xref: /netbsd-src/sys/kern/kern_lwp.c (revision 2d8e86c2f207da6fbbd50f11b6f33765ebdfa0e9)
1 /*	$NetBSD: kern_lwp.c,v 1.202 2019/06/04 11:54:03 kamil Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Overview
34  *
35  *	Lightweight processes (LWPs) are the basic unit or thread of
36  *	execution within the kernel.  The core state of an LWP is described
37  *	by "struct lwp", also known as lwp_t.
38  *
39  *	Each LWP is contained within a process (described by "struct proc"),
40  *	Every process contains at least one LWP, but may contain more.  The
41  *	process describes attributes shared among all of its LWPs such as a
42  *	private address space, global execution state (stopped, active,
43  *	zombie, ...), signal disposition and so on.  On a multiprocessor
44  *	machine, multiple LWPs be executing concurrently in the kernel.
45  *
46  * Execution states
47  *
48  *	At any given time, an LWP has overall state that is described by
49  *	lwp::l_stat.  The states are broken into two sets below.  The first
50  *	set is guaranteed to represent the absolute, current state of the
51  *	LWP:
52  *
53  *	LSONPROC
54  *
55  *		On processor: the LWP is executing on a CPU, either in the
56  *		kernel or in user space.
57  *
58  *	LSRUN
59  *
60  *		Runnable: the LWP is parked on a run queue, and may soon be
61  *		chosen to run by an idle processor, or by a processor that
62  *		has been asked to preempt a currently runnning but lower
63  *		priority LWP.
64  *
65  *	LSIDL
66  *
67  *		Idle: the LWP has been created but has not yet executed,
68  *		or it has ceased executing a unit of work and is waiting
69  *		to be started again.
70  *
71  *	LSSUSPENDED:
72  *
73  *		Suspended: the LWP has had its execution suspended by
74  *		another LWP in the same process using the _lwp_suspend()
75  *		system call.  User-level LWPs also enter the suspended
76  *		state when the system is shutting down.
77  *
78  *	The second set represent a "statement of intent" on behalf of the
79  *	LWP.  The LWP may in fact be executing on a processor, may be
80  *	sleeping or idle. It is expected to take the necessary action to
81  *	stop executing or become "running" again within a short timeframe.
82  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83  *	Importantly, it indicates that its state is tied to a CPU.
84  *
85  *	LSZOMB:
86  *
87  *		Dead or dying: the LWP has released most of its resources
88  *		and is about to switch away into oblivion, or has already
89  *		switched away.  When it switches away, its few remaining
90  *		resources can be collected.
91  *
92  *	LSSLEEP:
93  *
94  *		Sleeping: the LWP has entered itself onto a sleep queue, and
95  *		has switched away or will switch away shortly to allow other
96  *		LWPs to run on the CPU.
97  *
98  *	LSSTOP:
99  *
100  *		Stopped: the LWP has been stopped as a result of a job
101  *		control signal, or as a result of the ptrace() interface.
102  *
103  *		Stopped LWPs may run briefly within the kernel to handle
104  *		signals that they receive, but will not return to user space
105  *		until their process' state is changed away from stopped.
106  *
107  *		Single LWPs within a process can not be set stopped
108  *		selectively: all actions that can stop or continue LWPs
109  *		occur at the process level.
110  *
111  * State transitions
112  *
113  *	Note that the LSSTOP state may only be set when returning to
114  *	user space in userret(), or when sleeping interruptably.  The
115  *	LSSUSPENDED state may only be set in userret().  Before setting
116  *	those states, we try to ensure that the LWPs will release all
117  *	locks that they hold, and at a minimum try to ensure that the
118  *	LWP can be set runnable again by a signal.
119  *
120  *	LWPs may transition states in the following ways:
121  *
122  *	 RUN -------> ONPROC		ONPROC -----> RUN
123  *		    				    > SLEEP
124  *		    				    > STOPPED
125  *						    > SUSPENDED
126  *						    > ZOMB
127  *						    > IDL (special cases)
128  *
129  *	 STOPPED ---> RUN		SUSPENDED --> RUN
130  *	            > SLEEP
131  *
132  *	 SLEEP -----> ONPROC		IDL --------> RUN
133  *		    > RUN			    > SUSPENDED
134  *		    > STOPPED			    > STOPPED
135  *						    > ONPROC (special cases)
136  *
137  *	Some state transitions are only possible with kernel threads (eg
138  *	ONPROC -> IDL) and happen under tightly controlled circumstances
139  *	free of unwanted side effects.
140  *
141  * Migration
142  *
143  *	Migration of threads from one CPU to another could be performed
144  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
145  *	functions.  The universal lwp_migrate() function should be used for
146  *	any other cases.  Subsystems in the kernel must be aware that CPU
147  *	of LWP may change, while it is not locked.
148  *
149  * Locking
150  *
151  *	The majority of fields in 'struct lwp' are covered by a single,
152  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
153  *	each field are documented in sys/lwp.h.
154  *
155  *	State transitions must be made with the LWP's general lock held,
156  *	and may cause the LWP's lock pointer to change.  Manipulation of
157  *	the general lock is not performed directly, but through calls to
158  *	lwp_lock(), lwp_unlock() and others.  It should be noted that the
159  *	adaptive locks are not allowed to be released while the LWP's lock
160  *	is being held (unlike for other spin-locks).
161  *
162  *	States and their associated locks:
163  *
164  *	LSONPROC, LSZOMB:
165  *
166  *		Always covered by spc_lwplock, which protects running LWPs.
167  *		This is a per-CPU lock and matches lwp::l_cpu.
168  *
169  *	LSIDL, LSRUN:
170  *
171  *		Always covered by spc_mutex, which protects the run queues.
172  *		This is a per-CPU lock and matches lwp::l_cpu.
173  *
174  *	LSSLEEP:
175  *
176  *		Covered by a lock associated with the sleep queue that the
177  *		LWP resides on.  Matches lwp::l_sleepq::sq_mutex.
178  *
179  *	LSSTOP, LSSUSPENDED:
180  *
181  *		If the LWP was previously sleeping (l_wchan != NULL), then
182  *		l_mutex references the sleep queue lock.  If the LWP was
183  *		runnable or on the CPU when halted, or has been removed from
184  *		the sleep queue since halted, then the lock is spc_lwplock.
185  *
186  *	The lock order is as follows:
187  *
188  *		spc::spc_lwplock ->
189  *		    sleeptab::st_mutex ->
190  *			tschain_t::tc_mutex ->
191  *			    spc::spc_mutex
192  *
193  *	Each process has an scheduler state lock (proc::p_lock), and a
194  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195  *	so on.  When an LWP is to be entered into or removed from one of the
196  *	following states, p_lock must be held and the process wide counters
197  *	adjusted:
198  *
199  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200  *
201  *	(But not always for kernel threads.  There are some special cases
202  *	as mentioned above.  See kern_softint.c.)
203  *
204  *	Note that an LWP is considered running or likely to run soon if in
205  *	one of the following states.  This affects the value of p_nrlwps:
206  *
207  *		LSRUN, LSONPROC, LSSLEEP
208  *
209  *	p_lock does not need to be held when transitioning among these
210  *	three states, hence p_lock is rarely taken for state transitions.
211  */
212 
213 #include <sys/cdefs.h>
214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.202 2019/06/04 11:54:03 kamil Exp $");
215 
216 #include "opt_ddb.h"
217 #include "opt_lockdebug.h"
218 #include "opt_dtrace.h"
219 
220 #define _LWP_API_PRIVATE
221 
222 #include <sys/param.h>
223 #include <sys/systm.h>
224 #include <sys/cpu.h>
225 #include <sys/pool.h>
226 #include <sys/proc.h>
227 #include <sys/syscallargs.h>
228 #include <sys/syscall_stats.h>
229 #include <sys/kauth.h>
230 #include <sys/pserialize.h>
231 #include <sys/sleepq.h>
232 #include <sys/lockdebug.h>
233 #include <sys/kmem.h>
234 #include <sys/pset.h>
235 #include <sys/intr.h>
236 #include <sys/lwpctl.h>
237 #include <sys/atomic.h>
238 #include <sys/filedesc.h>
239 #include <sys/fstrans.h>
240 #include <sys/dtrace_bsd.h>
241 #include <sys/sdt.h>
242 #include <sys/xcall.h>
243 #include <sys/uidinfo.h>
244 #include <sys/sysctl.h>
245 #include <sys/psref.h>
246 
247 #include <uvm/uvm_extern.h>
248 #include <uvm/uvm_object.h>
249 
250 static pool_cache_t	lwp_cache	__read_mostly;
251 struct lwplist		alllwp		__cacheline_aligned;
252 
253 static void		lwp_dtor(void *, void *);
254 
255 /* DTrace proc provider probes */
256 SDT_PROVIDER_DEFINE(proc);
257 
258 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
259 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
260 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
261 
262 struct turnstile turnstile0;
263 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
264 #ifdef LWP0_CPU_INFO
265 	.l_cpu = LWP0_CPU_INFO,
266 #endif
267 #ifdef LWP0_MD_INITIALIZER
268 	.l_md = LWP0_MD_INITIALIZER,
269 #endif
270 	.l_proc = &proc0,
271 	.l_lid = 1,
272 	.l_flag = LW_SYSTEM,
273 	.l_stat = LSONPROC,
274 	.l_ts = &turnstile0,
275 	.l_syncobj = &sched_syncobj,
276 	.l_refcnt = 1,
277 	.l_priority = PRI_USER + NPRI_USER - 1,
278 	.l_inheritedprio = -1,
279 	.l_class = SCHED_OTHER,
280 	.l_psid = PS_NONE,
281 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
282 	.l_name = __UNCONST("swapper"),
283 	.l_fd = &filedesc0,
284 };
285 
286 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
287 
288 /*
289  * sysctl helper routine for kern.maxlwp. Ensures that the new
290  * values are not too low or too high.
291  */
292 static int
293 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
294 {
295 	int error, nmaxlwp;
296 	struct sysctlnode node;
297 
298 	nmaxlwp = maxlwp;
299 	node = *rnode;
300 	node.sysctl_data = &nmaxlwp;
301 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
302 	if (error || newp == NULL)
303 		return error;
304 
305 	if (nmaxlwp < 0 || nmaxlwp >= 65536)
306 		return EINVAL;
307 	if (nmaxlwp > cpu_maxlwp())
308 		return EINVAL;
309 	maxlwp = nmaxlwp;
310 
311 	return 0;
312 }
313 
314 static void
315 sysctl_kern_lwp_setup(void)
316 {
317 	struct sysctllog *clog = NULL;
318 
319 	sysctl_createv(&clog, 0, NULL, NULL,
320 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
321 		       CTLTYPE_INT, "maxlwp",
322 		       SYSCTL_DESCR("Maximum number of simultaneous threads"),
323 		       sysctl_kern_maxlwp, 0, NULL, 0,
324 		       CTL_KERN, CTL_CREATE, CTL_EOL);
325 }
326 
327 void
328 lwpinit(void)
329 {
330 
331 	LIST_INIT(&alllwp);
332 	lwpinit_specificdata();
333 	lwp_sys_init();
334 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
335 	    "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
336 
337 	maxlwp = cpu_maxlwp();
338 	sysctl_kern_lwp_setup();
339 }
340 
341 void
342 lwp0_init(void)
343 {
344 	struct lwp *l = &lwp0;
345 
346 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
347 	KASSERT(l->l_lid == proc0.p_nlwpid);
348 
349 	LIST_INSERT_HEAD(&alllwp, l, l_list);
350 
351 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
352 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
353 	cv_init(&l->l_sigcv, "sigwait");
354 	cv_init(&l->l_waitcv, "vfork");
355 
356 	kauth_cred_hold(proc0.p_cred);
357 	l->l_cred = proc0.p_cred;
358 
359 	kdtrace_thread_ctor(NULL, l);
360 	lwp_initspecific(l);
361 
362 	SYSCALL_TIME_LWP_INIT(l);
363 }
364 
365 static void
366 lwp_dtor(void *arg, void *obj)
367 {
368 	lwp_t *l = obj;
369 	uint64_t where;
370 	(void)l;
371 
372 	/*
373 	 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
374 	 * calls will exit before memory of LWP is returned to the pool, where
375 	 * KVA of LWP structure might be freed and re-used for other purposes.
376 	 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
377 	 * callers, therefore cross-call to all CPUs will do the job.  Also,
378 	 * the value of l->l_cpu must be still valid at this point.
379 	 */
380 	KASSERT(l->l_cpu != NULL);
381 	where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
382 	xc_wait(where);
383 }
384 
385 /*
386  * Set an suspended.
387  *
388  * Must be called with p_lock held, and the LWP locked.  Will unlock the
389  * LWP before return.
390  */
391 int
392 lwp_suspend(struct lwp *curl, struct lwp *t)
393 {
394 	int error;
395 
396 	KASSERT(mutex_owned(t->l_proc->p_lock));
397 	KASSERT(lwp_locked(t, NULL));
398 
399 	KASSERT(curl != t || curl->l_stat == LSONPROC);
400 
401 	/*
402 	 * If the current LWP has been told to exit, we must not suspend anyone
403 	 * else or deadlock could occur.  We won't return to userspace.
404 	 */
405 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
406 		lwp_unlock(t);
407 		return (EDEADLK);
408 	}
409 
410 	error = 0;
411 
412 	switch (t->l_stat) {
413 	case LSRUN:
414 	case LSONPROC:
415 		t->l_flag |= LW_WSUSPEND;
416 		lwp_need_userret(t);
417 		lwp_unlock(t);
418 		break;
419 
420 	case LSSLEEP:
421 		t->l_flag |= LW_WSUSPEND;
422 
423 		/*
424 		 * Kick the LWP and try to get it to the kernel boundary
425 		 * so that it will release any locks that it holds.
426 		 * setrunnable() will release the lock.
427 		 */
428 		if ((t->l_flag & LW_SINTR) != 0)
429 			setrunnable(t);
430 		else
431 			lwp_unlock(t);
432 		break;
433 
434 	case LSSUSPENDED:
435 		lwp_unlock(t);
436 		break;
437 
438 	case LSSTOP:
439 		t->l_flag |= LW_WSUSPEND;
440 		setrunnable(t);
441 		break;
442 
443 	case LSIDL:
444 	case LSZOMB:
445 		error = EINTR; /* It's what Solaris does..... */
446 		lwp_unlock(t);
447 		break;
448 	}
449 
450 	return (error);
451 }
452 
453 /*
454  * Restart a suspended LWP.
455  *
456  * Must be called with p_lock held, and the LWP locked.  Will unlock the
457  * LWP before return.
458  */
459 void
460 lwp_continue(struct lwp *l)
461 {
462 
463 	KASSERT(mutex_owned(l->l_proc->p_lock));
464 	KASSERT(lwp_locked(l, NULL));
465 
466 	/* If rebooting or not suspended, then just bail out. */
467 	if ((l->l_flag & LW_WREBOOT) != 0) {
468 		lwp_unlock(l);
469 		return;
470 	}
471 
472 	l->l_flag &= ~LW_WSUSPEND;
473 
474 	if (l->l_stat != LSSUSPENDED) {
475 		lwp_unlock(l);
476 		return;
477 	}
478 
479 	/* setrunnable() will release the lock. */
480 	setrunnable(l);
481 }
482 
483 /*
484  * Restart a stopped LWP.
485  *
486  * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
487  * LWP before return.
488  */
489 void
490 lwp_unstop(struct lwp *l)
491 {
492 	struct proc *p = l->l_proc;
493 
494 	KASSERT(mutex_owned(proc_lock));
495 	KASSERT(mutex_owned(p->p_lock));
496 
497 	lwp_lock(l);
498 
499 	/* If not stopped, then just bail out. */
500 	if (l->l_stat != LSSTOP) {
501 		lwp_unlock(l);
502 		return;
503 	}
504 
505 	p->p_stat = SACTIVE;
506 	p->p_sflag &= ~PS_STOPPING;
507 
508 	if (!p->p_waited)
509 		p->p_pptr->p_nstopchild--;
510 
511 	if (l->l_wchan == NULL) {
512 		/* setrunnable() will release the lock. */
513 		setrunnable(l);
514 	} else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
515 		/* setrunnable() so we can receive the signal */
516 		setrunnable(l);
517 	} else {
518 		l->l_stat = LSSLEEP;
519 		p->p_nrlwps++;
520 		lwp_unlock(l);
521 	}
522 }
523 
524 /*
525  * Wait for an LWP within the current process to exit.  If 'lid' is
526  * non-zero, we are waiting for a specific LWP.
527  *
528  * Must be called with p->p_lock held.
529  */
530 int
531 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
532 {
533 	const lwpid_t curlid = l->l_lid;
534 	proc_t *p = l->l_proc;
535 	lwp_t *l2;
536 	int error;
537 
538 	KASSERT(mutex_owned(p->p_lock));
539 
540 	p->p_nlwpwait++;
541 	l->l_waitingfor = lid;
542 
543 	for (;;) {
544 		int nfound;
545 
546 		/*
547 		 * Avoid a race between exit1() and sigexit(): if the
548 		 * process is dumping core, then we need to bail out: call
549 		 * into lwp_userret() where we will be suspended until the
550 		 * deed is done.
551 		 */
552 		if ((p->p_sflag & PS_WCORE) != 0) {
553 			mutex_exit(p->p_lock);
554 			lwp_userret(l);
555 			KASSERT(false);
556 		}
557 
558 		/*
559 		 * First off, drain any detached LWP that is waiting to be
560 		 * reaped.
561 		 */
562 		while ((l2 = p->p_zomblwp) != NULL) {
563 			p->p_zomblwp = NULL;
564 			lwp_free(l2, false, false);/* releases proc mutex */
565 			mutex_enter(p->p_lock);
566 		}
567 
568 		/*
569 		 * Now look for an LWP to collect.  If the whole process is
570 		 * exiting, count detached LWPs as eligible to be collected,
571 		 * but don't drain them here.
572 		 */
573 		nfound = 0;
574 		error = 0;
575 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
576 			/*
577 			 * If a specific wait and the target is waiting on
578 			 * us, then avoid deadlock.  This also traps LWPs
579 			 * that try to wait on themselves.
580 			 *
581 			 * Note that this does not handle more complicated
582 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
583 			 * can still be killed so it is not a major problem.
584 			 */
585 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
586 				error = EDEADLK;
587 				break;
588 			}
589 			if (l2 == l)
590 				continue;
591 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
592 				nfound += exiting;
593 				continue;
594 			}
595 			if (lid != 0) {
596 				if (l2->l_lid != lid)
597 					continue;
598 				/*
599 				 * Mark this LWP as the first waiter, if there
600 				 * is no other.
601 				 */
602 				if (l2->l_waiter == 0)
603 					l2->l_waiter = curlid;
604 			} else if (l2->l_waiter != 0) {
605 				/*
606 				 * It already has a waiter - so don't
607 				 * collect it.  If the waiter doesn't
608 				 * grab it we'll get another chance
609 				 * later.
610 				 */
611 				nfound++;
612 				continue;
613 			}
614 			nfound++;
615 
616 			/* No need to lock the LWP in order to see LSZOMB. */
617 			if (l2->l_stat != LSZOMB)
618 				continue;
619 
620 			/*
621 			 * We're no longer waiting.  Reset the "first waiter"
622 			 * pointer on the target, in case it was us.
623 			 */
624 			l->l_waitingfor = 0;
625 			l2->l_waiter = 0;
626 			p->p_nlwpwait--;
627 			if (departed)
628 				*departed = l2->l_lid;
629 			sched_lwp_collect(l2);
630 
631 			/* lwp_free() releases the proc lock. */
632 			lwp_free(l2, false, false);
633 			mutex_enter(p->p_lock);
634 			return 0;
635 		}
636 
637 		if (error != 0)
638 			break;
639 		if (nfound == 0) {
640 			error = ESRCH;
641 			break;
642 		}
643 
644 		/*
645 		 * Note: since the lock will be dropped, need to restart on
646 		 * wakeup to run all LWPs again, e.g. there may be new LWPs.
647 		 */
648 		if (exiting) {
649 			KASSERT(p->p_nlwps > 1);
650 			cv_wait(&p->p_lwpcv, p->p_lock);
651 			error = EAGAIN;
652 			break;
653 		}
654 
655 		/*
656 		 * If all other LWPs are waiting for exits or suspends
657 		 * and the supply of zombies and potential zombies is
658 		 * exhausted, then we are about to deadlock.
659 		 *
660 		 * If the process is exiting (and this LWP is not the one
661 		 * that is coordinating the exit) then bail out now.
662 		 */
663 		if ((p->p_sflag & PS_WEXIT) != 0 ||
664 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
665 			error = EDEADLK;
666 			break;
667 		}
668 
669 		/*
670 		 * Sit around and wait for something to happen.  We'll be
671 		 * awoken if any of the conditions examined change: if an
672 		 * LWP exits, is collected, or is detached.
673 		 */
674 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
675 			break;
676 	}
677 
678 	/*
679 	 * We didn't find any LWPs to collect, we may have received a
680 	 * signal, or some other condition has caused us to bail out.
681 	 *
682 	 * If waiting on a specific LWP, clear the waiters marker: some
683 	 * other LWP may want it.  Then, kick all the remaining waiters
684 	 * so that they can re-check for zombies and for deadlock.
685 	 */
686 	if (lid != 0) {
687 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
688 			if (l2->l_lid == lid) {
689 				if (l2->l_waiter == curlid)
690 					l2->l_waiter = 0;
691 				break;
692 			}
693 		}
694 	}
695 	p->p_nlwpwait--;
696 	l->l_waitingfor = 0;
697 	cv_broadcast(&p->p_lwpcv);
698 
699 	return error;
700 }
701 
702 static lwpid_t
703 lwp_find_free_lid(lwpid_t try_lid, lwp_t * new_lwp, proc_t *p)
704 {
705 	#define LID_SCAN (1u << 31)
706 	lwp_t *scan, *free_before;
707 	lwpid_t nxt_lid;
708 
709 	/*
710 	 * We want the first unused lid greater than or equal to
711 	 * try_lid (modulo 2^31).
712 	 * (If nothing else ld.elf_so doesn't want lwpid with the top bit set.)
713 	 * We must not return 0, and avoiding 'LID_SCAN - 1' makes
714 	 * the outer test easier.
715 	 * This would be much easier if the list were sorted in
716 	 * increasing order.
717 	 * The list is kept sorted in decreasing order.
718 	 * This code is only used after a process has generated 2^31 lwp.
719 	 *
720 	 * Code assumes it can always find an id.
721 	 */
722 
723 	try_lid &= LID_SCAN - 1;
724 	if (try_lid <= 1)
725 		try_lid = 2;
726 
727 	free_before = NULL;
728 	nxt_lid = LID_SCAN - 1;
729 	LIST_FOREACH(scan, &p->p_lwps, l_sibling) {
730 		if (scan->l_lid != nxt_lid) {
731 			/* There are available lid before this entry */
732 			free_before = scan;
733 			if (try_lid > scan->l_lid)
734 				break;
735 		}
736 		if (try_lid == scan->l_lid) {
737 			/* The ideal lid is busy, take a higher one */
738 			if (free_before != NULL) {
739 				try_lid = free_before->l_lid + 1;
740 				break;
741 			}
742 			/* No higher ones, reuse low numbers */
743 			try_lid = 2;
744 		}
745 
746 		nxt_lid = scan->l_lid - 1;
747 		if (LIST_NEXT(scan, l_sibling) == NULL) {
748 		    /* The value we have is lower than any existing lwp */
749 		    LIST_INSERT_AFTER(scan, new_lwp, l_sibling);
750 		    return try_lid;
751 		}
752 	}
753 
754 	LIST_INSERT_BEFORE(free_before, new_lwp, l_sibling);
755 	return try_lid;
756 }
757 
758 /*
759  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
760  * The new LWP is created in state LSIDL and must be set running,
761  * suspended, or stopped by the caller.
762  */
763 int
764 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
765     void *stack, size_t stacksize, void (*func)(void *), void *arg,
766     lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
767     const stack_t *sigstk)
768 {
769 	struct lwp *l2, *isfree;
770 	turnstile_t *ts;
771 	lwpid_t lid;
772 
773 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
774 
775 	/*
776 	 * Enforce limits, excluding the first lwp and kthreads.
777 	 */
778 	if (p2->p_nlwps != 0 && p2 != &proc0) {
779 		uid_t uid = kauth_cred_getuid(l1->l_cred);
780 		int count = chglwpcnt(uid, 1);
781 		if (__predict_false(count >
782 		    p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
783 			if (kauth_authorize_process(l1->l_cred,
784 			    KAUTH_PROCESS_RLIMIT, p2,
785 			    KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
786 			    &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
787 			    != 0) {
788 				(void)chglwpcnt(uid, -1);
789 				return EAGAIN;
790 			}
791 		}
792 	}
793 
794 	/*
795 	 * First off, reap any detached LWP waiting to be collected.
796 	 * We can re-use its LWP structure and turnstile.
797 	 */
798 	isfree = NULL;
799 	if (p2->p_zomblwp != NULL) {
800 		mutex_enter(p2->p_lock);
801 		if ((isfree = p2->p_zomblwp) != NULL) {
802 			p2->p_zomblwp = NULL;
803 			lwp_free(isfree, true, false);/* releases proc mutex */
804 		} else
805 			mutex_exit(p2->p_lock);
806 	}
807 	if (isfree == NULL) {
808 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
809 		memset(l2, 0, sizeof(*l2));
810 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
811 		SLIST_INIT(&l2->l_pi_lenders);
812 	} else {
813 		l2 = isfree;
814 		ts = l2->l_ts;
815 		KASSERT(l2->l_inheritedprio == -1);
816 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
817 		memset(l2, 0, sizeof(*l2));
818 		l2->l_ts = ts;
819 	}
820 
821 	l2->l_stat = LSIDL;
822 	l2->l_proc = p2;
823 	l2->l_refcnt = 1;
824 	l2->l_class = sclass;
825 
826 	/*
827 	 * If vfork(), we want the LWP to run fast and on the same CPU
828 	 * as its parent, so that it can reuse the VM context and cache
829 	 * footprint on the local CPU.
830 	 */
831 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
832 	l2->l_kpribase = PRI_KERNEL;
833 	l2->l_priority = l1->l_priority;
834 	l2->l_inheritedprio = -1;
835 	l2->l_protectprio = -1;
836 	l2->l_auxprio = -1;
837 	l2->l_flag = 0;
838 	l2->l_pflag = LP_MPSAFE;
839 	TAILQ_INIT(&l2->l_ld_locks);
840 	l2->l_psrefs = 0;
841 
842 	/*
843 	 * For vfork, borrow parent's lwpctl context if it exists.
844 	 * This also causes us to return via lwp_userret.
845 	 */
846 	if (flags & LWP_VFORK && l1->l_lwpctl) {
847 		l2->l_lwpctl = l1->l_lwpctl;
848 		l2->l_flag |= LW_LWPCTL;
849 	}
850 
851 	/*
852 	 * If not the first LWP in the process, grab a reference to the
853 	 * descriptor table.
854 	 */
855 	l2->l_fd = p2->p_fd;
856 	if (p2->p_nlwps != 0) {
857 		KASSERT(l1->l_proc == p2);
858 		fd_hold(l2);
859 	} else {
860 		KASSERT(l1->l_proc != p2);
861 	}
862 
863 	if (p2->p_flag & PK_SYSTEM) {
864 		/* Mark it as a system LWP. */
865 		l2->l_flag |= LW_SYSTEM;
866 	}
867 
868 	kpreempt_disable();
869 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
870 	l2->l_cpu = l1->l_cpu;
871 	kpreempt_enable();
872 
873 	kdtrace_thread_ctor(NULL, l2);
874 	lwp_initspecific(l2);
875 	sched_lwp_fork(l1, l2);
876 	lwp_update_creds(l2);
877 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
878 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
879 	cv_init(&l2->l_sigcv, "sigwait");
880 	cv_init(&l2->l_waitcv, "vfork");
881 	l2->l_syncobj = &sched_syncobj;
882 	PSREF_DEBUG_INIT_LWP(l2);
883 
884 	if (rnewlwpp != NULL)
885 		*rnewlwpp = l2;
886 
887 	/*
888 	 * PCU state needs to be saved before calling uvm_lwp_fork() so that
889 	 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
890 	 */
891 	pcu_save_all(l1);
892 
893 	uvm_lwp_setuarea(l2, uaddr);
894 	uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
895 
896 	if ((flags & LWP_PIDLID) != 0) {
897 		lid = proc_alloc_pid(p2);
898 		l2->l_pflag |= LP_PIDLID;
899 	} else {
900 		lid = 0;
901 	}
902 
903 	mutex_enter(p2->p_lock);
904 
905 	if ((flags & LWP_DETACHED) != 0) {
906 		l2->l_prflag = LPR_DETACHED;
907 		p2->p_ndlwps++;
908 	} else
909 		l2->l_prflag = 0;
910 
911 	l2->l_sigstk = *sigstk;
912 	l2->l_sigmask = *sigmask;
913 	TAILQ_INIT(&l2->l_sigpend.sp_info);
914 	sigemptyset(&l2->l_sigpend.sp_set);
915 
916 	if (__predict_true(lid == 0)) {
917 		/*
918 		 * XXX: l_lid are expected to be unique (for a process)
919 		 * if LWP_PIDLID is sometimes set this won't be true.
920 		 * Once 2^31 threads have been allocated we have to
921 		 * scan to ensure we allocate a unique value.
922 		 */
923 		lid = ++p2->p_nlwpid;
924 		if (__predict_false(lid & LID_SCAN)) {
925 			lid = lwp_find_free_lid(lid, l2, p2);
926 			p2->p_nlwpid = lid | LID_SCAN;
927 			/* l2 as been inserted into p_lwps in order */
928 			goto skip_insert;
929 		}
930 		p2->p_nlwpid = lid;
931 	}
932 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
933     skip_insert:
934 	l2->l_lid = lid;
935 	p2->p_nlwps++;
936 	p2->p_nrlwps++;
937 
938 	KASSERT(l2->l_affinity == NULL);
939 
940 	if ((p2->p_flag & PK_SYSTEM) == 0) {
941 		/* Inherit the affinity mask. */
942 		if (l1->l_affinity) {
943 			/*
944 			 * Note that we hold the state lock while inheriting
945 			 * the affinity to avoid race with sched_setaffinity().
946 			 */
947 			lwp_lock(l1);
948 			if (l1->l_affinity) {
949 				kcpuset_use(l1->l_affinity);
950 				l2->l_affinity = l1->l_affinity;
951 			}
952 			lwp_unlock(l1);
953 		}
954 		lwp_lock(l2);
955 		/* Inherit a processor-set */
956 		l2->l_psid = l1->l_psid;
957 		/* Look for a CPU to start */
958 		l2->l_cpu = sched_takecpu(l2);
959 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
960 	}
961 	mutex_exit(p2->p_lock);
962 
963 	SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
964 
965 	mutex_enter(proc_lock);
966 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
967 	mutex_exit(proc_lock);
968 
969 	SYSCALL_TIME_LWP_INIT(l2);
970 
971 	if (p2->p_emul->e_lwp_fork)
972 		(*p2->p_emul->e_lwp_fork)(l1, l2);
973 
974 	return (0);
975 }
976 
977 /*
978  * Called by MD code when a new LWP begins execution.  Must be called
979  * with the previous LWP locked (so at splsched), or if there is no
980  * previous LWP, at splsched.
981  */
982 void
983 lwp_startup(struct lwp *prev, struct lwp *new_lwp)
984 {
985 	KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
986 
987 	SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
988 
989 	KASSERT(kpreempt_disabled());
990 	if (prev != NULL) {
991 		/*
992 		 * Normalize the count of the spin-mutexes, it was
993 		 * increased in mi_switch().  Unmark the state of
994 		 * context switch - it is finished for previous LWP.
995 		 */
996 		curcpu()->ci_mtx_count++;
997 		membar_exit();
998 		prev->l_ctxswtch = 0;
999 	}
1000 	KPREEMPT_DISABLE(new_lwp);
1001 	if (__predict_true(new_lwp->l_proc->p_vmspace))
1002 		pmap_activate(new_lwp);
1003 	spl0();
1004 
1005 	/* Note trip through cpu_switchto(). */
1006 	pserialize_switchpoint();
1007 
1008 	LOCKDEBUG_BARRIER(NULL, 0);
1009 	KPREEMPT_ENABLE(new_lwp);
1010 	if ((new_lwp->l_pflag & LP_MPSAFE) == 0) {
1011 		KERNEL_LOCK(1, new_lwp);
1012 	}
1013 }
1014 
1015 /*
1016  * Exit an LWP.
1017  */
1018 void
1019 lwp_exit(struct lwp *l)
1020 {
1021 	struct proc *p = l->l_proc;
1022 	struct lwp *l2;
1023 	bool current;
1024 
1025 	current = (l == curlwp);
1026 
1027 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
1028 	KASSERT(p == curproc);
1029 
1030 	SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
1031 
1032 	/*
1033 	 * Verify that we hold no locks other than the kernel lock.
1034 	 */
1035 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
1036 
1037 	/*
1038 	 * If we are the last live LWP in a process, we need to exit the
1039 	 * entire process.  We do so with an exit status of zero, because
1040 	 * it's a "controlled" exit, and because that's what Solaris does.
1041 	 *
1042 	 * We are not quite a zombie yet, but for accounting purposes we
1043 	 * must increment the count of zombies here.
1044 	 *
1045 	 * Note: the last LWP's specificdata will be deleted here.
1046 	 */
1047 	mutex_enter(p->p_lock);
1048 	if (p->p_nlwps - p->p_nzlwps == 1) {
1049 		KASSERT(current == true);
1050 		KASSERT(p != &proc0);
1051 		/* XXXSMP kernel_lock not held */
1052 		exit1(l, 0, 0);
1053 		/* NOTREACHED */
1054 	}
1055 	p->p_nzlwps++;
1056 	mutex_exit(p->p_lock);
1057 
1058 	if (p->p_emul->e_lwp_exit)
1059 		(*p->p_emul->e_lwp_exit)(l);
1060 
1061 	/* Drop filedesc reference. */
1062 	fd_free();
1063 
1064 	/* Release fstrans private data. */
1065 	fstrans_lwp_dtor(l);
1066 
1067 	/* Delete the specificdata while it's still safe to sleep. */
1068 	lwp_finispecific(l);
1069 
1070 	/*
1071 	 * Release our cached credentials.
1072 	 */
1073 	kauth_cred_free(l->l_cred);
1074 	callout_destroy(&l->l_timeout_ch);
1075 
1076 	/*
1077 	 * If traced, report LWP exit event to the debugger.
1078 	 *
1079 	 * Remove the LWP from the global list.
1080 	 * Free its LID from the PID namespace if needed.
1081 	 */
1082 	mutex_enter(proc_lock);
1083 
1084 	if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
1085 	    (PSL_TRACED|PSL_TRACELWP_EXIT)) {
1086 		mutex_enter(p->p_lock);
1087 		if (ISSET(p->p_sflag, PS_WEXIT)) {
1088 			mutex_exit(p->p_lock);
1089 			/*
1090 			 * We are exiting, bail out without informing parent
1091 			 * about a terminating LWP as it would deadlock.
1092 			 */
1093 		} else {
1094 			p->p_lwp_exited = l->l_lid;
1095 			eventswitch(TRAP_LWP);
1096 			mutex_enter(proc_lock);
1097 		}
1098 	}
1099 
1100 	LIST_REMOVE(l, l_list);
1101 	if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
1102 		proc_free_pid(l->l_lid);
1103 	}
1104 	mutex_exit(proc_lock);
1105 
1106 	/*
1107 	 * Get rid of all references to the LWP that others (e.g. procfs)
1108 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
1109 	 * mark it waiting for collection in the proc structure.  Note that
1110 	 * before we can do that, we need to free any other dead, deatched
1111 	 * LWP waiting to meet its maker.
1112 	 */
1113 	mutex_enter(p->p_lock);
1114 	lwp_drainrefs(l);
1115 
1116 	if ((l->l_prflag & LPR_DETACHED) != 0) {
1117 		while ((l2 = p->p_zomblwp) != NULL) {
1118 			p->p_zomblwp = NULL;
1119 			lwp_free(l2, false, false);/* releases proc mutex */
1120 			mutex_enter(p->p_lock);
1121 			l->l_refcnt++;
1122 			lwp_drainrefs(l);
1123 		}
1124 		p->p_zomblwp = l;
1125 	}
1126 
1127 	/*
1128 	 * If we find a pending signal for the process and we have been
1129 	 * asked to check for signals, then we lose: arrange to have
1130 	 * all other LWPs in the process check for signals.
1131 	 */
1132 	if ((l->l_flag & LW_PENDSIG) != 0 &&
1133 	    firstsig(&p->p_sigpend.sp_set) != 0) {
1134 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1135 			lwp_lock(l2);
1136 			l2->l_flag |= LW_PENDSIG;
1137 			lwp_unlock(l2);
1138 		}
1139 	}
1140 
1141 	/*
1142 	 * Release any PCU resources before becoming a zombie.
1143 	 */
1144 	pcu_discard_all(l);
1145 
1146 	lwp_lock(l);
1147 	l->l_stat = LSZOMB;
1148 	if (l->l_name != NULL) {
1149 		strcpy(l->l_name, "(zombie)");
1150 	}
1151 	lwp_unlock(l);
1152 	p->p_nrlwps--;
1153 	cv_broadcast(&p->p_lwpcv);
1154 	if (l->l_lwpctl != NULL)
1155 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1156 	mutex_exit(p->p_lock);
1157 
1158 	/*
1159 	 * We can no longer block.  At this point, lwp_free() may already
1160 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
1161 	 *
1162 	 * Free MD LWP resources.
1163 	 */
1164 	cpu_lwp_free(l, 0);
1165 
1166 	if (current) {
1167 		pmap_deactivate(l);
1168 
1169 		/*
1170 		 * Release the kernel lock, and switch away into
1171 		 * oblivion.
1172 		 */
1173 #ifdef notyet
1174 		/* XXXSMP hold in lwp_userret() */
1175 		KERNEL_UNLOCK_LAST(l);
1176 #else
1177 		KERNEL_UNLOCK_ALL(l, NULL);
1178 #endif
1179 		lwp_exit_switchaway(l);
1180 	}
1181 }
1182 
1183 /*
1184  * Free a dead LWP's remaining resources.
1185  *
1186  * XXXLWP limits.
1187  */
1188 void
1189 lwp_free(struct lwp *l, bool recycle, bool last)
1190 {
1191 	struct proc *p = l->l_proc;
1192 	struct rusage *ru;
1193 	ksiginfoq_t kq;
1194 
1195 	KASSERT(l != curlwp);
1196 	KASSERT(last || mutex_owned(p->p_lock));
1197 
1198 	/*
1199 	 * We use the process credentials instead of the lwp credentials here
1200 	 * because the lwp credentials maybe cached (just after a setuid call)
1201 	 * and we don't want pay for syncing, since the lwp is going away
1202 	 * anyway
1203 	 */
1204 	if (p != &proc0 && p->p_nlwps != 1)
1205 		(void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
1206 	/*
1207 	 * If this was not the last LWP in the process, then adjust
1208 	 * counters and unlock.
1209 	 */
1210 	if (!last) {
1211 		/*
1212 		 * Add the LWP's run time to the process' base value.
1213 		 * This needs to co-incide with coming off p_lwps.
1214 		 */
1215 		bintime_add(&p->p_rtime, &l->l_rtime);
1216 		p->p_pctcpu += l->l_pctcpu;
1217 		ru = &p->p_stats->p_ru;
1218 		ruadd(ru, &l->l_ru);
1219 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1220 		ru->ru_nivcsw += l->l_nivcsw;
1221 		LIST_REMOVE(l, l_sibling);
1222 		p->p_nlwps--;
1223 		p->p_nzlwps--;
1224 		if ((l->l_prflag & LPR_DETACHED) != 0)
1225 			p->p_ndlwps--;
1226 
1227 		/*
1228 		 * Have any LWPs sleeping in lwp_wait() recheck for
1229 		 * deadlock.
1230 		 */
1231 		cv_broadcast(&p->p_lwpcv);
1232 		mutex_exit(p->p_lock);
1233 	}
1234 
1235 #ifdef MULTIPROCESSOR
1236 	/*
1237 	 * In the unlikely event that the LWP is still on the CPU,
1238 	 * then spin until it has switched away.  We need to release
1239 	 * all locks to avoid deadlock against interrupt handlers on
1240 	 * the target CPU.
1241 	 */
1242 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1243 		int count;
1244 		(void)count; /* XXXgcc */
1245 		KERNEL_UNLOCK_ALL(curlwp, &count);
1246 		while ((l->l_pflag & LP_RUNNING) != 0 ||
1247 		    l->l_cpu->ci_curlwp == l)
1248 			SPINLOCK_BACKOFF_HOOK;
1249 		KERNEL_LOCK(count, curlwp);
1250 	}
1251 #endif
1252 
1253 	/*
1254 	 * Destroy the LWP's remaining signal information.
1255 	 */
1256 	ksiginfo_queue_init(&kq);
1257 	sigclear(&l->l_sigpend, NULL, &kq);
1258 	ksiginfo_queue_drain(&kq);
1259 	cv_destroy(&l->l_sigcv);
1260 	cv_destroy(&l->l_waitcv);
1261 
1262 	/*
1263 	 * Free lwpctl structure and affinity.
1264 	 */
1265 	if (l->l_lwpctl) {
1266 		lwp_ctl_free(l);
1267 	}
1268 	if (l->l_affinity) {
1269 		kcpuset_unuse(l->l_affinity, NULL);
1270 		l->l_affinity = NULL;
1271 	}
1272 
1273 	/*
1274 	 * Free the LWP's turnstile and the LWP structure itself unless the
1275 	 * caller wants to recycle them.  Also, free the scheduler specific
1276 	 * data.
1277 	 *
1278 	 * We can't return turnstile0 to the pool (it didn't come from it),
1279 	 * so if it comes up just drop it quietly and move on.
1280 	 *
1281 	 * We don't recycle the VM resources at this time.
1282 	 */
1283 
1284 	if (!recycle && l->l_ts != &turnstile0)
1285 		pool_cache_put(turnstile_cache, l->l_ts);
1286 	if (l->l_name != NULL)
1287 		kmem_free(l->l_name, MAXCOMLEN);
1288 
1289 	cpu_lwp_free2(l);
1290 	uvm_lwp_exit(l);
1291 
1292 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1293 	KASSERT(l->l_inheritedprio == -1);
1294 	KASSERT(l->l_blcnt == 0);
1295 	kdtrace_thread_dtor(NULL, l);
1296 	if (!recycle)
1297 		pool_cache_put(lwp_cache, l);
1298 }
1299 
1300 /*
1301  * Migrate the LWP to the another CPU.  Unlocks the LWP.
1302  */
1303 void
1304 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1305 {
1306 	struct schedstate_percpu *tspc;
1307 	int lstat = l->l_stat;
1308 
1309 	KASSERT(lwp_locked(l, NULL));
1310 	KASSERT(tci != NULL);
1311 
1312 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
1313 	if ((l->l_pflag & LP_RUNNING) != 0) {
1314 		lstat = LSONPROC;
1315 	}
1316 
1317 	/*
1318 	 * The destination CPU could be changed while previous migration
1319 	 * was not finished.
1320 	 */
1321 	if (l->l_target_cpu != NULL) {
1322 		l->l_target_cpu = tci;
1323 		lwp_unlock(l);
1324 		return;
1325 	}
1326 
1327 	/* Nothing to do if trying to migrate to the same CPU */
1328 	if (l->l_cpu == tci) {
1329 		lwp_unlock(l);
1330 		return;
1331 	}
1332 
1333 	KASSERT(l->l_target_cpu == NULL);
1334 	tspc = &tci->ci_schedstate;
1335 	switch (lstat) {
1336 	case LSRUN:
1337 		l->l_target_cpu = tci;
1338 		break;
1339 	case LSIDL:
1340 		l->l_cpu = tci;
1341 		lwp_unlock_to(l, tspc->spc_mutex);
1342 		return;
1343 	case LSSLEEP:
1344 		l->l_cpu = tci;
1345 		break;
1346 	case LSSTOP:
1347 	case LSSUSPENDED:
1348 		l->l_cpu = tci;
1349 		if (l->l_wchan == NULL) {
1350 			lwp_unlock_to(l, tspc->spc_lwplock);
1351 			return;
1352 		}
1353 		break;
1354 	case LSONPROC:
1355 		l->l_target_cpu = tci;
1356 		spc_lock(l->l_cpu);
1357 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1358 		spc_unlock(l->l_cpu);
1359 		break;
1360 	}
1361 	lwp_unlock(l);
1362 }
1363 
1364 /*
1365  * Find the LWP in the process.  Arguments may be zero, in such case,
1366  * the calling process and first LWP in the list will be used.
1367  * On success - returns proc locked.
1368  */
1369 struct lwp *
1370 lwp_find2(pid_t pid, lwpid_t lid)
1371 {
1372 	proc_t *p;
1373 	lwp_t *l;
1374 
1375 	/* Find the process. */
1376 	if (pid != 0) {
1377 		mutex_enter(proc_lock);
1378 		p = proc_find(pid);
1379 		if (p == NULL) {
1380 			mutex_exit(proc_lock);
1381 			return NULL;
1382 		}
1383 		mutex_enter(p->p_lock);
1384 		mutex_exit(proc_lock);
1385 	} else {
1386 		p = curlwp->l_proc;
1387 		mutex_enter(p->p_lock);
1388 	}
1389 	/* Find the thread. */
1390 	if (lid != 0) {
1391 		l = lwp_find(p, lid);
1392 	} else {
1393 		l = LIST_FIRST(&p->p_lwps);
1394 	}
1395 	if (l == NULL) {
1396 		mutex_exit(p->p_lock);
1397 	}
1398 	return l;
1399 }
1400 
1401 /*
1402  * Look up a live LWP within the specified process.
1403  *
1404  * Must be called with p->p_lock held.
1405  */
1406 struct lwp *
1407 lwp_find(struct proc *p, lwpid_t id)
1408 {
1409 	struct lwp *l;
1410 
1411 	KASSERT(mutex_owned(p->p_lock));
1412 
1413 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1414 		if (l->l_lid == id)
1415 			break;
1416 	}
1417 
1418 	/*
1419 	 * No need to lock - all of these conditions will
1420 	 * be visible with the process level mutex held.
1421 	 */
1422 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1423 		l = NULL;
1424 
1425 	return l;
1426 }
1427 
1428 /*
1429  * Update an LWP's cached credentials to mirror the process' master copy.
1430  *
1431  * This happens early in the syscall path, on user trap, and on LWP
1432  * creation.  A long-running LWP can also voluntarily choose to update
1433  * its credentials by calling this routine.  This may be called from
1434  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1435  */
1436 void
1437 lwp_update_creds(struct lwp *l)
1438 {
1439 	kauth_cred_t oc;
1440 	struct proc *p;
1441 
1442 	p = l->l_proc;
1443 	oc = l->l_cred;
1444 
1445 	mutex_enter(p->p_lock);
1446 	kauth_cred_hold(p->p_cred);
1447 	l->l_cred = p->p_cred;
1448 	l->l_prflag &= ~LPR_CRMOD;
1449 	mutex_exit(p->p_lock);
1450 	if (oc != NULL)
1451 		kauth_cred_free(oc);
1452 }
1453 
1454 /*
1455  * Verify that an LWP is locked, and optionally verify that the lock matches
1456  * one we specify.
1457  */
1458 int
1459 lwp_locked(struct lwp *l, kmutex_t *mtx)
1460 {
1461 	kmutex_t *cur = l->l_mutex;
1462 
1463 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1464 }
1465 
1466 /*
1467  * Lend a new mutex to an LWP.  The old mutex must be held.
1468  */
1469 void
1470 lwp_setlock(struct lwp *l, kmutex_t *mtx)
1471 {
1472 
1473 	KASSERT(mutex_owned(l->l_mutex));
1474 
1475 	membar_exit();
1476 	l->l_mutex = mtx;
1477 }
1478 
1479 /*
1480  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
1481  * must be held.
1482  */
1483 void
1484 lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
1485 {
1486 	kmutex_t *old;
1487 
1488 	KASSERT(lwp_locked(l, NULL));
1489 
1490 	old = l->l_mutex;
1491 	membar_exit();
1492 	l->l_mutex = mtx;
1493 	mutex_spin_exit(old);
1494 }
1495 
1496 int
1497 lwp_trylock(struct lwp *l)
1498 {
1499 	kmutex_t *old;
1500 
1501 	for (;;) {
1502 		if (!mutex_tryenter(old = l->l_mutex))
1503 			return 0;
1504 		if (__predict_true(l->l_mutex == old))
1505 			return 1;
1506 		mutex_spin_exit(old);
1507 	}
1508 }
1509 
1510 void
1511 lwp_unsleep(lwp_t *l, bool cleanup)
1512 {
1513 
1514 	KASSERT(mutex_owned(l->l_mutex));
1515 	(*l->l_syncobj->sobj_unsleep)(l, cleanup);
1516 }
1517 
1518 /*
1519  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
1520  * set.
1521  */
1522 void
1523 lwp_userret(struct lwp *l)
1524 {
1525 	struct proc *p;
1526 	int sig;
1527 
1528 	KASSERT(l == curlwp);
1529 	KASSERT(l->l_stat == LSONPROC);
1530 	p = l->l_proc;
1531 
1532 #ifndef __HAVE_FAST_SOFTINTS
1533 	/* Run pending soft interrupts. */
1534 	if (l->l_cpu->ci_data.cpu_softints != 0)
1535 		softint_overlay();
1536 #endif
1537 
1538 	/*
1539 	 * It is safe to do this read unlocked on a MP system..
1540 	 */
1541 	while ((l->l_flag & LW_USERRET) != 0) {
1542 		/*
1543 		 * Process pending signals first, unless the process
1544 		 * is dumping core or exiting, where we will instead
1545 		 * enter the LW_WSUSPEND case below.
1546 		 */
1547 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1548 		    LW_PENDSIG) {
1549 			mutex_enter(p->p_lock);
1550 			while ((sig = issignal(l)) != 0)
1551 				postsig(sig);
1552 			mutex_exit(p->p_lock);
1553 		}
1554 
1555 		/*
1556 		 * Core-dump or suspend pending.
1557 		 *
1558 		 * In case of core dump, suspend ourselves, so that the kernel
1559 		 * stack and therefore the userland registers saved in the
1560 		 * trapframe are around for coredump() to write them out.
1561 		 * We also need to save any PCU resources that we have so that
1562 		 * they accessible for coredump().  We issue a wakeup on
1563 		 * p->p_lwpcv so that sigexit() will write the core file out
1564 		 * once all other LWPs are suspended.
1565 		 */
1566 		if ((l->l_flag & LW_WSUSPEND) != 0) {
1567 			pcu_save_all(l);
1568 			mutex_enter(p->p_lock);
1569 			p->p_nrlwps--;
1570 			cv_broadcast(&p->p_lwpcv);
1571 			lwp_lock(l);
1572 			l->l_stat = LSSUSPENDED;
1573 			lwp_unlock(l);
1574 			mutex_exit(p->p_lock);
1575 			lwp_lock(l);
1576 			mi_switch(l);
1577 		}
1578 
1579 		/* Process is exiting. */
1580 		if ((l->l_flag & LW_WEXIT) != 0) {
1581 			lwp_exit(l);
1582 			KASSERT(0);
1583 			/* NOTREACHED */
1584 		}
1585 
1586 		/* update lwpctl processor (for vfork child_return) */
1587 		if (l->l_flag & LW_LWPCTL) {
1588 			lwp_lock(l);
1589 			KASSERT(kpreempt_disabled());
1590 			l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1591 			l->l_lwpctl->lc_pctr++;
1592 			l->l_flag &= ~LW_LWPCTL;
1593 			lwp_unlock(l);
1594 		}
1595 	}
1596 }
1597 
1598 /*
1599  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1600  */
1601 void
1602 lwp_need_userret(struct lwp *l)
1603 {
1604 	KASSERT(lwp_locked(l, NULL));
1605 
1606 	/*
1607 	 * Since the tests in lwp_userret() are done unlocked, make sure
1608 	 * that the condition will be seen before forcing the LWP to enter
1609 	 * kernel mode.
1610 	 */
1611 	membar_producer();
1612 	cpu_signotify(l);
1613 }
1614 
1615 /*
1616  * Add one reference to an LWP.  This will prevent the LWP from
1617  * exiting, thus keep the lwp structure and PCB around to inspect.
1618  */
1619 void
1620 lwp_addref(struct lwp *l)
1621 {
1622 
1623 	KASSERT(mutex_owned(l->l_proc->p_lock));
1624 	KASSERT(l->l_stat != LSZOMB);
1625 	KASSERT(l->l_refcnt != 0);
1626 
1627 	l->l_refcnt++;
1628 }
1629 
1630 /*
1631  * Remove one reference to an LWP.  If this is the last reference,
1632  * then we must finalize the LWP's death.
1633  */
1634 void
1635 lwp_delref(struct lwp *l)
1636 {
1637 	struct proc *p = l->l_proc;
1638 
1639 	mutex_enter(p->p_lock);
1640 	lwp_delref2(l);
1641 	mutex_exit(p->p_lock);
1642 }
1643 
1644 /*
1645  * Remove one reference to an LWP.  If this is the last reference,
1646  * then we must finalize the LWP's death.  The proc mutex is held
1647  * on entry.
1648  */
1649 void
1650 lwp_delref2(struct lwp *l)
1651 {
1652 	struct proc *p = l->l_proc;
1653 
1654 	KASSERT(mutex_owned(p->p_lock));
1655 	KASSERT(l->l_stat != LSZOMB);
1656 	KASSERT(l->l_refcnt > 0);
1657 	if (--l->l_refcnt == 0)
1658 		cv_broadcast(&p->p_lwpcv);
1659 }
1660 
1661 /*
1662  * Drain all references to the current LWP.
1663  */
1664 void
1665 lwp_drainrefs(struct lwp *l)
1666 {
1667 	struct proc *p = l->l_proc;
1668 
1669 	KASSERT(mutex_owned(p->p_lock));
1670 	KASSERT(l->l_refcnt != 0);
1671 
1672 	l->l_refcnt--;
1673 	while (l->l_refcnt != 0)
1674 		cv_wait(&p->p_lwpcv, p->p_lock);
1675 }
1676 
1677 /*
1678  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
1679  * be held.
1680  */
1681 bool
1682 lwp_alive(lwp_t *l)
1683 {
1684 
1685 	KASSERT(mutex_owned(l->l_proc->p_lock));
1686 
1687 	switch (l->l_stat) {
1688 	case LSSLEEP:
1689 	case LSRUN:
1690 	case LSONPROC:
1691 	case LSSTOP:
1692 	case LSSUSPENDED:
1693 		return true;
1694 	default:
1695 		return false;
1696 	}
1697 }
1698 
1699 /*
1700  * Return first live LWP in the process.
1701  */
1702 lwp_t *
1703 lwp_find_first(proc_t *p)
1704 {
1705 	lwp_t *l;
1706 
1707 	KASSERT(mutex_owned(p->p_lock));
1708 
1709 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1710 		if (lwp_alive(l)) {
1711 			return l;
1712 		}
1713 	}
1714 
1715 	return NULL;
1716 }
1717 
1718 /*
1719  * Allocate a new lwpctl structure for a user LWP.
1720  */
1721 int
1722 lwp_ctl_alloc(vaddr_t *uaddr)
1723 {
1724 	lcproc_t *lp;
1725 	u_int bit, i, offset;
1726 	struct uvm_object *uao;
1727 	int error;
1728 	lcpage_t *lcp;
1729 	proc_t *p;
1730 	lwp_t *l;
1731 
1732 	l = curlwp;
1733 	p = l->l_proc;
1734 
1735 	/* don't allow a vforked process to create lwp ctls */
1736 	if (p->p_lflag & PL_PPWAIT)
1737 		return EBUSY;
1738 
1739 	if (l->l_lcpage != NULL) {
1740 		lcp = l->l_lcpage;
1741 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1742 		return 0;
1743 	}
1744 
1745 	/* First time around, allocate header structure for the process. */
1746 	if ((lp = p->p_lwpctl) == NULL) {
1747 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1748 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1749 		lp->lp_uao = NULL;
1750 		TAILQ_INIT(&lp->lp_pages);
1751 		mutex_enter(p->p_lock);
1752 		if (p->p_lwpctl == NULL) {
1753 			p->p_lwpctl = lp;
1754 			mutex_exit(p->p_lock);
1755 		} else {
1756 			mutex_exit(p->p_lock);
1757 			mutex_destroy(&lp->lp_lock);
1758 			kmem_free(lp, sizeof(*lp));
1759 			lp = p->p_lwpctl;
1760 		}
1761 	}
1762 
1763  	/*
1764  	 * Set up an anonymous memory region to hold the shared pages.
1765  	 * Map them into the process' address space.  The user vmspace
1766  	 * gets the first reference on the UAO.
1767  	 */
1768 	mutex_enter(&lp->lp_lock);
1769 	if (lp->lp_uao == NULL) {
1770 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1771 		lp->lp_cur = 0;
1772 		lp->lp_max = LWPCTL_UAREA_SZ;
1773 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1774 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
1775 		     p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1776 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1777 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1778 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1779 		if (error != 0) {
1780 			uao_detach(lp->lp_uao);
1781 			lp->lp_uao = NULL;
1782 			mutex_exit(&lp->lp_lock);
1783 			return error;
1784 		}
1785 	}
1786 
1787 	/* Get a free block and allocate for this LWP. */
1788 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1789 		if (lcp->lcp_nfree != 0)
1790 			break;
1791 	}
1792 	if (lcp == NULL) {
1793 		/* Nothing available - try to set up a free page. */
1794 		if (lp->lp_cur == lp->lp_max) {
1795 			mutex_exit(&lp->lp_lock);
1796 			return ENOMEM;
1797 		}
1798 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1799 
1800 		/*
1801 		 * Wire the next page down in kernel space.  Since this
1802 		 * is a new mapping, we must add a reference.
1803 		 */
1804 		uao = lp->lp_uao;
1805 		(*uao->pgops->pgo_reference)(uao);
1806 		lcp->lcp_kaddr = vm_map_min(kernel_map);
1807 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1808 		    uao, lp->lp_cur, PAGE_SIZE,
1809 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1810 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1811 		if (error != 0) {
1812 			mutex_exit(&lp->lp_lock);
1813 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1814 			(*uao->pgops->pgo_detach)(uao);
1815 			return error;
1816 		}
1817 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1818 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1819 		if (error != 0) {
1820 			mutex_exit(&lp->lp_lock);
1821 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
1822 			    lcp->lcp_kaddr + PAGE_SIZE);
1823 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1824 			return error;
1825 		}
1826 		/* Prepare the page descriptor and link into the list. */
1827 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1828 		lp->lp_cur += PAGE_SIZE;
1829 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
1830 		lcp->lcp_rotor = 0;
1831 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1832 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1833 	}
1834 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1835 		if (++i >= LWPCTL_BITMAP_ENTRIES)
1836 			i = 0;
1837 	}
1838 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
1839 	lcp->lcp_bitmap[i] ^= (1U << bit);
1840 	lcp->lcp_rotor = i;
1841 	lcp->lcp_nfree--;
1842 	l->l_lcpage = lcp;
1843 	offset = (i << 5) + bit;
1844 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1845 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1846 	mutex_exit(&lp->lp_lock);
1847 
1848 	KPREEMPT_DISABLE(l);
1849 	l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
1850 	KPREEMPT_ENABLE(l);
1851 
1852 	return 0;
1853 }
1854 
1855 /*
1856  * Free an lwpctl structure back to the per-process list.
1857  */
1858 void
1859 lwp_ctl_free(lwp_t *l)
1860 {
1861 	struct proc *p = l->l_proc;
1862 	lcproc_t *lp;
1863 	lcpage_t *lcp;
1864 	u_int map, offset;
1865 
1866 	/* don't free a lwp context we borrowed for vfork */
1867 	if (p->p_lflag & PL_PPWAIT) {
1868 		l->l_lwpctl = NULL;
1869 		return;
1870 	}
1871 
1872 	lp = p->p_lwpctl;
1873 	KASSERT(lp != NULL);
1874 
1875 	lcp = l->l_lcpage;
1876 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1877 	KASSERT(offset < LWPCTL_PER_PAGE);
1878 
1879 	mutex_enter(&lp->lp_lock);
1880 	lcp->lcp_nfree++;
1881 	map = offset >> 5;
1882 	lcp->lcp_bitmap[map] |= (1U << (offset & 31));
1883 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1884 		lcp->lcp_rotor = map;
1885 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1886 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1887 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1888 	}
1889 	mutex_exit(&lp->lp_lock);
1890 }
1891 
1892 /*
1893  * Process is exiting; tear down lwpctl state.  This can only be safely
1894  * called by the last LWP in the process.
1895  */
1896 void
1897 lwp_ctl_exit(void)
1898 {
1899 	lcpage_t *lcp, *next;
1900 	lcproc_t *lp;
1901 	proc_t *p;
1902 	lwp_t *l;
1903 
1904 	l = curlwp;
1905 	l->l_lwpctl = NULL;
1906 	l->l_lcpage = NULL;
1907 	p = l->l_proc;
1908 	lp = p->p_lwpctl;
1909 
1910 	KASSERT(lp != NULL);
1911 	KASSERT(p->p_nlwps == 1);
1912 
1913 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1914 		next = TAILQ_NEXT(lcp, lcp_chain);
1915 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
1916 		    lcp->lcp_kaddr + PAGE_SIZE);
1917 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1918 	}
1919 
1920 	if (lp->lp_uao != NULL) {
1921 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1922 		    lp->lp_uva + LWPCTL_UAREA_SZ);
1923 	}
1924 
1925 	mutex_destroy(&lp->lp_lock);
1926 	kmem_free(lp, sizeof(*lp));
1927 	p->p_lwpctl = NULL;
1928 }
1929 
1930 /*
1931  * Return the current LWP's "preemption counter".  Used to detect
1932  * preemption across operations that can tolerate preemption without
1933  * crashing, but which may generate incorrect results if preempted.
1934  */
1935 uint64_t
1936 lwp_pctr(void)
1937 {
1938 
1939 	return curlwp->l_ncsw;
1940 }
1941 
1942 /*
1943  * Set an LWP's private data pointer.
1944  */
1945 int
1946 lwp_setprivate(struct lwp *l, void *ptr)
1947 {
1948 	int error = 0;
1949 
1950 	l->l_private = ptr;
1951 #ifdef __HAVE_CPU_LWP_SETPRIVATE
1952 	error = cpu_lwp_setprivate(l, ptr);
1953 #endif
1954 	return error;
1955 }
1956 
1957 #if defined(DDB)
1958 #include <machine/pcb.h>
1959 
1960 void
1961 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1962 {
1963 	lwp_t *l;
1964 
1965 	LIST_FOREACH(l, &alllwp, l_list) {
1966 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1967 
1968 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
1969 			continue;
1970 		}
1971 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
1972 		    (void *)addr, (void *)stack,
1973 		    (size_t)(addr - stack), l);
1974 	}
1975 }
1976 #endif /* defined(DDB) */
1977