_cred_getgroups(p->p_cred, ki->p_groups, 2258 min(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])), 2259 UIO_SYSSPACE); 2260 2261 ki->p_uticks = p->p_uticks; 2262 ki->p_sticks = p->p_sticks; 2263 ki->p_iticks = p->p_iticks; 2264 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */ 2265 ki->p_tracep = PTRTOUINT64(p->p_tracep); 2266 ki->p_traceflag = p->p_traceflag; 2267 2268 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t)); 2269 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t)); 2270 2271 ki->p_cpticks = 0; 2272 ki->p_pctcpu = p->p_pctcpu; 2273 ki->p_estcpu = 0; 2274 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */ 2275 ki->p_realstat = p->p_stat; 2276 ki->p_nice = p->p_nice; 2277 ki->p_xstat = P_WAITSTATUS(p); 2278 ki->p_acflag = p->p_acflag; 2279 2280 strncpy(ki->p_comm, p->p_comm, 2281 min(sizeof(ki->p_comm), sizeof(p->p_comm))); 2282 strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename)); 2283 2284 ki->p_nlwps = p->p_nlwps; 2285 ki->p_realflag = ki->p_flag; 2286 2287 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) { 2288 vm = p->p_vmspace; 2289 ki->p_vm_rssize = vm_resident_count(vm); 2290 ki->p_vm_tsize = vm->vm_tsize; 2291 ki->p_vm_dsize = vm->vm_dsize; 2292 ki->p_vm_ssize = vm->vm_ssize; 2293 ki->p_vm_vsize = atop(vm->vm_map.size); 2294 /* 2295 * Since the stack is initially mapped mostly with 2296 * PROT_NONE and grown as needed, adjust the "mapped size" 2297 * to skip the unused stack portion. 2298 */ 2299 ki->p_vm_msize = 2300 atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize; 2301 2302 /* Pick the primary (first) LWP */ 2303 l = proc_active_lwp(p); 2304 KASSERT(l != NULL); 2305 lwp_lock(l); 2306 ki->p_nrlwps = p->p_nrlwps; 2307 ki->p_forw = 0; 2308 ki->p_back = 0; 2309 ki->p_addr = PTRTOUINT64(l->l_addr); 2310 ki->p_stat = l->l_stat; 2311 ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag); 2312 ki->p_swtime = l->l_swtime; 2313 ki->p_slptime = l->l_slptime; 2314 if (l->l_stat == LSONPROC) 2315 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags; 2316 else 2317 ki->p_schedflags = 0; 2318 ki->p_priority = lwp_eprio(l); 2319 ki->p_usrpri = l->l_priority; 2320 if (l->l_wchan) 2321 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg)); 2322 ki->p_wchan = PTRTOUINT64(l->l_wchan); 2323 ki->p_cpuid = cpu_index(l->l_cpu); 2324 lwp_unlock(l); 2325 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2326 /* This is hardly correct, but... */ 2327 sigplusset(&l->l_sigpend.sp_set, &ss1); 2328 sigplusset(&l->l_sigmask, &ss2); 2329 ki->p_cpticks += l->l_cpticks; 2330 ki->p_pctcpu += l->l_pctcpu; 2331 ki->p_estcpu += l->l_estcpu; 2332 } 2333 } 2334 sigplusset(&p->p_sigpend.sp_set, &ss2); 2335 memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t)); 2336 memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t)); 2337 2338 if (p->p_session != NULL) { 2339 ki->p_sid = p->p_session->s_sid; 2340 ki->p__pgid = p->p_pgrp->pg_id; 2341 if (p->p_session->s_ttyvp) 2342 ki->p_eflag |= EPROC_CTTY; 2343 if (SESS_LEADER(p)) 2344 ki->p_eflag |= EPROC_SLEADER; 2345 strncpy(ki->p_login, p->p_session->s_login, 2346 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login)); 2347 ki->p_jobc = p->p_pgrp->pg_jobc; 2348 if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) { 2349 ki->p_tdev = tp->t_dev; 2350 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID; 2351 ki->p_tsess = PTRTOUINT64(tp->t_session); 2352 } else { 2353 ki->p_tdev = (int32_t)NODEV; 2354 } 2355 } 2356 2357 if (!P_ZOMBIE(p) && !zombie) { 2358 ki->p_uvalid = 1; 2359 ki->p_ustart_sec = p->p_stats->p_start.tv_sec; 2360 ki->p_ustart_usec = p->p_stats->p_start.tv_usec; 2361 2362 calcru(p, &ut, &st, NULL, &rt); 2363 ki->p_rtime_sec = rt.tv_sec; 2364 ki->p_rtime_usec = rt.tv_usec; 2365 ki->p_uutime_sec = ut.tv_sec; 2366 ki->p_uutime_usec = ut.tv_usec; 2367 ki->p_ustime_sec = st.tv_sec; 2368 ki->p_ustime_usec = st.tv_usec; 2369 2370 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru)); 2371 ki->p_uru_nvcsw = 0; 2372 ki->p_uru_nivcsw = 0; 2373 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 2374 ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw); 2375 ki->p_uru_nivcsw += l2->l_nivcsw; 2376 ruadd(&ru, &l2->l_ru); 2377 } 2378 ki->p_uru_maxrss = ru.ru_maxrss; 2379 ki->p_uru_ixrss = ru.ru_ixrss; 2380 ki->p_uru_idrss = ru.ru_idrss; 2381 ki->p_uru_isrss = ru.ru_isrss; 2382 ki->p_uru_minflt = ru.ru_minflt; 2383 ki->p_uru_majflt = ru.ru_majflt; 2384 ki->p_uru_nswap = ru.ru_nswap; 2385 ki->p_uru_inblock = ru.ru_inblock; 2386 ki->p_uru_oublock = ru.ru_oublock; 2387 ki->p_uru_msgsnd = ru.ru_msgsnd; 2388 ki->p_uru_msgrcv = ru.ru_msgrcv; 2389 ki->p_uru_nsignals = ru.ru_nsignals; 2390 2391 timeradd(&p->p_stats->p_cru.ru_utime, 2392 &p->p_stats->p_cru.ru_stime, &ut); 2393 ki->p_uctime_sec = ut.tv_sec; 2394 ki->p_uctime_usec = ut.tv_usec; 2395 } 2396 } 2397 2398 2399 int 2400 proc_find_locked(struct lwp *l, struct proc **p, pid_t pid) 2401 { 2402 int error; 2403 2404 mutex_enter(proc_lock); 2405 if (pid == -1) 2406 *p = l->l_proc; 2407 else 2408 *p = proc_find(pid); 2409 2410 if (*p == NULL) { 2411 if (pid != -1) 2412 mutex_exit(proc_lock); 2413 return ESRCH; 2414 } 2415 if (pid != -1) 2416 mutex_enter((*p)->p_lock); 2417 mutex_exit(proc_lock); 2418 2419 error = kauth_authorize_process(l->l_cred, 2420 KAUTH_PROCESS_CANSEE, *p, 2421 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 2422 if (error) { 2423 if (pid != -1) 2424 mutex_exit((*p)->p_lock); 2425 } 2426 return error; 2427 } 2428 2429 static int 2430 fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp) 2431 { 2432 #ifndef _RUMPKERNEL 2433 int error; 2434 struct proc *p; 2435 char *path; 2436 size_t len; 2437 2438 if ((error = proc_find_locked(l, &p, pid)) != 0) 2439 return error; 2440 2441 if (p->p_textvp == NULL) { 2442 if (pid != -1) 2443 mutex_exit(p->p_lock); 2444 return ENOENT; 2445 } 2446 2447 path = PNBUF_GET(); 2448 error = vnode_to_path(path, MAXPATHLEN / 2, p->p_textvp, l, p); 2449 if (error) 2450 goto out; 2451 2452 len = strlen(path) + 1; 2453 if (oldp != NULL) { 2454 error = sysctl_copyout(l, path, oldp, *oldlenp); 2455 if (error == 0 && *oldlenp < len) 2456 error = ENOSPC; 2457 } 2458 *oldlenp = len; 2459 out: 2460 PNBUF_PUT(path); 2461 if (pid != -1) 2462 mutex_exit(p->p_lock); 2463 return error; 2464 #else 2465 return 0; 2466 #endif 2467 } 2468