1 /* $NetBSD: kern_lwp.c,v 1.202 2019/06/04 11:54:03 kamil Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Overview 34 * 35 * Lightweight processes (LWPs) are the basic unit or thread of 36 * execution within the kernel. The core state of an LWP is described 37 * by "struct lwp", also known as lwp_t. 38 * 39 * Each LWP is contained within a process (described by "struct proc"), 40 * Every process contains at least one LWP, but may contain more. The 41 * process describes attributes shared among all of its LWPs such as a 42 * private address space, global execution state (stopped, active, 43 * zombie, ...), signal disposition and so on. On a multiprocessor 44 * machine, multiple LWPs be executing concurrently in the kernel. 45 * 46 * Execution states 47 * 48 * At any given time, an LWP has overall state that is described by 49 * lwp::l_stat. The states are broken into two sets below. The first 50 * set is guaranteed to represent the absolute, current state of the 51 * LWP: 52 * 53 * LSONPROC 54 * 55 * On processor: the LWP is executing on a CPU, either in the 56 * kernel or in user space. 57 * 58 * LSRUN 59 * 60 * Runnable: the LWP is parked on a run queue, and may soon be 61 * chosen to run by an idle processor, or by a processor that 62 * has been asked to preempt a currently runnning but lower 63 * priority LWP. 64 * 65 * LSIDL 66 * 67 * Idle: the LWP has been created but has not yet executed, 68 * or it has ceased executing a unit of work and is waiting 69 * to be started again. 70 * 71 * LSSUSPENDED: 72 * 73 * Suspended: the LWP has had its execution suspended by 74 * another LWP in the same process using the _lwp_suspend() 75 * system call. User-level LWPs also enter the suspended 76 * state when the system is shutting down. 77 * 78 * The second set represent a "statement of intent" on behalf of the 79 * LWP. The LWP may in fact be executing on a processor, may be 80 * sleeping or idle. It is expected to take the necessary action to 81 * stop executing or become "running" again within a short timeframe. 82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 83 * Importantly, it indicates that its state is tied to a CPU. 84 * 85 * LSZOMB: 86 * 87 * Dead or dying: the LWP has released most of its resources 88 * and is about to switch away into oblivion, or has already 89 * switched away. When it switches away, its few remaining 90 * resources can be collected. 91 * 92 * LSSLEEP: 93 * 94 * Sleeping: the LWP has entered itself onto a sleep queue, and 95 * has switched away or will switch away shortly to allow other 96 * LWPs to run on the CPU. 97 * 98 * LSSTOP: 99 * 100 * Stopped: the LWP has been stopped as a result of a job 101 * control signal, or as a result of the ptrace() interface. 102 * 103 * Stopped LWPs may run briefly within the kernel to handle 104 * signals that they receive, but will not return to user space 105 * until their process' state is changed away from stopped. 106 * 107 * Single LWPs within a process can not be set stopped 108 * selectively: all actions that can stop or continue LWPs 109 * occur at the process level. 110 * 111 * State transitions 112 * 113 * Note that the LSSTOP state may only be set when returning to 114 * user space in userret(), or when sleeping interruptably. The 115 * LSSUSPENDED state may only be set in userret(). Before setting 116 * those states, we try to ensure that the LWPs will release all 117 * locks that they hold, and at a minimum try to ensure that the 118 * LWP can be set runnable again by a signal. 119 * 120 * LWPs may transition states in the following ways: 121 * 122 * RUN -------> ONPROC ONPROC -----> RUN 123 * > SLEEP 124 * > STOPPED 125 * > SUSPENDED 126 * > ZOMB 127 * > IDL (special cases) 128 * 129 * STOPPED ---> RUN SUSPENDED --> RUN 130 * > SLEEP 131 * 132 * SLEEP -----> ONPROC IDL --------> RUN 133 * > RUN > SUSPENDED 134 * > STOPPED > STOPPED 135 * > ONPROC (special cases) 136 * 137 * Some state transitions are only possible with kernel threads (eg 138 * ONPROC -> IDL) and happen under tightly controlled circumstances 139 * free of unwanted side effects. 140 * 141 * Migration 142 * 143 * Migration of threads from one CPU to another could be performed 144 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 145 * functions. The universal lwp_migrate() function should be used for 146 * any other cases. Subsystems in the kernel must be aware that CPU 147 * of LWP may change, while it is not locked. 148 * 149 * Locking 150 * 151 * The majority of fields in 'struct lwp' are covered by a single, 152 * general spin lock pointed to by lwp::l_mutex. The locks covering 153 * each field are documented in sys/lwp.h. 154 * 155 * State transitions must be made with the LWP's general lock held, 156 * and may cause the LWP's lock pointer to change. Manipulation of 157 * the general lock is not performed directly, but through calls to 158 * lwp_lock(), lwp_unlock() and others. It should be noted that the 159 * adaptive locks are not allowed to be released while the LWP's lock 160 * is being held (unlike for other spin-locks). 161 * 162 * States and their associated locks: 163 * 164 * LSONPROC, LSZOMB: 165 * 166 * Always covered by spc_lwplock, which protects running LWPs. 167 * This is a per-CPU lock and matches lwp::l_cpu. 168 * 169 * LSIDL, LSRUN: 170 * 171 * Always covered by spc_mutex, which protects the run queues. 172 * This is a per-CPU lock and matches lwp::l_cpu. 173 * 174 * LSSLEEP: 175 * 176 * Covered by a lock associated with the sleep queue that the 177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex. 178 * 179 * LSSTOP, LSSUSPENDED: 180 * 181 * If the LWP was previously sleeping (l_wchan != NULL), then 182 * l_mutex references the sleep queue lock. If the LWP was 183 * runnable or on the CPU when halted, or has been removed from 184 * the sleep queue since halted, then the lock is spc_lwplock. 185 * 186 * The lock order is as follows: 187 * 188 * spc::spc_lwplock -> 189 * sleeptab::st_mutex -> 190 * tschain_t::tc_mutex -> 191 * spc::spc_mutex 192 * 193 * Each process has an scheduler state lock (proc::p_lock), and a 194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 195 * so on. When an LWP is to be entered into or removed from one of the 196 * following states, p_lock must be held and the process wide counters 197 * adjusted: 198 * 199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 200 * 201 * (But not always for kernel threads. There are some special cases 202 * as mentioned above. See kern_softint.c.) 203 * 204 * Note that an LWP is considered running or likely to run soon if in 205 * one of the following states. This affects the value of p_nrlwps: 206 * 207 * LSRUN, LSONPROC, LSSLEEP 208 * 209 * p_lock does not need to be held when transitioning among these 210 * three states, hence p_lock is rarely taken for state transitions. 211 */ 212 213 #include <sys/cdefs.h> 214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.202 2019/06/04 11:54:03 kamil Exp $"); 215 216 #include "opt_ddb.h" 217 #include "opt_lockdebug.h" 218 #include "opt_dtrace.h" 219 220 #define _LWP_API_PRIVATE 221 222 #include <sys/param.h> 223 #include <sys/systm.h> 224 #include <sys/cpu.h> 225 #include <sys/pool.h> 226 #include <sys/proc.h> 227 #include <sys/syscallargs.h> 228 #include <sys/syscall_stats.h> 229 #include <sys/kauth.h> 230 #include <sys/pserialize.h> 231 #include <sys/sleepq.h> 232 #include <sys/lockdebug.h> 233 #include <sys/kmem.h> 234 #include <sys/pset.h> 235 #include <sys/intr.h> 236 #include <sys/lwpctl.h> 237 #include <sys/atomic.h> 238 #include <sys/filedesc.h> 239 #include <sys/fstrans.h> 240 #include <sys/dtrace_bsd.h> 241 #include <sys/sdt.h> 242 #include <sys/xcall.h> 243 #include <sys/uidinfo.h> 244 #include <sys/sysctl.h> 245 #include <sys/psref.h> 246 247 #include <uvm/uvm_extern.h> 248 #include <uvm/uvm_object.h> 249 250 static pool_cache_t lwp_cache __read_mostly; 251 struct lwplist alllwp __cacheline_aligned; 252 253 static void lwp_dtor(void *, void *); 254 255 /* DTrace proc provider probes */ 256 SDT_PROVIDER_DEFINE(proc); 257 258 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *"); 259 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *"); 260 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *"); 261 262 struct turnstile turnstile0; 263 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = { 264 #ifdef LWP0_CPU_INFO 265 .l_cpu = LWP0_CPU_INFO, 266 #endif 267 #ifdef LWP0_MD_INITIALIZER 268 .l_md = LWP0_MD_INITIALIZER, 269 #endif 270 .l_proc = &proc0, 271 .l_lid = 1, 272 .l_flag = LW_SYSTEM, 273 .l_stat = LSONPROC, 274 .l_ts = &turnstile0, 275 .l_syncobj = &sched_syncobj, 276 .l_refcnt = 1, 277 .l_priority = PRI_USER + NPRI_USER - 1, 278 .l_inheritedprio = -1, 279 .l_class = SCHED_OTHER, 280 .l_psid = PS_NONE, 281 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders), 282 .l_name = __UNCONST("swapper"), 283 .l_fd = &filedesc0, 284 }; 285 286 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO); 287 288 /* 289 * sysctl helper routine for kern.maxlwp. Ensures that the new 290 * values are not too low or too high. 291 */ 292 static int 293 sysctl_kern_maxlwp(SYSCTLFN_ARGS) 294 { 295 int error, nmaxlwp; 296 struct sysctlnode node; 297 298 nmaxlwp = maxlwp; 299 node = *rnode; 300 node.sysctl_data = &nmaxlwp; 301 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 302 if (error || newp == NULL) 303 return error; 304 305 if (nmaxlwp < 0 || nmaxlwp >= 65536) 306 return EINVAL; 307 if (nmaxlwp > cpu_maxlwp()) 308 return EINVAL; 309 maxlwp = nmaxlwp; 310 311 return 0; 312 } 313 314 static void 315 sysctl_kern_lwp_setup(void) 316 { 317 struct sysctllog *clog = NULL; 318 319 sysctl_createv(&clog, 0, NULL, NULL, 320 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 321 CTLTYPE_INT, "maxlwp", 322 SYSCTL_DESCR("Maximum number of simultaneous threads"), 323 sysctl_kern_maxlwp, 0, NULL, 0, 324 CTL_KERN, CTL_CREATE, CTL_EOL); 325 } 326 327 void 328 lwpinit(void) 329 { 330 331 LIST_INIT(&alllwp); 332 lwpinit_specificdata(); 333 lwp_sys_init(); 334 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0, 335 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL); 336 337 maxlwp = cpu_maxlwp(); 338 sysctl_kern_lwp_setup(); 339 } 340 341 void 342 lwp0_init(void) 343 { 344 struct lwp *l = &lwp0; 345 346 KASSERT((void *)uvm_lwp_getuarea(l) != NULL); 347 KASSERT(l->l_lid == proc0.p_nlwpid); 348 349 LIST_INSERT_HEAD(&alllwp, l, l_list); 350 351 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE); 352 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l); 353 cv_init(&l->l_sigcv, "sigwait"); 354 cv_init(&l->l_waitcv, "vfork"); 355 356 kauth_cred_hold(proc0.p_cred); 357 l->l_cred = proc0.p_cred; 358 359 kdtrace_thread_ctor(NULL, l); 360 lwp_initspecific(l); 361 362 SYSCALL_TIME_LWP_INIT(l); 363 } 364 365 static void 366 lwp_dtor(void *arg, void *obj) 367 { 368 lwp_t *l = obj; 369 uint64_t where; 370 (void)l; 371 372 /* 373 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu() 374 * calls will exit before memory of LWP is returned to the pool, where 375 * KVA of LWP structure might be freed and re-used for other purposes. 376 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu() 377 * callers, therefore cross-call to all CPUs will do the job. Also, 378 * the value of l->l_cpu must be still valid at this point. 379 */ 380 KASSERT(l->l_cpu != NULL); 381 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL); 382 xc_wait(where); 383 } 384 385 /* 386 * Set an suspended. 387 * 388 * Must be called with p_lock held, and the LWP locked. Will unlock the 389 * LWP before return. 390 */ 391 int 392 lwp_suspend(struct lwp *curl, struct lwp *t) 393 { 394 int error; 395 396 KASSERT(mutex_owned(t->l_proc->p_lock)); 397 KASSERT(lwp_locked(t, NULL)); 398 399 KASSERT(curl != t || curl->l_stat == LSONPROC); 400 401 /* 402 * If the current LWP has been told to exit, we must not suspend anyone 403 * else or deadlock could occur. We won't return to userspace. 404 */ 405 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 406 lwp_unlock(t); 407 return (EDEADLK); 408 } 409 410 error = 0; 411 412 switch (t->l_stat) { 413 case LSRUN: 414 case LSONPROC: 415 t->l_flag |= LW_WSUSPEND; 416 lwp_need_userret(t); 417 lwp_unlock(t); 418 break; 419 420 case LSSLEEP: 421 t->l_flag |= LW_WSUSPEND; 422 423 /* 424 * Kick the LWP and try to get it to the kernel boundary 425 * so that it will release any locks that it holds. 426 * setrunnable() will release the lock. 427 */ 428 if ((t->l_flag & LW_SINTR) != 0) 429 setrunnable(t); 430 else 431 lwp_unlock(t); 432 break; 433 434 case LSSUSPENDED: 435 lwp_unlock(t); 436 break; 437 438 case LSSTOP: 439 t->l_flag |= LW_WSUSPEND; 440 setrunnable(t); 441 break; 442 443 case LSIDL: 444 case LSZOMB: 445 error = EINTR; /* It's what Solaris does..... */ 446 lwp_unlock(t); 447 break; 448 } 449 450 return (error); 451 } 452 453 /* 454 * Restart a suspended LWP. 455 * 456 * Must be called with p_lock held, and the LWP locked. Will unlock the 457 * LWP before return. 458 */ 459 void 460 lwp_continue(struct lwp *l) 461 { 462 463 KASSERT(mutex_owned(l->l_proc->p_lock)); 464 KASSERT(lwp_locked(l, NULL)); 465 466 /* If rebooting or not suspended, then just bail out. */ 467 if ((l->l_flag & LW_WREBOOT) != 0) { 468 lwp_unlock(l); 469 return; 470 } 471 472 l->l_flag &= ~LW_WSUSPEND; 473 474 if (l->l_stat != LSSUSPENDED) { 475 lwp_unlock(l); 476 return; 477 } 478 479 /* setrunnable() will release the lock. */ 480 setrunnable(l); 481 } 482 483 /* 484 * Restart a stopped LWP. 485 * 486 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the 487 * LWP before return. 488 */ 489 void 490 lwp_unstop(struct lwp *l) 491 { 492 struct proc *p = l->l_proc; 493 494 KASSERT(mutex_owned(proc_lock)); 495 KASSERT(mutex_owned(p->p_lock)); 496 497 lwp_lock(l); 498 499 /* If not stopped, then just bail out. */ 500 if (l->l_stat != LSSTOP) { 501 lwp_unlock(l); 502 return; 503 } 504 505 p->p_stat = SACTIVE; 506 p->p_sflag &= ~PS_STOPPING; 507 508 if (!p->p_waited) 509 p->p_pptr->p_nstopchild--; 510 511 if (l->l_wchan == NULL) { 512 /* setrunnable() will release the lock. */ 513 setrunnable(l); 514 } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) { 515 /* setrunnable() so we can receive the signal */ 516 setrunnable(l); 517 } else { 518 l->l_stat = LSSLEEP; 519 p->p_nrlwps++; 520 lwp_unlock(l); 521 } 522 } 523 524 /* 525 * Wait for an LWP within the current process to exit. If 'lid' is 526 * non-zero, we are waiting for a specific LWP. 527 * 528 * Must be called with p->p_lock held. 529 */ 530 int 531 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting) 532 { 533 const lwpid_t curlid = l->l_lid; 534 proc_t *p = l->l_proc; 535 lwp_t *l2; 536 int error; 537 538 KASSERT(mutex_owned(p->p_lock)); 539 540 p->p_nlwpwait++; 541 l->l_waitingfor = lid; 542 543 for (;;) { 544 int nfound; 545 546 /* 547 * Avoid a race between exit1() and sigexit(): if the 548 * process is dumping core, then we need to bail out: call 549 * into lwp_userret() where we will be suspended until the 550 * deed is done. 551 */ 552 if ((p->p_sflag & PS_WCORE) != 0) { 553 mutex_exit(p->p_lock); 554 lwp_userret(l); 555 KASSERT(false); 556 } 557 558 /* 559 * First off, drain any detached LWP that is waiting to be 560 * reaped. 561 */ 562 while ((l2 = p->p_zomblwp) != NULL) { 563 p->p_zomblwp = NULL; 564 lwp_free(l2, false, false);/* releases proc mutex */ 565 mutex_enter(p->p_lock); 566 } 567 568 /* 569 * Now look for an LWP to collect. If the whole process is 570 * exiting, count detached LWPs as eligible to be collected, 571 * but don't drain them here. 572 */ 573 nfound = 0; 574 error = 0; 575 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 576 /* 577 * If a specific wait and the target is waiting on 578 * us, then avoid deadlock. This also traps LWPs 579 * that try to wait on themselves. 580 * 581 * Note that this does not handle more complicated 582 * cycles, like: t1 -> t2 -> t3 -> t1. The process 583 * can still be killed so it is not a major problem. 584 */ 585 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 586 error = EDEADLK; 587 break; 588 } 589 if (l2 == l) 590 continue; 591 if ((l2->l_prflag & LPR_DETACHED) != 0) { 592 nfound += exiting; 593 continue; 594 } 595 if (lid != 0) { 596 if (l2->l_lid != lid) 597 continue; 598 /* 599 * Mark this LWP as the first waiter, if there 600 * is no other. 601 */ 602 if (l2->l_waiter == 0) 603 l2->l_waiter = curlid; 604 } else if (l2->l_waiter != 0) { 605 /* 606 * It already has a waiter - so don't 607 * collect it. If the waiter doesn't 608 * grab it we'll get another chance 609 * later. 610 */ 611 nfound++; 612 continue; 613 } 614 nfound++; 615 616 /* No need to lock the LWP in order to see LSZOMB. */ 617 if (l2->l_stat != LSZOMB) 618 continue; 619 620 /* 621 * We're no longer waiting. Reset the "first waiter" 622 * pointer on the target, in case it was us. 623 */ 624 l->l_waitingfor = 0; 625 l2->l_waiter = 0; 626 p->p_nlwpwait--; 627 if (departed) 628 *departed = l2->l_lid; 629 sched_lwp_collect(l2); 630 631 /* lwp_free() releases the proc lock. */ 632 lwp_free(l2, false, false); 633 mutex_enter(p->p_lock); 634 return 0; 635 } 636 637 if (error != 0) 638 break; 639 if (nfound == 0) { 640 error = ESRCH; 641 break; 642 } 643 644 /* 645 * Note: since the lock will be dropped, need to restart on 646 * wakeup to run all LWPs again, e.g. there may be new LWPs. 647 */ 648 if (exiting) { 649 KASSERT(p->p_nlwps > 1); 650 cv_wait(&p->p_lwpcv, p->p_lock); 651 error = EAGAIN; 652 break; 653 } 654 655 /* 656 * If all other LWPs are waiting for exits or suspends 657 * and the supply of zombies and potential zombies is 658 * exhausted, then we are about to deadlock. 659 * 660 * If the process is exiting (and this LWP is not the one 661 * that is coordinating the exit) then bail out now. 662 */ 663 if ((p->p_sflag & PS_WEXIT) != 0 || 664 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) { 665 error = EDEADLK; 666 break; 667 } 668 669 /* 670 * Sit around and wait for something to happen. We'll be 671 * awoken if any of the conditions examined change: if an 672 * LWP exits, is collected, or is detached. 673 */ 674 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 675 break; 676 } 677 678 /* 679 * We didn't find any LWPs to collect, we may have received a 680 * signal, or some other condition has caused us to bail out. 681 * 682 * If waiting on a specific LWP, clear the waiters marker: some 683 * other LWP may want it. Then, kick all the remaining waiters 684 * so that they can re-check for zombies and for deadlock. 685 */ 686 if (lid != 0) { 687 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 688 if (l2->l_lid == lid) { 689 if (l2->l_waiter == curlid) 690 l2->l_waiter = 0; 691 break; 692 } 693 } 694 } 695 p->p_nlwpwait--; 696 l->l_waitingfor = 0; 697 cv_broadcast(&p->p_lwpcv); 698 699 return error; 700 } 701 702 static lwpid_t 703 lwp_find_free_lid(lwpid_t try_lid, lwp_t * new_lwp, proc_t *p) 704 { 705 #define LID_SCAN (1u << 31) 706 lwp_t *scan, *free_before; 707 lwpid_t nxt_lid; 708 709 /* 710 * We want the first unused lid greater than or equal to 711 * try_lid (modulo 2^31). 712 * (If nothing else ld.elf_so doesn't want lwpid with the top bit set.) 713 * We must not return 0, and avoiding 'LID_SCAN - 1' makes 714 * the outer test easier. 715 * This would be much easier if the list were sorted in 716 * increasing order. 717 * The list is kept sorted in decreasing order. 718 * This code is only used after a process has generated 2^31 lwp. 719 * 720 * Code assumes it can always find an id. 721 */ 722 723 try_lid &= LID_SCAN - 1; 724 if (try_lid <= 1) 725 try_lid = 2; 726 727 free_before = NULL; 728 nxt_lid = LID_SCAN - 1; 729 LIST_FOREACH(scan, &p->p_lwps, l_sibling) { 730 if (scan->l_lid != nxt_lid) { 731 /* There are available lid before this entry */ 732 free_before = scan; 733 if (try_lid > scan->l_lid) 734 break; 735 } 736 if (try_lid == scan->l_lid) { 737 /* The ideal lid is busy, take a higher one */ 738 if (free_before != NULL) { 739 try_lid = free_before->l_lid + 1; 740 break; 741 } 742 /* No higher ones, reuse low numbers */ 743 try_lid = 2; 744 } 745 746 nxt_lid = scan->l_lid - 1; 747 if (LIST_NEXT(scan, l_sibling) == NULL) { 748 /* The value we have is lower than any existing lwp */ 749 LIST_INSERT_AFTER(scan, new_lwp, l_sibling); 750 return try_lid; 751 } 752 } 753 754 LIST_INSERT_BEFORE(free_before, new_lwp, l_sibling); 755 return try_lid; 756 } 757 758 /* 759 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 760 * The new LWP is created in state LSIDL and must be set running, 761 * suspended, or stopped by the caller. 762 */ 763 int 764 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags, 765 void *stack, size_t stacksize, void (*func)(void *), void *arg, 766 lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask, 767 const stack_t *sigstk) 768 { 769 struct lwp *l2, *isfree; 770 turnstile_t *ts; 771 lwpid_t lid; 772 773 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 774 775 /* 776 * Enforce limits, excluding the first lwp and kthreads. 777 */ 778 if (p2->p_nlwps != 0 && p2 != &proc0) { 779 uid_t uid = kauth_cred_getuid(l1->l_cred); 780 int count = chglwpcnt(uid, 1); 781 if (__predict_false(count > 782 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) { 783 if (kauth_authorize_process(l1->l_cred, 784 KAUTH_PROCESS_RLIMIT, p2, 785 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 786 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR)) 787 != 0) { 788 (void)chglwpcnt(uid, -1); 789 return EAGAIN; 790 } 791 } 792 } 793 794 /* 795 * First off, reap any detached LWP waiting to be collected. 796 * We can re-use its LWP structure and turnstile. 797 */ 798 isfree = NULL; 799 if (p2->p_zomblwp != NULL) { 800 mutex_enter(p2->p_lock); 801 if ((isfree = p2->p_zomblwp) != NULL) { 802 p2->p_zomblwp = NULL; 803 lwp_free(isfree, true, false);/* releases proc mutex */ 804 } else 805 mutex_exit(p2->p_lock); 806 } 807 if (isfree == NULL) { 808 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 809 memset(l2, 0, sizeof(*l2)); 810 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK); 811 SLIST_INIT(&l2->l_pi_lenders); 812 } else { 813 l2 = isfree; 814 ts = l2->l_ts; 815 KASSERT(l2->l_inheritedprio == -1); 816 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 817 memset(l2, 0, sizeof(*l2)); 818 l2->l_ts = ts; 819 } 820 821 l2->l_stat = LSIDL; 822 l2->l_proc = p2; 823 l2->l_refcnt = 1; 824 l2->l_class = sclass; 825 826 /* 827 * If vfork(), we want the LWP to run fast and on the same CPU 828 * as its parent, so that it can reuse the VM context and cache 829 * footprint on the local CPU. 830 */ 831 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false); 832 l2->l_kpribase = PRI_KERNEL; 833 l2->l_priority = l1->l_priority; 834 l2->l_inheritedprio = -1; 835 l2->l_protectprio = -1; 836 l2->l_auxprio = -1; 837 l2->l_flag = 0; 838 l2->l_pflag = LP_MPSAFE; 839 TAILQ_INIT(&l2->l_ld_locks); 840 l2->l_psrefs = 0; 841 842 /* 843 * For vfork, borrow parent's lwpctl context if it exists. 844 * This also causes us to return via lwp_userret. 845 */ 846 if (flags & LWP_VFORK && l1->l_lwpctl) { 847 l2->l_lwpctl = l1->l_lwpctl; 848 l2->l_flag |= LW_LWPCTL; 849 } 850 851 /* 852 * If not the first LWP in the process, grab a reference to the 853 * descriptor table. 854 */ 855 l2->l_fd = p2->p_fd; 856 if (p2->p_nlwps != 0) { 857 KASSERT(l1->l_proc == p2); 858 fd_hold(l2); 859 } else { 860 KASSERT(l1->l_proc != p2); 861 } 862 863 if (p2->p_flag & PK_SYSTEM) { 864 /* Mark it as a system LWP. */ 865 l2->l_flag |= LW_SYSTEM; 866 } 867 868 kpreempt_disable(); 869 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex; 870 l2->l_cpu = l1->l_cpu; 871 kpreempt_enable(); 872 873 kdtrace_thread_ctor(NULL, l2); 874 lwp_initspecific(l2); 875 sched_lwp_fork(l1, l2); 876 lwp_update_creds(l2); 877 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 878 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 879 cv_init(&l2->l_sigcv, "sigwait"); 880 cv_init(&l2->l_waitcv, "vfork"); 881 l2->l_syncobj = &sched_syncobj; 882 PSREF_DEBUG_INIT_LWP(l2); 883 884 if (rnewlwpp != NULL) 885 *rnewlwpp = l2; 886 887 /* 888 * PCU state needs to be saved before calling uvm_lwp_fork() so that 889 * the MD cpu_lwp_fork() can copy the saved state to the new LWP. 890 */ 891 pcu_save_all(l1); 892 893 uvm_lwp_setuarea(l2, uaddr); 894 uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2); 895 896 if ((flags & LWP_PIDLID) != 0) { 897 lid = proc_alloc_pid(p2); 898 l2->l_pflag |= LP_PIDLID; 899 } else { 900 lid = 0; 901 } 902 903 mutex_enter(p2->p_lock); 904 905 if ((flags & LWP_DETACHED) != 0) { 906 l2->l_prflag = LPR_DETACHED; 907 p2->p_ndlwps++; 908 } else 909 l2->l_prflag = 0; 910 911 l2->l_sigstk = *sigstk; 912 l2->l_sigmask = *sigmask; 913 TAILQ_INIT(&l2->l_sigpend.sp_info); 914 sigemptyset(&l2->l_sigpend.sp_set); 915 916 if (__predict_true(lid == 0)) { 917 /* 918 * XXX: l_lid are expected to be unique (for a process) 919 * if LWP_PIDLID is sometimes set this won't be true. 920 * Once 2^31 threads have been allocated we have to 921 * scan to ensure we allocate a unique value. 922 */ 923 lid = ++p2->p_nlwpid; 924 if (__predict_false(lid & LID_SCAN)) { 925 lid = lwp_find_free_lid(lid, l2, p2); 926 p2->p_nlwpid = lid | LID_SCAN; 927 /* l2 as been inserted into p_lwps in order */ 928 goto skip_insert; 929 } 930 p2->p_nlwpid = lid; 931 } 932 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 933 skip_insert: 934 l2->l_lid = lid; 935 p2->p_nlwps++; 936 p2->p_nrlwps++; 937 938 KASSERT(l2->l_affinity == NULL); 939 940 if ((p2->p_flag & PK_SYSTEM) == 0) { 941 /* Inherit the affinity mask. */ 942 if (l1->l_affinity) { 943 /* 944 * Note that we hold the state lock while inheriting 945 * the affinity to avoid race with sched_setaffinity(). 946 */ 947 lwp_lock(l1); 948 if (l1->l_affinity) { 949 kcpuset_use(l1->l_affinity); 950 l2->l_affinity = l1->l_affinity; 951 } 952 lwp_unlock(l1); 953 } 954 lwp_lock(l2); 955 /* Inherit a processor-set */ 956 l2->l_psid = l1->l_psid; 957 /* Look for a CPU to start */ 958 l2->l_cpu = sched_takecpu(l2); 959 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex); 960 } 961 mutex_exit(p2->p_lock); 962 963 SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0); 964 965 mutex_enter(proc_lock); 966 LIST_INSERT_HEAD(&alllwp, l2, l_list); 967 mutex_exit(proc_lock); 968 969 SYSCALL_TIME_LWP_INIT(l2); 970 971 if (p2->p_emul->e_lwp_fork) 972 (*p2->p_emul->e_lwp_fork)(l1, l2); 973 974 return (0); 975 } 976 977 /* 978 * Called by MD code when a new LWP begins execution. Must be called 979 * with the previous LWP locked (so at splsched), or if there is no 980 * previous LWP, at splsched. 981 */ 982 void 983 lwp_startup(struct lwp *prev, struct lwp *new_lwp) 984 { 985 KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev); 986 987 SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0); 988 989 KASSERT(kpreempt_disabled()); 990 if (prev != NULL) { 991 /* 992 * Normalize the count of the spin-mutexes, it was 993 * increased in mi_switch(). Unmark the state of 994 * context switch - it is finished for previous LWP. 995 */ 996 curcpu()->ci_mtx_count++; 997 membar_exit(); 998 prev->l_ctxswtch = 0; 999 } 1000 KPREEMPT_DISABLE(new_lwp); 1001 if (__predict_true(new_lwp->l_proc->p_vmspace)) 1002 pmap_activate(new_lwp); 1003 spl0(); 1004 1005 /* Note trip through cpu_switchto(). */ 1006 pserialize_switchpoint(); 1007 1008 LOCKDEBUG_BARRIER(NULL, 0); 1009 KPREEMPT_ENABLE(new_lwp); 1010 if ((new_lwp->l_pflag & LP_MPSAFE) == 0) { 1011 KERNEL_LOCK(1, new_lwp); 1012 } 1013 } 1014 1015 /* 1016 * Exit an LWP. 1017 */ 1018 void 1019 lwp_exit(struct lwp *l) 1020 { 1021 struct proc *p = l->l_proc; 1022 struct lwp *l2; 1023 bool current; 1024 1025 current = (l == curlwp); 1026 1027 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL)); 1028 KASSERT(p == curproc); 1029 1030 SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0); 1031 1032 /* 1033 * Verify that we hold no locks other than the kernel lock. 1034 */ 1035 LOCKDEBUG_BARRIER(&kernel_lock, 0); 1036 1037 /* 1038 * If we are the last live LWP in a process, we need to exit the 1039 * entire process. We do so with an exit status of zero, because 1040 * it's a "controlled" exit, and because that's what Solaris does. 1041 * 1042 * We are not quite a zombie yet, but for accounting purposes we 1043 * must increment the count of zombies here. 1044 * 1045 * Note: the last LWP's specificdata will be deleted here. 1046 */ 1047 mutex_enter(p->p_lock); 1048 if (p->p_nlwps - p->p_nzlwps == 1) { 1049 KASSERT(current == true); 1050 KASSERT(p != &proc0); 1051 /* XXXSMP kernel_lock not held */ 1052 exit1(l, 0, 0); 1053 /* NOTREACHED */ 1054 } 1055 p->p_nzlwps++; 1056 mutex_exit(p->p_lock); 1057 1058 if (p->p_emul->e_lwp_exit) 1059 (*p->p_emul->e_lwp_exit)(l); 1060 1061 /* Drop filedesc reference. */ 1062 fd_free(); 1063 1064 /* Release fstrans private data. */ 1065 fstrans_lwp_dtor(l); 1066 1067 /* Delete the specificdata while it's still safe to sleep. */ 1068 lwp_finispecific(l); 1069 1070 /* 1071 * Release our cached credentials. 1072 */ 1073 kauth_cred_free(l->l_cred); 1074 callout_destroy(&l->l_timeout_ch); 1075 1076 /* 1077 * If traced, report LWP exit event to the debugger. 1078 * 1079 * Remove the LWP from the global list. 1080 * Free its LID from the PID namespace if needed. 1081 */ 1082 mutex_enter(proc_lock); 1083 1084 if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) == 1085 (PSL_TRACED|PSL_TRACELWP_EXIT)) { 1086 mutex_enter(p->p_lock); 1087 if (ISSET(p->p_sflag, PS_WEXIT)) { 1088 mutex_exit(p->p_lock); 1089 /* 1090 * We are exiting, bail out without informing parent 1091 * about a terminating LWP as it would deadlock. 1092 */ 1093 } else { 1094 p->p_lwp_exited = l->l_lid; 1095 eventswitch(TRAP_LWP); 1096 mutex_enter(proc_lock); 1097 } 1098 } 1099 1100 LIST_REMOVE(l, l_list); 1101 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) { 1102 proc_free_pid(l->l_lid); 1103 } 1104 mutex_exit(proc_lock); 1105 1106 /* 1107 * Get rid of all references to the LWP that others (e.g. procfs) 1108 * may have, and mark the LWP as a zombie. If the LWP is detached, 1109 * mark it waiting for collection in the proc structure. Note that 1110 * before we can do that, we need to free any other dead, deatched 1111 * LWP waiting to meet its maker. 1112 */ 1113 mutex_enter(p->p_lock); 1114 lwp_drainrefs(l); 1115 1116 if ((l->l_prflag & LPR_DETACHED) != 0) { 1117 while ((l2 = p->p_zomblwp) != NULL) { 1118 p->p_zomblwp = NULL; 1119 lwp_free(l2, false, false);/* releases proc mutex */ 1120 mutex_enter(p->p_lock); 1121 l->l_refcnt++; 1122 lwp_drainrefs(l); 1123 } 1124 p->p_zomblwp = l; 1125 } 1126 1127 /* 1128 * If we find a pending signal for the process and we have been 1129 * asked to check for signals, then we lose: arrange to have 1130 * all other LWPs in the process check for signals. 1131 */ 1132 if ((l->l_flag & LW_PENDSIG) != 0 && 1133 firstsig(&p->p_sigpend.sp_set) != 0) { 1134 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 1135 lwp_lock(l2); 1136 l2->l_flag |= LW_PENDSIG; 1137 lwp_unlock(l2); 1138 } 1139 } 1140 1141 /* 1142 * Release any PCU resources before becoming a zombie. 1143 */ 1144 pcu_discard_all(l); 1145 1146 lwp_lock(l); 1147 l->l_stat = LSZOMB; 1148 if (l->l_name != NULL) { 1149 strcpy(l->l_name, "(zombie)"); 1150 } 1151 lwp_unlock(l); 1152 p->p_nrlwps--; 1153 cv_broadcast(&p->p_lwpcv); 1154 if (l->l_lwpctl != NULL) 1155 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 1156 mutex_exit(p->p_lock); 1157 1158 /* 1159 * We can no longer block. At this point, lwp_free() may already 1160 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 1161 * 1162 * Free MD LWP resources. 1163 */ 1164 cpu_lwp_free(l, 0); 1165 1166 if (current) { 1167 pmap_deactivate(l); 1168 1169 /* 1170 * Release the kernel lock, and switch away into 1171 * oblivion. 1172 */ 1173 #ifdef notyet 1174 /* XXXSMP hold in lwp_userret() */ 1175 KERNEL_UNLOCK_LAST(l); 1176 #else 1177 KERNEL_UNLOCK_ALL(l, NULL); 1178 #endif 1179 lwp_exit_switchaway(l); 1180 } 1181 } 1182 1183 /* 1184 * Free a dead LWP's remaining resources. 1185 * 1186 * XXXLWP limits. 1187 */ 1188 void 1189 lwp_free(struct lwp *l, bool recycle, bool last) 1190 { 1191 struct proc *p = l->l_proc; 1192 struct rusage *ru; 1193 ksiginfoq_t kq; 1194 1195 KASSERT(l != curlwp); 1196 KASSERT(last || mutex_owned(p->p_lock)); 1197 1198 /* 1199 * We use the process credentials instead of the lwp credentials here 1200 * because the lwp credentials maybe cached (just after a setuid call) 1201 * and we don't want pay for syncing, since the lwp is going away 1202 * anyway 1203 */ 1204 if (p != &proc0 && p->p_nlwps != 1) 1205 (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1); 1206 /* 1207 * If this was not the last LWP in the process, then adjust 1208 * counters and unlock. 1209 */ 1210 if (!last) { 1211 /* 1212 * Add the LWP's run time to the process' base value. 1213 * This needs to co-incide with coming off p_lwps. 1214 */ 1215 bintime_add(&p->p_rtime, &l->l_rtime); 1216 p->p_pctcpu += l->l_pctcpu; 1217 ru = &p->p_stats->p_ru; 1218 ruadd(ru, &l->l_ru); 1219 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 1220 ru->ru_nivcsw += l->l_nivcsw; 1221 LIST_REMOVE(l, l_sibling); 1222 p->p_nlwps--; 1223 p->p_nzlwps--; 1224 if ((l->l_prflag & LPR_DETACHED) != 0) 1225 p->p_ndlwps--; 1226 1227 /* 1228 * Have any LWPs sleeping in lwp_wait() recheck for 1229 * deadlock. 1230 */ 1231 cv_broadcast(&p->p_lwpcv); 1232 mutex_exit(p->p_lock); 1233 } 1234 1235 #ifdef MULTIPROCESSOR 1236 /* 1237 * In the unlikely event that the LWP is still on the CPU, 1238 * then spin until it has switched away. We need to release 1239 * all locks to avoid deadlock against interrupt handlers on 1240 * the target CPU. 1241 */ 1242 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) { 1243 int count; 1244 (void)count; /* XXXgcc */ 1245 KERNEL_UNLOCK_ALL(curlwp, &count); 1246 while ((l->l_pflag & LP_RUNNING) != 0 || 1247 l->l_cpu->ci_curlwp == l) 1248 SPINLOCK_BACKOFF_HOOK; 1249 KERNEL_LOCK(count, curlwp); 1250 } 1251 #endif 1252 1253 /* 1254 * Destroy the LWP's remaining signal information. 1255 */ 1256 ksiginfo_queue_init(&kq); 1257 sigclear(&l->l_sigpend, NULL, &kq); 1258 ksiginfo_queue_drain(&kq); 1259 cv_destroy(&l->l_sigcv); 1260 cv_destroy(&l->l_waitcv); 1261 1262 /* 1263 * Free lwpctl structure and affinity. 1264 */ 1265 if (l->l_lwpctl) { 1266 lwp_ctl_free(l); 1267 } 1268 if (l->l_affinity) { 1269 kcpuset_unuse(l->l_affinity, NULL); 1270 l->l_affinity = NULL; 1271 } 1272 1273 /* 1274 * Free the LWP's turnstile and the LWP structure itself unless the 1275 * caller wants to recycle them. Also, free the scheduler specific 1276 * data. 1277 * 1278 * We can't return turnstile0 to the pool (it didn't come from it), 1279 * so if it comes up just drop it quietly and move on. 1280 * 1281 * We don't recycle the VM resources at this time. 1282 */ 1283 1284 if (!recycle && l->l_ts != &turnstile0) 1285 pool_cache_put(turnstile_cache, l->l_ts); 1286 if (l->l_name != NULL) 1287 kmem_free(l->l_name, MAXCOMLEN); 1288 1289 cpu_lwp_free2(l); 1290 uvm_lwp_exit(l); 1291 1292 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 1293 KASSERT(l->l_inheritedprio == -1); 1294 KASSERT(l->l_blcnt == 0); 1295 kdtrace_thread_dtor(NULL, l); 1296 if (!recycle) 1297 pool_cache_put(lwp_cache, l); 1298 } 1299 1300 /* 1301 * Migrate the LWP to the another CPU. Unlocks the LWP. 1302 */ 1303 void 1304 lwp_migrate(lwp_t *l, struct cpu_info *tci) 1305 { 1306 struct schedstate_percpu *tspc; 1307 int lstat = l->l_stat; 1308 1309 KASSERT(lwp_locked(l, NULL)); 1310 KASSERT(tci != NULL); 1311 1312 /* If LWP is still on the CPU, it must be handled like LSONPROC */ 1313 if ((l->l_pflag & LP_RUNNING) != 0) { 1314 lstat = LSONPROC; 1315 } 1316 1317 /* 1318 * The destination CPU could be changed while previous migration 1319 * was not finished. 1320 */ 1321 if (l->l_target_cpu != NULL) { 1322 l->l_target_cpu = tci; 1323 lwp_unlock(l); 1324 return; 1325 } 1326 1327 /* Nothing to do if trying to migrate to the same CPU */ 1328 if (l->l_cpu == tci) { 1329 lwp_unlock(l); 1330 return; 1331 } 1332 1333 KASSERT(l->l_target_cpu == NULL); 1334 tspc = &tci->ci_schedstate; 1335 switch (lstat) { 1336 case LSRUN: 1337 l->l_target_cpu = tci; 1338 break; 1339 case LSIDL: 1340 l->l_cpu = tci; 1341 lwp_unlock_to(l, tspc->spc_mutex); 1342 return; 1343 case LSSLEEP: 1344 l->l_cpu = tci; 1345 break; 1346 case LSSTOP: 1347 case LSSUSPENDED: 1348 l->l_cpu = tci; 1349 if (l->l_wchan == NULL) { 1350 lwp_unlock_to(l, tspc->spc_lwplock); 1351 return; 1352 } 1353 break; 1354 case LSONPROC: 1355 l->l_target_cpu = tci; 1356 spc_lock(l->l_cpu); 1357 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT); 1358 spc_unlock(l->l_cpu); 1359 break; 1360 } 1361 lwp_unlock(l); 1362 } 1363 1364 /* 1365 * Find the LWP in the process. Arguments may be zero, in such case, 1366 * the calling process and first LWP in the list will be used. 1367 * On success - returns proc locked. 1368 */ 1369 struct lwp * 1370 lwp_find2(pid_t pid, lwpid_t lid) 1371 { 1372 proc_t *p; 1373 lwp_t *l; 1374 1375 /* Find the process. */ 1376 if (pid != 0) { 1377 mutex_enter(proc_lock); 1378 p = proc_find(pid); 1379 if (p == NULL) { 1380 mutex_exit(proc_lock); 1381 return NULL; 1382 } 1383 mutex_enter(p->p_lock); 1384 mutex_exit(proc_lock); 1385 } else { 1386 p = curlwp->l_proc; 1387 mutex_enter(p->p_lock); 1388 } 1389 /* Find the thread. */ 1390 if (lid != 0) { 1391 l = lwp_find(p, lid); 1392 } else { 1393 l = LIST_FIRST(&p->p_lwps); 1394 } 1395 if (l == NULL) { 1396 mutex_exit(p->p_lock); 1397 } 1398 return l; 1399 } 1400 1401 /* 1402 * Look up a live LWP within the specified process. 1403 * 1404 * Must be called with p->p_lock held. 1405 */ 1406 struct lwp * 1407 lwp_find(struct proc *p, lwpid_t id) 1408 { 1409 struct lwp *l; 1410 1411 KASSERT(mutex_owned(p->p_lock)); 1412 1413 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1414 if (l->l_lid == id) 1415 break; 1416 } 1417 1418 /* 1419 * No need to lock - all of these conditions will 1420 * be visible with the process level mutex held. 1421 */ 1422 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB)) 1423 l = NULL; 1424 1425 return l; 1426 } 1427 1428 /* 1429 * Update an LWP's cached credentials to mirror the process' master copy. 1430 * 1431 * This happens early in the syscall path, on user trap, and on LWP 1432 * creation. A long-running LWP can also voluntarily choose to update 1433 * its credentials by calling this routine. This may be called from 1434 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1435 */ 1436 void 1437 lwp_update_creds(struct lwp *l) 1438 { 1439 kauth_cred_t oc; 1440 struct proc *p; 1441 1442 p = l->l_proc; 1443 oc = l->l_cred; 1444 1445 mutex_enter(p->p_lock); 1446 kauth_cred_hold(p->p_cred); 1447 l->l_cred = p->p_cred; 1448 l->l_prflag &= ~LPR_CRMOD; 1449 mutex_exit(p->p_lock); 1450 if (oc != NULL) 1451 kauth_cred_free(oc); 1452 } 1453 1454 /* 1455 * Verify that an LWP is locked, and optionally verify that the lock matches 1456 * one we specify. 1457 */ 1458 int 1459 lwp_locked(struct lwp *l, kmutex_t *mtx) 1460 { 1461 kmutex_t *cur = l->l_mutex; 1462 1463 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1464 } 1465 1466 /* 1467 * Lend a new mutex to an LWP. The old mutex must be held. 1468 */ 1469 void 1470 lwp_setlock(struct lwp *l, kmutex_t *mtx) 1471 { 1472 1473 KASSERT(mutex_owned(l->l_mutex)); 1474 1475 membar_exit(); 1476 l->l_mutex = mtx; 1477 } 1478 1479 /* 1480 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1481 * must be held. 1482 */ 1483 void 1484 lwp_unlock_to(struct lwp *l, kmutex_t *mtx) 1485 { 1486 kmutex_t *old; 1487 1488 KASSERT(lwp_locked(l, NULL)); 1489 1490 old = l->l_mutex; 1491 membar_exit(); 1492 l->l_mutex = mtx; 1493 mutex_spin_exit(old); 1494 } 1495 1496 int 1497 lwp_trylock(struct lwp *l) 1498 { 1499 kmutex_t *old; 1500 1501 for (;;) { 1502 if (!mutex_tryenter(old = l->l_mutex)) 1503 return 0; 1504 if (__predict_true(l->l_mutex == old)) 1505 return 1; 1506 mutex_spin_exit(old); 1507 } 1508 } 1509 1510 void 1511 lwp_unsleep(lwp_t *l, bool cleanup) 1512 { 1513 1514 KASSERT(mutex_owned(l->l_mutex)); 1515 (*l->l_syncobj->sobj_unsleep)(l, cleanup); 1516 } 1517 1518 /* 1519 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1520 * set. 1521 */ 1522 void 1523 lwp_userret(struct lwp *l) 1524 { 1525 struct proc *p; 1526 int sig; 1527 1528 KASSERT(l == curlwp); 1529 KASSERT(l->l_stat == LSONPROC); 1530 p = l->l_proc; 1531 1532 #ifndef __HAVE_FAST_SOFTINTS 1533 /* Run pending soft interrupts. */ 1534 if (l->l_cpu->ci_data.cpu_softints != 0) 1535 softint_overlay(); 1536 #endif 1537 1538 /* 1539 * It is safe to do this read unlocked on a MP system.. 1540 */ 1541 while ((l->l_flag & LW_USERRET) != 0) { 1542 /* 1543 * Process pending signals first, unless the process 1544 * is dumping core or exiting, where we will instead 1545 * enter the LW_WSUSPEND case below. 1546 */ 1547 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1548 LW_PENDSIG) { 1549 mutex_enter(p->p_lock); 1550 while ((sig = issignal(l)) != 0) 1551 postsig(sig); 1552 mutex_exit(p->p_lock); 1553 } 1554 1555 /* 1556 * Core-dump or suspend pending. 1557 * 1558 * In case of core dump, suspend ourselves, so that the kernel 1559 * stack and therefore the userland registers saved in the 1560 * trapframe are around for coredump() to write them out. 1561 * We also need to save any PCU resources that we have so that 1562 * they accessible for coredump(). We issue a wakeup on 1563 * p->p_lwpcv so that sigexit() will write the core file out 1564 * once all other LWPs are suspended. 1565 */ 1566 if ((l->l_flag & LW_WSUSPEND) != 0) { 1567 pcu_save_all(l); 1568 mutex_enter(p->p_lock); 1569 p->p_nrlwps--; 1570 cv_broadcast(&p->p_lwpcv); 1571 lwp_lock(l); 1572 l->l_stat = LSSUSPENDED; 1573 lwp_unlock(l); 1574 mutex_exit(p->p_lock); 1575 lwp_lock(l); 1576 mi_switch(l); 1577 } 1578 1579 /* Process is exiting. */ 1580 if ((l->l_flag & LW_WEXIT) != 0) { 1581 lwp_exit(l); 1582 KASSERT(0); 1583 /* NOTREACHED */ 1584 } 1585 1586 /* update lwpctl processor (for vfork child_return) */ 1587 if (l->l_flag & LW_LWPCTL) { 1588 lwp_lock(l); 1589 KASSERT(kpreempt_disabled()); 1590 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu); 1591 l->l_lwpctl->lc_pctr++; 1592 l->l_flag &= ~LW_LWPCTL; 1593 lwp_unlock(l); 1594 } 1595 } 1596 } 1597 1598 /* 1599 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1600 */ 1601 void 1602 lwp_need_userret(struct lwp *l) 1603 { 1604 KASSERT(lwp_locked(l, NULL)); 1605 1606 /* 1607 * Since the tests in lwp_userret() are done unlocked, make sure 1608 * that the condition will be seen before forcing the LWP to enter 1609 * kernel mode. 1610 */ 1611 membar_producer(); 1612 cpu_signotify(l); 1613 } 1614 1615 /* 1616 * Add one reference to an LWP. This will prevent the LWP from 1617 * exiting, thus keep the lwp structure and PCB around to inspect. 1618 */ 1619 void 1620 lwp_addref(struct lwp *l) 1621 { 1622 1623 KASSERT(mutex_owned(l->l_proc->p_lock)); 1624 KASSERT(l->l_stat != LSZOMB); 1625 KASSERT(l->l_refcnt != 0); 1626 1627 l->l_refcnt++; 1628 } 1629 1630 /* 1631 * Remove one reference to an LWP. If this is the last reference, 1632 * then we must finalize the LWP's death. 1633 */ 1634 void 1635 lwp_delref(struct lwp *l) 1636 { 1637 struct proc *p = l->l_proc; 1638 1639 mutex_enter(p->p_lock); 1640 lwp_delref2(l); 1641 mutex_exit(p->p_lock); 1642 } 1643 1644 /* 1645 * Remove one reference to an LWP. If this is the last reference, 1646 * then we must finalize the LWP's death. The proc mutex is held 1647 * on entry. 1648 */ 1649 void 1650 lwp_delref2(struct lwp *l) 1651 { 1652 struct proc *p = l->l_proc; 1653 1654 KASSERT(mutex_owned(p->p_lock)); 1655 KASSERT(l->l_stat != LSZOMB); 1656 KASSERT(l->l_refcnt > 0); 1657 if (--l->l_refcnt == 0) 1658 cv_broadcast(&p->p_lwpcv); 1659 } 1660 1661 /* 1662 * Drain all references to the current LWP. 1663 */ 1664 void 1665 lwp_drainrefs(struct lwp *l) 1666 { 1667 struct proc *p = l->l_proc; 1668 1669 KASSERT(mutex_owned(p->p_lock)); 1670 KASSERT(l->l_refcnt != 0); 1671 1672 l->l_refcnt--; 1673 while (l->l_refcnt != 0) 1674 cv_wait(&p->p_lwpcv, p->p_lock); 1675 } 1676 1677 /* 1678 * Return true if the specified LWP is 'alive'. Only p->p_lock need 1679 * be held. 1680 */ 1681 bool 1682 lwp_alive(lwp_t *l) 1683 { 1684 1685 KASSERT(mutex_owned(l->l_proc->p_lock)); 1686 1687 switch (l->l_stat) { 1688 case LSSLEEP: 1689 case LSRUN: 1690 case LSONPROC: 1691 case LSSTOP: 1692 case LSSUSPENDED: 1693 return true; 1694 default: 1695 return false; 1696 } 1697 } 1698 1699 /* 1700 * Return first live LWP in the process. 1701 */ 1702 lwp_t * 1703 lwp_find_first(proc_t *p) 1704 { 1705 lwp_t *l; 1706 1707 KASSERT(mutex_owned(p->p_lock)); 1708 1709 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1710 if (lwp_alive(l)) { 1711 return l; 1712 } 1713 } 1714 1715 return NULL; 1716 } 1717 1718 /* 1719 * Allocate a new lwpctl structure for a user LWP. 1720 */ 1721 int 1722 lwp_ctl_alloc(vaddr_t *uaddr) 1723 { 1724 lcproc_t *lp; 1725 u_int bit, i, offset; 1726 struct uvm_object *uao; 1727 int error; 1728 lcpage_t *lcp; 1729 proc_t *p; 1730 lwp_t *l; 1731 1732 l = curlwp; 1733 p = l->l_proc; 1734 1735 /* don't allow a vforked process to create lwp ctls */ 1736 if (p->p_lflag & PL_PPWAIT) 1737 return EBUSY; 1738 1739 if (l->l_lcpage != NULL) { 1740 lcp = l->l_lcpage; 1741 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1742 return 0; 1743 } 1744 1745 /* First time around, allocate header structure for the process. */ 1746 if ((lp = p->p_lwpctl) == NULL) { 1747 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1748 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1749 lp->lp_uao = NULL; 1750 TAILQ_INIT(&lp->lp_pages); 1751 mutex_enter(p->p_lock); 1752 if (p->p_lwpctl == NULL) { 1753 p->p_lwpctl = lp; 1754 mutex_exit(p->p_lock); 1755 } else { 1756 mutex_exit(p->p_lock); 1757 mutex_destroy(&lp->lp_lock); 1758 kmem_free(lp, sizeof(*lp)); 1759 lp = p->p_lwpctl; 1760 } 1761 } 1762 1763 /* 1764 * Set up an anonymous memory region to hold the shared pages. 1765 * Map them into the process' address space. The user vmspace 1766 * gets the first reference on the UAO. 1767 */ 1768 mutex_enter(&lp->lp_lock); 1769 if (lp->lp_uao == NULL) { 1770 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1771 lp->lp_cur = 0; 1772 lp->lp_max = LWPCTL_UAREA_SZ; 1773 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1774 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ, 1775 p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN); 1776 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1777 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1778 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1779 if (error != 0) { 1780 uao_detach(lp->lp_uao); 1781 lp->lp_uao = NULL; 1782 mutex_exit(&lp->lp_lock); 1783 return error; 1784 } 1785 } 1786 1787 /* Get a free block and allocate for this LWP. */ 1788 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1789 if (lcp->lcp_nfree != 0) 1790 break; 1791 } 1792 if (lcp == NULL) { 1793 /* Nothing available - try to set up a free page. */ 1794 if (lp->lp_cur == lp->lp_max) { 1795 mutex_exit(&lp->lp_lock); 1796 return ENOMEM; 1797 } 1798 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1799 1800 /* 1801 * Wire the next page down in kernel space. Since this 1802 * is a new mapping, we must add a reference. 1803 */ 1804 uao = lp->lp_uao; 1805 (*uao->pgops->pgo_reference)(uao); 1806 lcp->lcp_kaddr = vm_map_min(kernel_map); 1807 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1808 uao, lp->lp_cur, PAGE_SIZE, 1809 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1810 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1811 if (error != 0) { 1812 mutex_exit(&lp->lp_lock); 1813 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1814 (*uao->pgops->pgo_detach)(uao); 1815 return error; 1816 } 1817 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1818 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1819 if (error != 0) { 1820 mutex_exit(&lp->lp_lock); 1821 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1822 lcp->lcp_kaddr + PAGE_SIZE); 1823 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1824 return error; 1825 } 1826 /* Prepare the page descriptor and link into the list. */ 1827 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1828 lp->lp_cur += PAGE_SIZE; 1829 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1830 lcp->lcp_rotor = 0; 1831 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1832 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1833 } 1834 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1835 if (++i >= LWPCTL_BITMAP_ENTRIES) 1836 i = 0; 1837 } 1838 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1839 lcp->lcp_bitmap[i] ^= (1U << bit); 1840 lcp->lcp_rotor = i; 1841 lcp->lcp_nfree--; 1842 l->l_lcpage = lcp; 1843 offset = (i << 5) + bit; 1844 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1845 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1846 mutex_exit(&lp->lp_lock); 1847 1848 KPREEMPT_DISABLE(l); 1849 l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu()); 1850 KPREEMPT_ENABLE(l); 1851 1852 return 0; 1853 } 1854 1855 /* 1856 * Free an lwpctl structure back to the per-process list. 1857 */ 1858 void 1859 lwp_ctl_free(lwp_t *l) 1860 { 1861 struct proc *p = l->l_proc; 1862 lcproc_t *lp; 1863 lcpage_t *lcp; 1864 u_int map, offset; 1865 1866 /* don't free a lwp context we borrowed for vfork */ 1867 if (p->p_lflag & PL_PPWAIT) { 1868 l->l_lwpctl = NULL; 1869 return; 1870 } 1871 1872 lp = p->p_lwpctl; 1873 KASSERT(lp != NULL); 1874 1875 lcp = l->l_lcpage; 1876 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1877 KASSERT(offset < LWPCTL_PER_PAGE); 1878 1879 mutex_enter(&lp->lp_lock); 1880 lcp->lcp_nfree++; 1881 map = offset >> 5; 1882 lcp->lcp_bitmap[map] |= (1U << (offset & 31)); 1883 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1884 lcp->lcp_rotor = map; 1885 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1886 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1887 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1888 } 1889 mutex_exit(&lp->lp_lock); 1890 } 1891 1892 /* 1893 * Process is exiting; tear down lwpctl state. This can only be safely 1894 * called by the last LWP in the process. 1895 */ 1896 void 1897 lwp_ctl_exit(void) 1898 { 1899 lcpage_t *lcp, *next; 1900 lcproc_t *lp; 1901 proc_t *p; 1902 lwp_t *l; 1903 1904 l = curlwp; 1905 l->l_lwpctl = NULL; 1906 l->l_lcpage = NULL; 1907 p = l->l_proc; 1908 lp = p->p_lwpctl; 1909 1910 KASSERT(lp != NULL); 1911 KASSERT(p->p_nlwps == 1); 1912 1913 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 1914 next = TAILQ_NEXT(lcp, lcp_chain); 1915 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1916 lcp->lcp_kaddr + PAGE_SIZE); 1917 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1918 } 1919 1920 if (lp->lp_uao != NULL) { 1921 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 1922 lp->lp_uva + LWPCTL_UAREA_SZ); 1923 } 1924 1925 mutex_destroy(&lp->lp_lock); 1926 kmem_free(lp, sizeof(*lp)); 1927 p->p_lwpctl = NULL; 1928 } 1929 1930 /* 1931 * Return the current LWP's "preemption counter". Used to detect 1932 * preemption across operations that can tolerate preemption without 1933 * crashing, but which may generate incorrect results if preempted. 1934 */ 1935 uint64_t 1936 lwp_pctr(void) 1937 { 1938 1939 return curlwp->l_ncsw; 1940 } 1941 1942 /* 1943 * Set an LWP's private data pointer. 1944 */ 1945 int 1946 lwp_setprivate(struct lwp *l, void *ptr) 1947 { 1948 int error = 0; 1949 1950 l->l_private = ptr; 1951 #ifdef __HAVE_CPU_LWP_SETPRIVATE 1952 error = cpu_lwp_setprivate(l, ptr); 1953 #endif 1954 return error; 1955 } 1956 1957 #if defined(DDB) 1958 #include <machine/pcb.h> 1959 1960 void 1961 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1962 { 1963 lwp_t *l; 1964 1965 LIST_FOREACH(l, &alllwp, l_list) { 1966 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 1967 1968 if (addr < stack || stack + KSTACK_SIZE <= addr) { 1969 continue; 1970 } 1971 (*pr)("%p is %p+%zu, LWP %p's stack\n", 1972 (void *)addr, (void *)stack, 1973 (size_t)(addr - stack), l); 1974 } 1975 } 1976 #endif /* defined(DDB) */ 1977