xref: /netbsd-src/sys/kern/kern_event.c (revision a536ee5124e62c9a0051a252f7833dc8f50f44c9)
1 /*	$NetBSD: kern_event.c,v 1.79 2012/11/24 15:14:32 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  *
57  * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
58  */
59 
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.79 2012/11/24 15:14:32 christos Exp $");
62 
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/proc.h>
67 #include <sys/file.h>
68 #include <sys/select.h>
69 #include <sys/queue.h>
70 #include <sys/event.h>
71 #include <sys/eventvar.h>
72 #include <sys/poll.h>
73 #include <sys/kmem.h>
74 #include <sys/stat.h>
75 #include <sys/filedesc.h>
76 #include <sys/syscallargs.h>
77 #include <sys/kauth.h>
78 #include <sys/conf.h>
79 #include <sys/atomic.h>
80 
81 static int	kqueue_scan(file_t *, size_t, struct kevent *,
82 			    const struct timespec *, register_t *,
83 			    const struct kevent_ops *, struct kevent *,
84 			    size_t);
85 static int	kqueue_ioctl(file_t *, u_long, void *);
86 static int	kqueue_fcntl(file_t *, u_int, void *);
87 static int	kqueue_poll(file_t *, int);
88 static int	kqueue_kqfilter(file_t *, struct knote *);
89 static int	kqueue_stat(file_t *, struct stat *);
90 static int	kqueue_close(file_t *);
91 static int	kqueue_register(struct kqueue *, struct kevent *);
92 static void	kqueue_doclose(struct kqueue *, struct klist *, int);
93 
94 static void	knote_detach(struct knote *, filedesc_t *fdp, bool);
95 static void	knote_enqueue(struct knote *);
96 static void	knote_activate(struct knote *);
97 
98 static void	filt_kqdetach(struct knote *);
99 static int	filt_kqueue(struct knote *, long hint);
100 static int	filt_procattach(struct knote *);
101 static void	filt_procdetach(struct knote *);
102 static int	filt_proc(struct knote *, long hint);
103 static int	filt_fileattach(struct knote *);
104 static void	filt_timerexpire(void *x);
105 static int	filt_timerattach(struct knote *);
106 static void	filt_timerdetach(struct knote *);
107 static int	filt_timer(struct knote *, long hint);
108 
109 static const struct fileops kqueueops = {
110 	.fo_read = (void *)enxio,
111 	.fo_write = (void *)enxio,
112 	.fo_ioctl = kqueue_ioctl,
113 	.fo_fcntl = kqueue_fcntl,
114 	.fo_poll = kqueue_poll,
115 	.fo_stat = kqueue_stat,
116 	.fo_close = kqueue_close,
117 	.fo_kqfilter = kqueue_kqfilter,
118 	.fo_restart = fnullop_restart,
119 };
120 
121 static const struct filterops kqread_filtops =
122 	{ 1, NULL, filt_kqdetach, filt_kqueue };
123 static const struct filterops proc_filtops =
124 	{ 0, filt_procattach, filt_procdetach, filt_proc };
125 static const struct filterops file_filtops =
126 	{ 1, filt_fileattach, NULL, NULL };
127 static const struct filterops timer_filtops =
128 	{ 0, filt_timerattach, filt_timerdetach, filt_timer };
129 
130 static u_int	kq_ncallouts = 0;
131 static int	kq_calloutmax = (4 * 1024);
132 
133 #define	KN_HASHSIZE		64		/* XXX should be tunable */
134 #define	KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
135 
136 extern const struct filterops sig_filtops;
137 
138 /*
139  * Table for for all system-defined filters.
140  * These should be listed in the numeric order of the EVFILT_* defines.
141  * If filtops is NULL, the filter isn't implemented in NetBSD.
142  * End of list is when name is NULL.
143  *
144  * Note that 'refcnt' is meaningless for built-in filters.
145  */
146 struct kfilter {
147 	const char	*name;		/* name of filter */
148 	uint32_t	filter;		/* id of filter */
149 	unsigned	refcnt;		/* reference count */
150 	const struct filterops *filtops;/* operations for filter */
151 	size_t		namelen;	/* length of name string */
152 };
153 
154 /* System defined filters */
155 static struct kfilter sys_kfilters[] = {
156 	{ "EVFILT_READ",	EVFILT_READ,	0, &file_filtops, 0 },
157 	{ "EVFILT_WRITE",	EVFILT_WRITE,	0, &file_filtops, 0, },
158 	{ "EVFILT_AIO",		EVFILT_AIO,	0, NULL, 0 },
159 	{ "EVFILT_VNODE",	EVFILT_VNODE,	0, &file_filtops, 0 },
160 	{ "EVFILT_PROC",	EVFILT_PROC,	0, &proc_filtops, 0 },
161 	{ "EVFILT_SIGNAL",	EVFILT_SIGNAL,	0, &sig_filtops, 0 },
162 	{ "EVFILT_TIMER",	EVFILT_TIMER,	0, &timer_filtops, 0 },
163 	{ NULL,			0,		0, NULL, 0 },
164 };
165 
166 /* User defined kfilters */
167 static struct kfilter	*user_kfilters;		/* array */
168 static int		user_kfilterc;		/* current offset */
169 static int		user_kfiltermaxc;	/* max size so far */
170 static size_t		user_kfiltersz;		/* size of allocated memory */
171 
172 /* Locks */
173 static krwlock_t	kqueue_filter_lock;	/* lock on filter lists */
174 static kmutex_t		kqueue_misc_lock;	/* miscellaneous */
175 
176 static kauth_listener_t	kqueue_listener;
177 
178 static int
179 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
180     void *arg0, void *arg1, void *arg2, void *arg3)
181 {
182 	struct proc *p;
183 	int result;
184 
185 	result = KAUTH_RESULT_DEFER;
186 	p = arg0;
187 
188 	if (action != KAUTH_PROCESS_KEVENT_FILTER)
189 		return result;
190 
191 	if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
192 	    ISSET(p->p_flag, PK_SUGID)))
193 		return result;
194 
195 	result = KAUTH_RESULT_ALLOW;
196 
197 	return result;
198 }
199 
200 /*
201  * Initialize the kqueue subsystem.
202  */
203 void
204 kqueue_init(void)
205 {
206 
207 	rw_init(&kqueue_filter_lock);
208 	mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
209 
210 	kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
211 	    kqueue_listener_cb, NULL);
212 }
213 
214 /*
215  * Find kfilter entry by name, or NULL if not found.
216  */
217 static struct kfilter *
218 kfilter_byname_sys(const char *name)
219 {
220 	int i;
221 
222 	KASSERT(rw_lock_held(&kqueue_filter_lock));
223 
224 	for (i = 0; sys_kfilters[i].name != NULL; i++) {
225 		if (strcmp(name, sys_kfilters[i].name) == 0)
226 			return &sys_kfilters[i];
227 	}
228 	return NULL;
229 }
230 
231 static struct kfilter *
232 kfilter_byname_user(const char *name)
233 {
234 	int i;
235 
236 	KASSERT(rw_lock_held(&kqueue_filter_lock));
237 
238 	/* user filter slots have a NULL name if previously deregistered */
239 	for (i = 0; i < user_kfilterc ; i++) {
240 		if (user_kfilters[i].name != NULL &&
241 		    strcmp(name, user_kfilters[i].name) == 0)
242 			return &user_kfilters[i];
243 	}
244 	return NULL;
245 }
246 
247 static struct kfilter *
248 kfilter_byname(const char *name)
249 {
250 	struct kfilter *kfilter;
251 
252 	KASSERT(rw_lock_held(&kqueue_filter_lock));
253 
254 	if ((kfilter = kfilter_byname_sys(name)) != NULL)
255 		return kfilter;
256 
257 	return kfilter_byname_user(name);
258 }
259 
260 /*
261  * Find kfilter entry by filter id, or NULL if not found.
262  * Assumes entries are indexed in filter id order, for speed.
263  */
264 static struct kfilter *
265 kfilter_byfilter(uint32_t filter)
266 {
267 	struct kfilter *kfilter;
268 
269 	KASSERT(rw_lock_held(&kqueue_filter_lock));
270 
271 	if (filter < EVFILT_SYSCOUNT)	/* it's a system filter */
272 		kfilter = &sys_kfilters[filter];
273 	else if (user_kfilters != NULL &&
274 	    filter < EVFILT_SYSCOUNT + user_kfilterc)
275 					/* it's a user filter */
276 		kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
277 	else
278 		return (NULL);		/* out of range */
279 	KASSERT(kfilter->filter == filter);	/* sanity check! */
280 	return (kfilter);
281 }
282 
283 /*
284  * Register a new kfilter. Stores the entry in user_kfilters.
285  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
286  * If retfilter != NULL, the new filterid is returned in it.
287  */
288 int
289 kfilter_register(const char *name, const struct filterops *filtops,
290 		 int *retfilter)
291 {
292 	struct kfilter *kfilter;
293 	size_t len;
294 	int i;
295 
296 	if (name == NULL || name[0] == '\0' || filtops == NULL)
297 		return (EINVAL);	/* invalid args */
298 
299 	rw_enter(&kqueue_filter_lock, RW_WRITER);
300 	if (kfilter_byname(name) != NULL) {
301 		rw_exit(&kqueue_filter_lock);
302 		return (EEXIST);	/* already exists */
303 	}
304 	if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
305 		rw_exit(&kqueue_filter_lock);
306 		return (EINVAL);	/* too many */
307 	}
308 
309 	for (i = 0; i < user_kfilterc; i++) {
310 		kfilter = &user_kfilters[i];
311 		if (kfilter->name == NULL) {
312 			/* Previously deregistered slot.  Reuse. */
313 			goto reuse;
314 		}
315 	}
316 
317 	/* check if need to grow user_kfilters */
318 	if (user_kfilterc + 1 > user_kfiltermaxc) {
319 		/* Grow in KFILTER_EXTENT chunks. */
320 		user_kfiltermaxc += KFILTER_EXTENT;
321 		len = user_kfiltermaxc * sizeof(*kfilter);
322 		kfilter = kmem_alloc(len, KM_SLEEP);
323 		memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
324 		if (user_kfilters != NULL) {
325 			memcpy(kfilter, user_kfilters, user_kfiltersz);
326 			kmem_free(user_kfilters, user_kfiltersz);
327 		}
328 		user_kfiltersz = len;
329 		user_kfilters = kfilter;
330 	}
331 	/* Adding new slot */
332 	kfilter = &user_kfilters[user_kfilterc++];
333 reuse:
334 	kfilter->namelen = strlen(name) + 1;
335 	kfilter->name = kmem_alloc(kfilter->namelen, KM_SLEEP);
336 	memcpy(__UNCONST(kfilter->name), name, kfilter->namelen);
337 
338 	kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
339 
340 	kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
341 	memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
342 
343 	if (retfilter != NULL)
344 		*retfilter = kfilter->filter;
345 	rw_exit(&kqueue_filter_lock);
346 
347 	return (0);
348 }
349 
350 /*
351  * Unregister a kfilter previously registered with kfilter_register.
352  * This retains the filter id, but clears the name and frees filtops (filter
353  * operations), so that the number isn't reused during a boot.
354  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
355  */
356 int
357 kfilter_unregister(const char *name)
358 {
359 	struct kfilter *kfilter;
360 
361 	if (name == NULL || name[0] == '\0')
362 		return (EINVAL);	/* invalid name */
363 
364 	rw_enter(&kqueue_filter_lock, RW_WRITER);
365 	if (kfilter_byname_sys(name) != NULL) {
366 		rw_exit(&kqueue_filter_lock);
367 		return (EINVAL);	/* can't detach system filters */
368 	}
369 
370 	kfilter = kfilter_byname_user(name);
371 	if (kfilter == NULL) {
372 		rw_exit(&kqueue_filter_lock);
373 		return (ENOENT);
374 	}
375 	if (kfilter->refcnt != 0) {
376 		rw_exit(&kqueue_filter_lock);
377 		return (EBUSY);
378 	}
379 
380 	/* Cast away const (but we know it's safe. */
381 	kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
382 	kfilter->name = NULL;	/* mark as `not implemented' */
383 
384 	if (kfilter->filtops != NULL) {
385 		/* Cast away const (but we know it's safe. */
386 		kmem_free(__UNCONST(kfilter->filtops),
387 		    sizeof(*kfilter->filtops));
388 		kfilter->filtops = NULL; /* mark as `not implemented' */
389 	}
390 	rw_exit(&kqueue_filter_lock);
391 
392 	return (0);
393 }
394 
395 
396 /*
397  * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
398  * descriptors. Calls fileops kqfilter method for given file descriptor.
399  */
400 static int
401 filt_fileattach(struct knote *kn)
402 {
403 	file_t *fp;
404 
405 	fp = kn->kn_obj;
406 
407 	return (*fp->f_ops->fo_kqfilter)(fp, kn);
408 }
409 
410 /*
411  * Filter detach method for EVFILT_READ on kqueue descriptor.
412  */
413 static void
414 filt_kqdetach(struct knote *kn)
415 {
416 	struct kqueue *kq;
417 
418 	kq = ((file_t *)kn->kn_obj)->f_data;
419 
420 	mutex_spin_enter(&kq->kq_lock);
421 	SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
422 	mutex_spin_exit(&kq->kq_lock);
423 }
424 
425 /*
426  * Filter event method for EVFILT_READ on kqueue descriptor.
427  */
428 /*ARGSUSED*/
429 static int
430 filt_kqueue(struct knote *kn, long hint)
431 {
432 	struct kqueue *kq;
433 	int rv;
434 
435 	kq = ((file_t *)kn->kn_obj)->f_data;
436 
437 	if (hint != NOTE_SUBMIT)
438 		mutex_spin_enter(&kq->kq_lock);
439 	kn->kn_data = kq->kq_count;
440 	rv = (kn->kn_data > 0);
441 	if (hint != NOTE_SUBMIT)
442 		mutex_spin_exit(&kq->kq_lock);
443 
444 	return rv;
445 }
446 
447 /*
448  * Filter attach method for EVFILT_PROC.
449  */
450 static int
451 filt_procattach(struct knote *kn)
452 {
453 	struct proc *p;
454 	struct lwp *curl;
455 
456 	curl = curlwp;
457 
458 	mutex_enter(proc_lock);
459 	if (kn->kn_flags & EV_FLAG1) {
460 		/*
461 		 * NOTE_TRACK attaches to the child process too early
462 		 * for proc_find, so do a raw look up and check the state
463 		 * explicitly.
464 		 */
465 		p = proc_find_raw(kn->kn_id);
466 		if (p != NULL && p->p_stat != SIDL)
467 			p = NULL;
468 	} else {
469 		p = proc_find(kn->kn_id);
470 	}
471 
472 	if (p == NULL) {
473 		mutex_exit(proc_lock);
474 		return ESRCH;
475 	}
476 
477 	/*
478 	 * Fail if it's not owned by you, or the last exec gave us
479 	 * setuid/setgid privs (unless you're root).
480 	 */
481 	mutex_enter(p->p_lock);
482 	mutex_exit(proc_lock);
483 	if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
484 	    p, NULL, NULL, NULL) != 0) {
485 	    	mutex_exit(p->p_lock);
486 		return EACCES;
487 	}
488 
489 	kn->kn_obj = p;
490 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
491 
492 	/*
493 	 * internal flag indicating registration done by kernel
494 	 */
495 	if (kn->kn_flags & EV_FLAG1) {
496 		kn->kn_data = kn->kn_sdata;	/* ppid */
497 		kn->kn_fflags = NOTE_CHILD;
498 		kn->kn_flags &= ~EV_FLAG1;
499 	}
500 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
501     	mutex_exit(p->p_lock);
502 
503 	return 0;
504 }
505 
506 /*
507  * Filter detach method for EVFILT_PROC.
508  *
509  * The knote may be attached to a different process, which may exit,
510  * leaving nothing for the knote to be attached to.  So when the process
511  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
512  * it will be deleted when read out.  However, as part of the knote deletion,
513  * this routine is called, so a check is needed to avoid actually performing
514  * a detach, because the original process might not exist any more.
515  */
516 static void
517 filt_procdetach(struct knote *kn)
518 {
519 	struct proc *p;
520 
521 	if (kn->kn_status & KN_DETACHED)
522 		return;
523 
524 	p = kn->kn_obj;
525 
526 	mutex_enter(p->p_lock);
527 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
528 	mutex_exit(p->p_lock);
529 }
530 
531 /*
532  * Filter event method for EVFILT_PROC.
533  */
534 static int
535 filt_proc(struct knote *kn, long hint)
536 {
537 	u_int event, fflag;
538 	struct kevent kev;
539 	struct kqueue *kq;
540 	int error;
541 
542 	event = (u_int)hint & NOTE_PCTRLMASK;
543 	kq = kn->kn_kq;
544 	fflag = 0;
545 
546 	/* If the user is interested in this event, record it. */
547 	if (kn->kn_sfflags & event)
548 		fflag |= event;
549 
550 	if (event == NOTE_EXIT) {
551 		/*
552 		 * Process is gone, so flag the event as finished.
553 		 *
554 		 * Detach the knote from watched process and mark
555 		 * it as such. We can't leave this to kqueue_scan(),
556 		 * since the process might not exist by then. And we
557 		 * have to do this now, since psignal KNOTE() is called
558 		 * also for zombies and we might end up reading freed
559 		 * memory if the kevent would already be picked up
560 		 * and knote g/c'ed.
561 		 */
562 		filt_procdetach(kn);
563 
564 		mutex_spin_enter(&kq->kq_lock);
565 		kn->kn_status |= KN_DETACHED;
566 		/* Mark as ONESHOT, so that the knote it g/c'ed when read */
567 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
568 		kn->kn_fflags |= fflag;
569 		mutex_spin_exit(&kq->kq_lock);
570 
571 		return 1;
572 	}
573 
574 	mutex_spin_enter(&kq->kq_lock);
575 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
576 		/*
577 		 * Process forked, and user wants to track the new process,
578 		 * so attach a new knote to it, and immediately report an
579 		 * event with the parent's pid.  Register knote with new
580 		 * process.
581 		 */
582 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
583 		kev.filter = kn->kn_filter;
584 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
585 		kev.fflags = kn->kn_sfflags;
586 		kev.data = kn->kn_id;			/* parent */
587 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
588 		mutex_spin_exit(&kq->kq_lock);
589 		error = kqueue_register(kq, &kev);
590 		mutex_spin_enter(&kq->kq_lock);
591 		if (error != 0)
592 			kn->kn_fflags |= NOTE_TRACKERR;
593 	}
594 	kn->kn_fflags |= fflag;
595 	fflag = kn->kn_fflags;
596 	mutex_spin_exit(&kq->kq_lock);
597 
598 	return fflag != 0;
599 }
600 
601 static void
602 filt_timerexpire(void *knx)
603 {
604 	struct knote *kn = knx;
605 	int tticks;
606 
607 	mutex_enter(&kqueue_misc_lock);
608 	kn->kn_data++;
609 	knote_activate(kn);
610 	if ((kn->kn_flags & EV_ONESHOT) == 0) {
611 		tticks = mstohz(kn->kn_sdata);
612 		if (tticks <= 0)
613 			tticks = 1;
614 		callout_schedule((callout_t *)kn->kn_hook, tticks);
615 	}
616 	mutex_exit(&kqueue_misc_lock);
617 }
618 
619 /*
620  * data contains amount of time to sleep, in milliseconds
621  */
622 static int
623 filt_timerattach(struct knote *kn)
624 {
625 	callout_t *calloutp;
626 	struct kqueue *kq;
627 	int tticks;
628 
629 	tticks = mstohz(kn->kn_sdata);
630 
631 	/* if the supplied value is under our resolution, use 1 tick */
632 	if (tticks == 0) {
633 		if (kn->kn_sdata == 0)
634 			return EINVAL;
635 		tticks = 1;
636 	}
637 
638 	if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
639 	    (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
640 		atomic_dec_uint(&kq_ncallouts);
641 		return ENOMEM;
642 	}
643 	callout_init(calloutp, CALLOUT_MPSAFE);
644 
645 	kq = kn->kn_kq;
646 	mutex_spin_enter(&kq->kq_lock);
647 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
648 	kn->kn_hook = calloutp;
649 	mutex_spin_exit(&kq->kq_lock);
650 
651 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
652 
653 	return (0);
654 }
655 
656 static void
657 filt_timerdetach(struct knote *kn)
658 {
659 	callout_t *calloutp;
660 
661 	calloutp = (callout_t *)kn->kn_hook;
662 	callout_halt(calloutp, NULL);
663 	callout_destroy(calloutp);
664 	kmem_free(calloutp, sizeof(*calloutp));
665 	atomic_dec_uint(&kq_ncallouts);
666 }
667 
668 static int
669 filt_timer(struct knote *kn, long hint)
670 {
671 	int rv;
672 
673 	mutex_enter(&kqueue_misc_lock);
674 	rv = (kn->kn_data != 0);
675 	mutex_exit(&kqueue_misc_lock);
676 
677 	return rv;
678 }
679 
680 /*
681  * filt_seltrue:
682  *
683  *	This filter "event" routine simulates seltrue().
684  */
685 int
686 filt_seltrue(struct knote *kn, long hint)
687 {
688 
689 	/*
690 	 * We don't know how much data can be read/written,
691 	 * but we know that it *can* be.  This is about as
692 	 * good as select/poll does as well.
693 	 */
694 	kn->kn_data = 0;
695 	return (1);
696 }
697 
698 /*
699  * This provides full kqfilter entry for device switch tables, which
700  * has same effect as filter using filt_seltrue() as filter method.
701  */
702 static void
703 filt_seltruedetach(struct knote *kn)
704 {
705 	/* Nothing to do */
706 }
707 
708 const struct filterops seltrue_filtops =
709 	{ 1, NULL, filt_seltruedetach, filt_seltrue };
710 
711 int
712 seltrue_kqfilter(dev_t dev, struct knote *kn)
713 {
714 	switch (kn->kn_filter) {
715 	case EVFILT_READ:
716 	case EVFILT_WRITE:
717 		kn->kn_fop = &seltrue_filtops;
718 		break;
719 	default:
720 		return (EINVAL);
721 	}
722 
723 	/* Nothing more to do */
724 	return (0);
725 }
726 
727 /*
728  * kqueue(2) system call.
729  */
730 static int
731 kqueue1(struct lwp *l, int flags, register_t *retval)
732 {
733 	struct kqueue *kq;
734 	file_t *fp;
735 	int fd, error;
736 
737 	if ((error = fd_allocfile(&fp, &fd)) != 0)
738 		return error;
739 	fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
740 	fp->f_type = DTYPE_KQUEUE;
741 	fp->f_ops = &kqueueops;
742 	kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
743 	mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
744 	cv_init(&kq->kq_cv, "kqueue");
745 	selinit(&kq->kq_sel);
746 	TAILQ_INIT(&kq->kq_head);
747 	fp->f_data = kq;
748 	*retval = fd;
749 	kq->kq_fdp = curlwp->l_fd;
750 	fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
751 	fd_affix(curproc, fp, fd);
752 	return error;
753 }
754 
755 /*
756  * kqueue(2) system call.
757  */
758 int
759 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
760 {
761 	return kqueue1(l, 0, retval);
762 }
763 
764 int
765 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
766     register_t *retval)
767 {
768 	/* {
769 		syscallarg(int) flags;
770 	} */
771 	return kqueue1(l, SCARG(uap, flags), retval);
772 }
773 
774 /*
775  * kevent(2) system call.
776  */
777 int
778 kevent_fetch_changes(void *private, const struct kevent *changelist,
779     struct kevent *changes, size_t index, int n)
780 {
781 
782 	return copyin(changelist + index, changes, n * sizeof(*changes));
783 }
784 
785 int
786 kevent_put_events(void *private, struct kevent *events,
787     struct kevent *eventlist, size_t index, int n)
788 {
789 
790 	return copyout(events, eventlist + index, n * sizeof(*events));
791 }
792 
793 static const struct kevent_ops kevent_native_ops = {
794 	.keo_private = NULL,
795 	.keo_fetch_timeout = copyin,
796 	.keo_fetch_changes = kevent_fetch_changes,
797 	.keo_put_events = kevent_put_events,
798 };
799 
800 int
801 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
802     register_t *retval)
803 {
804 	/* {
805 		syscallarg(int) fd;
806 		syscallarg(const struct kevent *) changelist;
807 		syscallarg(size_t) nchanges;
808 		syscallarg(struct kevent *) eventlist;
809 		syscallarg(size_t) nevents;
810 		syscallarg(const struct timespec *) timeout;
811 	} */
812 
813 	return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
814 	    SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
815 	    SCARG(uap, timeout), &kevent_native_ops);
816 }
817 
818 int
819 kevent1(register_t *retval, int fd,
820 	const struct kevent *changelist, size_t nchanges,
821 	struct kevent *eventlist, size_t nevents,
822 	const struct timespec *timeout,
823 	const struct kevent_ops *keops)
824 {
825 	struct kevent *kevp;
826 	struct kqueue *kq;
827 	struct timespec	ts;
828 	size_t i, n, ichange;
829 	int nerrors, error;
830 	struct kevent kevbuf[8];	/* approx 300 bytes on 64-bit */
831 	file_t *fp;
832 
833 	/* check that we're dealing with a kq */
834 	fp = fd_getfile(fd);
835 	if (fp == NULL)
836 		return (EBADF);
837 
838 	if (fp->f_type != DTYPE_KQUEUE) {
839 		fd_putfile(fd);
840 		return (EBADF);
841 	}
842 
843 	if (timeout != NULL) {
844 		error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
845 		if (error)
846 			goto done;
847 		timeout = &ts;
848 	}
849 
850 	kq = (struct kqueue *)fp->f_data;
851 	nerrors = 0;
852 	ichange = 0;
853 
854 	/* traverse list of events to register */
855 	while (nchanges > 0) {
856 		n = MIN(nchanges, __arraycount(kevbuf));
857 		error = (*keops->keo_fetch_changes)(keops->keo_private,
858 		    changelist, kevbuf, ichange, n);
859 		if (error)
860 			goto done;
861 		for (i = 0; i < n; i++) {
862 			kevp = &kevbuf[i];
863 			kevp->flags &= ~EV_SYSFLAGS;
864 			/* register each knote */
865 			error = kqueue_register(kq, kevp);
866 			if (error) {
867 				if (nevents != 0) {
868 					kevp->flags = EV_ERROR;
869 					kevp->data = error;
870 					error = (*keops->keo_put_events)
871 					    (keops->keo_private, kevp,
872 					    eventlist, nerrors, 1);
873 					if (error)
874 						goto done;
875 					nevents--;
876 					nerrors++;
877 				} else {
878 					goto done;
879 				}
880 			}
881 		}
882 		nchanges -= n;	/* update the results */
883 		ichange += n;
884 	}
885 	if (nerrors) {
886 		*retval = nerrors;
887 		error = 0;
888 		goto done;
889 	}
890 
891 	/* actually scan through the events */
892 	error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
893 	    kevbuf, __arraycount(kevbuf));
894  done:
895 	fd_putfile(fd);
896 	return (error);
897 }
898 
899 /*
900  * Register a given kevent kev onto the kqueue
901  */
902 static int
903 kqueue_register(struct kqueue *kq, struct kevent *kev)
904 {
905 	struct kfilter *kfilter;
906 	filedesc_t *fdp;
907 	file_t *fp;
908 	fdfile_t *ff;
909 	struct knote *kn, *newkn;
910 	struct klist *list;
911 	int error, fd, rv;
912 
913 	fdp = kq->kq_fdp;
914 	fp = NULL;
915 	kn = NULL;
916 	error = 0;
917 	fd = 0;
918 
919 	newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
920 
921 	rw_enter(&kqueue_filter_lock, RW_READER);
922 	kfilter = kfilter_byfilter(kev->filter);
923 	if (kfilter == NULL || kfilter->filtops == NULL) {
924 		/* filter not found nor implemented */
925 		rw_exit(&kqueue_filter_lock);
926 		kmem_free(newkn, sizeof(*newkn));
927 		return (EINVAL);
928 	}
929 
930 	/* search if knote already exists */
931 	if (kfilter->filtops->f_isfd) {
932 		/* monitoring a file descriptor */
933 		fd = kev->ident;
934 		if ((fp = fd_getfile(fd)) == NULL) {
935 			rw_exit(&kqueue_filter_lock);
936 			kmem_free(newkn, sizeof(*newkn));
937 			return EBADF;
938 		}
939 		mutex_enter(&fdp->fd_lock);
940 		ff = fdp->fd_dt->dt_ff[fd];
941 		if (fd <= fdp->fd_lastkqfile) {
942 			SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
943 				if (kq == kn->kn_kq &&
944 				    kev->filter == kn->kn_filter)
945 					break;
946 			}
947 		}
948 	} else {
949 		/*
950 		 * not monitoring a file descriptor, so
951 		 * lookup knotes in internal hash table
952 		 */
953 		mutex_enter(&fdp->fd_lock);
954 		if (fdp->fd_knhashmask != 0) {
955 			list = &fdp->fd_knhash[
956 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
957 			SLIST_FOREACH(kn, list, kn_link) {
958 				if (kev->ident == kn->kn_id &&
959 				    kq == kn->kn_kq &&
960 				    kev->filter == kn->kn_filter)
961 					break;
962 			}
963 		}
964 	}
965 
966 	/*
967 	 * kn now contains the matching knote, or NULL if no match
968 	 */
969 	if (kev->flags & EV_ADD) {
970 		if (kn == NULL) {
971 			/* create new knote */
972 			kn = newkn;
973 			newkn = NULL;
974 			kn->kn_obj = fp;
975 			kn->kn_id = kev->ident;
976 			kn->kn_kq = kq;
977 			kn->kn_fop = kfilter->filtops;
978 			kn->kn_kfilter = kfilter;
979 			kn->kn_sfflags = kev->fflags;
980 			kn->kn_sdata = kev->data;
981 			kev->fflags = 0;
982 			kev->data = 0;
983 			kn->kn_kevent = *kev;
984 
985 			/*
986 			 * apply reference count to knote structure, and
987 			 * do not release it at the end of this routine.
988 			 */
989 			fp = NULL;
990 
991 			if (!kn->kn_fop->f_isfd) {
992 				/*
993 				 * If knote is not on an fd, store on
994 				 * internal hash table.
995 				 */
996 				if (fdp->fd_knhashmask == 0) {
997 					/* XXXAD can block with fd_lock held */
998 					fdp->fd_knhash = hashinit(KN_HASHSIZE,
999 					    HASH_LIST, true,
1000 					    &fdp->fd_knhashmask);
1001 				}
1002 				list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
1003 				    fdp->fd_knhashmask)];
1004 			} else {
1005 				/* Otherwise, knote is on an fd. */
1006 				list = (struct klist *)
1007 				    &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1008 				if ((int)kn->kn_id > fdp->fd_lastkqfile)
1009 					fdp->fd_lastkqfile = kn->kn_id;
1010 			}
1011 			SLIST_INSERT_HEAD(list, kn, kn_link);
1012 
1013 			KERNEL_LOCK(1, NULL);		/* XXXSMP */
1014 			error = (*kfilter->filtops->f_attach)(kn);
1015 			KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
1016 			if (error != 0) {
1017 #ifdef DIAGNOSTIC
1018 				printf("%s: event not supported for file type"
1019 				    " %d\n", __func__, fp ? fp->f_type : -1);
1020 #endif
1021 				/* knote_detach() drops fdp->fd_lock */
1022 				knote_detach(kn, fdp, false);
1023 				goto done;
1024 			}
1025 			atomic_inc_uint(&kfilter->refcnt);
1026 		} else {
1027 			/*
1028 			 * The user may change some filter values after the
1029 			 * initial EV_ADD, but doing so will not reset any
1030 			 * filter which have already been triggered.
1031 			 */
1032 			kn->kn_sfflags = kev->fflags;
1033 			kn->kn_sdata = kev->data;
1034 			kn->kn_kevent.udata = kev->udata;
1035 		}
1036 		/*
1037 		 * We can get here if we are trying to attach
1038 		 * an event to a file descriptor that does not
1039 		 * support events, and the attach routine is
1040 		 * broken and does not return an error.
1041 		 */
1042 		KASSERT(kn->kn_fop->f_event != NULL);
1043 		KERNEL_LOCK(1, NULL);			/* XXXSMP */
1044 		rv = (*kn->kn_fop->f_event)(kn, 0);
1045 		KERNEL_UNLOCK_ONE(NULL);		/* XXXSMP */
1046 		if (rv)
1047 			knote_activate(kn);
1048 	} else {
1049 		if (kn == NULL) {
1050 			error = ENOENT;
1051 		 	mutex_exit(&fdp->fd_lock);
1052 			goto done;
1053 		}
1054 		if (kev->flags & EV_DELETE) {
1055 			/* knote_detach() drops fdp->fd_lock */
1056 			knote_detach(kn, fdp, true);
1057 			goto done;
1058 		}
1059 	}
1060 
1061 	/* disable knote */
1062 	if ((kev->flags & EV_DISABLE)) {
1063 		mutex_spin_enter(&kq->kq_lock);
1064 		if ((kn->kn_status & KN_DISABLED) == 0)
1065 			kn->kn_status |= KN_DISABLED;
1066 		mutex_spin_exit(&kq->kq_lock);
1067 	}
1068 
1069 	/* enable knote */
1070 	if ((kev->flags & EV_ENABLE)) {
1071 		knote_enqueue(kn);
1072 	}
1073 	mutex_exit(&fdp->fd_lock);
1074  done:
1075 	rw_exit(&kqueue_filter_lock);
1076 	if (newkn != NULL)
1077 		kmem_free(newkn, sizeof(*newkn));
1078 	if (fp != NULL)
1079 		fd_putfile(fd);
1080 	return (error);
1081 }
1082 
1083 #if defined(DEBUG)
1084 static void
1085 kq_check(struct kqueue *kq)
1086 {
1087 	const struct knote *kn;
1088 	int count;
1089 	int nmarker;
1090 
1091 	KASSERT(mutex_owned(&kq->kq_lock));
1092 	KASSERT(kq->kq_count >= 0);
1093 
1094 	count = 0;
1095 	nmarker = 0;
1096 	TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1097 		if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1098 			panic("%s: kq=%p kn=%p inconsist 1", __func__, kq, kn);
1099 		}
1100 		if ((kn->kn_status & KN_MARKER) == 0) {
1101 			if (kn->kn_kq != kq) {
1102 				panic("%s: kq=%p kn=%p inconsist 2",
1103 				    __func__, kq, kn);
1104 			}
1105 			if ((kn->kn_status & KN_ACTIVE) == 0) {
1106 				panic("%s: kq=%p kn=%p: not active",
1107 				    __func__, kq, kn);
1108 			}
1109 			count++;
1110 			if (count > kq->kq_count) {
1111 				goto bad;
1112 			}
1113 		} else {
1114 			nmarker++;
1115 #if 0
1116 			if (nmarker > 10000) {
1117 				panic("%s: kq=%p too many markers: %d != %d, "
1118 				    "nmarker=%d",
1119 				    __func__, kq, kq->kq_count, count, nmarker);
1120 			}
1121 #endif
1122 		}
1123 	}
1124 	if (kq->kq_count != count) {
1125 bad:
1126 		panic("%s: kq=%p inconsist 3: %d != %d, nmarker=%d",
1127 		    __func__, kq, kq->kq_count, count, nmarker);
1128 	}
1129 }
1130 #else /* defined(DEBUG) */
1131 #define	kq_check(a)	/* nothing */
1132 #endif /* defined(DEBUG) */
1133 
1134 /*
1135  * Scan through the list of events on fp (for a maximum of maxevents),
1136  * returning the results in to ulistp. Timeout is determined by tsp; if
1137  * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1138  * as appropriate.
1139  */
1140 static int
1141 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1142 	    const struct timespec *tsp, register_t *retval,
1143 	    const struct kevent_ops *keops, struct kevent *kevbuf,
1144 	    size_t kevcnt)
1145 {
1146 	struct kqueue	*kq;
1147 	struct kevent	*kevp;
1148 	struct timespec	ats, sleepts;
1149 	struct knote	*kn, *marker;
1150 	size_t		count, nkev, nevents;
1151 	int		timeout, error, rv;
1152 	filedesc_t	*fdp;
1153 
1154 	fdp = curlwp->l_fd;
1155 	kq = fp->f_data;
1156 	count = maxevents;
1157 	nkev = nevents = error = 0;
1158 	if (count == 0) {
1159 		*retval = 0;
1160 		return 0;
1161 	}
1162 
1163 	if (tsp) {				/* timeout supplied */
1164 		ats = *tsp;
1165 		if (inittimeleft(&ats, &sleepts) == -1) {
1166 			*retval = maxevents;
1167 			return EINVAL;
1168 		}
1169 		timeout = tstohz(&ats);
1170 		if (timeout <= 0)
1171 			timeout = -1;           /* do poll */
1172 	} else {
1173 		/* no timeout, wait forever */
1174 		timeout = 0;
1175 	}
1176 
1177 	marker = kmem_zalloc(sizeof(*marker), KM_SLEEP);
1178 	marker->kn_status = KN_MARKER;
1179 	mutex_spin_enter(&kq->kq_lock);
1180  retry:
1181 	kevp = kevbuf;
1182 	if (kq->kq_count == 0) {
1183 		if (timeout >= 0) {
1184 			error = cv_timedwait_sig(&kq->kq_cv,
1185 			    &kq->kq_lock, timeout);
1186 			if (error == 0) {
1187 				 if (tsp == NULL || (timeout =
1188 				     gettimeleft(&ats, &sleepts)) > 0)
1189 					goto retry;
1190 			} else {
1191 				/* don't restart after signals... */
1192 				if (error == ERESTART)
1193 					error = EINTR;
1194 				if (error == EWOULDBLOCK)
1195 					error = 0;
1196 			}
1197 		}
1198 	} else {
1199 		/* mark end of knote list */
1200 		TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1201 
1202 		while (count != 0) {
1203 			kn = TAILQ_FIRST(&kq->kq_head);	/* get next knote */
1204 			while ((kn->kn_status & KN_MARKER) != 0) {
1205 				if (kn == marker) {
1206 					/* it's our marker, stop */
1207 					TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1208 					if (count < maxevents || (tsp != NULL &&
1209 					    (timeout = gettimeleft(&ats,
1210 					    &sleepts)) <= 0))
1211 						goto done;
1212 					goto retry;
1213 				}
1214 				/* someone else's marker. */
1215 				kn = TAILQ_NEXT(kn, kn_tqe);
1216 			}
1217 			kq_check(kq);
1218 			TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1219 			kq->kq_count--;
1220 			kn->kn_status &= ~KN_QUEUED;
1221 			kq_check(kq);
1222 			if (kn->kn_status & KN_DISABLED) {
1223 				/* don't want disabled events */
1224 				continue;
1225 			}
1226 			if ((kn->kn_flags & EV_ONESHOT) == 0) {
1227 				mutex_spin_exit(&kq->kq_lock);
1228 				KERNEL_LOCK(1, NULL);		/* XXXSMP */
1229 				rv = (*kn->kn_fop->f_event)(kn, 0);
1230 				KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
1231 				mutex_spin_enter(&kq->kq_lock);
1232 				/* Re-poll if note was re-enqueued. */
1233 				if ((kn->kn_status & KN_QUEUED) != 0)
1234 					continue;
1235 				if (rv == 0) {
1236 					/*
1237 					 * non-ONESHOT event that hasn't
1238 					 * triggered again, so de-queue.
1239 					 */
1240 					kn->kn_status &= ~KN_ACTIVE;
1241 					continue;
1242 				}
1243 			}
1244 			/* XXXAD should be got from f_event if !oneshot. */
1245 			*kevp++ = kn->kn_kevent;
1246 			nkev++;
1247 			if (kn->kn_flags & EV_ONESHOT) {
1248 				/* delete ONESHOT events after retrieval */
1249 				mutex_spin_exit(&kq->kq_lock);
1250 				mutex_enter(&fdp->fd_lock);
1251 				knote_detach(kn, fdp, true);
1252 				mutex_spin_enter(&kq->kq_lock);
1253 			} else if (kn->kn_flags & EV_CLEAR) {
1254 				/* clear state after retrieval */
1255 				kn->kn_data = 0;
1256 				kn->kn_fflags = 0;
1257 				kn->kn_status &= ~KN_ACTIVE;
1258 			} else {
1259 				/* add event back on list */
1260 				kq_check(kq);
1261 				TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1262 				kq->kq_count++;
1263 				kn->kn_status |= KN_QUEUED;
1264 				kq_check(kq);
1265 			}
1266 			if (nkev == kevcnt) {
1267 				/* do copyouts in kevcnt chunks */
1268 				mutex_spin_exit(&kq->kq_lock);
1269 				error = (*keops->keo_put_events)
1270 				    (keops->keo_private,
1271 				    kevbuf, ulistp, nevents, nkev);
1272 				mutex_spin_enter(&kq->kq_lock);
1273 				nevents += nkev;
1274 				nkev = 0;
1275 				kevp = kevbuf;
1276 			}
1277 			count--;
1278 			if (error != 0 || count == 0) {
1279 				/* remove marker */
1280 				TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1281 				break;
1282 			}
1283 		}
1284 	}
1285  done:
1286  	mutex_spin_exit(&kq->kq_lock);
1287 	if (marker != NULL)
1288 		kmem_free(marker, sizeof(*marker));
1289 	if (nkev != 0) {
1290 		/* copyout remaining events */
1291 		error = (*keops->keo_put_events)(keops->keo_private,
1292 		    kevbuf, ulistp, nevents, nkev);
1293 	}
1294 	*retval = maxevents - count;
1295 
1296 	return error;
1297 }
1298 
1299 /*
1300  * fileops ioctl method for a kqueue descriptor.
1301  *
1302  * Two ioctls are currently supported. They both use struct kfilter_mapping:
1303  *	KFILTER_BYNAME		find name for filter, and return result in
1304  *				name, which is of size len.
1305  *	KFILTER_BYFILTER	find filter for name. len is ignored.
1306  */
1307 /*ARGSUSED*/
1308 static int
1309 kqueue_ioctl(file_t *fp, u_long com, void *data)
1310 {
1311 	struct kfilter_mapping	*km;
1312 	const struct kfilter	*kfilter;
1313 	char			*name;
1314 	int			error;
1315 
1316 	km = data;
1317 	error = 0;
1318 	name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
1319 
1320 	switch (com) {
1321 	case KFILTER_BYFILTER:	/* convert filter -> name */
1322 		rw_enter(&kqueue_filter_lock, RW_READER);
1323 		kfilter = kfilter_byfilter(km->filter);
1324 		if (kfilter != NULL) {
1325 			strlcpy(name, kfilter->name, KFILTER_MAXNAME);
1326 			rw_exit(&kqueue_filter_lock);
1327 			error = copyoutstr(name, km->name, km->len, NULL);
1328 		} else {
1329 			rw_exit(&kqueue_filter_lock);
1330 			error = ENOENT;
1331 		}
1332 		break;
1333 
1334 	case KFILTER_BYNAME:	/* convert name -> filter */
1335 		error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1336 		if (error) {
1337 			break;
1338 		}
1339 		rw_enter(&kqueue_filter_lock, RW_READER);
1340 		kfilter = kfilter_byname(name);
1341 		if (kfilter != NULL)
1342 			km->filter = kfilter->filter;
1343 		else
1344 			error = ENOENT;
1345 		rw_exit(&kqueue_filter_lock);
1346 		break;
1347 
1348 	default:
1349 		error = ENOTTY;
1350 		break;
1351 
1352 	}
1353 	kmem_free(name, KFILTER_MAXNAME);
1354 	return (error);
1355 }
1356 
1357 /*
1358  * fileops fcntl method for a kqueue descriptor.
1359  */
1360 static int
1361 kqueue_fcntl(file_t *fp, u_int com, void *data)
1362 {
1363 
1364 	return (ENOTTY);
1365 }
1366 
1367 /*
1368  * fileops poll method for a kqueue descriptor.
1369  * Determine if kqueue has events pending.
1370  */
1371 static int
1372 kqueue_poll(file_t *fp, int events)
1373 {
1374 	struct kqueue	*kq;
1375 	int		revents;
1376 
1377 	kq = fp->f_data;
1378 
1379 	revents = 0;
1380 	if (events & (POLLIN | POLLRDNORM)) {
1381 		mutex_spin_enter(&kq->kq_lock);
1382 		if (kq->kq_count != 0) {
1383 			revents |= events & (POLLIN | POLLRDNORM);
1384 		} else {
1385 			selrecord(curlwp, &kq->kq_sel);
1386 		}
1387 		kq_check(kq);
1388 		mutex_spin_exit(&kq->kq_lock);
1389 	}
1390 
1391 	return revents;
1392 }
1393 
1394 /*
1395  * fileops stat method for a kqueue descriptor.
1396  * Returns dummy info, with st_size being number of events pending.
1397  */
1398 static int
1399 kqueue_stat(file_t *fp, struct stat *st)
1400 {
1401 	struct kqueue *kq;
1402 
1403 	kq = fp->f_data;
1404 
1405 	memset(st, 0, sizeof(*st));
1406 	st->st_size = kq->kq_count;
1407 	st->st_blksize = sizeof(struct kevent);
1408 	st->st_mode = S_IFIFO;
1409 
1410 	return 0;
1411 }
1412 
1413 static void
1414 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
1415 {
1416 	struct knote *kn;
1417 	filedesc_t *fdp;
1418 
1419 	fdp = kq->kq_fdp;
1420 
1421 	KASSERT(mutex_owned(&fdp->fd_lock));
1422 
1423 	for (kn = SLIST_FIRST(list); kn != NULL;) {
1424 		if (kq != kn->kn_kq) {
1425 			kn = SLIST_NEXT(kn, kn_link);
1426 			continue;
1427 		}
1428 		knote_detach(kn, fdp, true);
1429 		mutex_enter(&fdp->fd_lock);
1430 		kn = SLIST_FIRST(list);
1431 	}
1432 }
1433 
1434 
1435 /*
1436  * fileops close method for a kqueue descriptor.
1437  */
1438 static int
1439 kqueue_close(file_t *fp)
1440 {
1441 	struct kqueue *kq;
1442 	filedesc_t *fdp;
1443 	fdfile_t *ff;
1444 	int i;
1445 
1446 	kq = fp->f_data;
1447 	fp->f_data = NULL;
1448 	fp->f_type = 0;
1449 	fdp = curlwp->l_fd;
1450 
1451 	mutex_enter(&fdp->fd_lock);
1452 	for (i = 0; i <= fdp->fd_lastkqfile; i++) {
1453 		if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
1454 			continue;
1455 		kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
1456 	}
1457 	if (fdp->fd_knhashmask != 0) {
1458 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1459 			kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
1460 		}
1461 	}
1462 	mutex_exit(&fdp->fd_lock);
1463 
1464 	KASSERT(kq->kq_count == 0);
1465 	mutex_destroy(&kq->kq_lock);
1466 	cv_destroy(&kq->kq_cv);
1467 	seldestroy(&kq->kq_sel);
1468 	kmem_free(kq, sizeof(*kq));
1469 
1470 	return (0);
1471 }
1472 
1473 /*
1474  * struct fileops kqfilter method for a kqueue descriptor.
1475  * Event triggered when monitored kqueue changes.
1476  */
1477 static int
1478 kqueue_kqfilter(file_t *fp, struct knote *kn)
1479 {
1480 	struct kqueue *kq;
1481 
1482 	kq = ((file_t *)kn->kn_obj)->f_data;
1483 
1484 	KASSERT(fp == kn->kn_obj);
1485 
1486 	if (kn->kn_filter != EVFILT_READ)
1487 		return 1;
1488 
1489 	kn->kn_fop = &kqread_filtops;
1490 	mutex_enter(&kq->kq_lock);
1491 	SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1492 	mutex_exit(&kq->kq_lock);
1493 
1494 	return 0;
1495 }
1496 
1497 
1498 /*
1499  * Walk down a list of knotes, activating them if their event has
1500  * triggered.  The caller's object lock (e.g. device driver lock)
1501  * must be held.
1502  */
1503 void
1504 knote(struct klist *list, long hint)
1505 {
1506 	struct knote *kn, *tmpkn;
1507 
1508 	SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
1509 		if ((*kn->kn_fop->f_event)(kn, hint))
1510 			knote_activate(kn);
1511 	}
1512 }
1513 
1514 /*
1515  * Remove all knotes referencing a specified fd
1516  */
1517 void
1518 knote_fdclose(int fd)
1519 {
1520 	struct klist *list;
1521 	struct knote *kn;
1522 	filedesc_t *fdp;
1523 
1524 	fdp = curlwp->l_fd;
1525 	list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
1526 	mutex_enter(&fdp->fd_lock);
1527 	while ((kn = SLIST_FIRST(list)) != NULL) {
1528 		knote_detach(kn, fdp, true);
1529 		mutex_enter(&fdp->fd_lock);
1530 	}
1531 	mutex_exit(&fdp->fd_lock);
1532 }
1533 
1534 /*
1535  * Drop knote.  Called with fdp->fd_lock held, and will drop before
1536  * returning.
1537  */
1538 static void
1539 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
1540 {
1541 	struct klist *list;
1542 	struct kqueue *kq;
1543 
1544 	kq = kn->kn_kq;
1545 
1546 	KASSERT((kn->kn_status & KN_MARKER) == 0);
1547 	KASSERT(mutex_owned(&fdp->fd_lock));
1548 
1549 	/* Remove from monitored object. */
1550 	if (dofop) {
1551 		KERNEL_LOCK(1, NULL);		/* XXXSMP */
1552 		(*kn->kn_fop->f_detach)(kn);
1553 		KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
1554 	}
1555 
1556 	/* Remove from descriptor table. */
1557 	if (kn->kn_fop->f_isfd)
1558 		list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1559 	else
1560 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1561 
1562 	SLIST_REMOVE(list, kn, knote, kn_link);
1563 
1564 	/* Remove from kqueue. */
1565 	/* XXXAD should verify not in use by kqueue_scan. */
1566 	mutex_spin_enter(&kq->kq_lock);
1567 	if ((kn->kn_status & KN_QUEUED) != 0) {
1568 		kq_check(kq);
1569 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1570 		kn->kn_status &= ~KN_QUEUED;
1571 		kq->kq_count--;
1572 		kq_check(kq);
1573 	}
1574 	mutex_spin_exit(&kq->kq_lock);
1575 
1576 	mutex_exit(&fdp->fd_lock);
1577 	if (kn->kn_fop->f_isfd)
1578 		fd_putfile(kn->kn_id);
1579 	atomic_dec_uint(&kn->kn_kfilter->refcnt);
1580 	kmem_free(kn, sizeof(*kn));
1581 }
1582 
1583 /*
1584  * Queue new event for knote.
1585  */
1586 static void
1587 knote_enqueue(struct knote *kn)
1588 {
1589 	struct kqueue *kq;
1590 
1591 	KASSERT((kn->kn_status & KN_MARKER) == 0);
1592 
1593 	kq = kn->kn_kq;
1594 
1595 	mutex_spin_enter(&kq->kq_lock);
1596 	if ((kn->kn_status & KN_DISABLED) != 0) {
1597 		kn->kn_status &= ~KN_DISABLED;
1598 	}
1599 	if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
1600 		kq_check(kq);
1601 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1602 		kn->kn_status |= KN_QUEUED;
1603 		kq->kq_count++;
1604 		kq_check(kq);
1605 		cv_broadcast(&kq->kq_cv);
1606 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1607 	}
1608 	mutex_spin_exit(&kq->kq_lock);
1609 }
1610 /*
1611  * Queue new event for knote.
1612  */
1613 static void
1614 knote_activate(struct knote *kn)
1615 {
1616 	struct kqueue *kq;
1617 
1618 	KASSERT((kn->kn_status & KN_MARKER) == 0);
1619 
1620 	kq = kn->kn_kq;
1621 
1622 	mutex_spin_enter(&kq->kq_lock);
1623 	kn->kn_status |= KN_ACTIVE;
1624 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
1625 		kq_check(kq);
1626 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1627 		kn->kn_status |= KN_QUEUED;
1628 		kq->kq_count++;
1629 		kq_check(kq);
1630 		cv_broadcast(&kq->kq_cv);
1631 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1632 	}
1633 	mutex_spin_exit(&kq->kq_lock);
1634 }
1635