xref: /netbsd-src/sys/kern/kern_exec.c (revision aad9773e38ed2370a628a6416e098f9008fc10a7)
1 /*	$NetBSD: kern_exec.c,v 1.410 2014/11/09 17:50:01 maxv Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*-
30  * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
31  * Copyright (C) 1992 Wolfgang Solfrank.
32  * Copyright (C) 1992 TooLs GmbH.
33  * All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgement:
45  *	This product includes software developed by TooLs GmbH.
46  * 4. The name of TooLs GmbH may not be used to endorse or promote products
47  *    derived from this software without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
50  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
51  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
52  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.410 2014/11/09 17:50:01 maxv Exp $");
63 
64 #include "opt_exec.h"
65 #include "opt_execfmt.h"
66 #include "opt_ktrace.h"
67 #include "opt_modular.h"
68 #include "opt_syscall_debug.h"
69 #include "veriexec.h"
70 #include "opt_pax.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/filedesc.h>
75 #include <sys/kernel.h>
76 #include <sys/proc.h>
77 #include <sys/mount.h>
78 #include <sys/kmem.h>
79 #include <sys/namei.h>
80 #include <sys/vnode.h>
81 #include <sys/file.h>
82 #include <sys/acct.h>
83 #include <sys/atomic.h>
84 #include <sys/exec.h>
85 #include <sys/ktrace.h>
86 #include <sys/uidinfo.h>
87 #include <sys/wait.h>
88 #include <sys/mman.h>
89 #include <sys/ras.h>
90 #include <sys/signalvar.h>
91 #include <sys/stat.h>
92 #include <sys/syscall.h>
93 #include <sys/kauth.h>
94 #include <sys/lwpctl.h>
95 #include <sys/pax.h>
96 #include <sys/cpu.h>
97 #include <sys/module.h>
98 #include <sys/syscallvar.h>
99 #include <sys/syscallargs.h>
100 #if NVERIEXEC > 0
101 #include <sys/verified_exec.h>
102 #endif /* NVERIEXEC > 0 */
103 #include <sys/sdt.h>
104 #include <sys/spawn.h>
105 #include <sys/prot.h>
106 #include <sys/cprng.h>
107 
108 #include <uvm/uvm_extern.h>
109 
110 #include <machine/reg.h>
111 
112 #include <compat/common/compat_util.h>
113 
114 #ifndef MD_TOPDOWN_INIT
115 #ifdef __USE_TOPDOWN_VM
116 #define	MD_TOPDOWN_INIT(epp)	(epp)->ep_flags |= EXEC_TOPDOWN_VM
117 #else
118 #define	MD_TOPDOWN_INIT(epp)
119 #endif
120 #endif
121 
122 struct execve_data;
123 
124 static size_t calcargs(struct execve_data * restrict, const size_t);
125 static size_t calcstack(struct execve_data * restrict, const size_t);
126 static int copyoutargs(struct execve_data * restrict, struct lwp *,
127     char * const);
128 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
129 static int copyinargs(struct execve_data * restrict, char * const *,
130     char * const *, execve_fetch_element_t, char **);
131 static int copyinargstrs(struct execve_data * restrict, char * const *,
132     execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
133 static int exec_sigcode_map(struct proc *, const struct emul *);
134 
135 #ifdef DEBUG_EXEC
136 #define DPRINTF(a) printf a
137 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
138     __LINE__, (s), (a), (b))
139 static void dump_vmcmds(const struct exec_package * const, size_t, int);
140 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
141 #else
142 #define DPRINTF(a)
143 #define COPYPRINTF(s, a, b)
144 #define DUMPVMCMDS(p, x, e) do {} while (0)
145 #endif /* DEBUG_EXEC */
146 
147 /*
148  * DTrace SDT provider definitions
149  */
150 SDT_PROBE_DEFINE(proc,,,exec,exec,
151 	    "char *", NULL,
152 	    NULL, NULL, NULL, NULL,
153 	    NULL, NULL, NULL, NULL);
154 SDT_PROBE_DEFINE(proc,,,exec_success,exec-success,
155 	    "char *", NULL,
156 	    NULL, NULL, NULL, NULL,
157 	    NULL, NULL, NULL, NULL);
158 SDT_PROBE_DEFINE(proc,,,exec_failure,exec-failure,
159 	    "int", NULL,
160 	    NULL, NULL, NULL, NULL,
161 	    NULL, NULL, NULL, NULL);
162 
163 /*
164  * Exec function switch:
165  *
166  * Note that each makecmds function is responsible for loading the
167  * exec package with the necessary functions for any exec-type-specific
168  * handling.
169  *
170  * Functions for specific exec types should be defined in their own
171  * header file.
172  */
173 static const struct execsw	**execsw = NULL;
174 static int			nexecs;
175 
176 u_int	exec_maxhdrsz;	 /* must not be static - used by netbsd32 */
177 
178 /* list of dynamically loaded execsw entries */
179 static LIST_HEAD(execlist_head, exec_entry) ex_head =
180     LIST_HEAD_INITIALIZER(ex_head);
181 struct exec_entry {
182 	LIST_ENTRY(exec_entry)	ex_list;
183 	SLIST_ENTRY(exec_entry)	ex_slist;
184 	const struct execsw	*ex_sw;
185 };
186 
187 #ifndef __HAVE_SYSCALL_INTERN
188 void	syscall(void);
189 #endif
190 
191 /* NetBSD emul struct */
192 struct emul emul_netbsd = {
193 	.e_name =		"netbsd",
194 #ifdef EMUL_NATIVEROOT
195 	.e_path =		EMUL_NATIVEROOT,
196 #else
197 	.e_path =		NULL,
198 #endif
199 #ifndef __HAVE_MINIMAL_EMUL
200 	.e_flags =		EMUL_HAS_SYS___syscall,
201 	.e_errno =		NULL,
202 	.e_nosys =		SYS_syscall,
203 	.e_nsysent =		SYS_NSYSENT,
204 #endif
205 	.e_sysent =		sysent,
206 #ifdef SYSCALL_DEBUG
207 	.e_syscallnames =	syscallnames,
208 #else
209 	.e_syscallnames =	NULL,
210 #endif
211 	.e_sendsig =		sendsig,
212 	.e_trapsignal =		trapsignal,
213 	.e_tracesig =		NULL,
214 	.e_sigcode =		NULL,
215 	.e_esigcode =		NULL,
216 	.e_sigobject =		NULL,
217 	.e_setregs =		setregs,
218 	.e_proc_exec =		NULL,
219 	.e_proc_fork =		NULL,
220 	.e_proc_exit =		NULL,
221 	.e_lwp_fork =		NULL,
222 	.e_lwp_exit =		NULL,
223 #ifdef __HAVE_SYSCALL_INTERN
224 	.e_syscall_intern =	syscall_intern,
225 #else
226 	.e_syscall =		syscall,
227 #endif
228 	.e_sysctlovly =		NULL,
229 	.e_fault =		NULL,
230 	.e_vm_default_addr =	uvm_default_mapaddr,
231 	.e_usertrap =		NULL,
232 	.e_ucsize =		sizeof(ucontext_t),
233 	.e_startlwp =		startlwp
234 };
235 
236 /*
237  * Exec lock. Used to control access to execsw[] structures.
238  * This must not be static so that netbsd32 can access it, too.
239  */
240 krwlock_t exec_lock;
241 
242 static kmutex_t sigobject_lock;
243 
244 /*
245  * Data used between a loadvm and execve part of an "exec" operation
246  */
247 struct execve_data {
248 	struct exec_package	ed_pack;
249 	struct pathbuf		*ed_pathbuf;
250 	struct vattr		ed_attr;
251 	struct ps_strings	ed_arginfo;
252 	char			*ed_argp;
253 	const char		*ed_pathstring;
254 	char			*ed_resolvedpathbuf;
255 	size_t			ed_ps_strings_sz;
256 	int			ed_szsigcode;
257 	size_t			ed_argslen;
258 	long			ed_argc;
259 	long			ed_envc;
260 };
261 
262 /*
263  * data passed from parent lwp to child during a posix_spawn()
264  */
265 struct spawn_exec_data {
266 	struct execve_data	sed_exec;
267 	struct posix_spawn_file_actions
268 				*sed_actions;
269 	struct posix_spawnattr	*sed_attrs;
270 	struct proc		*sed_parent;
271 	kcondvar_t		sed_cv_child_ready;
272 	kmutex_t		sed_mtx_child;
273 	int			sed_error;
274 	volatile uint32_t	sed_refcnt;
275 };
276 
277 static void *
278 exec_pool_alloc(struct pool *pp, int flags)
279 {
280 
281 	return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
282 	    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
283 }
284 
285 static void
286 exec_pool_free(struct pool *pp, void *addr)
287 {
288 
289 	uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
290 }
291 
292 static struct pool exec_pool;
293 
294 static struct pool_allocator exec_palloc = {
295 	.pa_alloc = exec_pool_alloc,
296 	.pa_free = exec_pool_free,
297 	.pa_pagesz = NCARGS
298 };
299 
300 /*
301  * check exec:
302  * given an "executable" described in the exec package's namei info,
303  * see what we can do with it.
304  *
305  * ON ENTRY:
306  *	exec package with appropriate namei info
307  *	lwp pointer of exec'ing lwp
308  *	NO SELF-LOCKED VNODES
309  *
310  * ON EXIT:
311  *	error:	nothing held, etc.  exec header still allocated.
312  *	ok:	filled exec package, executable's vnode (unlocked).
313  *
314  * EXEC SWITCH ENTRY:
315  * 	Locked vnode to check, exec package, proc.
316  *
317  * EXEC SWITCH EXIT:
318  *	ok:	return 0, filled exec package, executable's vnode (unlocked).
319  *	error:	destructive:
320  *			everything deallocated execept exec header.
321  *		non-destructive:
322  *			error code, executable's vnode (unlocked),
323  *			exec header unmodified.
324  */
325 int
326 /*ARGSUSED*/
327 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
328 {
329 	int		error, i;
330 	struct vnode	*vp;
331 	struct nameidata nd;
332 	size_t		resid;
333 
334 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
335 
336 	/* first get the vnode */
337 	if ((error = namei(&nd)) != 0)
338 		return error;
339 	epp->ep_vp = vp = nd.ni_vp;
340 	/* normally this can't fail */
341 	error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL);
342 	KASSERT(error == 0);
343 
344 #ifdef DIAGNOSTIC
345 	/* paranoia (take this out once namei stuff stabilizes) */
346 	memset(nd.ni_pnbuf, '~', PATH_MAX);
347 #endif
348 
349 	/* check access and type */
350 	if (vp->v_type != VREG) {
351 		error = EACCES;
352 		goto bad1;
353 	}
354 	if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
355 		goto bad1;
356 
357 	/* get attributes */
358 	if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
359 		goto bad1;
360 
361 	/* Check mount point */
362 	if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
363 		error = EACCES;
364 		goto bad1;
365 	}
366 	if (vp->v_mount->mnt_flag & MNT_NOSUID)
367 		epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
368 
369 	/* try to open it */
370 	if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
371 		goto bad1;
372 
373 	/* unlock vp, since we need it unlocked from here on out. */
374 	VOP_UNLOCK(vp);
375 
376 #if NVERIEXEC > 0
377 	error = veriexec_verify(l, vp, epp->ep_resolvedname,
378 	    epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
379 	    NULL);
380 	if (error)
381 		goto bad2;
382 #endif /* NVERIEXEC > 0 */
383 
384 #ifdef PAX_SEGVGUARD
385 	error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
386 	if (error)
387 		goto bad2;
388 #endif /* PAX_SEGVGUARD */
389 
390 	/* now we have the file, get the exec header */
391 	error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
392 			UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
393 	if (error)
394 		goto bad2;
395 	epp->ep_hdrvalid = epp->ep_hdrlen - resid;
396 
397 	/*
398 	 * Set up default address space limits.  Can be overridden
399 	 * by individual exec packages.
400 	 *
401 	 * XXX probably should be all done in the exec packages.
402 	 */
403 	epp->ep_vm_minaddr = VM_MIN_ADDRESS;
404 	epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
405 	/*
406 	 * set up the vmcmds for creation of the process
407 	 * address space
408 	 */
409 	error = ENOEXEC;
410 	for (i = 0; i < nexecs; i++) {
411 		int newerror;
412 
413 		epp->ep_esch = execsw[i];
414 		newerror = (*execsw[i]->es_makecmds)(l, epp);
415 
416 		if (!newerror) {
417 			/* Seems ok: check that entry point is not too high */
418 			if (epp->ep_entry > epp->ep_vm_maxaddr) {
419 #ifdef DIAGNOSTIC
420 				printf("%s: rejecting %p due to "
421 				    "too high entry address (> %p)\n",
422 					 __func__, (void *)epp->ep_entry,
423 					 (void *)epp->ep_vm_maxaddr);
424 #endif
425 				error = ENOEXEC;
426 				break;
427 			}
428 			/* Seems ok: check that entry point is not too low */
429 			if (epp->ep_entry < epp->ep_vm_minaddr) {
430 #ifdef DIAGNOSTIC
431 				printf("%s: rejecting %p due to "
432 				    "too low entry address (< %p)\n",
433 				     __func__, (void *)epp->ep_entry,
434 				     (void *)epp->ep_vm_minaddr);
435 #endif
436 				error = ENOEXEC;
437 				break;
438 			}
439 
440 			/* check limits */
441 			if ((epp->ep_tsize > MAXTSIZ) ||
442 			    (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
443 						    [RLIMIT_DATA].rlim_cur)) {
444 #ifdef DIAGNOSTIC
445 				printf("%s: rejecting due to "
446 				    "limits (t=%llu > %llu || d=%llu > %llu)\n",
447 				    __func__,
448 				    (unsigned long long)epp->ep_tsize,
449 				    (unsigned long long)MAXTSIZ,
450 				    (unsigned long long)epp->ep_dsize,
451 				    (unsigned long long)
452 				    l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
453 #endif
454 				error = ENOMEM;
455 				break;
456 			}
457 			return 0;
458 		}
459 
460 		if (epp->ep_emul_root != NULL) {
461 			vrele(epp->ep_emul_root);
462 			epp->ep_emul_root = NULL;
463 		}
464 		if (epp->ep_interp != NULL) {
465 			vrele(epp->ep_interp);
466 			epp->ep_interp = NULL;
467 		}
468 
469 		/* make sure the first "interesting" error code is saved. */
470 		if (error == ENOEXEC)
471 			error = newerror;
472 
473 		if (epp->ep_flags & EXEC_DESTR)
474 			/* Error from "#!" code, tidied up by recursive call */
475 			return error;
476 	}
477 
478 	/* not found, error */
479 
480 	/*
481 	 * free any vmspace-creation commands,
482 	 * and release their references
483 	 */
484 	kill_vmcmds(&epp->ep_vmcmds);
485 
486 bad2:
487 	/*
488 	 * close and release the vnode, restore the old one, free the
489 	 * pathname buf, and punt.
490 	 */
491 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
492 	VOP_CLOSE(vp, FREAD, l->l_cred);
493 	vput(vp);
494 	return error;
495 
496 bad1:
497 	/*
498 	 * free the namei pathname buffer, and put the vnode
499 	 * (which we don't yet have open).
500 	 */
501 	vput(vp);				/* was still locked */
502 	return error;
503 }
504 
505 #ifdef __MACHINE_STACK_GROWS_UP
506 #define STACK_PTHREADSPACE NBPG
507 #else
508 #define STACK_PTHREADSPACE 0
509 #endif
510 
511 static int
512 execve_fetch_element(char * const *array, size_t index, char **value)
513 {
514 	return copyin(array + index, value, sizeof(*value));
515 }
516 
517 /*
518  * exec system call
519  */
520 int
521 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
522 {
523 	/* {
524 		syscallarg(const char *)	path;
525 		syscallarg(char * const *)	argp;
526 		syscallarg(char * const *)	envp;
527 	} */
528 
529 	return execve1(l, SCARG(uap, path), SCARG(uap, argp),
530 	    SCARG(uap, envp), execve_fetch_element);
531 }
532 
533 int
534 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
535     register_t *retval)
536 {
537 	/* {
538 		syscallarg(int)			fd;
539 		syscallarg(char * const *)	argp;
540 		syscallarg(char * const *)	envp;
541 	} */
542 
543 	return ENOSYS;
544 }
545 
546 /*
547  * Load modules to try and execute an image that we do not understand.
548  * If no execsw entries are present, we load those likely to be needed
549  * in order to run native images only.  Otherwise, we autoload all
550  * possible modules that could let us run the binary.  XXX lame
551  */
552 static void
553 exec_autoload(void)
554 {
555 #ifdef MODULAR
556 	static const char * const native[] = {
557 		"exec_elf32",
558 		"exec_elf64",
559 		"exec_script",
560 		NULL
561 	};
562 	static const char * const compat[] = {
563 		"exec_elf32",
564 		"exec_elf64",
565 		"exec_script",
566 		"exec_aout",
567 		"exec_coff",
568 		"exec_ecoff",
569 		"compat_aoutm68k",
570 		"compat_freebsd",
571 		"compat_ibcs2",
572 		"compat_linux",
573 		"compat_linux32",
574 		"compat_netbsd32",
575 		"compat_sunos",
576 		"compat_sunos32",
577 		"compat_svr4",
578 		"compat_svr4_32",
579 		"compat_ultrix",
580 		NULL
581 	};
582 	char const * const *list;
583 	int i;
584 
585 	list = (nexecs == 0 ? native : compat);
586 	for (i = 0; list[i] != NULL; i++) {
587 		if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
588 			continue;
589 		}
590 		yield();
591 	}
592 #endif
593 }
594 
595 static int
596 execve_loadvm(struct lwp *l, const char *path, char * const *args,
597 	char * const *envs, execve_fetch_element_t fetch_element,
598 	struct execve_data * restrict data)
599 {
600 	struct exec_package	* const epp = &data->ed_pack;
601 	int			error;
602 	struct proc		*p;
603 	char			*dp;
604 	u_int			modgen;
605 
606 	KASSERT(data != NULL);
607 
608 	p = l->l_proc;
609 	modgen = 0;
610 
611 	SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0);
612 
613 	/*
614 	 * Check if we have exceeded our number of processes limit.
615 	 * This is so that we handle the case where a root daemon
616 	 * forked, ran setuid to become the desired user and is trying
617 	 * to exec. The obvious place to do the reference counting check
618 	 * is setuid(), but we don't do the reference counting check there
619 	 * like other OS's do because then all the programs that use setuid()
620 	 * must be modified to check the return code of setuid() and exit().
621 	 * It is dangerous to make setuid() fail, because it fails open and
622 	 * the program will continue to run as root. If we make it succeed
623 	 * and return an error code, again we are not enforcing the limit.
624 	 * The best place to enforce the limit is here, when the process tries
625 	 * to execute a new image, because eventually the process will need
626 	 * to call exec in order to do something useful.
627 	 */
628  retry:
629 	if (p->p_flag & PK_SUGID) {
630 		if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
631 		     p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
632 		     &p->p_rlimit[RLIMIT_NPROC],
633 		     KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
634 		    chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
635 		     p->p_rlimit[RLIMIT_NPROC].rlim_cur)
636 		return EAGAIN;
637 	}
638 
639 	/*
640 	 * Drain existing references and forbid new ones.  The process
641 	 * should be left alone until we're done here.  This is necessary
642 	 * to avoid race conditions - e.g. in ptrace() - that might allow
643 	 * a local user to illicitly obtain elevated privileges.
644 	 */
645 	rw_enter(&p->p_reflock, RW_WRITER);
646 
647 	/*
648 	 * Init the namei data to point the file user's program name.
649 	 * This is done here rather than in check_exec(), so that it's
650 	 * possible to override this settings if any of makecmd/probe
651 	 * functions call check_exec() recursively - for example,
652 	 * see exec_script_makecmds().
653 	 */
654 	error = pathbuf_copyin(path, &data->ed_pathbuf);
655 	if (error) {
656 		DPRINTF(("%s: pathbuf_copyin path @%p %d\n", __func__,
657 		    path, error));
658 		goto clrflg;
659 	}
660 	data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
661 	data->ed_resolvedpathbuf = PNBUF_GET();
662 
663 	/*
664 	 * initialize the fields of the exec package.
665 	 */
666 	epp->ep_name = path;
667 	epp->ep_kname = data->ed_pathstring;
668 	epp->ep_resolvedname = data->ed_resolvedpathbuf;
669 	epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
670 	epp->ep_hdrlen = exec_maxhdrsz;
671 	epp->ep_hdrvalid = 0;
672 	epp->ep_emul_arg = NULL;
673 	epp->ep_emul_arg_free = NULL;
674 	memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
675 	epp->ep_vap = &data->ed_attr;
676 	epp->ep_flags = 0;
677 	MD_TOPDOWN_INIT(epp);
678 	epp->ep_emul_root = NULL;
679 	epp->ep_interp = NULL;
680 	epp->ep_esch = NULL;
681 	epp->ep_pax_flags = 0;
682 	memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
683 
684 	rw_enter(&exec_lock, RW_READER);
685 
686 	/* see if we can run it. */
687 	if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) {
688 		if (error != ENOENT) {
689 			DPRINTF(("%s: check exec failed %d\n",
690 			    __func__, error));
691 		}
692 		goto freehdr;
693 	}
694 
695 	/* allocate an argument buffer */
696 	data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
697 	KASSERT(data->ed_argp != NULL);
698 	dp = data->ed_argp;
699 
700 	if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
701 		goto bad;
702 	}
703 
704 	/*
705 	 * Calculate the new stack size.
706 	 */
707 
708 #ifdef PAX_ASLR
709 #define	ASLR_GAP(l)	(pax_aslr_active(l) ? (cprng_fast32() % PAGE_SIZE) : 0)
710 #else
711 #define	ASLR_GAP(l)	0
712 #endif
713 
714 #ifdef __MACHINE_STACK_GROWS_UP
715 /*
716  * copyargs() fills argc/argv/envp from the lower address even on
717  * __MACHINE_STACK_GROWS_UP machines.  Reserve a few words just below the SP
718  * so that _rtld() use it.
719  */
720 #define	RTLD_GAP	32
721 #else
722 #define	RTLD_GAP	0
723 #endif
724 
725 	const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
726 
727 	data->ed_argslen = calcargs(data, argenvstrlen);
728 
729 	const size_t len = calcstack(data, ASLR_GAP(l) + RTLD_GAP);
730 
731 	if (len > epp->ep_ssize) {
732 		/* in effect, compare to initial limit */
733 		DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
734 		error = ENOMEM;
735 		goto bad;
736 	}
737 	/* adjust "active stack depth" for process VSZ */
738 	epp->ep_ssize = len;
739 
740 	return 0;
741 
742  bad:
743 	/* free the vmspace-creation commands, and release their references */
744 	kill_vmcmds(&epp->ep_vmcmds);
745 	/* kill any opened file descriptor, if necessary */
746 	if (epp->ep_flags & EXEC_HASFD) {
747 		epp->ep_flags &= ~EXEC_HASFD;
748 		fd_close(epp->ep_fd);
749 	}
750 	/* close and put the exec'd file */
751 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
752 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
753 	vput(epp->ep_vp);
754 	pool_put(&exec_pool, data->ed_argp);
755 
756  freehdr:
757 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
758 	if (epp->ep_emul_root != NULL)
759 		vrele(epp->ep_emul_root);
760 	if (epp->ep_interp != NULL)
761 		vrele(epp->ep_interp);
762 
763 	rw_exit(&exec_lock);
764 
765 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
766 	pathbuf_destroy(data->ed_pathbuf);
767 	PNBUF_PUT(data->ed_resolvedpathbuf);
768 
769  clrflg:
770 	rw_exit(&p->p_reflock);
771 
772 	if (modgen != module_gen && error == ENOEXEC) {
773 		modgen = module_gen;
774 		exec_autoload();
775 		goto retry;
776 	}
777 
778 	SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
779 	return error;
780 }
781 
782 static int
783 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
784 {
785 	struct exec_package	* const epp = &data->ed_pack;
786 	struct proc		*p = l->l_proc;
787 	struct exec_vmcmd	*base_vcp;
788 	int			error = 0;
789 	size_t			i;
790 
791 	/* record proc's vnode, for use by procfs and others */
792 	if (p->p_textvp)
793 		vrele(p->p_textvp);
794 	vref(epp->ep_vp);
795 	p->p_textvp = epp->ep_vp;
796 
797 	/* create the new process's VM space by running the vmcmds */
798 	KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
799 
800 	DUMPVMCMDS(epp, 0, 0);
801 
802 	base_vcp = NULL;
803 
804 	for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
805 		struct exec_vmcmd *vcp;
806 
807 		vcp = &epp->ep_vmcmds.evs_cmds[i];
808 		if (vcp->ev_flags & VMCMD_RELATIVE) {
809 			KASSERTMSG(base_vcp != NULL,
810 			    "%s: relative vmcmd with no base", __func__);
811 			KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
812 			    "%s: illegal base & relative vmcmd", __func__);
813 			vcp->ev_addr += base_vcp->ev_addr;
814 		}
815 		error = (*vcp->ev_proc)(l, vcp);
816 		if (error)
817 			DUMPVMCMDS(epp, i, error);
818 		if (vcp->ev_flags & VMCMD_BASE)
819 			base_vcp = vcp;
820 	}
821 
822 	/* free the vmspace-creation commands, and release their references */
823 	kill_vmcmds(&epp->ep_vmcmds);
824 
825 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
826 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
827 	vput(epp->ep_vp);
828 
829 	/* if an error happened, deallocate and punt */
830 	if (error != 0) {
831 		DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
832 	}
833 	return error;
834 }
835 
836 static void
837 execve_free_data(struct execve_data *data)
838 {
839 	struct exec_package	* const epp = &data->ed_pack;
840 
841 	/* free the vmspace-creation commands, and release their references */
842 	kill_vmcmds(&epp->ep_vmcmds);
843 	/* kill any opened file descriptor, if necessary */
844 	if (epp->ep_flags & EXEC_HASFD) {
845 		epp->ep_flags &= ~EXEC_HASFD;
846 		fd_close(epp->ep_fd);
847 	}
848 
849 	/* close and put the exec'd file */
850 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
851 	VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
852 	vput(epp->ep_vp);
853 	pool_put(&exec_pool, data->ed_argp);
854 
855 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
856 	if (epp->ep_emul_root != NULL)
857 		vrele(epp->ep_emul_root);
858 	if (epp->ep_interp != NULL)
859 		vrele(epp->ep_interp);
860 
861 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
862 	pathbuf_destroy(data->ed_pathbuf);
863 	PNBUF_PUT(data->ed_resolvedpathbuf);
864 }
865 
866 static void
867 pathexec(struct exec_package *epp, struct proc *p, const char *pathstring)
868 {
869 	const char		*commandname;
870 	size_t			commandlen;
871 	char			*path;
872 
873 	/* set command name & other accounting info */
874 	commandname = strrchr(epp->ep_resolvedname, '/');
875 	if (commandname != NULL) {
876 		commandname++;
877 	} else {
878 		commandname = epp->ep_resolvedname;
879 	}
880 	commandlen = min(strlen(commandname), MAXCOMLEN);
881 	(void)memcpy(p->p_comm, commandname, commandlen);
882 	p->p_comm[commandlen] = '\0';
883 
884 	path = PNBUF_GET();
885 
886 	/*
887 	 * If the path starts with /, we don't need to do any work.
888 	 * This handles the majority of the cases.
889 	 * In the future perhaps we could canonicalize it?
890 	 */
891 	if (pathstring[0] == '/') {
892 		(void)strlcpy(path, pathstring,
893 		    MAXPATHLEN);
894 		epp->ep_path = path;
895 	}
896 #ifdef notyet
897 	/*
898 	 * Although this works most of the time [since the entry was just
899 	 * entered in the cache] we don't use it because it will fail for
900 	 * entries that are not placed in the cache because their name is
901 	 * longer than NCHNAMLEN and it is not the cleanest interface,
902 	 * because there could be races. When the namei cache is re-written,
903 	 * this can be changed to use the appropriate function.
904 	 */
905 	else if (!(error = vnode_to_path(path, MAXPATHLEN, p->p_textvp, l, p)))
906 		epp->ep_path = path;
907 #endif
908 	else {
909 #ifdef notyet
910 		printf("Cannot get path for pid %d [%s] (error %d)\n",
911 		    (int)p->p_pid, p->p_comm, error);
912 #endif
913 		epp->ep_path = NULL;
914 		PNBUF_PUT(path);
915 	}
916 }
917 
918 /* XXX elsewhere */
919 static int
920 credexec(struct lwp *l, struct vattr *attr)
921 {
922 	struct proc *p = l->l_proc;
923 	int error;
924 
925 	/*
926 	 * Deal with set[ug]id.  MNT_NOSUID has already been used to disable
927 	 * s[ug]id.  It's OK to check for PSL_TRACED here as we have blocked
928 	 * out additional references on the process for the moment.
929 	 */
930 	if ((p->p_slflag & PSL_TRACED) == 0 &&
931 
932 	    (((attr->va_mode & S_ISUID) != 0 &&
933 	      kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
934 
935 	     ((attr->va_mode & S_ISGID) != 0 &&
936 	      kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
937 		/*
938 		 * Mark the process as SUGID before we do
939 		 * anything that might block.
940 		 */
941 		proc_crmod_enter();
942 		proc_crmod_leave(NULL, NULL, true);
943 
944 		/* Make sure file descriptors 0..2 are in use. */
945 		if ((error = fd_checkstd()) != 0) {
946 			DPRINTF(("%s: fdcheckstd failed %d\n",
947 			    __func__, error));
948 			return error;
949 		}
950 
951 		/*
952 		 * Copy the credential so other references don't see our
953 		 * changes.
954 		 */
955 		l->l_cred = kauth_cred_copy(l->l_cred);
956 #ifdef KTRACE
957 		/*
958 		 * If the persistent trace flag isn't set, turn off.
959 		 */
960 		if (p->p_tracep) {
961 			mutex_enter(&ktrace_lock);
962 			if (!(p->p_traceflag & KTRFAC_PERSISTENT))
963 				ktrderef(p);
964 			mutex_exit(&ktrace_lock);
965 		}
966 #endif
967 		if (attr->va_mode & S_ISUID)
968 			kauth_cred_seteuid(l->l_cred, attr->va_uid);
969 		if (attr->va_mode & S_ISGID)
970 			kauth_cred_setegid(l->l_cred, attr->va_gid);
971 	} else {
972 		if (kauth_cred_geteuid(l->l_cred) ==
973 		    kauth_cred_getuid(l->l_cred) &&
974 		    kauth_cred_getegid(l->l_cred) ==
975 		    kauth_cred_getgid(l->l_cred))
976 			p->p_flag &= ~PK_SUGID;
977 	}
978 
979 	/*
980 	 * Copy the credential so other references don't see our changes.
981 	 * Test to see if this is necessary first, since in the common case
982 	 * we won't need a private reference.
983 	 */
984 	if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
985 	    kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
986 		l->l_cred = kauth_cred_copy(l->l_cred);
987 		kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
988 		kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
989 	}
990 
991 	/* Update the master credentials. */
992 	if (l->l_cred != p->p_cred) {
993 		kauth_cred_t ocred;
994 
995 		kauth_cred_hold(l->l_cred);
996 		mutex_enter(p->p_lock);
997 		ocred = p->p_cred;
998 		p->p_cred = l->l_cred;
999 		mutex_exit(p->p_lock);
1000 		kauth_cred_free(ocred);
1001 	}
1002 
1003 	return 0;
1004 }
1005 
1006 static void
1007 emulexec(struct lwp *l, struct exec_package *epp)
1008 {
1009 	struct proc		*p = l->l_proc;
1010 
1011 	/* The emulation root will usually have been found when we looked
1012 	 * for the elf interpreter (or similar), if not look now. */
1013 	if (epp->ep_esch->es_emul->e_path != NULL &&
1014 	    epp->ep_emul_root == NULL)
1015 		emul_find_root(l, epp);
1016 
1017 	/* Any old emulation root got removed by fdcloseexec */
1018 	rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1019 	p->p_cwdi->cwdi_edir = epp->ep_emul_root;
1020 	rw_exit(&p->p_cwdi->cwdi_lock);
1021 	epp->ep_emul_root = NULL;
1022 	if (epp->ep_interp != NULL)
1023 		vrele(epp->ep_interp);
1024 
1025 	/*
1026 	 * Call emulation specific exec hook. This can setup per-process
1027 	 * p->p_emuldata or do any other per-process stuff an emulation needs.
1028 	 *
1029 	 * If we are executing process of different emulation than the
1030 	 * original forked process, call e_proc_exit() of the old emulation
1031 	 * first, then e_proc_exec() of new emulation. If the emulation is
1032 	 * same, the exec hook code should deallocate any old emulation
1033 	 * resources held previously by this process.
1034 	 */
1035 	if (p->p_emul && p->p_emul->e_proc_exit
1036 	    && p->p_emul != epp->ep_esch->es_emul)
1037 		(*p->p_emul->e_proc_exit)(p);
1038 
1039 	/*
1040 	 * This is now LWP 1.
1041 	 */
1042 	/* XXX elsewhere */
1043 	mutex_enter(p->p_lock);
1044 	p->p_nlwpid = 1;
1045 	l->l_lid = 1;
1046 	mutex_exit(p->p_lock);
1047 
1048 	/*
1049 	 * Call exec hook. Emulation code may NOT store reference to anything
1050 	 * from &pack.
1051 	 */
1052 	if (epp->ep_esch->es_emul->e_proc_exec)
1053 		(*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
1054 
1055 	/* update p_emul, the old value is no longer needed */
1056 	p->p_emul = epp->ep_esch->es_emul;
1057 
1058 	/* ...and the same for p_execsw */
1059 	p->p_execsw = epp->ep_esch;
1060 
1061 #ifdef __HAVE_SYSCALL_INTERN
1062 	(*p->p_emul->e_syscall_intern)(p);
1063 #endif
1064 	ktremul();
1065 }
1066 
1067 static int
1068 execve_runproc(struct lwp *l, struct execve_data * restrict data,
1069 	bool no_local_exec_lock, bool is_spawn)
1070 {
1071 	struct exec_package	* const epp = &data->ed_pack;
1072 	int error = 0;
1073 	struct proc		*p;
1074 
1075 	/*
1076 	 * In case of a posix_spawn operation, the child doing the exec
1077 	 * might not hold the reader lock on exec_lock, but the parent
1078 	 * will do this instead.
1079 	 */
1080 	KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
1081 	KASSERT(!no_local_exec_lock || is_spawn);
1082 	KASSERT(data != NULL);
1083 
1084 	p = l->l_proc;
1085 
1086 	/* Get rid of other LWPs. */
1087 	if (p->p_nlwps > 1) {
1088 		mutex_enter(p->p_lock);
1089 		exit_lwps(l);
1090 		mutex_exit(p->p_lock);
1091 	}
1092 	KDASSERT(p->p_nlwps == 1);
1093 
1094 	/* Destroy any lwpctl info. */
1095 	if (p->p_lwpctl != NULL)
1096 		lwp_ctl_exit();
1097 
1098 	/* Remove POSIX timers */
1099 	timers_free(p, TIMERS_POSIX);
1100 
1101 	/*
1102 	 * Do whatever is necessary to prepare the address space
1103 	 * for remapping.  Note that this might replace the current
1104 	 * vmspace with another!
1105 	 */
1106 	if (is_spawn)
1107 		uvmspace_spawn(l, epp->ep_vm_minaddr,
1108 		    epp->ep_vm_maxaddr,
1109 		    epp->ep_flags & EXEC_TOPDOWN_VM);
1110 	else
1111 		uvmspace_exec(l, epp->ep_vm_minaddr,
1112 		    epp->ep_vm_maxaddr,
1113 		    epp->ep_flags & EXEC_TOPDOWN_VM);
1114 
1115 	struct vmspace		*vm;
1116 	vm = p->p_vmspace;
1117 	vm->vm_taddr = (void *)epp->ep_taddr;
1118 	vm->vm_tsize = btoc(epp->ep_tsize);
1119 	vm->vm_daddr = (void*)epp->ep_daddr;
1120 	vm->vm_dsize = btoc(epp->ep_dsize);
1121 	vm->vm_ssize = btoc(epp->ep_ssize);
1122 	vm->vm_issize = 0;
1123 	vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
1124 	vm->vm_minsaddr = (void *)epp->ep_minsaddr;
1125 
1126 #ifdef PAX_ASLR
1127 	pax_aslr_init(l, vm);
1128 #endif /* PAX_ASLR */
1129 
1130 	/* Now map address space. */
1131 	error = execve_dovmcmds(l, data);
1132 	if (error != 0)
1133 		goto exec_abort;
1134 
1135 	pathexec(epp, p, data->ed_pathstring);
1136 
1137 	char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
1138 
1139 	error = copyoutargs(data, l, newstack);
1140 	if (error != 0)
1141 		goto exec_abort;
1142 
1143 	cwdexec(p);
1144 	fd_closeexec();		/* handle close on exec */
1145 
1146 	if (__predict_false(ktrace_on))
1147 		fd_ktrexecfd();
1148 
1149 	execsigs(p);		/* reset catched signals */
1150 
1151 	mutex_enter(p->p_lock);
1152 	l->l_ctxlink = NULL;	/* reset ucontext link */
1153 	p->p_acflag &= ~AFORK;
1154 	p->p_flag |= PK_EXEC;
1155 	mutex_exit(p->p_lock);
1156 
1157 	/*
1158 	 * Stop profiling.
1159 	 */
1160 	if ((p->p_stflag & PST_PROFIL) != 0) {
1161 		mutex_spin_enter(&p->p_stmutex);
1162 		stopprofclock(p);
1163 		mutex_spin_exit(&p->p_stmutex);
1164 	}
1165 
1166 	/*
1167 	 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1168 	 * exited and exec()/exit() are the only places it will be cleared.
1169 	 */
1170 	if ((p->p_lflag & PL_PPWAIT) != 0) {
1171 #if 0
1172 		lwp_t *lp;
1173 
1174 		mutex_enter(proc_lock);
1175 		lp = p->p_vforklwp;
1176 		p->p_vforklwp = NULL;
1177 
1178 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
1179 		p->p_lflag &= ~PL_PPWAIT;
1180 
1181 		lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */
1182 		cv_broadcast(&lp->l_waitcv);
1183 		mutex_exit(proc_lock);
1184 #else
1185 		mutex_enter(proc_lock);
1186 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
1187 		p->p_lflag &= ~PL_PPWAIT;
1188 		cv_broadcast(&p->p_pptr->p_waitcv);
1189 		mutex_exit(proc_lock);
1190 #endif
1191 	}
1192 
1193 	error = credexec(l, &data->ed_attr);
1194 	if (error)
1195 		goto exec_abort;
1196 
1197 #if defined(__HAVE_RAS)
1198 	/*
1199 	 * Remove all RASs from the address space.
1200 	 */
1201 	ras_purgeall();
1202 #endif
1203 
1204 	doexechooks(p);
1205 
1206 	/*
1207 	 * Set initial SP at the top of the stack.
1208 	 *
1209 	 * Note that on machines where stack grows up (e.g. hppa), SP points to
1210 	 * the end of arg/env strings.  Userland guesses the address of argc
1211 	 * via ps_strings::ps_argvstr.
1212 	 */
1213 
1214 	/* Setup new registers and do misc. setup. */
1215 	(*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
1216 	if (epp->ep_esch->es_setregs)
1217 		(*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
1218 
1219 	/* Provide a consistent LWP private setting */
1220 	(void)lwp_setprivate(l, NULL);
1221 
1222 	/* Discard all PCU state; need to start fresh */
1223 	pcu_discard_all(l);
1224 
1225 	/* map the process's signal trampoline code */
1226 	if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
1227 		DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1228 		goto exec_abort;
1229 	}
1230 
1231 	pool_put(&exec_pool, data->ed_argp);
1232 
1233 	/* notify others that we exec'd */
1234 	KNOTE(&p->p_klist, NOTE_EXEC);
1235 
1236 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1237 
1238 	SDT_PROBE(proc,,,exec_success, epp->ep_name, 0, 0, 0, 0);
1239 
1240 	emulexec(l, epp);
1241 
1242 	/* Allow new references from the debugger/procfs. */
1243 	rw_exit(&p->p_reflock);
1244 	if (!no_local_exec_lock)
1245 		rw_exit(&exec_lock);
1246 
1247 	mutex_enter(proc_lock);
1248 
1249 	if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
1250 		ksiginfo_t ksi;
1251 
1252 		KSI_INIT_EMPTY(&ksi);
1253 		ksi.ksi_signo = SIGTRAP;
1254 		ksi.ksi_lid = l->l_lid;
1255 		kpsignal(p, &ksi, NULL);
1256 	}
1257 
1258 	if (p->p_sflag & PS_STOPEXEC) {
1259 		ksiginfoq_t kq;
1260 
1261 		KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1262 		p->p_pptr->p_nstopchild++;
1263 		p->p_pptr->p_waited = 0;
1264 		mutex_enter(p->p_lock);
1265 		ksiginfo_queue_init(&kq);
1266 		sigclearall(p, &contsigmask, &kq);
1267 		lwp_lock(l);
1268 		l->l_stat = LSSTOP;
1269 		p->p_stat = SSTOP;
1270 		p->p_nrlwps--;
1271 		lwp_unlock(l);
1272 		mutex_exit(p->p_lock);
1273 		mutex_exit(proc_lock);
1274 		lwp_lock(l);
1275 		mi_switch(l);
1276 		ksiginfo_queue_drain(&kq);
1277 		KERNEL_LOCK(l->l_biglocks, l);
1278 	} else {
1279 		mutex_exit(proc_lock);
1280 	}
1281 
1282 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1283 	pathbuf_destroy(data->ed_pathbuf);
1284 	PNBUF_PUT(data->ed_resolvedpathbuf);
1285 	DPRINTF(("%s finished\n", __func__));
1286 	return EJUSTRETURN;
1287 
1288  exec_abort:
1289 	SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
1290 	rw_exit(&p->p_reflock);
1291 	if (!no_local_exec_lock)
1292 		rw_exit(&exec_lock);
1293 
1294 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1295 	pathbuf_destroy(data->ed_pathbuf);
1296 	PNBUF_PUT(data->ed_resolvedpathbuf);
1297 
1298 	/*
1299 	 * the old process doesn't exist anymore.  exit gracefully.
1300 	 * get rid of the (new) address space we have created, if any, get rid
1301 	 * of our namei data and vnode, and exit noting failure
1302 	 */
1303 	uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1304 		VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1305 
1306 	exec_free_emul_arg(epp);
1307 	pool_put(&exec_pool, data->ed_argp);
1308 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1309 	if (epp->ep_emul_root != NULL)
1310 		vrele(epp->ep_emul_root);
1311 	if (epp->ep_interp != NULL)
1312 		vrele(epp->ep_interp);
1313 
1314 	/* Acquire the sched-state mutex (exit1() will release it). */
1315 	if (!is_spawn) {
1316 		mutex_enter(p->p_lock);
1317 		exit1(l, W_EXITCODE(error, SIGABRT));
1318 	}
1319 
1320 	return error;
1321 }
1322 
1323 int
1324 execve1(struct lwp *l, const char *path, char * const *args,
1325     char * const *envs, execve_fetch_element_t fetch_element)
1326 {
1327 	struct execve_data data;
1328 	int error;
1329 
1330 	error = execve_loadvm(l, path, args, envs, fetch_element, &data);
1331 	if (error)
1332 		return error;
1333 	error = execve_runproc(l, &data, false, false);
1334 	return error;
1335 }
1336 
1337 static size_t
1338 ptrsz(const struct exec_package *epp)
1339 {
1340 	return (epp->ep_flags & EXEC_32) ?  sizeof(int) : sizeof(char *);
1341 }
1342 
1343 static size_t
1344 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
1345 {
1346 	struct exec_package	* const epp = &data->ed_pack;
1347 
1348 	const size_t nargenvptrs =
1349 	    1 +				/* long argc */
1350 	    data->ed_argc +		/* char *argv[] */
1351 	    1 +				/* \0 */
1352 	    data->ed_envc +		/* char *env[] */
1353 	    1 +				/* \0 */
1354 	    epp->ep_esch->es_arglen;	/* auxinfo */
1355 
1356 	return (nargenvptrs * ptrsz(epp)) + argenvstrlen;
1357 }
1358 
1359 static size_t
1360 calcstack(struct execve_data * restrict data, const size_t gaplen)
1361 {
1362 	struct exec_package	* const epp = &data->ed_pack;
1363 
1364 	data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
1365 	    epp->ep_esch->es_emul->e_sigcode;
1366 
1367 	data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
1368 	    sizeof(struct ps_strings32) : sizeof(struct ps_strings);
1369 
1370 	const size_t sigcode_psstr_sz =
1371 	    data->ed_szsigcode +	/* sigcode */
1372 	    data->ed_ps_strings_sz +	/* ps_strings */
1373 	    STACK_PTHREADSPACE;		/* pthread space */
1374 
1375 	const size_t stacklen =
1376 	    data->ed_argslen +
1377 	    gaplen +
1378 	    sigcode_psstr_sz;
1379 
1380 	/* make the stack "safely" aligned */
1381 	return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
1382 }
1383 
1384 static int
1385 copyoutargs(struct execve_data * restrict data, struct lwp *l,
1386     char * const newstack)
1387 {
1388 	struct exec_package	* const epp = &data->ed_pack;
1389 	struct proc		*p = l->l_proc;
1390 	int			error;
1391 
1392 	/* remember information about the process */
1393 	data->ed_arginfo.ps_nargvstr = data->ed_argc;
1394 	data->ed_arginfo.ps_nenvstr = data->ed_envc;
1395 
1396 	/*
1397 	 * Allocate the stack address passed to the newly execve()'ed process.
1398 	 *
1399 	 * The new stack address will be set to the SP (stack pointer) register
1400 	 * in setregs().
1401 	 */
1402 
1403 	char *newargs = STACK_ALLOC(
1404 	    STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
1405 
1406 	error = (*epp->ep_esch->es_copyargs)(l, epp,
1407 	    &data->ed_arginfo, &newargs, data->ed_argp);
1408 
1409 	if (epp->ep_path) {
1410 		PNBUF_PUT(epp->ep_path);
1411 		epp->ep_path = NULL;
1412 	}
1413 	if (error) {
1414 		DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1415 		return error;
1416 	}
1417 
1418 	error = copyoutpsstrs(data, p);
1419 	if (error != 0)
1420 		return error;
1421 
1422 	return 0;
1423 }
1424 
1425 static int
1426 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
1427 {
1428 	struct exec_package	* const epp = &data->ed_pack;
1429 	struct ps_strings32	arginfo32;
1430 	void			*aip;
1431 	int			error;
1432 
1433 	/* fill process ps_strings info */
1434 	p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
1435 	    STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1436 
1437 	if (epp->ep_flags & EXEC_32) {
1438 		aip = &arginfo32;
1439 		arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1440 		arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1441 		arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1442 		arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1443 	} else
1444 		aip = &data->ed_arginfo;
1445 
1446 	/* copy out the process's ps_strings structure */
1447 	if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1448 	    != 0) {
1449 		DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1450 		    __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1451 		return error;
1452 	}
1453 
1454 	return 0;
1455 }
1456 
1457 static int
1458 copyinargs(struct execve_data * restrict data, char * const *args,
1459     char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
1460 {
1461 	struct exec_package	* const epp = &data->ed_pack;
1462 	char			*dp;
1463 	size_t			i;
1464 	int			error;
1465 
1466 	dp = *dpp;
1467 
1468 	data->ed_argc = 0;
1469 
1470 	/* copy the fake args list, if there's one, freeing it as we go */
1471 	if (epp->ep_flags & EXEC_HASARGL) {
1472 		struct exec_fakearg	*fa = epp->ep_fa;
1473 
1474 		while (fa->fa_arg != NULL) {
1475 			const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1476 			size_t len;
1477 
1478 			len = strlcpy(dp, fa->fa_arg, maxlen);
1479 			/* Count NUL into len. */
1480 			if (len < maxlen)
1481 				len++;
1482 			else {
1483 				while (fa->fa_arg != NULL) {
1484 					kmem_free(fa->fa_arg, fa->fa_len);
1485 					fa++;
1486 				}
1487 				kmem_free(epp->ep_fa, epp->ep_fa_len);
1488 				epp->ep_flags &= ~EXEC_HASARGL;
1489 				return E2BIG;
1490 			}
1491 			ktrexecarg(fa->fa_arg, len - 1);
1492 			dp += len;
1493 
1494 			kmem_free(fa->fa_arg, fa->fa_len);
1495 			fa++;
1496 			data->ed_argc++;
1497 		}
1498 		kmem_free(epp->ep_fa, epp->ep_fa_len);
1499 		epp->ep_flags &= ~EXEC_HASARGL;
1500 	}
1501 
1502 	/*
1503 	 * Read and count argument strings from user.
1504 	 */
1505 
1506 	if (args == NULL) {
1507 		DPRINTF(("%s: null args\n", __func__));
1508 		return EINVAL;
1509 	}
1510 	if (epp->ep_flags & EXEC_SKIPARG)
1511 		args = (const void *)((const char *)args + ptrsz(epp));
1512 	i = 0;
1513 	error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
1514 	if (error != 0) {
1515 		DPRINTF(("%s: copyin arg %d\n", __func__, error));
1516 		return error;
1517 	}
1518 	data->ed_argc += i;
1519 
1520 	/*
1521 	 * Read and count environment strings from user.
1522 	 */
1523 
1524 	data->ed_envc = 0;
1525 	/* environment need not be there */
1526 	if (envs == NULL)
1527 		goto done;
1528 	i = 0;
1529 	error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
1530 	if (error != 0) {
1531 		DPRINTF(("%s: copyin env %d\n", __func__, error));
1532 		return error;
1533 	}
1534 	data->ed_envc += i;
1535 
1536 done:
1537 	*dpp = dp;
1538 
1539 	return 0;
1540 }
1541 
1542 static int
1543 copyinargstrs(struct execve_data * restrict data, char * const *strs,
1544     execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
1545     void (*ktr)(const void *, size_t))
1546 {
1547 	char			*dp, *sp;
1548 	size_t			i;
1549 	int			error;
1550 
1551 	dp = *dpp;
1552 
1553 	i = 0;
1554 	while (1) {
1555 		const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1556 		size_t len;
1557 
1558 		if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
1559 			return error;
1560 		}
1561 		if (!sp)
1562 			break;
1563 		if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
1564 			if (error == ENAMETOOLONG)
1565 				error = E2BIG;
1566 			return error;
1567 		}
1568 		if (__predict_false(ktrace_on))
1569 			(*ktr)(dp, len - 1);
1570 		dp += len;
1571 		i++;
1572 	}
1573 
1574 	*dpp = dp;
1575 	*ip = i;
1576 
1577 	return 0;
1578 }
1579 
1580 /*
1581  * Copy argv and env strings from kernel buffer (argp) to the new stack.
1582  * Those strings are located just after auxinfo.
1583  */
1584 int
1585 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1586     char **stackp, void *argp)
1587 {
1588 	char	**cpp, *dp, *sp;
1589 	size_t	len;
1590 	void	*nullp;
1591 	long	argc, envc;
1592 	int	error;
1593 
1594 	cpp = (char **)*stackp;
1595 	nullp = NULL;
1596 	argc = arginfo->ps_nargvstr;
1597 	envc = arginfo->ps_nenvstr;
1598 
1599 	/* argc on stack is long */
1600 	CTASSERT(sizeof(*cpp) == sizeof(argc));
1601 
1602 	dp = (char *)(cpp +
1603 	    1 +				/* long argc */
1604 	    argc +			/* char *argv[] */
1605 	    1 +				/* \0 */
1606 	    envc +			/* char *env[] */
1607 	    1 +				/* \0 */
1608 	    /* XXX auxinfo multiplied by ptr size? */
1609 	    pack->ep_esch->es_arglen);	/* auxinfo */
1610 	sp = argp;
1611 
1612 	if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1613 		COPYPRINTF("", cpp - 1, sizeof(argc));
1614 		return error;
1615 	}
1616 
1617 	/* XXX don't copy them out, remap them! */
1618 	arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1619 
1620 	for (; --argc >= 0; sp += len, dp += len) {
1621 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1622 			COPYPRINTF("", cpp - 1, sizeof(dp));
1623 			return error;
1624 		}
1625 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1626 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
1627 			return error;
1628 		}
1629 	}
1630 
1631 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1632 		COPYPRINTF("", cpp - 1, sizeof(nullp));
1633 		return error;
1634 	}
1635 
1636 	arginfo->ps_envstr = cpp; /* remember location of envp for later */
1637 
1638 	for (; --envc >= 0; sp += len, dp += len) {
1639 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1640 			COPYPRINTF("", cpp - 1, sizeof(dp));
1641 			return error;
1642 		}
1643 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1644 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
1645 			return error;
1646 		}
1647 
1648 	}
1649 
1650 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1651 		COPYPRINTF("", cpp - 1, sizeof(nullp));
1652 		return error;
1653 	}
1654 
1655 	*stackp = (char *)cpp;
1656 	return 0;
1657 }
1658 
1659 
1660 /*
1661  * Add execsw[] entries.
1662  */
1663 int
1664 exec_add(struct execsw *esp, int count)
1665 {
1666 	struct exec_entry	*it;
1667 	int			i;
1668 
1669 	if (count == 0) {
1670 		return 0;
1671 	}
1672 
1673 	/* Check for duplicates. */
1674 	rw_enter(&exec_lock, RW_WRITER);
1675 	for (i = 0; i < count; i++) {
1676 		LIST_FOREACH(it, &ex_head, ex_list) {
1677 			/* assume unique (makecmds, probe_func, emulation) */
1678 			if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1679 			    it->ex_sw->u.elf_probe_func ==
1680 			    esp[i].u.elf_probe_func &&
1681 			    it->ex_sw->es_emul == esp[i].es_emul) {
1682 				rw_exit(&exec_lock);
1683 				return EEXIST;
1684 			}
1685 		}
1686 	}
1687 
1688 	/* Allocate new entries. */
1689 	for (i = 0; i < count; i++) {
1690 		it = kmem_alloc(sizeof(*it), KM_SLEEP);
1691 		it->ex_sw = &esp[i];
1692 		LIST_INSERT_HEAD(&ex_head, it, ex_list);
1693 	}
1694 
1695 	/* update execsw[] */
1696 	exec_init(0);
1697 	rw_exit(&exec_lock);
1698 	return 0;
1699 }
1700 
1701 /*
1702  * Remove execsw[] entry.
1703  */
1704 int
1705 exec_remove(struct execsw *esp, int count)
1706 {
1707 	struct exec_entry	*it, *next;
1708 	int			i;
1709 	const struct proclist_desc *pd;
1710 	proc_t			*p;
1711 
1712 	if (count == 0) {
1713 		return 0;
1714 	}
1715 
1716 	/* Abort if any are busy. */
1717 	rw_enter(&exec_lock, RW_WRITER);
1718 	for (i = 0; i < count; i++) {
1719 		mutex_enter(proc_lock);
1720 		for (pd = proclists; pd->pd_list != NULL; pd++) {
1721 			PROCLIST_FOREACH(p, pd->pd_list) {
1722 				if (p->p_execsw == &esp[i]) {
1723 					mutex_exit(proc_lock);
1724 					rw_exit(&exec_lock);
1725 					return EBUSY;
1726 				}
1727 			}
1728 		}
1729 		mutex_exit(proc_lock);
1730 	}
1731 
1732 	/* None are busy, so remove them all. */
1733 	for (i = 0; i < count; i++) {
1734 		for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1735 			next = LIST_NEXT(it, ex_list);
1736 			if (it->ex_sw == &esp[i]) {
1737 				LIST_REMOVE(it, ex_list);
1738 				kmem_free(it, sizeof(*it));
1739 				break;
1740 			}
1741 		}
1742 	}
1743 
1744 	/* update execsw[] */
1745 	exec_init(0);
1746 	rw_exit(&exec_lock);
1747 	return 0;
1748 }
1749 
1750 /*
1751  * Initialize exec structures. If init_boot is true, also does necessary
1752  * one-time initialization (it's called from main() that way).
1753  * Once system is multiuser, this should be called with exec_lock held,
1754  * i.e. via exec_{add|remove}().
1755  */
1756 int
1757 exec_init(int init_boot)
1758 {
1759 	const struct execsw 	**sw;
1760 	struct exec_entry	*ex;
1761 	SLIST_HEAD(,exec_entry)	first;
1762 	SLIST_HEAD(,exec_entry)	any;
1763 	SLIST_HEAD(,exec_entry)	last;
1764 	int			i, sz;
1765 
1766 	if (init_boot) {
1767 		/* do one-time initializations */
1768 		rw_init(&exec_lock);
1769 		mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1770 		pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1771 		    "execargs", &exec_palloc, IPL_NONE);
1772 		pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1773 	} else {
1774 		KASSERT(rw_write_held(&exec_lock));
1775 	}
1776 
1777 	/* Sort each entry onto the appropriate queue. */
1778 	SLIST_INIT(&first);
1779 	SLIST_INIT(&any);
1780 	SLIST_INIT(&last);
1781 	sz = 0;
1782 	LIST_FOREACH(ex, &ex_head, ex_list) {
1783 		switch(ex->ex_sw->es_prio) {
1784 		case EXECSW_PRIO_FIRST:
1785 			SLIST_INSERT_HEAD(&first, ex, ex_slist);
1786 			break;
1787 		case EXECSW_PRIO_ANY:
1788 			SLIST_INSERT_HEAD(&any, ex, ex_slist);
1789 			break;
1790 		case EXECSW_PRIO_LAST:
1791 			SLIST_INSERT_HEAD(&last, ex, ex_slist);
1792 			break;
1793 		default:
1794 			panic("%s", __func__);
1795 			break;
1796 		}
1797 		sz++;
1798 	}
1799 
1800 	/*
1801 	 * Create new execsw[].  Ensure we do not try a zero-sized
1802 	 * allocation.
1803 	 */
1804 	sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1805 	i = 0;
1806 	SLIST_FOREACH(ex, &first, ex_slist) {
1807 		sw[i++] = ex->ex_sw;
1808 	}
1809 	SLIST_FOREACH(ex, &any, ex_slist) {
1810 		sw[i++] = ex->ex_sw;
1811 	}
1812 	SLIST_FOREACH(ex, &last, ex_slist) {
1813 		sw[i++] = ex->ex_sw;
1814 	}
1815 
1816 	/* Replace old execsw[] and free used memory. */
1817 	if (execsw != NULL) {
1818 		kmem_free(__UNCONST(execsw),
1819 		    nexecs * sizeof(struct execsw *) + 1);
1820 	}
1821 	execsw = sw;
1822 	nexecs = sz;
1823 
1824 	/* Figure out the maximum size of an exec header. */
1825 	exec_maxhdrsz = sizeof(int);
1826 	for (i = 0; i < nexecs; i++) {
1827 		if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1828 			exec_maxhdrsz = execsw[i]->es_hdrsz;
1829 	}
1830 
1831 	return 0;
1832 }
1833 
1834 static int
1835 exec_sigcode_map(struct proc *p, const struct emul *e)
1836 {
1837 	vaddr_t va;
1838 	vsize_t sz;
1839 	int error;
1840 	struct uvm_object *uobj;
1841 
1842 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1843 
1844 	if (e->e_sigobject == NULL || sz == 0) {
1845 		return 0;
1846 	}
1847 
1848 	/*
1849 	 * If we don't have a sigobject for this emulation, create one.
1850 	 *
1851 	 * sigobject is an anonymous memory object (just like SYSV shared
1852 	 * memory) that we keep a permanent reference to and that we map
1853 	 * in all processes that need this sigcode. The creation is simple,
1854 	 * we create an object, add a permanent reference to it, map it in
1855 	 * kernel space, copy out the sigcode to it and unmap it.
1856 	 * We map it with PROT_READ|PROT_EXEC into the process just
1857 	 * the way sys_mmap() would map it.
1858 	 */
1859 
1860 	uobj = *e->e_sigobject;
1861 	if (uobj == NULL) {
1862 		mutex_enter(&sigobject_lock);
1863 		if ((uobj = *e->e_sigobject) == NULL) {
1864 			uobj = uao_create(sz, 0);
1865 			(*uobj->pgops->pgo_reference)(uobj);
1866 			va = vm_map_min(kernel_map);
1867 			if ((error = uvm_map(kernel_map, &va, round_page(sz),
1868 			    uobj, 0, 0,
1869 			    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1870 			    UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1871 				printf("kernel mapping failed %d\n", error);
1872 				(*uobj->pgops->pgo_detach)(uobj);
1873 				mutex_exit(&sigobject_lock);
1874 				return error;
1875 			}
1876 			memcpy((void *)va, e->e_sigcode, sz);
1877 #ifdef PMAP_NEED_PROCWR
1878 			pmap_procwr(&proc0, va, sz);
1879 #endif
1880 			uvm_unmap(kernel_map, va, va + round_page(sz));
1881 			*e->e_sigobject = uobj;
1882 		}
1883 		mutex_exit(&sigobject_lock);
1884 	}
1885 
1886 	/* Just a hint to uvm_map where to put it. */
1887 	va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
1888 	    round_page(sz));
1889 
1890 #ifdef __alpha__
1891 	/*
1892 	 * Tru64 puts /sbin/loader at the end of user virtual memory,
1893 	 * which causes the above calculation to put the sigcode at
1894 	 * an invalid address.  Put it just below the text instead.
1895 	 */
1896 	if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
1897 		va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
1898 	}
1899 #endif
1900 
1901 	(*uobj->pgops->pgo_reference)(uobj);
1902 	error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
1903 			uobj, 0, 0,
1904 			UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
1905 				    UVM_ADV_RANDOM, 0));
1906 	if (error) {
1907 		DPRINTF(("%s, %d: map %p "
1908 		    "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
1909 		    __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
1910 		    va, error));
1911 		(*uobj->pgops->pgo_detach)(uobj);
1912 		return error;
1913 	}
1914 	p->p_sigctx.ps_sigcode = (void *)va;
1915 	return 0;
1916 }
1917 
1918 /*
1919  * Release a refcount on spawn_exec_data and destroy memory, if this
1920  * was the last one.
1921  */
1922 static void
1923 spawn_exec_data_release(struct spawn_exec_data *data)
1924 {
1925 	if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
1926 		return;
1927 
1928 	cv_destroy(&data->sed_cv_child_ready);
1929 	mutex_destroy(&data->sed_mtx_child);
1930 
1931 	if (data->sed_actions)
1932 		posix_spawn_fa_free(data->sed_actions,
1933 		    data->sed_actions->len);
1934 	if (data->sed_attrs)
1935 		kmem_free(data->sed_attrs,
1936 		    sizeof(*data->sed_attrs));
1937 	kmem_free(data, sizeof(*data));
1938 }
1939 
1940 /*
1941  * A child lwp of a posix_spawn operation starts here and ends up in
1942  * cpu_spawn_return, dealing with all filedescriptor and scheduler
1943  * manipulations in between.
1944  * The parent waits for the child, as it is not clear whether the child
1945  * will be able to acquire its own exec_lock. If it can, the parent can
1946  * be released early and continue running in parallel. If not (or if the
1947  * magic debug flag is passed in the scheduler attribute struct), the
1948  * child rides on the parent's exec lock until it is ready to return to
1949  * to userland - and only then releases the parent. This method loses
1950  * concurrency, but improves error reporting.
1951  */
1952 static void
1953 spawn_return(void *arg)
1954 {
1955 	struct spawn_exec_data *spawn_data = arg;
1956 	struct lwp *l = curlwp;
1957 	int error, newfd;
1958 	size_t i;
1959 	const struct posix_spawn_file_actions_entry *fae;
1960 	pid_t ppid;
1961 	register_t retval;
1962 	bool have_reflock;
1963 	bool parent_is_waiting = true;
1964 
1965 	/*
1966 	 * Check if we can release parent early.
1967 	 * We either need to have no sed_attrs, or sed_attrs does not
1968 	 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
1969 	 * safe access to the parent proc (passed in sed_parent).
1970 	 * We then try to get the exec_lock, and only if that works, we can
1971 	 * release the parent here already.
1972 	 */
1973 	ppid = spawn_data->sed_parent->p_pid;
1974 	if ((!spawn_data->sed_attrs
1975 	    || (spawn_data->sed_attrs->sa_flags
1976 	        & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
1977 	    && rw_tryenter(&exec_lock, RW_READER)) {
1978 		parent_is_waiting = false;
1979 		mutex_enter(&spawn_data->sed_mtx_child);
1980 		cv_signal(&spawn_data->sed_cv_child_ready);
1981 		mutex_exit(&spawn_data->sed_mtx_child);
1982 	}
1983 
1984 	/* don't allow debugger access yet */
1985 	rw_enter(&l->l_proc->p_reflock, RW_WRITER);
1986 	have_reflock = true;
1987 
1988 	error = 0;
1989 	/* handle posix_spawn_file_actions */
1990 	if (spawn_data->sed_actions != NULL) {
1991 		for (i = 0; i < spawn_data->sed_actions->len; i++) {
1992 			fae = &spawn_data->sed_actions->fae[i];
1993 			switch (fae->fae_action) {
1994 			case FAE_OPEN:
1995 				if (fd_getfile(fae->fae_fildes) != NULL) {
1996 					error = fd_close(fae->fae_fildes);
1997 					if (error)
1998 						break;
1999 				}
2000 				error = fd_open(fae->fae_path, fae->fae_oflag,
2001 				    fae->fae_mode, &newfd);
2002 				if (error)
2003 					break;
2004 				if (newfd != fae->fae_fildes) {
2005 					error = dodup(l, newfd,
2006 					    fae->fae_fildes, 0, &retval);
2007 					if (fd_getfile(newfd) != NULL)
2008 						fd_close(newfd);
2009 				}
2010 				break;
2011 			case FAE_DUP2:
2012 				error = dodup(l, fae->fae_fildes,
2013 				    fae->fae_newfildes, 0, &retval);
2014 				break;
2015 			case FAE_CLOSE:
2016 				if (fd_getfile(fae->fae_fildes) == NULL) {
2017 					error = EBADF;
2018 					break;
2019 				}
2020 				error = fd_close(fae->fae_fildes);
2021 				break;
2022 			}
2023 			if (error)
2024 				goto report_error;
2025 		}
2026 	}
2027 
2028 	/* handle posix_spawnattr */
2029 	if (spawn_data->sed_attrs != NULL) {
2030 		int ostat;
2031 		struct sigaction sigact;
2032 		sigact._sa_u._sa_handler = SIG_DFL;
2033 		sigact.sa_flags = 0;
2034 
2035 		/*
2036 		 * set state to SSTOP so that this proc can be found by pid.
2037 		 * see proc_enterprp, do_sched_setparam below
2038 		 */
2039 		ostat = l->l_proc->p_stat;
2040 		l->l_proc->p_stat = SSTOP;
2041 
2042 		/* Set process group */
2043 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
2044 			pid_t mypid = l->l_proc->p_pid,
2045 			     pgrp = spawn_data->sed_attrs->sa_pgroup;
2046 
2047 			if (pgrp == 0)
2048 				pgrp = mypid;
2049 
2050 			error = proc_enterpgrp(spawn_data->sed_parent,
2051 			    mypid, pgrp, false);
2052 			if (error)
2053 				goto report_error;
2054 		}
2055 
2056 		/* Set scheduler policy */
2057 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
2058 			error = do_sched_setparam(l->l_proc->p_pid, 0,
2059 			    spawn_data->sed_attrs->sa_schedpolicy,
2060 			    &spawn_data->sed_attrs->sa_schedparam);
2061 		else if (spawn_data->sed_attrs->sa_flags
2062 		    & POSIX_SPAWN_SETSCHEDPARAM) {
2063 			error = do_sched_setparam(ppid, 0,
2064 			    SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
2065 		}
2066 		if (error)
2067 			goto report_error;
2068 
2069 		/* Reset user ID's */
2070 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
2071 			error = do_setresuid(l, -1,
2072 			     kauth_cred_getgid(l->l_cred), -1,
2073 			     ID_E_EQ_R | ID_E_EQ_S);
2074 			if (error)
2075 				goto report_error;
2076 			error = do_setresuid(l, -1,
2077 			    kauth_cred_getuid(l->l_cred), -1,
2078 			    ID_E_EQ_R | ID_E_EQ_S);
2079 			if (error)
2080 				goto report_error;
2081 		}
2082 
2083 		/* Set signal masks/defaults */
2084 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
2085 			mutex_enter(l->l_proc->p_lock);
2086 			error = sigprocmask1(l, SIG_SETMASK,
2087 			    &spawn_data->sed_attrs->sa_sigmask, NULL);
2088 			mutex_exit(l->l_proc->p_lock);
2089 			if (error)
2090 				goto report_error;
2091 		}
2092 
2093 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
2094 			/*
2095 			 * The following sigaction call is using a sigaction
2096 			 * version 0 trampoline which is in the compatibility
2097 			 * code only. This is not a problem because for SIG_DFL
2098 			 * and SIG_IGN, the trampolines are now ignored. If they
2099 			 * were not, this would be a problem because we are
2100 			 * holding the exec_lock, and the compat code needs
2101 			 * to do the same in order to replace the trampoline
2102 			 * code of the process.
2103 			 */
2104 			for (i = 1; i <= NSIG; i++) {
2105 				if (sigismember(
2106 				    &spawn_data->sed_attrs->sa_sigdefault, i))
2107 					sigaction1(l, i, &sigact, NULL, NULL,
2108 					    0);
2109 			}
2110 		}
2111 		l->l_proc->p_stat = ostat;
2112 	}
2113 
2114 	/* now do the real exec */
2115 	error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
2116 	    true);
2117 	have_reflock = false;
2118 	if (error == EJUSTRETURN)
2119 		error = 0;
2120 	else if (error)
2121 		goto report_error;
2122 
2123 	if (parent_is_waiting) {
2124 		mutex_enter(&spawn_data->sed_mtx_child);
2125 		cv_signal(&spawn_data->sed_cv_child_ready);
2126 		mutex_exit(&spawn_data->sed_mtx_child);
2127 	}
2128 
2129 	/* release our refcount on the data */
2130 	spawn_exec_data_release(spawn_data);
2131 
2132 	/* and finally: leave to userland for the first time */
2133 	cpu_spawn_return(l);
2134 
2135 	/* NOTREACHED */
2136 	return;
2137 
2138  report_error:
2139 	if (have_reflock) {
2140 		/*
2141 		 * We have not passed through execve_runproc(),
2142 		 * which would have released the p_reflock and also
2143 		 * taken ownership of the sed_exec part of spawn_data,
2144 		 * so release/free both here.
2145 		 */
2146 		rw_exit(&l->l_proc->p_reflock);
2147 		execve_free_data(&spawn_data->sed_exec);
2148 	}
2149 
2150 	if (parent_is_waiting) {
2151 		/* pass error to parent */
2152 		mutex_enter(&spawn_data->sed_mtx_child);
2153 		spawn_data->sed_error = error;
2154 		cv_signal(&spawn_data->sed_cv_child_ready);
2155 		mutex_exit(&spawn_data->sed_mtx_child);
2156 	} else {
2157 		rw_exit(&exec_lock);
2158 	}
2159 
2160 	/* release our refcount on the data */
2161 	spawn_exec_data_release(spawn_data);
2162 
2163 	/* done, exit */
2164 	mutex_enter(l->l_proc->p_lock);
2165 	/*
2166 	 * Posix explicitly asks for an exit code of 127 if we report
2167 	 * errors from the child process - so, unfortunately, there
2168 	 * is no way to report a more exact error code.
2169 	 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2170 	 * flag bit in the attrp argument to posix_spawn(2), see above.
2171 	 */
2172 	exit1(l, W_EXITCODE(127, 0));
2173 }
2174 
2175 void
2176 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2177 {
2178 
2179 	for (size_t i = 0; i < len; i++) {
2180 		struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
2181 		if (fae->fae_action != FAE_OPEN)
2182 			continue;
2183 		kmem_free(fae->fae_path, strlen(fae->fae_path) + 1);
2184 	}
2185 	if (fa->len > 0)
2186 		kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2187 	kmem_free(fa, sizeof(*fa));
2188 }
2189 
2190 static int
2191 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2192     const struct posix_spawn_file_actions *ufa, rlim_t lim)
2193 {
2194 	struct posix_spawn_file_actions *fa;
2195 	struct posix_spawn_file_actions_entry *fae;
2196 	char *pbuf = NULL;
2197 	int error;
2198 	size_t i = 0;
2199 
2200 	fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2201 	error = copyin(ufa, fa, sizeof(*fa));
2202 	if (error || fa->len == 0) {
2203 		kmem_free(fa, sizeof(*fa));
2204 		return error;	/* 0 if not an error, and len == 0 */
2205 	}
2206 
2207 	if (fa->len > lim) {
2208 		kmem_free(fa, sizeof(*fa));
2209 		return EINVAL;
2210 	}
2211 
2212 	fa->size = fa->len;
2213 	size_t fal = fa->len * sizeof(*fae);
2214 	fae = fa->fae;
2215 	fa->fae = kmem_alloc(fal, KM_SLEEP);
2216 	error = copyin(fae, fa->fae, fal);
2217 	if (error)
2218 		goto out;
2219 
2220 	pbuf = PNBUF_GET();
2221 	for (; i < fa->len; i++) {
2222 		fae = &fa->fae[i];
2223 		if (fae->fae_action != FAE_OPEN)
2224 			continue;
2225 		error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
2226 		if (error)
2227 			goto out;
2228 		fae->fae_path = kmem_alloc(fal, KM_SLEEP);
2229 		memcpy(fae->fae_path, pbuf, fal);
2230 	}
2231 	PNBUF_PUT(pbuf);
2232 
2233 	*fap = fa;
2234 	return 0;
2235 out:
2236 	if (pbuf)
2237 		PNBUF_PUT(pbuf);
2238 	posix_spawn_fa_free(fa, i);
2239 	return error;
2240 }
2241 
2242 int
2243 check_posix_spawn(struct lwp *l1)
2244 {
2245 	int error, tnprocs, count;
2246 	uid_t uid;
2247 	struct proc *p1;
2248 
2249 	p1 = l1->l_proc;
2250 	uid = kauth_cred_getuid(l1->l_cred);
2251 	tnprocs = atomic_inc_uint_nv(&nprocs);
2252 
2253 	/*
2254 	 * Although process entries are dynamically created, we still keep
2255 	 * a global limit on the maximum number we will create.
2256 	 */
2257 	if (__predict_false(tnprocs >= maxproc))
2258 		error = -1;
2259 	else
2260 		error = kauth_authorize_process(l1->l_cred,
2261 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2262 
2263 	if (error) {
2264 		atomic_dec_uint(&nprocs);
2265 		return EAGAIN;
2266 	}
2267 
2268 	/*
2269 	 * Enforce limits.
2270 	 */
2271 	count = chgproccnt(uid, 1);
2272 	if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2273 	     p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2274 	     &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2275 	    __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2276 		(void)chgproccnt(uid, -1);
2277 		atomic_dec_uint(&nprocs);
2278 		return EAGAIN;
2279 	}
2280 
2281 	return 0;
2282 }
2283 
2284 int
2285 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2286 	struct posix_spawn_file_actions *fa,
2287 	struct posix_spawnattr *sa,
2288 	char *const *argv, char *const *envp,
2289 	execve_fetch_element_t fetch)
2290 {
2291 
2292 	struct proc *p1, *p2;
2293 	struct lwp *l2;
2294 	int error;
2295 	struct spawn_exec_data *spawn_data;
2296 	vaddr_t uaddr;
2297 	pid_t pid;
2298 	bool have_exec_lock = false;
2299 
2300 	p1 = l1->l_proc;
2301 
2302 	/* Allocate and init spawn_data */
2303 	spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2304 	spawn_data->sed_refcnt = 1; /* only parent so far */
2305 	cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2306 	mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2307 	mutex_enter(&spawn_data->sed_mtx_child);
2308 
2309 	/*
2310 	 * Do the first part of the exec now, collect state
2311 	 * in spawn_data.
2312 	 */
2313 	error = execve_loadvm(l1, path, argv,
2314 	    envp, fetch, &spawn_data->sed_exec);
2315 	if (error == EJUSTRETURN)
2316 		error = 0;
2317 	else if (error)
2318 		goto error_exit;
2319 
2320 	have_exec_lock = true;
2321 
2322 	/*
2323 	 * Allocate virtual address space for the U-area now, while it
2324 	 * is still easy to abort the fork operation if we're out of
2325 	 * kernel virtual address space.
2326 	 */
2327 	uaddr = uvm_uarea_alloc();
2328 	if (__predict_false(uaddr == 0)) {
2329 		error = ENOMEM;
2330 		goto error_exit;
2331 	}
2332 
2333 	/*
2334 	 * Allocate new proc. Borrow proc0 vmspace for it, we will
2335 	 * replace it with its own before returning to userland
2336 	 * in the child.
2337 	 * This is a point of no return, we will have to go through
2338 	 * the child proc to properly clean it up past this point.
2339 	 */
2340 	p2 = proc_alloc();
2341 	pid = p2->p_pid;
2342 
2343 	/*
2344 	 * Make a proc table entry for the new process.
2345 	 * Start by zeroing the section of proc that is zero-initialized,
2346 	 * then copy the section that is copied directly from the parent.
2347 	 */
2348 	memset(&p2->p_startzero, 0,
2349 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2350 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
2351 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2352 	p2->p_vmspace = proc0.p_vmspace;
2353 
2354 	TAILQ_INIT(&p2->p_sigpend.sp_info);
2355 
2356 	LIST_INIT(&p2->p_lwps);
2357 	LIST_INIT(&p2->p_sigwaiters);
2358 
2359 	/*
2360 	 * Duplicate sub-structures as needed.
2361 	 * Increase reference counts on shared objects.
2362 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
2363 	 * handling are important in order to keep a consistent behaviour
2364 	 * for the child after the fork.  If we are a 32-bit process, the
2365 	 * child will be too.
2366 	 */
2367 	p2->p_flag =
2368 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2369 	p2->p_emul = p1->p_emul;
2370 	p2->p_execsw = p1->p_execsw;
2371 
2372 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2373 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2374 	rw_init(&p2->p_reflock);
2375 	cv_init(&p2->p_waitcv, "wait");
2376 	cv_init(&p2->p_lwpcv, "lwpwait");
2377 
2378 	p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2379 
2380 	kauth_proc_fork(p1, p2);
2381 
2382 	p2->p_raslist = NULL;
2383 	p2->p_fd = fd_copy();
2384 
2385 	/* XXX racy */
2386 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2387 
2388 	p2->p_cwdi = cwdinit();
2389 
2390 	/*
2391 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2392 	 * we just need increase pl_refcnt.
2393 	 */
2394 	if (!p1->p_limit->pl_writeable) {
2395 		lim_addref(p1->p_limit);
2396 		p2->p_limit = p1->p_limit;
2397 	} else {
2398 		p2->p_limit = lim_copy(p1->p_limit);
2399 	}
2400 
2401 	p2->p_lflag = 0;
2402 	p2->p_sflag = 0;
2403 	p2->p_slflag = 0;
2404 	p2->p_pptr = p1;
2405 	p2->p_ppid = p1->p_pid;
2406 	LIST_INIT(&p2->p_children);
2407 
2408 	p2->p_aio = NULL;
2409 
2410 #ifdef KTRACE
2411 	/*
2412 	 * Copy traceflag and tracefile if enabled.
2413 	 * If not inherited, these were zeroed above.
2414 	 */
2415 	if (p1->p_traceflag & KTRFAC_INHERIT) {
2416 		mutex_enter(&ktrace_lock);
2417 		p2->p_traceflag = p1->p_traceflag;
2418 		if ((p2->p_tracep = p1->p_tracep) != NULL)
2419 			ktradref(p2);
2420 		mutex_exit(&ktrace_lock);
2421 	}
2422 #endif
2423 
2424 	/*
2425 	 * Create signal actions for the child process.
2426 	 */
2427 	p2->p_sigacts = sigactsinit(p1, 0);
2428 	mutex_enter(p1->p_lock);
2429 	p2->p_sflag |=
2430 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2431 	sched_proc_fork(p1, p2);
2432 	mutex_exit(p1->p_lock);
2433 
2434 	p2->p_stflag = p1->p_stflag;
2435 
2436 	/*
2437 	 * p_stats.
2438 	 * Copy parts of p_stats, and zero out the rest.
2439 	 */
2440 	p2->p_stats = pstatscopy(p1->p_stats);
2441 
2442 	/* copy over machdep flags to the new proc */
2443 	cpu_proc_fork(p1, p2);
2444 
2445 	/*
2446 	 * Prepare remaining parts of spawn data
2447 	 */
2448 	spawn_data->sed_actions = fa;
2449 	spawn_data->sed_attrs = sa;
2450 
2451 	spawn_data->sed_parent = p1;
2452 
2453 	/* create LWP */
2454 	lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2455 	    &l2, l1->l_class);
2456 	l2->l_ctxlink = NULL;	/* reset ucontext link */
2457 
2458 	/*
2459 	 * Copy the credential so other references don't see our changes.
2460 	 * Test to see if this is necessary first, since in the common case
2461 	 * we won't need a private reference.
2462 	 */
2463 	if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2464 	    kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2465 		l2->l_cred = kauth_cred_copy(l2->l_cred);
2466 		kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2467 		kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2468 	}
2469 
2470 	/* Update the master credentials. */
2471 	if (l2->l_cred != p2->p_cred) {
2472 		kauth_cred_t ocred;
2473 
2474 		kauth_cred_hold(l2->l_cred);
2475 		mutex_enter(p2->p_lock);
2476 		ocred = p2->p_cred;
2477 		p2->p_cred = l2->l_cred;
2478 		mutex_exit(p2->p_lock);
2479 		kauth_cred_free(ocred);
2480 	}
2481 
2482 	*child_ok = true;
2483 	spawn_data->sed_refcnt = 2;	/* child gets it as well */
2484 #if 0
2485 	l2->l_nopreempt = 1; /* start it non-preemptable */
2486 #endif
2487 
2488 	/*
2489 	 * It's now safe for the scheduler and other processes to see the
2490 	 * child process.
2491 	 */
2492 	mutex_enter(proc_lock);
2493 
2494 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2495 		p2->p_lflag |= PL_CONTROLT;
2496 
2497 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2498 	p2->p_exitsig = SIGCHLD;	/* signal for parent on exit */
2499 
2500 	LIST_INSERT_AFTER(p1, p2, p_pglist);
2501 	LIST_INSERT_HEAD(&allproc, p2, p_list);
2502 
2503 	p2->p_trace_enabled = trace_is_enabled(p2);
2504 #ifdef __HAVE_SYSCALL_INTERN
2505 	(*p2->p_emul->e_syscall_intern)(p2);
2506 #endif
2507 
2508 	/*
2509 	 * Make child runnable, set start time, and add to run queue except
2510 	 * if the parent requested the child to start in SSTOP state.
2511 	 */
2512 	mutex_enter(p2->p_lock);
2513 
2514 	getmicrotime(&p2->p_stats->p_start);
2515 
2516 	lwp_lock(l2);
2517 	KASSERT(p2->p_nrlwps == 1);
2518 	p2->p_nrlwps = 1;
2519 	p2->p_stat = SACTIVE;
2520 	l2->l_stat = LSRUN;
2521 	sched_enqueue(l2, false);
2522 	lwp_unlock(l2);
2523 
2524 	mutex_exit(p2->p_lock);
2525 	mutex_exit(proc_lock);
2526 
2527 	cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2528 	error = spawn_data->sed_error;
2529 	mutex_exit(&spawn_data->sed_mtx_child);
2530 	spawn_exec_data_release(spawn_data);
2531 
2532 	rw_exit(&p1->p_reflock);
2533 	rw_exit(&exec_lock);
2534 	have_exec_lock = false;
2535 
2536 	*pid_res = pid;
2537 	return error;
2538 
2539  error_exit:
2540 	if (have_exec_lock) {
2541 		execve_free_data(&spawn_data->sed_exec);
2542 		rw_exit(&p1->p_reflock);
2543 		rw_exit(&exec_lock);
2544 	}
2545 	mutex_exit(&spawn_data->sed_mtx_child);
2546 	spawn_exec_data_release(spawn_data);
2547 
2548 	return error;
2549 }
2550 
2551 int
2552 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2553     register_t *retval)
2554 {
2555 	/* {
2556 		syscallarg(pid_t *) pid;
2557 		syscallarg(const char *) path;
2558 		syscallarg(const struct posix_spawn_file_actions *) file_actions;
2559 		syscallarg(const struct posix_spawnattr *) attrp;
2560 		syscallarg(char *const *) argv;
2561 		syscallarg(char *const *) envp;
2562 	} */
2563 
2564 	int error;
2565 	struct posix_spawn_file_actions *fa = NULL;
2566 	struct posix_spawnattr *sa = NULL;
2567 	pid_t pid;
2568 	bool child_ok = false;
2569 	rlim_t max_fileactions;
2570 	proc_t *p = l1->l_proc;
2571 
2572 	error = check_posix_spawn(l1);
2573 	if (error) {
2574 		*retval = error;
2575 		return 0;
2576 	}
2577 
2578 	/* copy in file_actions struct */
2579 	if (SCARG(uap, file_actions) != NULL) {
2580 		max_fileactions = 2 * min(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
2581 		    maxfiles);
2582 		error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
2583 		    max_fileactions);
2584 		if (error)
2585 			goto error_exit;
2586 	}
2587 
2588 	/* copyin posix_spawnattr struct */
2589 	if (SCARG(uap, attrp) != NULL) {
2590 		sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2591 		error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2592 		if (error)
2593 			goto error_exit;
2594 	}
2595 
2596 	/*
2597 	 * Do the spawn
2598 	 */
2599 	error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2600 	    SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2601 	if (error)
2602 		goto error_exit;
2603 
2604 	if (error == 0 && SCARG(uap, pid) != NULL)
2605 		error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2606 
2607 	*retval = error;
2608 	return 0;
2609 
2610  error_exit:
2611 	if (!child_ok) {
2612 		(void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2613 		atomic_dec_uint(&nprocs);
2614 
2615 		if (sa)
2616 			kmem_free(sa, sizeof(*sa));
2617 		if (fa)
2618 			posix_spawn_fa_free(fa, fa->len);
2619 	}
2620 
2621 	*retval = error;
2622 	return 0;
2623 }
2624 
2625 void
2626 exec_free_emul_arg(struct exec_package *epp)
2627 {
2628 	if (epp->ep_emul_arg_free != NULL) {
2629 		KASSERT(epp->ep_emul_arg != NULL);
2630 		(*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2631 		epp->ep_emul_arg_free = NULL;
2632 		epp->ep_emul_arg = NULL;
2633 	} else {
2634 		KASSERT(epp->ep_emul_arg == NULL);
2635 	}
2636 }
2637 
2638 #ifdef DEBUG_EXEC
2639 static void
2640 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
2641 {
2642 	struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
2643 	size_t j;
2644 
2645 	if (error == 0)
2646 		DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
2647 	else
2648 		DPRINTF(("vmcmds %zu/%u, error %d\n", x,
2649 		    epp->ep_vmcmds.evs_used, error));
2650 
2651 	for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
2652 		DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
2653 		    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
2654 		    PRIxVSIZE" prot=0%o flags=%d\n", j,
2655 		    vp[j].ev_proc == vmcmd_map_pagedvn ?
2656 		    "pagedvn" :
2657 		    vp[j].ev_proc == vmcmd_map_readvn ?
2658 		    "readvn" :
2659 		    vp[j].ev_proc == vmcmd_map_zero ?
2660 		    "zero" : "*unknown*",
2661 		    vp[j].ev_addr, vp[j].ev_len,
2662 		    vp[j].ev_offset, vp[j].ev_prot,
2663 		    vp[j].ev_flags));
2664 		if (error != 0 && j == x)
2665 			DPRINTF(("     ^--- failed\n"));
2666 	}
2667 }
2668 #endif
2669