1 /* $NetBSD: kern_exec.c,v 1.410 2014/11/09 17:50:01 maxv Exp $ */ 2 3 /*- 4 * Copyright (c) 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 * POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /*- 30 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou 31 * Copyright (C) 1992 Wolfgang Solfrank. 32 * Copyright (C) 1992 TooLs GmbH. 33 * All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 3. All advertising materials mentioning features or use of this software 44 * must display the following acknowledgement: 45 * This product includes software developed by TooLs GmbH. 46 * 4. The name of TooLs GmbH may not be used to endorse or promote products 47 * derived from this software without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR 50 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 51 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 52 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 59 */ 60 61 #include <sys/cdefs.h> 62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.410 2014/11/09 17:50:01 maxv Exp $"); 63 64 #include "opt_exec.h" 65 #include "opt_execfmt.h" 66 #include "opt_ktrace.h" 67 #include "opt_modular.h" 68 #include "opt_syscall_debug.h" 69 #include "veriexec.h" 70 #include "opt_pax.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/filedesc.h> 75 #include <sys/kernel.h> 76 #include <sys/proc.h> 77 #include <sys/mount.h> 78 #include <sys/kmem.h> 79 #include <sys/namei.h> 80 #include <sys/vnode.h> 81 #include <sys/file.h> 82 #include <sys/acct.h> 83 #include <sys/atomic.h> 84 #include <sys/exec.h> 85 #include <sys/ktrace.h> 86 #include <sys/uidinfo.h> 87 #include <sys/wait.h> 88 #include <sys/mman.h> 89 #include <sys/ras.h> 90 #include <sys/signalvar.h> 91 #include <sys/stat.h> 92 #include <sys/syscall.h> 93 #include <sys/kauth.h> 94 #include <sys/lwpctl.h> 95 #include <sys/pax.h> 96 #include <sys/cpu.h> 97 #include <sys/module.h> 98 #include <sys/syscallvar.h> 99 #include <sys/syscallargs.h> 100 #if NVERIEXEC > 0 101 #include <sys/verified_exec.h> 102 #endif /* NVERIEXEC > 0 */ 103 #include <sys/sdt.h> 104 #include <sys/spawn.h> 105 #include <sys/prot.h> 106 #include <sys/cprng.h> 107 108 #include <uvm/uvm_extern.h> 109 110 #include <machine/reg.h> 111 112 #include <compat/common/compat_util.h> 113 114 #ifndef MD_TOPDOWN_INIT 115 #ifdef __USE_TOPDOWN_VM 116 #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM 117 #else 118 #define MD_TOPDOWN_INIT(epp) 119 #endif 120 #endif 121 122 struct execve_data; 123 124 static size_t calcargs(struct execve_data * restrict, const size_t); 125 static size_t calcstack(struct execve_data * restrict, const size_t); 126 static int copyoutargs(struct execve_data * restrict, struct lwp *, 127 char * const); 128 static int copyoutpsstrs(struct execve_data * restrict, struct proc *); 129 static int copyinargs(struct execve_data * restrict, char * const *, 130 char * const *, execve_fetch_element_t, char **); 131 static int copyinargstrs(struct execve_data * restrict, char * const *, 132 execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t)); 133 static int exec_sigcode_map(struct proc *, const struct emul *); 134 135 #ifdef DEBUG_EXEC 136 #define DPRINTF(a) printf a 137 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \ 138 __LINE__, (s), (a), (b)) 139 static void dump_vmcmds(const struct exec_package * const, size_t, int); 140 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0) 141 #else 142 #define DPRINTF(a) 143 #define COPYPRINTF(s, a, b) 144 #define DUMPVMCMDS(p, x, e) do {} while (0) 145 #endif /* DEBUG_EXEC */ 146 147 /* 148 * DTrace SDT provider definitions 149 */ 150 SDT_PROBE_DEFINE(proc,,,exec,exec, 151 "char *", NULL, 152 NULL, NULL, NULL, NULL, 153 NULL, NULL, NULL, NULL); 154 SDT_PROBE_DEFINE(proc,,,exec_success,exec-success, 155 "char *", NULL, 156 NULL, NULL, NULL, NULL, 157 NULL, NULL, NULL, NULL); 158 SDT_PROBE_DEFINE(proc,,,exec_failure,exec-failure, 159 "int", NULL, 160 NULL, NULL, NULL, NULL, 161 NULL, NULL, NULL, NULL); 162 163 /* 164 * Exec function switch: 165 * 166 * Note that each makecmds function is responsible for loading the 167 * exec package with the necessary functions for any exec-type-specific 168 * handling. 169 * 170 * Functions for specific exec types should be defined in their own 171 * header file. 172 */ 173 static const struct execsw **execsw = NULL; 174 static int nexecs; 175 176 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */ 177 178 /* list of dynamically loaded execsw entries */ 179 static LIST_HEAD(execlist_head, exec_entry) ex_head = 180 LIST_HEAD_INITIALIZER(ex_head); 181 struct exec_entry { 182 LIST_ENTRY(exec_entry) ex_list; 183 SLIST_ENTRY(exec_entry) ex_slist; 184 const struct execsw *ex_sw; 185 }; 186 187 #ifndef __HAVE_SYSCALL_INTERN 188 void syscall(void); 189 #endif 190 191 /* NetBSD emul struct */ 192 struct emul emul_netbsd = { 193 .e_name = "netbsd", 194 #ifdef EMUL_NATIVEROOT 195 .e_path = EMUL_NATIVEROOT, 196 #else 197 .e_path = NULL, 198 #endif 199 #ifndef __HAVE_MINIMAL_EMUL 200 .e_flags = EMUL_HAS_SYS___syscall, 201 .e_errno = NULL, 202 .e_nosys = SYS_syscall, 203 .e_nsysent = SYS_NSYSENT, 204 #endif 205 .e_sysent = sysent, 206 #ifdef SYSCALL_DEBUG 207 .e_syscallnames = syscallnames, 208 #else 209 .e_syscallnames = NULL, 210 #endif 211 .e_sendsig = sendsig, 212 .e_trapsignal = trapsignal, 213 .e_tracesig = NULL, 214 .e_sigcode = NULL, 215 .e_esigcode = NULL, 216 .e_sigobject = NULL, 217 .e_setregs = setregs, 218 .e_proc_exec = NULL, 219 .e_proc_fork = NULL, 220 .e_proc_exit = NULL, 221 .e_lwp_fork = NULL, 222 .e_lwp_exit = NULL, 223 #ifdef __HAVE_SYSCALL_INTERN 224 .e_syscall_intern = syscall_intern, 225 #else 226 .e_syscall = syscall, 227 #endif 228 .e_sysctlovly = NULL, 229 .e_fault = NULL, 230 .e_vm_default_addr = uvm_default_mapaddr, 231 .e_usertrap = NULL, 232 .e_ucsize = sizeof(ucontext_t), 233 .e_startlwp = startlwp 234 }; 235 236 /* 237 * Exec lock. Used to control access to execsw[] structures. 238 * This must not be static so that netbsd32 can access it, too. 239 */ 240 krwlock_t exec_lock; 241 242 static kmutex_t sigobject_lock; 243 244 /* 245 * Data used between a loadvm and execve part of an "exec" operation 246 */ 247 struct execve_data { 248 struct exec_package ed_pack; 249 struct pathbuf *ed_pathbuf; 250 struct vattr ed_attr; 251 struct ps_strings ed_arginfo; 252 char *ed_argp; 253 const char *ed_pathstring; 254 char *ed_resolvedpathbuf; 255 size_t ed_ps_strings_sz; 256 int ed_szsigcode; 257 size_t ed_argslen; 258 long ed_argc; 259 long ed_envc; 260 }; 261 262 /* 263 * data passed from parent lwp to child during a posix_spawn() 264 */ 265 struct spawn_exec_data { 266 struct execve_data sed_exec; 267 struct posix_spawn_file_actions 268 *sed_actions; 269 struct posix_spawnattr *sed_attrs; 270 struct proc *sed_parent; 271 kcondvar_t sed_cv_child_ready; 272 kmutex_t sed_mtx_child; 273 int sed_error; 274 volatile uint32_t sed_refcnt; 275 }; 276 277 static void * 278 exec_pool_alloc(struct pool *pp, int flags) 279 { 280 281 return (void *)uvm_km_alloc(kernel_map, NCARGS, 0, 282 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA); 283 } 284 285 static void 286 exec_pool_free(struct pool *pp, void *addr) 287 { 288 289 uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE); 290 } 291 292 static struct pool exec_pool; 293 294 static struct pool_allocator exec_palloc = { 295 .pa_alloc = exec_pool_alloc, 296 .pa_free = exec_pool_free, 297 .pa_pagesz = NCARGS 298 }; 299 300 /* 301 * check exec: 302 * given an "executable" described in the exec package's namei info, 303 * see what we can do with it. 304 * 305 * ON ENTRY: 306 * exec package with appropriate namei info 307 * lwp pointer of exec'ing lwp 308 * NO SELF-LOCKED VNODES 309 * 310 * ON EXIT: 311 * error: nothing held, etc. exec header still allocated. 312 * ok: filled exec package, executable's vnode (unlocked). 313 * 314 * EXEC SWITCH ENTRY: 315 * Locked vnode to check, exec package, proc. 316 * 317 * EXEC SWITCH EXIT: 318 * ok: return 0, filled exec package, executable's vnode (unlocked). 319 * error: destructive: 320 * everything deallocated execept exec header. 321 * non-destructive: 322 * error code, executable's vnode (unlocked), 323 * exec header unmodified. 324 */ 325 int 326 /*ARGSUSED*/ 327 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb) 328 { 329 int error, i; 330 struct vnode *vp; 331 struct nameidata nd; 332 size_t resid; 333 334 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb); 335 336 /* first get the vnode */ 337 if ((error = namei(&nd)) != 0) 338 return error; 339 epp->ep_vp = vp = nd.ni_vp; 340 /* normally this can't fail */ 341 error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL); 342 KASSERT(error == 0); 343 344 #ifdef DIAGNOSTIC 345 /* paranoia (take this out once namei stuff stabilizes) */ 346 memset(nd.ni_pnbuf, '~', PATH_MAX); 347 #endif 348 349 /* check access and type */ 350 if (vp->v_type != VREG) { 351 error = EACCES; 352 goto bad1; 353 } 354 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0) 355 goto bad1; 356 357 /* get attributes */ 358 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0) 359 goto bad1; 360 361 /* Check mount point */ 362 if (vp->v_mount->mnt_flag & MNT_NOEXEC) { 363 error = EACCES; 364 goto bad1; 365 } 366 if (vp->v_mount->mnt_flag & MNT_NOSUID) 367 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID); 368 369 /* try to open it */ 370 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0) 371 goto bad1; 372 373 /* unlock vp, since we need it unlocked from here on out. */ 374 VOP_UNLOCK(vp); 375 376 #if NVERIEXEC > 0 377 error = veriexec_verify(l, vp, epp->ep_resolvedname, 378 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT, 379 NULL); 380 if (error) 381 goto bad2; 382 #endif /* NVERIEXEC > 0 */ 383 384 #ifdef PAX_SEGVGUARD 385 error = pax_segvguard(l, vp, epp->ep_resolvedname, false); 386 if (error) 387 goto bad2; 388 #endif /* PAX_SEGVGUARD */ 389 390 /* now we have the file, get the exec header */ 391 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0, 392 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL); 393 if (error) 394 goto bad2; 395 epp->ep_hdrvalid = epp->ep_hdrlen - resid; 396 397 /* 398 * Set up default address space limits. Can be overridden 399 * by individual exec packages. 400 * 401 * XXX probably should be all done in the exec packages. 402 */ 403 epp->ep_vm_minaddr = VM_MIN_ADDRESS; 404 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS; 405 /* 406 * set up the vmcmds for creation of the process 407 * address space 408 */ 409 error = ENOEXEC; 410 for (i = 0; i < nexecs; i++) { 411 int newerror; 412 413 epp->ep_esch = execsw[i]; 414 newerror = (*execsw[i]->es_makecmds)(l, epp); 415 416 if (!newerror) { 417 /* Seems ok: check that entry point is not too high */ 418 if (epp->ep_entry > epp->ep_vm_maxaddr) { 419 #ifdef DIAGNOSTIC 420 printf("%s: rejecting %p due to " 421 "too high entry address (> %p)\n", 422 __func__, (void *)epp->ep_entry, 423 (void *)epp->ep_vm_maxaddr); 424 #endif 425 error = ENOEXEC; 426 break; 427 } 428 /* Seems ok: check that entry point is not too low */ 429 if (epp->ep_entry < epp->ep_vm_minaddr) { 430 #ifdef DIAGNOSTIC 431 printf("%s: rejecting %p due to " 432 "too low entry address (< %p)\n", 433 __func__, (void *)epp->ep_entry, 434 (void *)epp->ep_vm_minaddr); 435 #endif 436 error = ENOEXEC; 437 break; 438 } 439 440 /* check limits */ 441 if ((epp->ep_tsize > MAXTSIZ) || 442 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit 443 [RLIMIT_DATA].rlim_cur)) { 444 #ifdef DIAGNOSTIC 445 printf("%s: rejecting due to " 446 "limits (t=%llu > %llu || d=%llu > %llu)\n", 447 __func__, 448 (unsigned long long)epp->ep_tsize, 449 (unsigned long long)MAXTSIZ, 450 (unsigned long long)epp->ep_dsize, 451 (unsigned long long) 452 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur); 453 #endif 454 error = ENOMEM; 455 break; 456 } 457 return 0; 458 } 459 460 if (epp->ep_emul_root != NULL) { 461 vrele(epp->ep_emul_root); 462 epp->ep_emul_root = NULL; 463 } 464 if (epp->ep_interp != NULL) { 465 vrele(epp->ep_interp); 466 epp->ep_interp = NULL; 467 } 468 469 /* make sure the first "interesting" error code is saved. */ 470 if (error == ENOEXEC) 471 error = newerror; 472 473 if (epp->ep_flags & EXEC_DESTR) 474 /* Error from "#!" code, tidied up by recursive call */ 475 return error; 476 } 477 478 /* not found, error */ 479 480 /* 481 * free any vmspace-creation commands, 482 * and release their references 483 */ 484 kill_vmcmds(&epp->ep_vmcmds); 485 486 bad2: 487 /* 488 * close and release the vnode, restore the old one, free the 489 * pathname buf, and punt. 490 */ 491 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 492 VOP_CLOSE(vp, FREAD, l->l_cred); 493 vput(vp); 494 return error; 495 496 bad1: 497 /* 498 * free the namei pathname buffer, and put the vnode 499 * (which we don't yet have open). 500 */ 501 vput(vp); /* was still locked */ 502 return error; 503 } 504 505 #ifdef __MACHINE_STACK_GROWS_UP 506 #define STACK_PTHREADSPACE NBPG 507 #else 508 #define STACK_PTHREADSPACE 0 509 #endif 510 511 static int 512 execve_fetch_element(char * const *array, size_t index, char **value) 513 { 514 return copyin(array + index, value, sizeof(*value)); 515 } 516 517 /* 518 * exec system call 519 */ 520 int 521 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval) 522 { 523 /* { 524 syscallarg(const char *) path; 525 syscallarg(char * const *) argp; 526 syscallarg(char * const *) envp; 527 } */ 528 529 return execve1(l, SCARG(uap, path), SCARG(uap, argp), 530 SCARG(uap, envp), execve_fetch_element); 531 } 532 533 int 534 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap, 535 register_t *retval) 536 { 537 /* { 538 syscallarg(int) fd; 539 syscallarg(char * const *) argp; 540 syscallarg(char * const *) envp; 541 } */ 542 543 return ENOSYS; 544 } 545 546 /* 547 * Load modules to try and execute an image that we do not understand. 548 * If no execsw entries are present, we load those likely to be needed 549 * in order to run native images only. Otherwise, we autoload all 550 * possible modules that could let us run the binary. XXX lame 551 */ 552 static void 553 exec_autoload(void) 554 { 555 #ifdef MODULAR 556 static const char * const native[] = { 557 "exec_elf32", 558 "exec_elf64", 559 "exec_script", 560 NULL 561 }; 562 static const char * const compat[] = { 563 "exec_elf32", 564 "exec_elf64", 565 "exec_script", 566 "exec_aout", 567 "exec_coff", 568 "exec_ecoff", 569 "compat_aoutm68k", 570 "compat_freebsd", 571 "compat_ibcs2", 572 "compat_linux", 573 "compat_linux32", 574 "compat_netbsd32", 575 "compat_sunos", 576 "compat_sunos32", 577 "compat_svr4", 578 "compat_svr4_32", 579 "compat_ultrix", 580 NULL 581 }; 582 char const * const *list; 583 int i; 584 585 list = (nexecs == 0 ? native : compat); 586 for (i = 0; list[i] != NULL; i++) { 587 if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) { 588 continue; 589 } 590 yield(); 591 } 592 #endif 593 } 594 595 static int 596 execve_loadvm(struct lwp *l, const char *path, char * const *args, 597 char * const *envs, execve_fetch_element_t fetch_element, 598 struct execve_data * restrict data) 599 { 600 struct exec_package * const epp = &data->ed_pack; 601 int error; 602 struct proc *p; 603 char *dp; 604 u_int modgen; 605 606 KASSERT(data != NULL); 607 608 p = l->l_proc; 609 modgen = 0; 610 611 SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0); 612 613 /* 614 * Check if we have exceeded our number of processes limit. 615 * This is so that we handle the case where a root daemon 616 * forked, ran setuid to become the desired user and is trying 617 * to exec. The obvious place to do the reference counting check 618 * is setuid(), but we don't do the reference counting check there 619 * like other OS's do because then all the programs that use setuid() 620 * must be modified to check the return code of setuid() and exit(). 621 * It is dangerous to make setuid() fail, because it fails open and 622 * the program will continue to run as root. If we make it succeed 623 * and return an error code, again we are not enforcing the limit. 624 * The best place to enforce the limit is here, when the process tries 625 * to execute a new image, because eventually the process will need 626 * to call exec in order to do something useful. 627 */ 628 retry: 629 if (p->p_flag & PK_SUGID) { 630 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT, 631 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 632 &p->p_rlimit[RLIMIT_NPROC], 633 KAUTH_ARG(RLIMIT_NPROC)) != 0 && 634 chgproccnt(kauth_cred_getuid(l->l_cred), 0) > 635 p->p_rlimit[RLIMIT_NPROC].rlim_cur) 636 return EAGAIN; 637 } 638 639 /* 640 * Drain existing references and forbid new ones. The process 641 * should be left alone until we're done here. This is necessary 642 * to avoid race conditions - e.g. in ptrace() - that might allow 643 * a local user to illicitly obtain elevated privileges. 644 */ 645 rw_enter(&p->p_reflock, RW_WRITER); 646 647 /* 648 * Init the namei data to point the file user's program name. 649 * This is done here rather than in check_exec(), so that it's 650 * possible to override this settings if any of makecmd/probe 651 * functions call check_exec() recursively - for example, 652 * see exec_script_makecmds(). 653 */ 654 error = pathbuf_copyin(path, &data->ed_pathbuf); 655 if (error) { 656 DPRINTF(("%s: pathbuf_copyin path @%p %d\n", __func__, 657 path, error)); 658 goto clrflg; 659 } 660 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf); 661 data->ed_resolvedpathbuf = PNBUF_GET(); 662 663 /* 664 * initialize the fields of the exec package. 665 */ 666 epp->ep_name = path; 667 epp->ep_kname = data->ed_pathstring; 668 epp->ep_resolvedname = data->ed_resolvedpathbuf; 669 epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP); 670 epp->ep_hdrlen = exec_maxhdrsz; 671 epp->ep_hdrvalid = 0; 672 epp->ep_emul_arg = NULL; 673 epp->ep_emul_arg_free = NULL; 674 memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds)); 675 epp->ep_vap = &data->ed_attr; 676 epp->ep_flags = 0; 677 MD_TOPDOWN_INIT(epp); 678 epp->ep_emul_root = NULL; 679 epp->ep_interp = NULL; 680 epp->ep_esch = NULL; 681 epp->ep_pax_flags = 0; 682 memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch)); 683 684 rw_enter(&exec_lock, RW_READER); 685 686 /* see if we can run it. */ 687 if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) { 688 if (error != ENOENT) { 689 DPRINTF(("%s: check exec failed %d\n", 690 __func__, error)); 691 } 692 goto freehdr; 693 } 694 695 /* allocate an argument buffer */ 696 data->ed_argp = pool_get(&exec_pool, PR_WAITOK); 697 KASSERT(data->ed_argp != NULL); 698 dp = data->ed_argp; 699 700 if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) { 701 goto bad; 702 } 703 704 /* 705 * Calculate the new stack size. 706 */ 707 708 #ifdef PAX_ASLR 709 #define ASLR_GAP(l) (pax_aslr_active(l) ? (cprng_fast32() % PAGE_SIZE) : 0) 710 #else 711 #define ASLR_GAP(l) 0 712 #endif 713 714 #ifdef __MACHINE_STACK_GROWS_UP 715 /* 716 * copyargs() fills argc/argv/envp from the lower address even on 717 * __MACHINE_STACK_GROWS_UP machines. Reserve a few words just below the SP 718 * so that _rtld() use it. 719 */ 720 #define RTLD_GAP 32 721 #else 722 #define RTLD_GAP 0 723 #endif 724 725 const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp; 726 727 data->ed_argslen = calcargs(data, argenvstrlen); 728 729 const size_t len = calcstack(data, ASLR_GAP(l) + RTLD_GAP); 730 731 if (len > epp->ep_ssize) { 732 /* in effect, compare to initial limit */ 733 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len)); 734 error = ENOMEM; 735 goto bad; 736 } 737 /* adjust "active stack depth" for process VSZ */ 738 epp->ep_ssize = len; 739 740 return 0; 741 742 bad: 743 /* free the vmspace-creation commands, and release their references */ 744 kill_vmcmds(&epp->ep_vmcmds); 745 /* kill any opened file descriptor, if necessary */ 746 if (epp->ep_flags & EXEC_HASFD) { 747 epp->ep_flags &= ~EXEC_HASFD; 748 fd_close(epp->ep_fd); 749 } 750 /* close and put the exec'd file */ 751 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY); 752 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred); 753 vput(epp->ep_vp); 754 pool_put(&exec_pool, data->ed_argp); 755 756 freehdr: 757 kmem_free(epp->ep_hdr, epp->ep_hdrlen); 758 if (epp->ep_emul_root != NULL) 759 vrele(epp->ep_emul_root); 760 if (epp->ep_interp != NULL) 761 vrele(epp->ep_interp); 762 763 rw_exit(&exec_lock); 764 765 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 766 pathbuf_destroy(data->ed_pathbuf); 767 PNBUF_PUT(data->ed_resolvedpathbuf); 768 769 clrflg: 770 rw_exit(&p->p_reflock); 771 772 if (modgen != module_gen && error == ENOEXEC) { 773 modgen = module_gen; 774 exec_autoload(); 775 goto retry; 776 } 777 778 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0); 779 return error; 780 } 781 782 static int 783 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data) 784 { 785 struct exec_package * const epp = &data->ed_pack; 786 struct proc *p = l->l_proc; 787 struct exec_vmcmd *base_vcp; 788 int error = 0; 789 size_t i; 790 791 /* record proc's vnode, for use by procfs and others */ 792 if (p->p_textvp) 793 vrele(p->p_textvp); 794 vref(epp->ep_vp); 795 p->p_textvp = epp->ep_vp; 796 797 /* create the new process's VM space by running the vmcmds */ 798 KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__); 799 800 DUMPVMCMDS(epp, 0, 0); 801 802 base_vcp = NULL; 803 804 for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) { 805 struct exec_vmcmd *vcp; 806 807 vcp = &epp->ep_vmcmds.evs_cmds[i]; 808 if (vcp->ev_flags & VMCMD_RELATIVE) { 809 KASSERTMSG(base_vcp != NULL, 810 "%s: relative vmcmd with no base", __func__); 811 KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0, 812 "%s: illegal base & relative vmcmd", __func__); 813 vcp->ev_addr += base_vcp->ev_addr; 814 } 815 error = (*vcp->ev_proc)(l, vcp); 816 if (error) 817 DUMPVMCMDS(epp, i, error); 818 if (vcp->ev_flags & VMCMD_BASE) 819 base_vcp = vcp; 820 } 821 822 /* free the vmspace-creation commands, and release their references */ 823 kill_vmcmds(&epp->ep_vmcmds); 824 825 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY); 826 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred); 827 vput(epp->ep_vp); 828 829 /* if an error happened, deallocate and punt */ 830 if (error != 0) { 831 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error)); 832 } 833 return error; 834 } 835 836 static void 837 execve_free_data(struct execve_data *data) 838 { 839 struct exec_package * const epp = &data->ed_pack; 840 841 /* free the vmspace-creation commands, and release their references */ 842 kill_vmcmds(&epp->ep_vmcmds); 843 /* kill any opened file descriptor, if necessary */ 844 if (epp->ep_flags & EXEC_HASFD) { 845 epp->ep_flags &= ~EXEC_HASFD; 846 fd_close(epp->ep_fd); 847 } 848 849 /* close and put the exec'd file */ 850 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY); 851 VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred); 852 vput(epp->ep_vp); 853 pool_put(&exec_pool, data->ed_argp); 854 855 kmem_free(epp->ep_hdr, epp->ep_hdrlen); 856 if (epp->ep_emul_root != NULL) 857 vrele(epp->ep_emul_root); 858 if (epp->ep_interp != NULL) 859 vrele(epp->ep_interp); 860 861 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 862 pathbuf_destroy(data->ed_pathbuf); 863 PNBUF_PUT(data->ed_resolvedpathbuf); 864 } 865 866 static void 867 pathexec(struct exec_package *epp, struct proc *p, const char *pathstring) 868 { 869 const char *commandname; 870 size_t commandlen; 871 char *path; 872 873 /* set command name & other accounting info */ 874 commandname = strrchr(epp->ep_resolvedname, '/'); 875 if (commandname != NULL) { 876 commandname++; 877 } else { 878 commandname = epp->ep_resolvedname; 879 } 880 commandlen = min(strlen(commandname), MAXCOMLEN); 881 (void)memcpy(p->p_comm, commandname, commandlen); 882 p->p_comm[commandlen] = '\0'; 883 884 path = PNBUF_GET(); 885 886 /* 887 * If the path starts with /, we don't need to do any work. 888 * This handles the majority of the cases. 889 * In the future perhaps we could canonicalize it? 890 */ 891 if (pathstring[0] == '/') { 892 (void)strlcpy(path, pathstring, 893 MAXPATHLEN); 894 epp->ep_path = path; 895 } 896 #ifdef notyet 897 /* 898 * Although this works most of the time [since the entry was just 899 * entered in the cache] we don't use it because it will fail for 900 * entries that are not placed in the cache because their name is 901 * longer than NCHNAMLEN and it is not the cleanest interface, 902 * because there could be races. When the namei cache is re-written, 903 * this can be changed to use the appropriate function. 904 */ 905 else if (!(error = vnode_to_path(path, MAXPATHLEN, p->p_textvp, l, p))) 906 epp->ep_path = path; 907 #endif 908 else { 909 #ifdef notyet 910 printf("Cannot get path for pid %d [%s] (error %d)\n", 911 (int)p->p_pid, p->p_comm, error); 912 #endif 913 epp->ep_path = NULL; 914 PNBUF_PUT(path); 915 } 916 } 917 918 /* XXX elsewhere */ 919 static int 920 credexec(struct lwp *l, struct vattr *attr) 921 { 922 struct proc *p = l->l_proc; 923 int error; 924 925 /* 926 * Deal with set[ug]id. MNT_NOSUID has already been used to disable 927 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked 928 * out additional references on the process for the moment. 929 */ 930 if ((p->p_slflag & PSL_TRACED) == 0 && 931 932 (((attr->va_mode & S_ISUID) != 0 && 933 kauth_cred_geteuid(l->l_cred) != attr->va_uid) || 934 935 ((attr->va_mode & S_ISGID) != 0 && 936 kauth_cred_getegid(l->l_cred) != attr->va_gid))) { 937 /* 938 * Mark the process as SUGID before we do 939 * anything that might block. 940 */ 941 proc_crmod_enter(); 942 proc_crmod_leave(NULL, NULL, true); 943 944 /* Make sure file descriptors 0..2 are in use. */ 945 if ((error = fd_checkstd()) != 0) { 946 DPRINTF(("%s: fdcheckstd failed %d\n", 947 __func__, error)); 948 return error; 949 } 950 951 /* 952 * Copy the credential so other references don't see our 953 * changes. 954 */ 955 l->l_cred = kauth_cred_copy(l->l_cred); 956 #ifdef KTRACE 957 /* 958 * If the persistent trace flag isn't set, turn off. 959 */ 960 if (p->p_tracep) { 961 mutex_enter(&ktrace_lock); 962 if (!(p->p_traceflag & KTRFAC_PERSISTENT)) 963 ktrderef(p); 964 mutex_exit(&ktrace_lock); 965 } 966 #endif 967 if (attr->va_mode & S_ISUID) 968 kauth_cred_seteuid(l->l_cred, attr->va_uid); 969 if (attr->va_mode & S_ISGID) 970 kauth_cred_setegid(l->l_cred, attr->va_gid); 971 } else { 972 if (kauth_cred_geteuid(l->l_cred) == 973 kauth_cred_getuid(l->l_cred) && 974 kauth_cred_getegid(l->l_cred) == 975 kauth_cred_getgid(l->l_cred)) 976 p->p_flag &= ~PK_SUGID; 977 } 978 979 /* 980 * Copy the credential so other references don't see our changes. 981 * Test to see if this is necessary first, since in the common case 982 * we won't need a private reference. 983 */ 984 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) || 985 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) { 986 l->l_cred = kauth_cred_copy(l->l_cred); 987 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred)); 988 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred)); 989 } 990 991 /* Update the master credentials. */ 992 if (l->l_cred != p->p_cred) { 993 kauth_cred_t ocred; 994 995 kauth_cred_hold(l->l_cred); 996 mutex_enter(p->p_lock); 997 ocred = p->p_cred; 998 p->p_cred = l->l_cred; 999 mutex_exit(p->p_lock); 1000 kauth_cred_free(ocred); 1001 } 1002 1003 return 0; 1004 } 1005 1006 static void 1007 emulexec(struct lwp *l, struct exec_package *epp) 1008 { 1009 struct proc *p = l->l_proc; 1010 1011 /* The emulation root will usually have been found when we looked 1012 * for the elf interpreter (or similar), if not look now. */ 1013 if (epp->ep_esch->es_emul->e_path != NULL && 1014 epp->ep_emul_root == NULL) 1015 emul_find_root(l, epp); 1016 1017 /* Any old emulation root got removed by fdcloseexec */ 1018 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER); 1019 p->p_cwdi->cwdi_edir = epp->ep_emul_root; 1020 rw_exit(&p->p_cwdi->cwdi_lock); 1021 epp->ep_emul_root = NULL; 1022 if (epp->ep_interp != NULL) 1023 vrele(epp->ep_interp); 1024 1025 /* 1026 * Call emulation specific exec hook. This can setup per-process 1027 * p->p_emuldata or do any other per-process stuff an emulation needs. 1028 * 1029 * If we are executing process of different emulation than the 1030 * original forked process, call e_proc_exit() of the old emulation 1031 * first, then e_proc_exec() of new emulation. If the emulation is 1032 * same, the exec hook code should deallocate any old emulation 1033 * resources held previously by this process. 1034 */ 1035 if (p->p_emul && p->p_emul->e_proc_exit 1036 && p->p_emul != epp->ep_esch->es_emul) 1037 (*p->p_emul->e_proc_exit)(p); 1038 1039 /* 1040 * This is now LWP 1. 1041 */ 1042 /* XXX elsewhere */ 1043 mutex_enter(p->p_lock); 1044 p->p_nlwpid = 1; 1045 l->l_lid = 1; 1046 mutex_exit(p->p_lock); 1047 1048 /* 1049 * Call exec hook. Emulation code may NOT store reference to anything 1050 * from &pack. 1051 */ 1052 if (epp->ep_esch->es_emul->e_proc_exec) 1053 (*epp->ep_esch->es_emul->e_proc_exec)(p, epp); 1054 1055 /* update p_emul, the old value is no longer needed */ 1056 p->p_emul = epp->ep_esch->es_emul; 1057 1058 /* ...and the same for p_execsw */ 1059 p->p_execsw = epp->ep_esch; 1060 1061 #ifdef __HAVE_SYSCALL_INTERN 1062 (*p->p_emul->e_syscall_intern)(p); 1063 #endif 1064 ktremul(); 1065 } 1066 1067 static int 1068 execve_runproc(struct lwp *l, struct execve_data * restrict data, 1069 bool no_local_exec_lock, bool is_spawn) 1070 { 1071 struct exec_package * const epp = &data->ed_pack; 1072 int error = 0; 1073 struct proc *p; 1074 1075 /* 1076 * In case of a posix_spawn operation, the child doing the exec 1077 * might not hold the reader lock on exec_lock, but the parent 1078 * will do this instead. 1079 */ 1080 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock)); 1081 KASSERT(!no_local_exec_lock || is_spawn); 1082 KASSERT(data != NULL); 1083 1084 p = l->l_proc; 1085 1086 /* Get rid of other LWPs. */ 1087 if (p->p_nlwps > 1) { 1088 mutex_enter(p->p_lock); 1089 exit_lwps(l); 1090 mutex_exit(p->p_lock); 1091 } 1092 KDASSERT(p->p_nlwps == 1); 1093 1094 /* Destroy any lwpctl info. */ 1095 if (p->p_lwpctl != NULL) 1096 lwp_ctl_exit(); 1097 1098 /* Remove POSIX timers */ 1099 timers_free(p, TIMERS_POSIX); 1100 1101 /* 1102 * Do whatever is necessary to prepare the address space 1103 * for remapping. Note that this might replace the current 1104 * vmspace with another! 1105 */ 1106 if (is_spawn) 1107 uvmspace_spawn(l, epp->ep_vm_minaddr, 1108 epp->ep_vm_maxaddr, 1109 epp->ep_flags & EXEC_TOPDOWN_VM); 1110 else 1111 uvmspace_exec(l, epp->ep_vm_minaddr, 1112 epp->ep_vm_maxaddr, 1113 epp->ep_flags & EXEC_TOPDOWN_VM); 1114 1115 struct vmspace *vm; 1116 vm = p->p_vmspace; 1117 vm->vm_taddr = (void *)epp->ep_taddr; 1118 vm->vm_tsize = btoc(epp->ep_tsize); 1119 vm->vm_daddr = (void*)epp->ep_daddr; 1120 vm->vm_dsize = btoc(epp->ep_dsize); 1121 vm->vm_ssize = btoc(epp->ep_ssize); 1122 vm->vm_issize = 0; 1123 vm->vm_maxsaddr = (void *)epp->ep_maxsaddr; 1124 vm->vm_minsaddr = (void *)epp->ep_minsaddr; 1125 1126 #ifdef PAX_ASLR 1127 pax_aslr_init(l, vm); 1128 #endif /* PAX_ASLR */ 1129 1130 /* Now map address space. */ 1131 error = execve_dovmcmds(l, data); 1132 if (error != 0) 1133 goto exec_abort; 1134 1135 pathexec(epp, p, data->ed_pathstring); 1136 1137 char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize); 1138 1139 error = copyoutargs(data, l, newstack); 1140 if (error != 0) 1141 goto exec_abort; 1142 1143 cwdexec(p); 1144 fd_closeexec(); /* handle close on exec */ 1145 1146 if (__predict_false(ktrace_on)) 1147 fd_ktrexecfd(); 1148 1149 execsigs(p); /* reset catched signals */ 1150 1151 mutex_enter(p->p_lock); 1152 l->l_ctxlink = NULL; /* reset ucontext link */ 1153 p->p_acflag &= ~AFORK; 1154 p->p_flag |= PK_EXEC; 1155 mutex_exit(p->p_lock); 1156 1157 /* 1158 * Stop profiling. 1159 */ 1160 if ((p->p_stflag & PST_PROFIL) != 0) { 1161 mutex_spin_enter(&p->p_stmutex); 1162 stopprofclock(p); 1163 mutex_spin_exit(&p->p_stmutex); 1164 } 1165 1166 /* 1167 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have 1168 * exited and exec()/exit() are the only places it will be cleared. 1169 */ 1170 if ((p->p_lflag & PL_PPWAIT) != 0) { 1171 #if 0 1172 lwp_t *lp; 1173 1174 mutex_enter(proc_lock); 1175 lp = p->p_vforklwp; 1176 p->p_vforklwp = NULL; 1177 1178 l->l_lwpctl = NULL; /* was on loan from blocked parent */ 1179 p->p_lflag &= ~PL_PPWAIT; 1180 1181 lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */ 1182 cv_broadcast(&lp->l_waitcv); 1183 mutex_exit(proc_lock); 1184 #else 1185 mutex_enter(proc_lock); 1186 l->l_lwpctl = NULL; /* was on loan from blocked parent */ 1187 p->p_lflag &= ~PL_PPWAIT; 1188 cv_broadcast(&p->p_pptr->p_waitcv); 1189 mutex_exit(proc_lock); 1190 #endif 1191 } 1192 1193 error = credexec(l, &data->ed_attr); 1194 if (error) 1195 goto exec_abort; 1196 1197 #if defined(__HAVE_RAS) 1198 /* 1199 * Remove all RASs from the address space. 1200 */ 1201 ras_purgeall(); 1202 #endif 1203 1204 doexechooks(p); 1205 1206 /* 1207 * Set initial SP at the top of the stack. 1208 * 1209 * Note that on machines where stack grows up (e.g. hppa), SP points to 1210 * the end of arg/env strings. Userland guesses the address of argc 1211 * via ps_strings::ps_argvstr. 1212 */ 1213 1214 /* Setup new registers and do misc. setup. */ 1215 (*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack); 1216 if (epp->ep_esch->es_setregs) 1217 (*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack); 1218 1219 /* Provide a consistent LWP private setting */ 1220 (void)lwp_setprivate(l, NULL); 1221 1222 /* Discard all PCU state; need to start fresh */ 1223 pcu_discard_all(l); 1224 1225 /* map the process's signal trampoline code */ 1226 if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) { 1227 DPRINTF(("%s: map sigcode failed %d\n", __func__, error)); 1228 goto exec_abort; 1229 } 1230 1231 pool_put(&exec_pool, data->ed_argp); 1232 1233 /* notify others that we exec'd */ 1234 KNOTE(&p->p_klist, NOTE_EXEC); 1235 1236 kmem_free(epp->ep_hdr, epp->ep_hdrlen); 1237 1238 SDT_PROBE(proc,,,exec_success, epp->ep_name, 0, 0, 0, 0); 1239 1240 emulexec(l, epp); 1241 1242 /* Allow new references from the debugger/procfs. */ 1243 rw_exit(&p->p_reflock); 1244 if (!no_local_exec_lock) 1245 rw_exit(&exec_lock); 1246 1247 mutex_enter(proc_lock); 1248 1249 if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) { 1250 ksiginfo_t ksi; 1251 1252 KSI_INIT_EMPTY(&ksi); 1253 ksi.ksi_signo = SIGTRAP; 1254 ksi.ksi_lid = l->l_lid; 1255 kpsignal(p, &ksi, NULL); 1256 } 1257 1258 if (p->p_sflag & PS_STOPEXEC) { 1259 ksiginfoq_t kq; 1260 1261 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 1262 p->p_pptr->p_nstopchild++; 1263 p->p_pptr->p_waited = 0; 1264 mutex_enter(p->p_lock); 1265 ksiginfo_queue_init(&kq); 1266 sigclearall(p, &contsigmask, &kq); 1267 lwp_lock(l); 1268 l->l_stat = LSSTOP; 1269 p->p_stat = SSTOP; 1270 p->p_nrlwps--; 1271 lwp_unlock(l); 1272 mutex_exit(p->p_lock); 1273 mutex_exit(proc_lock); 1274 lwp_lock(l); 1275 mi_switch(l); 1276 ksiginfo_queue_drain(&kq); 1277 KERNEL_LOCK(l->l_biglocks, l); 1278 } else { 1279 mutex_exit(proc_lock); 1280 } 1281 1282 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 1283 pathbuf_destroy(data->ed_pathbuf); 1284 PNBUF_PUT(data->ed_resolvedpathbuf); 1285 DPRINTF(("%s finished\n", __func__)); 1286 return EJUSTRETURN; 1287 1288 exec_abort: 1289 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0); 1290 rw_exit(&p->p_reflock); 1291 if (!no_local_exec_lock) 1292 rw_exit(&exec_lock); 1293 1294 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 1295 pathbuf_destroy(data->ed_pathbuf); 1296 PNBUF_PUT(data->ed_resolvedpathbuf); 1297 1298 /* 1299 * the old process doesn't exist anymore. exit gracefully. 1300 * get rid of the (new) address space we have created, if any, get rid 1301 * of our namei data and vnode, and exit noting failure 1302 */ 1303 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS, 1304 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS); 1305 1306 exec_free_emul_arg(epp); 1307 pool_put(&exec_pool, data->ed_argp); 1308 kmem_free(epp->ep_hdr, epp->ep_hdrlen); 1309 if (epp->ep_emul_root != NULL) 1310 vrele(epp->ep_emul_root); 1311 if (epp->ep_interp != NULL) 1312 vrele(epp->ep_interp); 1313 1314 /* Acquire the sched-state mutex (exit1() will release it). */ 1315 if (!is_spawn) { 1316 mutex_enter(p->p_lock); 1317 exit1(l, W_EXITCODE(error, SIGABRT)); 1318 } 1319 1320 return error; 1321 } 1322 1323 int 1324 execve1(struct lwp *l, const char *path, char * const *args, 1325 char * const *envs, execve_fetch_element_t fetch_element) 1326 { 1327 struct execve_data data; 1328 int error; 1329 1330 error = execve_loadvm(l, path, args, envs, fetch_element, &data); 1331 if (error) 1332 return error; 1333 error = execve_runproc(l, &data, false, false); 1334 return error; 1335 } 1336 1337 static size_t 1338 ptrsz(const struct exec_package *epp) 1339 { 1340 return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *); 1341 } 1342 1343 static size_t 1344 calcargs(struct execve_data * restrict data, const size_t argenvstrlen) 1345 { 1346 struct exec_package * const epp = &data->ed_pack; 1347 1348 const size_t nargenvptrs = 1349 1 + /* long argc */ 1350 data->ed_argc + /* char *argv[] */ 1351 1 + /* \0 */ 1352 data->ed_envc + /* char *env[] */ 1353 1 + /* \0 */ 1354 epp->ep_esch->es_arglen; /* auxinfo */ 1355 1356 return (nargenvptrs * ptrsz(epp)) + argenvstrlen; 1357 } 1358 1359 static size_t 1360 calcstack(struct execve_data * restrict data, const size_t gaplen) 1361 { 1362 struct exec_package * const epp = &data->ed_pack; 1363 1364 data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode - 1365 epp->ep_esch->es_emul->e_sigcode; 1366 1367 data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ? 1368 sizeof(struct ps_strings32) : sizeof(struct ps_strings); 1369 1370 const size_t sigcode_psstr_sz = 1371 data->ed_szsigcode + /* sigcode */ 1372 data->ed_ps_strings_sz + /* ps_strings */ 1373 STACK_PTHREADSPACE; /* pthread space */ 1374 1375 const size_t stacklen = 1376 data->ed_argslen + 1377 gaplen + 1378 sigcode_psstr_sz; 1379 1380 /* make the stack "safely" aligned */ 1381 return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES); 1382 } 1383 1384 static int 1385 copyoutargs(struct execve_data * restrict data, struct lwp *l, 1386 char * const newstack) 1387 { 1388 struct exec_package * const epp = &data->ed_pack; 1389 struct proc *p = l->l_proc; 1390 int error; 1391 1392 /* remember information about the process */ 1393 data->ed_arginfo.ps_nargvstr = data->ed_argc; 1394 data->ed_arginfo.ps_nenvstr = data->ed_envc; 1395 1396 /* 1397 * Allocate the stack address passed to the newly execve()'ed process. 1398 * 1399 * The new stack address will be set to the SP (stack pointer) register 1400 * in setregs(). 1401 */ 1402 1403 char *newargs = STACK_ALLOC( 1404 STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen); 1405 1406 error = (*epp->ep_esch->es_copyargs)(l, epp, 1407 &data->ed_arginfo, &newargs, data->ed_argp); 1408 1409 if (epp->ep_path) { 1410 PNBUF_PUT(epp->ep_path); 1411 epp->ep_path = NULL; 1412 } 1413 if (error) { 1414 DPRINTF(("%s: copyargs failed %d\n", __func__, error)); 1415 return error; 1416 } 1417 1418 error = copyoutpsstrs(data, p); 1419 if (error != 0) 1420 return error; 1421 1422 return 0; 1423 } 1424 1425 static int 1426 copyoutpsstrs(struct execve_data * restrict data, struct proc *p) 1427 { 1428 struct exec_package * const epp = &data->ed_pack; 1429 struct ps_strings32 arginfo32; 1430 void *aip; 1431 int error; 1432 1433 /* fill process ps_strings info */ 1434 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr, 1435 STACK_PTHREADSPACE), data->ed_ps_strings_sz); 1436 1437 if (epp->ep_flags & EXEC_32) { 1438 aip = &arginfo32; 1439 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr; 1440 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr; 1441 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr; 1442 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr; 1443 } else 1444 aip = &data->ed_arginfo; 1445 1446 /* copy out the process's ps_strings structure */ 1447 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz)) 1448 != 0) { 1449 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n", 1450 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz)); 1451 return error; 1452 } 1453 1454 return 0; 1455 } 1456 1457 static int 1458 copyinargs(struct execve_data * restrict data, char * const *args, 1459 char * const *envs, execve_fetch_element_t fetch_element, char **dpp) 1460 { 1461 struct exec_package * const epp = &data->ed_pack; 1462 char *dp; 1463 size_t i; 1464 int error; 1465 1466 dp = *dpp; 1467 1468 data->ed_argc = 0; 1469 1470 /* copy the fake args list, if there's one, freeing it as we go */ 1471 if (epp->ep_flags & EXEC_HASARGL) { 1472 struct exec_fakearg *fa = epp->ep_fa; 1473 1474 while (fa->fa_arg != NULL) { 1475 const size_t maxlen = ARG_MAX - (dp - data->ed_argp); 1476 size_t len; 1477 1478 len = strlcpy(dp, fa->fa_arg, maxlen); 1479 /* Count NUL into len. */ 1480 if (len < maxlen) 1481 len++; 1482 else { 1483 while (fa->fa_arg != NULL) { 1484 kmem_free(fa->fa_arg, fa->fa_len); 1485 fa++; 1486 } 1487 kmem_free(epp->ep_fa, epp->ep_fa_len); 1488 epp->ep_flags &= ~EXEC_HASARGL; 1489 return E2BIG; 1490 } 1491 ktrexecarg(fa->fa_arg, len - 1); 1492 dp += len; 1493 1494 kmem_free(fa->fa_arg, fa->fa_len); 1495 fa++; 1496 data->ed_argc++; 1497 } 1498 kmem_free(epp->ep_fa, epp->ep_fa_len); 1499 epp->ep_flags &= ~EXEC_HASARGL; 1500 } 1501 1502 /* 1503 * Read and count argument strings from user. 1504 */ 1505 1506 if (args == NULL) { 1507 DPRINTF(("%s: null args\n", __func__)); 1508 return EINVAL; 1509 } 1510 if (epp->ep_flags & EXEC_SKIPARG) 1511 args = (const void *)((const char *)args + ptrsz(epp)); 1512 i = 0; 1513 error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg); 1514 if (error != 0) { 1515 DPRINTF(("%s: copyin arg %d\n", __func__, error)); 1516 return error; 1517 } 1518 data->ed_argc += i; 1519 1520 /* 1521 * Read and count environment strings from user. 1522 */ 1523 1524 data->ed_envc = 0; 1525 /* environment need not be there */ 1526 if (envs == NULL) 1527 goto done; 1528 i = 0; 1529 error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv); 1530 if (error != 0) { 1531 DPRINTF(("%s: copyin env %d\n", __func__, error)); 1532 return error; 1533 } 1534 data->ed_envc += i; 1535 1536 done: 1537 *dpp = dp; 1538 1539 return 0; 1540 } 1541 1542 static int 1543 copyinargstrs(struct execve_data * restrict data, char * const *strs, 1544 execve_fetch_element_t fetch_element, char **dpp, size_t *ip, 1545 void (*ktr)(const void *, size_t)) 1546 { 1547 char *dp, *sp; 1548 size_t i; 1549 int error; 1550 1551 dp = *dpp; 1552 1553 i = 0; 1554 while (1) { 1555 const size_t maxlen = ARG_MAX - (dp - data->ed_argp); 1556 size_t len; 1557 1558 if ((error = (*fetch_element)(strs, i, &sp)) != 0) { 1559 return error; 1560 } 1561 if (!sp) 1562 break; 1563 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) { 1564 if (error == ENAMETOOLONG) 1565 error = E2BIG; 1566 return error; 1567 } 1568 if (__predict_false(ktrace_on)) 1569 (*ktr)(dp, len - 1); 1570 dp += len; 1571 i++; 1572 } 1573 1574 *dpp = dp; 1575 *ip = i; 1576 1577 return 0; 1578 } 1579 1580 /* 1581 * Copy argv and env strings from kernel buffer (argp) to the new stack. 1582 * Those strings are located just after auxinfo. 1583 */ 1584 int 1585 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo, 1586 char **stackp, void *argp) 1587 { 1588 char **cpp, *dp, *sp; 1589 size_t len; 1590 void *nullp; 1591 long argc, envc; 1592 int error; 1593 1594 cpp = (char **)*stackp; 1595 nullp = NULL; 1596 argc = arginfo->ps_nargvstr; 1597 envc = arginfo->ps_nenvstr; 1598 1599 /* argc on stack is long */ 1600 CTASSERT(sizeof(*cpp) == sizeof(argc)); 1601 1602 dp = (char *)(cpp + 1603 1 + /* long argc */ 1604 argc + /* char *argv[] */ 1605 1 + /* \0 */ 1606 envc + /* char *env[] */ 1607 1 + /* \0 */ 1608 /* XXX auxinfo multiplied by ptr size? */ 1609 pack->ep_esch->es_arglen); /* auxinfo */ 1610 sp = argp; 1611 1612 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) { 1613 COPYPRINTF("", cpp - 1, sizeof(argc)); 1614 return error; 1615 } 1616 1617 /* XXX don't copy them out, remap them! */ 1618 arginfo->ps_argvstr = cpp; /* remember location of argv for later */ 1619 1620 for (; --argc >= 0; sp += len, dp += len) { 1621 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) { 1622 COPYPRINTF("", cpp - 1, sizeof(dp)); 1623 return error; 1624 } 1625 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) { 1626 COPYPRINTF("str", dp, (size_t)ARG_MAX); 1627 return error; 1628 } 1629 } 1630 1631 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) { 1632 COPYPRINTF("", cpp - 1, sizeof(nullp)); 1633 return error; 1634 } 1635 1636 arginfo->ps_envstr = cpp; /* remember location of envp for later */ 1637 1638 for (; --envc >= 0; sp += len, dp += len) { 1639 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) { 1640 COPYPRINTF("", cpp - 1, sizeof(dp)); 1641 return error; 1642 } 1643 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) { 1644 COPYPRINTF("str", dp, (size_t)ARG_MAX); 1645 return error; 1646 } 1647 1648 } 1649 1650 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) { 1651 COPYPRINTF("", cpp - 1, sizeof(nullp)); 1652 return error; 1653 } 1654 1655 *stackp = (char *)cpp; 1656 return 0; 1657 } 1658 1659 1660 /* 1661 * Add execsw[] entries. 1662 */ 1663 int 1664 exec_add(struct execsw *esp, int count) 1665 { 1666 struct exec_entry *it; 1667 int i; 1668 1669 if (count == 0) { 1670 return 0; 1671 } 1672 1673 /* Check for duplicates. */ 1674 rw_enter(&exec_lock, RW_WRITER); 1675 for (i = 0; i < count; i++) { 1676 LIST_FOREACH(it, &ex_head, ex_list) { 1677 /* assume unique (makecmds, probe_func, emulation) */ 1678 if (it->ex_sw->es_makecmds == esp[i].es_makecmds && 1679 it->ex_sw->u.elf_probe_func == 1680 esp[i].u.elf_probe_func && 1681 it->ex_sw->es_emul == esp[i].es_emul) { 1682 rw_exit(&exec_lock); 1683 return EEXIST; 1684 } 1685 } 1686 } 1687 1688 /* Allocate new entries. */ 1689 for (i = 0; i < count; i++) { 1690 it = kmem_alloc(sizeof(*it), KM_SLEEP); 1691 it->ex_sw = &esp[i]; 1692 LIST_INSERT_HEAD(&ex_head, it, ex_list); 1693 } 1694 1695 /* update execsw[] */ 1696 exec_init(0); 1697 rw_exit(&exec_lock); 1698 return 0; 1699 } 1700 1701 /* 1702 * Remove execsw[] entry. 1703 */ 1704 int 1705 exec_remove(struct execsw *esp, int count) 1706 { 1707 struct exec_entry *it, *next; 1708 int i; 1709 const struct proclist_desc *pd; 1710 proc_t *p; 1711 1712 if (count == 0) { 1713 return 0; 1714 } 1715 1716 /* Abort if any are busy. */ 1717 rw_enter(&exec_lock, RW_WRITER); 1718 for (i = 0; i < count; i++) { 1719 mutex_enter(proc_lock); 1720 for (pd = proclists; pd->pd_list != NULL; pd++) { 1721 PROCLIST_FOREACH(p, pd->pd_list) { 1722 if (p->p_execsw == &esp[i]) { 1723 mutex_exit(proc_lock); 1724 rw_exit(&exec_lock); 1725 return EBUSY; 1726 } 1727 } 1728 } 1729 mutex_exit(proc_lock); 1730 } 1731 1732 /* None are busy, so remove them all. */ 1733 for (i = 0; i < count; i++) { 1734 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) { 1735 next = LIST_NEXT(it, ex_list); 1736 if (it->ex_sw == &esp[i]) { 1737 LIST_REMOVE(it, ex_list); 1738 kmem_free(it, sizeof(*it)); 1739 break; 1740 } 1741 } 1742 } 1743 1744 /* update execsw[] */ 1745 exec_init(0); 1746 rw_exit(&exec_lock); 1747 return 0; 1748 } 1749 1750 /* 1751 * Initialize exec structures. If init_boot is true, also does necessary 1752 * one-time initialization (it's called from main() that way). 1753 * Once system is multiuser, this should be called with exec_lock held, 1754 * i.e. via exec_{add|remove}(). 1755 */ 1756 int 1757 exec_init(int init_boot) 1758 { 1759 const struct execsw **sw; 1760 struct exec_entry *ex; 1761 SLIST_HEAD(,exec_entry) first; 1762 SLIST_HEAD(,exec_entry) any; 1763 SLIST_HEAD(,exec_entry) last; 1764 int i, sz; 1765 1766 if (init_boot) { 1767 /* do one-time initializations */ 1768 rw_init(&exec_lock); 1769 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE); 1770 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH, 1771 "execargs", &exec_palloc, IPL_NONE); 1772 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0); 1773 } else { 1774 KASSERT(rw_write_held(&exec_lock)); 1775 } 1776 1777 /* Sort each entry onto the appropriate queue. */ 1778 SLIST_INIT(&first); 1779 SLIST_INIT(&any); 1780 SLIST_INIT(&last); 1781 sz = 0; 1782 LIST_FOREACH(ex, &ex_head, ex_list) { 1783 switch(ex->ex_sw->es_prio) { 1784 case EXECSW_PRIO_FIRST: 1785 SLIST_INSERT_HEAD(&first, ex, ex_slist); 1786 break; 1787 case EXECSW_PRIO_ANY: 1788 SLIST_INSERT_HEAD(&any, ex, ex_slist); 1789 break; 1790 case EXECSW_PRIO_LAST: 1791 SLIST_INSERT_HEAD(&last, ex, ex_slist); 1792 break; 1793 default: 1794 panic("%s", __func__); 1795 break; 1796 } 1797 sz++; 1798 } 1799 1800 /* 1801 * Create new execsw[]. Ensure we do not try a zero-sized 1802 * allocation. 1803 */ 1804 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP); 1805 i = 0; 1806 SLIST_FOREACH(ex, &first, ex_slist) { 1807 sw[i++] = ex->ex_sw; 1808 } 1809 SLIST_FOREACH(ex, &any, ex_slist) { 1810 sw[i++] = ex->ex_sw; 1811 } 1812 SLIST_FOREACH(ex, &last, ex_slist) { 1813 sw[i++] = ex->ex_sw; 1814 } 1815 1816 /* Replace old execsw[] and free used memory. */ 1817 if (execsw != NULL) { 1818 kmem_free(__UNCONST(execsw), 1819 nexecs * sizeof(struct execsw *) + 1); 1820 } 1821 execsw = sw; 1822 nexecs = sz; 1823 1824 /* Figure out the maximum size of an exec header. */ 1825 exec_maxhdrsz = sizeof(int); 1826 for (i = 0; i < nexecs; i++) { 1827 if (execsw[i]->es_hdrsz > exec_maxhdrsz) 1828 exec_maxhdrsz = execsw[i]->es_hdrsz; 1829 } 1830 1831 return 0; 1832 } 1833 1834 static int 1835 exec_sigcode_map(struct proc *p, const struct emul *e) 1836 { 1837 vaddr_t va; 1838 vsize_t sz; 1839 int error; 1840 struct uvm_object *uobj; 1841 1842 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode; 1843 1844 if (e->e_sigobject == NULL || sz == 0) { 1845 return 0; 1846 } 1847 1848 /* 1849 * If we don't have a sigobject for this emulation, create one. 1850 * 1851 * sigobject is an anonymous memory object (just like SYSV shared 1852 * memory) that we keep a permanent reference to and that we map 1853 * in all processes that need this sigcode. The creation is simple, 1854 * we create an object, add a permanent reference to it, map it in 1855 * kernel space, copy out the sigcode to it and unmap it. 1856 * We map it with PROT_READ|PROT_EXEC into the process just 1857 * the way sys_mmap() would map it. 1858 */ 1859 1860 uobj = *e->e_sigobject; 1861 if (uobj == NULL) { 1862 mutex_enter(&sigobject_lock); 1863 if ((uobj = *e->e_sigobject) == NULL) { 1864 uobj = uao_create(sz, 0); 1865 (*uobj->pgops->pgo_reference)(uobj); 1866 va = vm_map_min(kernel_map); 1867 if ((error = uvm_map(kernel_map, &va, round_page(sz), 1868 uobj, 0, 0, 1869 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1870 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) { 1871 printf("kernel mapping failed %d\n", error); 1872 (*uobj->pgops->pgo_detach)(uobj); 1873 mutex_exit(&sigobject_lock); 1874 return error; 1875 } 1876 memcpy((void *)va, e->e_sigcode, sz); 1877 #ifdef PMAP_NEED_PROCWR 1878 pmap_procwr(&proc0, va, sz); 1879 #endif 1880 uvm_unmap(kernel_map, va, va + round_page(sz)); 1881 *e->e_sigobject = uobj; 1882 } 1883 mutex_exit(&sigobject_lock); 1884 } 1885 1886 /* Just a hint to uvm_map where to put it. */ 1887 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr, 1888 round_page(sz)); 1889 1890 #ifdef __alpha__ 1891 /* 1892 * Tru64 puts /sbin/loader at the end of user virtual memory, 1893 * which causes the above calculation to put the sigcode at 1894 * an invalid address. Put it just below the text instead. 1895 */ 1896 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) { 1897 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz); 1898 } 1899 #endif 1900 1901 (*uobj->pgops->pgo_reference)(uobj); 1902 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz), 1903 uobj, 0, 0, 1904 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE, 1905 UVM_ADV_RANDOM, 0)); 1906 if (error) { 1907 DPRINTF(("%s, %d: map %p " 1908 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n", 1909 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz), 1910 va, error)); 1911 (*uobj->pgops->pgo_detach)(uobj); 1912 return error; 1913 } 1914 p->p_sigctx.ps_sigcode = (void *)va; 1915 return 0; 1916 } 1917 1918 /* 1919 * Release a refcount on spawn_exec_data and destroy memory, if this 1920 * was the last one. 1921 */ 1922 static void 1923 spawn_exec_data_release(struct spawn_exec_data *data) 1924 { 1925 if (atomic_dec_32_nv(&data->sed_refcnt) != 0) 1926 return; 1927 1928 cv_destroy(&data->sed_cv_child_ready); 1929 mutex_destroy(&data->sed_mtx_child); 1930 1931 if (data->sed_actions) 1932 posix_spawn_fa_free(data->sed_actions, 1933 data->sed_actions->len); 1934 if (data->sed_attrs) 1935 kmem_free(data->sed_attrs, 1936 sizeof(*data->sed_attrs)); 1937 kmem_free(data, sizeof(*data)); 1938 } 1939 1940 /* 1941 * A child lwp of a posix_spawn operation starts here and ends up in 1942 * cpu_spawn_return, dealing with all filedescriptor and scheduler 1943 * manipulations in between. 1944 * The parent waits for the child, as it is not clear whether the child 1945 * will be able to acquire its own exec_lock. If it can, the parent can 1946 * be released early and continue running in parallel. If not (or if the 1947 * magic debug flag is passed in the scheduler attribute struct), the 1948 * child rides on the parent's exec lock until it is ready to return to 1949 * to userland - and only then releases the parent. This method loses 1950 * concurrency, but improves error reporting. 1951 */ 1952 static void 1953 spawn_return(void *arg) 1954 { 1955 struct spawn_exec_data *spawn_data = arg; 1956 struct lwp *l = curlwp; 1957 int error, newfd; 1958 size_t i; 1959 const struct posix_spawn_file_actions_entry *fae; 1960 pid_t ppid; 1961 register_t retval; 1962 bool have_reflock; 1963 bool parent_is_waiting = true; 1964 1965 /* 1966 * Check if we can release parent early. 1967 * We either need to have no sed_attrs, or sed_attrs does not 1968 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require 1969 * safe access to the parent proc (passed in sed_parent). 1970 * We then try to get the exec_lock, and only if that works, we can 1971 * release the parent here already. 1972 */ 1973 ppid = spawn_data->sed_parent->p_pid; 1974 if ((!spawn_data->sed_attrs 1975 || (spawn_data->sed_attrs->sa_flags 1976 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0) 1977 && rw_tryenter(&exec_lock, RW_READER)) { 1978 parent_is_waiting = false; 1979 mutex_enter(&spawn_data->sed_mtx_child); 1980 cv_signal(&spawn_data->sed_cv_child_ready); 1981 mutex_exit(&spawn_data->sed_mtx_child); 1982 } 1983 1984 /* don't allow debugger access yet */ 1985 rw_enter(&l->l_proc->p_reflock, RW_WRITER); 1986 have_reflock = true; 1987 1988 error = 0; 1989 /* handle posix_spawn_file_actions */ 1990 if (spawn_data->sed_actions != NULL) { 1991 for (i = 0; i < spawn_data->sed_actions->len; i++) { 1992 fae = &spawn_data->sed_actions->fae[i]; 1993 switch (fae->fae_action) { 1994 case FAE_OPEN: 1995 if (fd_getfile(fae->fae_fildes) != NULL) { 1996 error = fd_close(fae->fae_fildes); 1997 if (error) 1998 break; 1999 } 2000 error = fd_open(fae->fae_path, fae->fae_oflag, 2001 fae->fae_mode, &newfd); 2002 if (error) 2003 break; 2004 if (newfd != fae->fae_fildes) { 2005 error = dodup(l, newfd, 2006 fae->fae_fildes, 0, &retval); 2007 if (fd_getfile(newfd) != NULL) 2008 fd_close(newfd); 2009 } 2010 break; 2011 case FAE_DUP2: 2012 error = dodup(l, fae->fae_fildes, 2013 fae->fae_newfildes, 0, &retval); 2014 break; 2015 case FAE_CLOSE: 2016 if (fd_getfile(fae->fae_fildes) == NULL) { 2017 error = EBADF; 2018 break; 2019 } 2020 error = fd_close(fae->fae_fildes); 2021 break; 2022 } 2023 if (error) 2024 goto report_error; 2025 } 2026 } 2027 2028 /* handle posix_spawnattr */ 2029 if (spawn_data->sed_attrs != NULL) { 2030 int ostat; 2031 struct sigaction sigact; 2032 sigact._sa_u._sa_handler = SIG_DFL; 2033 sigact.sa_flags = 0; 2034 2035 /* 2036 * set state to SSTOP so that this proc can be found by pid. 2037 * see proc_enterprp, do_sched_setparam below 2038 */ 2039 ostat = l->l_proc->p_stat; 2040 l->l_proc->p_stat = SSTOP; 2041 2042 /* Set process group */ 2043 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) { 2044 pid_t mypid = l->l_proc->p_pid, 2045 pgrp = spawn_data->sed_attrs->sa_pgroup; 2046 2047 if (pgrp == 0) 2048 pgrp = mypid; 2049 2050 error = proc_enterpgrp(spawn_data->sed_parent, 2051 mypid, pgrp, false); 2052 if (error) 2053 goto report_error; 2054 } 2055 2056 /* Set scheduler policy */ 2057 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER) 2058 error = do_sched_setparam(l->l_proc->p_pid, 0, 2059 spawn_data->sed_attrs->sa_schedpolicy, 2060 &spawn_data->sed_attrs->sa_schedparam); 2061 else if (spawn_data->sed_attrs->sa_flags 2062 & POSIX_SPAWN_SETSCHEDPARAM) { 2063 error = do_sched_setparam(ppid, 0, 2064 SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam); 2065 } 2066 if (error) 2067 goto report_error; 2068 2069 /* Reset user ID's */ 2070 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) { 2071 error = do_setresuid(l, -1, 2072 kauth_cred_getgid(l->l_cred), -1, 2073 ID_E_EQ_R | ID_E_EQ_S); 2074 if (error) 2075 goto report_error; 2076 error = do_setresuid(l, -1, 2077 kauth_cred_getuid(l->l_cred), -1, 2078 ID_E_EQ_R | ID_E_EQ_S); 2079 if (error) 2080 goto report_error; 2081 } 2082 2083 /* Set signal masks/defaults */ 2084 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) { 2085 mutex_enter(l->l_proc->p_lock); 2086 error = sigprocmask1(l, SIG_SETMASK, 2087 &spawn_data->sed_attrs->sa_sigmask, NULL); 2088 mutex_exit(l->l_proc->p_lock); 2089 if (error) 2090 goto report_error; 2091 } 2092 2093 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) { 2094 /* 2095 * The following sigaction call is using a sigaction 2096 * version 0 trampoline which is in the compatibility 2097 * code only. This is not a problem because for SIG_DFL 2098 * and SIG_IGN, the trampolines are now ignored. If they 2099 * were not, this would be a problem because we are 2100 * holding the exec_lock, and the compat code needs 2101 * to do the same in order to replace the trampoline 2102 * code of the process. 2103 */ 2104 for (i = 1; i <= NSIG; i++) { 2105 if (sigismember( 2106 &spawn_data->sed_attrs->sa_sigdefault, i)) 2107 sigaction1(l, i, &sigact, NULL, NULL, 2108 0); 2109 } 2110 } 2111 l->l_proc->p_stat = ostat; 2112 } 2113 2114 /* now do the real exec */ 2115 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting, 2116 true); 2117 have_reflock = false; 2118 if (error == EJUSTRETURN) 2119 error = 0; 2120 else if (error) 2121 goto report_error; 2122 2123 if (parent_is_waiting) { 2124 mutex_enter(&spawn_data->sed_mtx_child); 2125 cv_signal(&spawn_data->sed_cv_child_ready); 2126 mutex_exit(&spawn_data->sed_mtx_child); 2127 } 2128 2129 /* release our refcount on the data */ 2130 spawn_exec_data_release(spawn_data); 2131 2132 /* and finally: leave to userland for the first time */ 2133 cpu_spawn_return(l); 2134 2135 /* NOTREACHED */ 2136 return; 2137 2138 report_error: 2139 if (have_reflock) { 2140 /* 2141 * We have not passed through execve_runproc(), 2142 * which would have released the p_reflock and also 2143 * taken ownership of the sed_exec part of spawn_data, 2144 * so release/free both here. 2145 */ 2146 rw_exit(&l->l_proc->p_reflock); 2147 execve_free_data(&spawn_data->sed_exec); 2148 } 2149 2150 if (parent_is_waiting) { 2151 /* pass error to parent */ 2152 mutex_enter(&spawn_data->sed_mtx_child); 2153 spawn_data->sed_error = error; 2154 cv_signal(&spawn_data->sed_cv_child_ready); 2155 mutex_exit(&spawn_data->sed_mtx_child); 2156 } else { 2157 rw_exit(&exec_lock); 2158 } 2159 2160 /* release our refcount on the data */ 2161 spawn_exec_data_release(spawn_data); 2162 2163 /* done, exit */ 2164 mutex_enter(l->l_proc->p_lock); 2165 /* 2166 * Posix explicitly asks for an exit code of 127 if we report 2167 * errors from the child process - so, unfortunately, there 2168 * is no way to report a more exact error code. 2169 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as 2170 * flag bit in the attrp argument to posix_spawn(2), see above. 2171 */ 2172 exit1(l, W_EXITCODE(127, 0)); 2173 } 2174 2175 void 2176 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len) 2177 { 2178 2179 for (size_t i = 0; i < len; i++) { 2180 struct posix_spawn_file_actions_entry *fae = &fa->fae[i]; 2181 if (fae->fae_action != FAE_OPEN) 2182 continue; 2183 kmem_free(fae->fae_path, strlen(fae->fae_path) + 1); 2184 } 2185 if (fa->len > 0) 2186 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len); 2187 kmem_free(fa, sizeof(*fa)); 2188 } 2189 2190 static int 2191 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap, 2192 const struct posix_spawn_file_actions *ufa, rlim_t lim) 2193 { 2194 struct posix_spawn_file_actions *fa; 2195 struct posix_spawn_file_actions_entry *fae; 2196 char *pbuf = NULL; 2197 int error; 2198 size_t i = 0; 2199 2200 fa = kmem_alloc(sizeof(*fa), KM_SLEEP); 2201 error = copyin(ufa, fa, sizeof(*fa)); 2202 if (error || fa->len == 0) { 2203 kmem_free(fa, sizeof(*fa)); 2204 return error; /* 0 if not an error, and len == 0 */ 2205 } 2206 2207 if (fa->len > lim) { 2208 kmem_free(fa, sizeof(*fa)); 2209 return EINVAL; 2210 } 2211 2212 fa->size = fa->len; 2213 size_t fal = fa->len * sizeof(*fae); 2214 fae = fa->fae; 2215 fa->fae = kmem_alloc(fal, KM_SLEEP); 2216 error = copyin(fae, fa->fae, fal); 2217 if (error) 2218 goto out; 2219 2220 pbuf = PNBUF_GET(); 2221 for (; i < fa->len; i++) { 2222 fae = &fa->fae[i]; 2223 if (fae->fae_action != FAE_OPEN) 2224 continue; 2225 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal); 2226 if (error) 2227 goto out; 2228 fae->fae_path = kmem_alloc(fal, KM_SLEEP); 2229 memcpy(fae->fae_path, pbuf, fal); 2230 } 2231 PNBUF_PUT(pbuf); 2232 2233 *fap = fa; 2234 return 0; 2235 out: 2236 if (pbuf) 2237 PNBUF_PUT(pbuf); 2238 posix_spawn_fa_free(fa, i); 2239 return error; 2240 } 2241 2242 int 2243 check_posix_spawn(struct lwp *l1) 2244 { 2245 int error, tnprocs, count; 2246 uid_t uid; 2247 struct proc *p1; 2248 2249 p1 = l1->l_proc; 2250 uid = kauth_cred_getuid(l1->l_cred); 2251 tnprocs = atomic_inc_uint_nv(&nprocs); 2252 2253 /* 2254 * Although process entries are dynamically created, we still keep 2255 * a global limit on the maximum number we will create. 2256 */ 2257 if (__predict_false(tnprocs >= maxproc)) 2258 error = -1; 2259 else 2260 error = kauth_authorize_process(l1->l_cred, 2261 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL); 2262 2263 if (error) { 2264 atomic_dec_uint(&nprocs); 2265 return EAGAIN; 2266 } 2267 2268 /* 2269 * Enforce limits. 2270 */ 2271 count = chgproccnt(uid, 1); 2272 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT, 2273 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 2274 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 && 2275 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) { 2276 (void)chgproccnt(uid, -1); 2277 atomic_dec_uint(&nprocs); 2278 return EAGAIN; 2279 } 2280 2281 return 0; 2282 } 2283 2284 int 2285 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path, 2286 struct posix_spawn_file_actions *fa, 2287 struct posix_spawnattr *sa, 2288 char *const *argv, char *const *envp, 2289 execve_fetch_element_t fetch) 2290 { 2291 2292 struct proc *p1, *p2; 2293 struct lwp *l2; 2294 int error; 2295 struct spawn_exec_data *spawn_data; 2296 vaddr_t uaddr; 2297 pid_t pid; 2298 bool have_exec_lock = false; 2299 2300 p1 = l1->l_proc; 2301 2302 /* Allocate and init spawn_data */ 2303 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP); 2304 spawn_data->sed_refcnt = 1; /* only parent so far */ 2305 cv_init(&spawn_data->sed_cv_child_ready, "pspawn"); 2306 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE); 2307 mutex_enter(&spawn_data->sed_mtx_child); 2308 2309 /* 2310 * Do the first part of the exec now, collect state 2311 * in spawn_data. 2312 */ 2313 error = execve_loadvm(l1, path, argv, 2314 envp, fetch, &spawn_data->sed_exec); 2315 if (error == EJUSTRETURN) 2316 error = 0; 2317 else if (error) 2318 goto error_exit; 2319 2320 have_exec_lock = true; 2321 2322 /* 2323 * Allocate virtual address space for the U-area now, while it 2324 * is still easy to abort the fork operation if we're out of 2325 * kernel virtual address space. 2326 */ 2327 uaddr = uvm_uarea_alloc(); 2328 if (__predict_false(uaddr == 0)) { 2329 error = ENOMEM; 2330 goto error_exit; 2331 } 2332 2333 /* 2334 * Allocate new proc. Borrow proc0 vmspace for it, we will 2335 * replace it with its own before returning to userland 2336 * in the child. 2337 * This is a point of no return, we will have to go through 2338 * the child proc to properly clean it up past this point. 2339 */ 2340 p2 = proc_alloc(); 2341 pid = p2->p_pid; 2342 2343 /* 2344 * Make a proc table entry for the new process. 2345 * Start by zeroing the section of proc that is zero-initialized, 2346 * then copy the section that is copied directly from the parent. 2347 */ 2348 memset(&p2->p_startzero, 0, 2349 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero)); 2350 memcpy(&p2->p_startcopy, &p1->p_startcopy, 2351 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy)); 2352 p2->p_vmspace = proc0.p_vmspace; 2353 2354 TAILQ_INIT(&p2->p_sigpend.sp_info); 2355 2356 LIST_INIT(&p2->p_lwps); 2357 LIST_INIT(&p2->p_sigwaiters); 2358 2359 /* 2360 * Duplicate sub-structures as needed. 2361 * Increase reference counts on shared objects. 2362 * Inherit flags we want to keep. The flags related to SIGCHLD 2363 * handling are important in order to keep a consistent behaviour 2364 * for the child after the fork. If we are a 32-bit process, the 2365 * child will be too. 2366 */ 2367 p2->p_flag = 2368 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32); 2369 p2->p_emul = p1->p_emul; 2370 p2->p_execsw = p1->p_execsw; 2371 2372 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); 2373 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE); 2374 rw_init(&p2->p_reflock); 2375 cv_init(&p2->p_waitcv, "wait"); 2376 cv_init(&p2->p_lwpcv, "lwpwait"); 2377 2378 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 2379 2380 kauth_proc_fork(p1, p2); 2381 2382 p2->p_raslist = NULL; 2383 p2->p_fd = fd_copy(); 2384 2385 /* XXX racy */ 2386 p2->p_mqueue_cnt = p1->p_mqueue_cnt; 2387 2388 p2->p_cwdi = cwdinit(); 2389 2390 /* 2391 * Note: p_limit (rlimit stuff) is copy-on-write, so normally 2392 * we just need increase pl_refcnt. 2393 */ 2394 if (!p1->p_limit->pl_writeable) { 2395 lim_addref(p1->p_limit); 2396 p2->p_limit = p1->p_limit; 2397 } else { 2398 p2->p_limit = lim_copy(p1->p_limit); 2399 } 2400 2401 p2->p_lflag = 0; 2402 p2->p_sflag = 0; 2403 p2->p_slflag = 0; 2404 p2->p_pptr = p1; 2405 p2->p_ppid = p1->p_pid; 2406 LIST_INIT(&p2->p_children); 2407 2408 p2->p_aio = NULL; 2409 2410 #ifdef KTRACE 2411 /* 2412 * Copy traceflag and tracefile if enabled. 2413 * If not inherited, these were zeroed above. 2414 */ 2415 if (p1->p_traceflag & KTRFAC_INHERIT) { 2416 mutex_enter(&ktrace_lock); 2417 p2->p_traceflag = p1->p_traceflag; 2418 if ((p2->p_tracep = p1->p_tracep) != NULL) 2419 ktradref(p2); 2420 mutex_exit(&ktrace_lock); 2421 } 2422 #endif 2423 2424 /* 2425 * Create signal actions for the child process. 2426 */ 2427 p2->p_sigacts = sigactsinit(p1, 0); 2428 mutex_enter(p1->p_lock); 2429 p2->p_sflag |= 2430 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP)); 2431 sched_proc_fork(p1, p2); 2432 mutex_exit(p1->p_lock); 2433 2434 p2->p_stflag = p1->p_stflag; 2435 2436 /* 2437 * p_stats. 2438 * Copy parts of p_stats, and zero out the rest. 2439 */ 2440 p2->p_stats = pstatscopy(p1->p_stats); 2441 2442 /* copy over machdep flags to the new proc */ 2443 cpu_proc_fork(p1, p2); 2444 2445 /* 2446 * Prepare remaining parts of spawn data 2447 */ 2448 spawn_data->sed_actions = fa; 2449 spawn_data->sed_attrs = sa; 2450 2451 spawn_data->sed_parent = p1; 2452 2453 /* create LWP */ 2454 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data, 2455 &l2, l1->l_class); 2456 l2->l_ctxlink = NULL; /* reset ucontext link */ 2457 2458 /* 2459 * Copy the credential so other references don't see our changes. 2460 * Test to see if this is necessary first, since in the common case 2461 * we won't need a private reference. 2462 */ 2463 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) || 2464 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) { 2465 l2->l_cred = kauth_cred_copy(l2->l_cred); 2466 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred)); 2467 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred)); 2468 } 2469 2470 /* Update the master credentials. */ 2471 if (l2->l_cred != p2->p_cred) { 2472 kauth_cred_t ocred; 2473 2474 kauth_cred_hold(l2->l_cred); 2475 mutex_enter(p2->p_lock); 2476 ocred = p2->p_cred; 2477 p2->p_cred = l2->l_cred; 2478 mutex_exit(p2->p_lock); 2479 kauth_cred_free(ocred); 2480 } 2481 2482 *child_ok = true; 2483 spawn_data->sed_refcnt = 2; /* child gets it as well */ 2484 #if 0 2485 l2->l_nopreempt = 1; /* start it non-preemptable */ 2486 #endif 2487 2488 /* 2489 * It's now safe for the scheduler and other processes to see the 2490 * child process. 2491 */ 2492 mutex_enter(proc_lock); 2493 2494 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT) 2495 p2->p_lflag |= PL_CONTROLT; 2496 2497 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling); 2498 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */ 2499 2500 LIST_INSERT_AFTER(p1, p2, p_pglist); 2501 LIST_INSERT_HEAD(&allproc, p2, p_list); 2502 2503 p2->p_trace_enabled = trace_is_enabled(p2); 2504 #ifdef __HAVE_SYSCALL_INTERN 2505 (*p2->p_emul->e_syscall_intern)(p2); 2506 #endif 2507 2508 /* 2509 * Make child runnable, set start time, and add to run queue except 2510 * if the parent requested the child to start in SSTOP state. 2511 */ 2512 mutex_enter(p2->p_lock); 2513 2514 getmicrotime(&p2->p_stats->p_start); 2515 2516 lwp_lock(l2); 2517 KASSERT(p2->p_nrlwps == 1); 2518 p2->p_nrlwps = 1; 2519 p2->p_stat = SACTIVE; 2520 l2->l_stat = LSRUN; 2521 sched_enqueue(l2, false); 2522 lwp_unlock(l2); 2523 2524 mutex_exit(p2->p_lock); 2525 mutex_exit(proc_lock); 2526 2527 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child); 2528 error = spawn_data->sed_error; 2529 mutex_exit(&spawn_data->sed_mtx_child); 2530 spawn_exec_data_release(spawn_data); 2531 2532 rw_exit(&p1->p_reflock); 2533 rw_exit(&exec_lock); 2534 have_exec_lock = false; 2535 2536 *pid_res = pid; 2537 return error; 2538 2539 error_exit: 2540 if (have_exec_lock) { 2541 execve_free_data(&spawn_data->sed_exec); 2542 rw_exit(&p1->p_reflock); 2543 rw_exit(&exec_lock); 2544 } 2545 mutex_exit(&spawn_data->sed_mtx_child); 2546 spawn_exec_data_release(spawn_data); 2547 2548 return error; 2549 } 2550 2551 int 2552 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap, 2553 register_t *retval) 2554 { 2555 /* { 2556 syscallarg(pid_t *) pid; 2557 syscallarg(const char *) path; 2558 syscallarg(const struct posix_spawn_file_actions *) file_actions; 2559 syscallarg(const struct posix_spawnattr *) attrp; 2560 syscallarg(char *const *) argv; 2561 syscallarg(char *const *) envp; 2562 } */ 2563 2564 int error; 2565 struct posix_spawn_file_actions *fa = NULL; 2566 struct posix_spawnattr *sa = NULL; 2567 pid_t pid; 2568 bool child_ok = false; 2569 rlim_t max_fileactions; 2570 proc_t *p = l1->l_proc; 2571 2572 error = check_posix_spawn(l1); 2573 if (error) { 2574 *retval = error; 2575 return 0; 2576 } 2577 2578 /* copy in file_actions struct */ 2579 if (SCARG(uap, file_actions) != NULL) { 2580 max_fileactions = 2 * min(p->p_rlimit[RLIMIT_NOFILE].rlim_cur, 2581 maxfiles); 2582 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions), 2583 max_fileactions); 2584 if (error) 2585 goto error_exit; 2586 } 2587 2588 /* copyin posix_spawnattr struct */ 2589 if (SCARG(uap, attrp) != NULL) { 2590 sa = kmem_alloc(sizeof(*sa), KM_SLEEP); 2591 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa)); 2592 if (error) 2593 goto error_exit; 2594 } 2595 2596 /* 2597 * Do the spawn 2598 */ 2599 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa, 2600 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element); 2601 if (error) 2602 goto error_exit; 2603 2604 if (error == 0 && SCARG(uap, pid) != NULL) 2605 error = copyout(&pid, SCARG(uap, pid), sizeof(pid)); 2606 2607 *retval = error; 2608 return 0; 2609 2610 error_exit: 2611 if (!child_ok) { 2612 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1); 2613 atomic_dec_uint(&nprocs); 2614 2615 if (sa) 2616 kmem_free(sa, sizeof(*sa)); 2617 if (fa) 2618 posix_spawn_fa_free(fa, fa->len); 2619 } 2620 2621 *retval = error; 2622 return 0; 2623 } 2624 2625 void 2626 exec_free_emul_arg(struct exec_package *epp) 2627 { 2628 if (epp->ep_emul_arg_free != NULL) { 2629 KASSERT(epp->ep_emul_arg != NULL); 2630 (*epp->ep_emul_arg_free)(epp->ep_emul_arg); 2631 epp->ep_emul_arg_free = NULL; 2632 epp->ep_emul_arg = NULL; 2633 } else { 2634 KASSERT(epp->ep_emul_arg == NULL); 2635 } 2636 } 2637 2638 #ifdef DEBUG_EXEC 2639 static void 2640 dump_vmcmds(const struct exec_package * const epp, size_t x, int error) 2641 { 2642 struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0]; 2643 size_t j; 2644 2645 if (error == 0) 2646 DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used)); 2647 else 2648 DPRINTF(("vmcmds %zu/%u, error %d\n", x, 2649 epp->ep_vmcmds.evs_used, error)); 2650 2651 for (j = 0; j < epp->ep_vmcmds.evs_used; j++) { 2652 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#" 2653 PRIxVADDR"/%#"PRIxVSIZE" fd@%#" 2654 PRIxVSIZE" prot=0%o flags=%d\n", j, 2655 vp[j].ev_proc == vmcmd_map_pagedvn ? 2656 "pagedvn" : 2657 vp[j].ev_proc == vmcmd_map_readvn ? 2658 "readvn" : 2659 vp[j].ev_proc == vmcmd_map_zero ? 2660 "zero" : "*unknown*", 2661 vp[j].ev_addr, vp[j].ev_len, 2662 vp[j].ev_offset, vp[j].ev_prot, 2663 vp[j].ev_flags)); 2664 if (error != 0 && j == x) 2665 DPRINTF((" ^--- failed\n")); 2666 } 2667 } 2668 #endif 2669