xref: /netbsd-src/sys/kern/kern_clock.c (revision bada23909e740596d0a3785a73bd3583a9807fb8)
1 /*	$NetBSD: kern_clock.c,v 1.47 1999/02/28 18:14:57 ross Exp $	*/
2 
3 /*-
4  * Copyright (c) 1982, 1986, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
41  */
42 
43 #include "opt_ntp.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/dkstat.h>
48 #include <sys/callout.h>
49 #include <sys/kernel.h>
50 #include <sys/proc.h>
51 #include <sys/resourcevar.h>
52 #include <sys/signalvar.h>
53 #include <vm/vm.h>
54 #include <sys/sysctl.h>
55 #include <sys/timex.h>
56 #include <sys/sched.h>
57 
58 #include <machine/cpu.h>
59 
60 #ifdef GPROF
61 #include <sys/gmon.h>
62 #endif
63 
64 /*
65  * Clock handling routines.
66  *
67  * This code is written to operate with two timers that run independently of
68  * each other.  The main clock, running hz times per second, is used to keep
69  * track of real time.  The second timer handles kernel and user profiling,
70  * and does resource use estimation.  If the second timer is programmable,
71  * it is randomized to avoid aliasing between the two clocks.  For example,
72  * the randomization prevents an adversary from always giving up the cpu
73  * just before its quantum expires.  Otherwise, it would never accumulate
74  * cpu ticks.  The mean frequency of the second timer is stathz.
75  *
76  * If no second timer exists, stathz will be zero; in this case we drive
77  * profiling and statistics off the main clock.  This WILL NOT be accurate;
78  * do not do it unless absolutely necessary.
79  *
80  * The statistics clock may (or may not) be run at a higher rate while
81  * profiling.  This profile clock runs at profhz.  We require that profhz
82  * be an integral multiple of stathz.
83  *
84  * If the statistics clock is running fast, it must be divided by the ratio
85  * profhz/stathz for statistics.  (For profiling, every tick counts.)
86  */
87 
88 /*
89  * TODO:
90  *	allocate more timeout table slots when table overflows.
91  */
92 
93 
94 #ifdef NTP	/* NTP phase-locked loop in kernel */
95 /*
96  * Phase/frequency-lock loop (PLL/FLL) definitions
97  *
98  * The following variables are read and set by the ntp_adjtime() system
99  * call.
100  *
101  * time_state shows the state of the system clock, with values defined
102  * in the timex.h header file.
103  *
104  * time_status shows the status of the system clock, with bits defined
105  * in the timex.h header file.
106  *
107  * time_offset is used by the PLL/FLL to adjust the system time in small
108  * increments.
109  *
110  * time_constant determines the bandwidth or "stiffness" of the PLL.
111  *
112  * time_tolerance determines maximum frequency error or tolerance of the
113  * CPU clock oscillator and is a property of the architecture; however,
114  * in principle it could change as result of the presence of external
115  * discipline signals, for instance.
116  *
117  * time_precision is usually equal to the kernel tick variable; however,
118  * in cases where a precision clock counter or external clock is
119  * available, the resolution can be much less than this and depend on
120  * whether the external clock is working or not.
121  *
122  * time_maxerror is initialized by a ntp_adjtime() call and increased by
123  * the kernel once each second to reflect the maximum error bound
124  * growth.
125  *
126  * time_esterror is set and read by the ntp_adjtime() call, but
127  * otherwise not used by the kernel.
128  */
129 int time_state = TIME_OK;	/* clock state */
130 int time_status = STA_UNSYNC;	/* clock status bits */
131 long time_offset = 0;		/* time offset (us) */
132 long time_constant = 0;		/* pll time constant */
133 long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
134 long time_precision = 1;	/* clock precision (us) */
135 long time_maxerror = MAXPHASE;	/* maximum error (us) */
136 long time_esterror = MAXPHASE;	/* estimated error (us) */
137 
138 /*
139  * The following variables establish the state of the PLL/FLL and the
140  * residual time and frequency offset of the local clock. The scale
141  * factors are defined in the timex.h header file.
142  *
143  * time_phase and time_freq are the phase increment and the frequency
144  * increment, respectively, of the kernel time variable.
145  *
146  * time_freq is set via ntp_adjtime() from a value stored in a file when
147  * the synchronization daemon is first started. Its value is retrieved
148  * via ntp_adjtime() and written to the file about once per hour by the
149  * daemon.
150  *
151  * time_adj is the adjustment added to the value of tick at each timer
152  * interrupt and is recomputed from time_phase and time_freq at each
153  * seconds rollover.
154  *
155  * time_reftime is the second's portion of the system time at the last
156  * call to ntp_adjtime(). It is used to adjust the time_freq variable
157  * and to increase the time_maxerror as the time since last update
158  * increases.
159  */
160 long time_phase = 0;		/* phase offset (scaled us) */
161 long time_freq = 0;		/* frequency offset (scaled ppm) */
162 long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
163 long time_reftime = 0;		/* time at last adjustment (s) */
164 
165 #ifdef PPS_SYNC
166 /*
167  * The following variables are used only if the kernel PPS discipline
168  * code is configured (PPS_SYNC). The scale factors are defined in the
169  * timex.h header file.
170  *
171  * pps_time contains the time at each calibration interval, as read by
172  * microtime(). pps_count counts the seconds of the calibration
173  * interval, the duration of which is nominally pps_shift in powers of
174  * two.
175  *
176  * pps_offset is the time offset produced by the time median filter
177  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
178  * this filter.
179  *
180  * pps_freq is the frequency offset produced by the frequency median
181  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
182  * by this filter.
183  *
184  * pps_usec is latched from a high resolution counter or external clock
185  * at pps_time. Here we want the hardware counter contents only, not the
186  * contents plus the time_tv.usec as usual.
187  *
188  * pps_valid counts the number of seconds since the last PPS update. It
189  * is used as a watchdog timer to disable the PPS discipline should the
190  * PPS signal be lost.
191  *
192  * pps_glitch counts the number of seconds since the beginning of an
193  * offset burst more than tick/2 from current nominal offset. It is used
194  * mainly to suppress error bursts due to priority conflicts between the
195  * PPS interrupt and timer interrupt.
196  *
197  * pps_intcnt counts the calibration intervals for use in the interval-
198  * adaptation algorithm. It's just too complicated for words.
199  */
200 struct timeval pps_time;	/* kernel time at last interval */
201 long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
202 long pps_offset = 0;		/* pps time offset (us) */
203 long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
204 long pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
205 long pps_freq = 0;		/* frequency offset (scaled ppm) */
206 long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
207 long pps_usec = 0;		/* microsec counter at last interval */
208 long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
209 int pps_glitch = 0;		/* pps signal glitch counter */
210 int pps_count = 0;		/* calibration interval counter (s) */
211 int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
212 int pps_intcnt = 0;		/* intervals at current duration */
213 
214 /*
215  * PPS signal quality monitors
216  *
217  * pps_jitcnt counts the seconds that have been discarded because the
218  * jitter measured by the time median filter exceeds the limit MAXTIME
219  * (100 us).
220  *
221  * pps_calcnt counts the frequency calibration intervals, which are
222  * variable from 4 s to 256 s.
223  *
224  * pps_errcnt counts the calibration intervals which have been discarded
225  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
226  * calibration interval jitter exceeds two ticks.
227  *
228  * pps_stbcnt counts the calibration intervals that have been discarded
229  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
230  */
231 long pps_jitcnt = 0;		/* jitter limit exceeded */
232 long pps_calcnt = 0;		/* calibration intervals */
233 long pps_errcnt = 0;		/* calibration errors */
234 long pps_stbcnt = 0;		/* stability limit exceeded */
235 #endif /* PPS_SYNC */
236 
237 #ifdef EXT_CLOCK
238 /*
239  * External clock definitions
240  *
241  * The following definitions and declarations are used only if an
242  * external clock is configured on the system.
243  */
244 #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
245 
246 /*
247  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
248  * interrupt and decremented once each second.
249  */
250 int clock_count = 0;		/* CPU clock counter */
251 
252 #ifdef HIGHBALL
253 /*
254  * The clock_offset and clock_cpu variables are used by the HIGHBALL
255  * interface. The clock_offset variable defines the offset between
256  * system time and the HIGBALL counters. The clock_cpu variable contains
257  * the offset between the system clock and the HIGHBALL clock for use in
258  * disciplining the kernel time variable.
259  */
260 extern struct timeval clock_offset; /* Highball clock offset */
261 long clock_cpu = 0;		/* CPU clock adjust */
262 #endif /* HIGHBALL */
263 #endif /* EXT_CLOCK */
264 #endif /* NTP */
265 
266 
267 /*
268  * Bump a timeval by a small number of usec's.
269  */
270 #define BUMPTIME(t, usec) { \
271 	register volatile struct timeval *tp = (t); \
272 	register long us; \
273  \
274 	tp->tv_usec = us = tp->tv_usec + (usec); \
275 	if (us >= 1000000) { \
276 		tp->tv_usec = us - 1000000; \
277 		tp->tv_sec++; \
278 	} \
279 }
280 
281 int	stathz;
282 int	profhz;
283 int	profprocs;
284 int	ticks;
285 static int psdiv, pscnt;		/* prof => stat divider */
286 int	psratio;			/* ratio: prof / stat */
287 int	tickfix, tickfixinterval;	/* used if tick not really integral */
288 #ifndef NTP
289 static int tickfixcnt;			/* accumulated fractional error */
290 #else
291 int	fixtick;			/* used by NTP for same */
292 int	shifthz;
293 #endif
294 
295 volatile struct	timeval time;
296 volatile struct	timeval mono_time;
297 
298 /*
299  * Initialize clock frequencies and start both clocks running.
300  */
301 void
302 initclocks()
303 {
304 	register int i;
305 
306 	/*
307 	 * Set divisors to 1 (normal case) and let the machine-specific
308 	 * code do its bit.
309 	 */
310 	psdiv = pscnt = 1;
311 	cpu_initclocks();
312 
313 	/*
314 	 * Compute profhz/stathz, and fix profhz if needed.
315 	 */
316 	i = stathz ? stathz : hz;
317 	if (profhz == 0)
318 		profhz = i;
319 	psratio = profhz / i;
320 
321 #ifdef NTP
322 	switch (hz) {
323 	case 60:
324 	case 64:
325 		shifthz = SHIFT_SCALE - 6;
326 		break;
327 	case 96:
328 	case 100:
329 	case 128:
330 		shifthz = SHIFT_SCALE - 7;
331 		break;
332 	case 256:
333 		shifthz = SHIFT_SCALE - 8;
334 		break;
335 	case 512:
336 		shifthz = SHIFT_SCALE - 9;
337 		break;
338 	case 1000:
339 	case 1024:
340 		shifthz = SHIFT_SCALE - 10;
341 		break;
342 	default:
343 		panic("weird hz");
344 	}
345 #endif
346 }
347 
348 /*
349  * The real-time timer, interrupting hz times per second.
350  */
351 void
352 hardclock(frame)
353 	register struct clockframe *frame;
354 {
355 	register struct callout *p1;
356 	register struct proc *p;
357 	register int delta, needsoft;
358 	extern int tickdelta;
359 	extern long timedelta;
360 #ifdef NTP
361 	register int time_update;
362 	register int ltemp;
363 #endif
364 
365 	/*
366 	 * Update real-time timeout queue.
367 	 * At front of queue are some number of events which are ``due''.
368 	 * The time to these is <= 0 and if negative represents the
369 	 * number of ticks which have passed since it was supposed to happen.
370 	 * The rest of the q elements (times > 0) are events yet to happen,
371 	 * where the time for each is given as a delta from the previous.
372 	 * Decrementing just the first of these serves to decrement the time
373 	 * to all events.
374 	 */
375 	needsoft = 0;
376 	for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
377 		if (--p1->c_time > 0)
378 			break;
379 		needsoft = 1;
380 		if (p1->c_time == 0)
381 			break;
382 	}
383 
384 	p = curproc;
385 	if (p) {
386 		register struct pstats *pstats;
387 
388 		/*
389 		 * Run current process's virtual and profile time, as needed.
390 		 */
391 		pstats = p->p_stats;
392 		if (CLKF_USERMODE(frame) &&
393 		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
394 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
395 			psignal(p, SIGVTALRM);
396 		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
397 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
398 			psignal(p, SIGPROF);
399 	}
400 
401 	/*
402 	 * If no separate statistics clock is available, run it from here.
403 	 */
404 	if (stathz == 0)
405 		statclock(frame);
406 
407 	/*
408 	 * Increment the time-of-day.  The increment is normally just
409 	 * ``tick''.  If the machine is one which has a clock frequency
410 	 * such that ``hz'' would not divide the second evenly into
411 	 * milliseconds, a periodic adjustment must be applied.  Finally,
412 	 * if we are still adjusting the time (see adjtime()),
413 	 * ``tickdelta'' may also be added in.
414 	 */
415 	ticks++;
416 	delta = tick;
417 
418 #ifndef NTP
419 	if (tickfix) {
420 		tickfixcnt += tickfix;
421 		if (tickfixcnt >= tickfixinterval) {
422 			delta++;
423 			tickfixcnt -= tickfixinterval;
424 		}
425 	}
426 #endif /* !NTP */
427 	/* Imprecise 4bsd adjtime() handling */
428 	if (timedelta != 0) {
429 		delta += tickdelta;
430 		timedelta -= tickdelta;
431 	}
432 
433 #ifdef notyet
434 	microset();
435 #endif
436 
437 #ifndef NTP
438 	BUMPTIME(&time, delta);		/* XXX Now done using NTP code below */
439 #endif
440 	BUMPTIME(&mono_time, delta);
441 
442 #ifdef NTP
443 	time_update = delta;
444 
445 	/*
446 	 * Compute the phase adjustment. If the low-order bits
447 	 * (time_phase) of the update overflow, bump the high-order bits
448 	 * (time_update).
449 	 */
450 	time_phase += time_adj;
451 	if (time_phase <= -FINEUSEC) {
452 		ltemp = -time_phase >> SHIFT_SCALE;
453 		time_phase += ltemp << SHIFT_SCALE;
454 		time_update -= ltemp;
455 	} else if (time_phase >= FINEUSEC) {
456 		ltemp = time_phase >> SHIFT_SCALE;
457 		time_phase -= ltemp << SHIFT_SCALE;
458 		time_update += ltemp;
459 	}
460 
461 #ifdef HIGHBALL
462 	/*
463 	 * If the HIGHBALL board is installed, we need to adjust the
464 	 * external clock offset in order to close the hardware feedback
465 	 * loop. This will adjust the external clock phase and frequency
466 	 * in small amounts. The additional phase noise and frequency
467 	 * wander this causes should be minimal. We also need to
468 	 * discipline the kernel time variable, since the PLL is used to
469 	 * discipline the external clock. If the Highball board is not
470 	 * present, we discipline kernel time with the PLL as usual. We
471 	 * assume that the external clock phase adjustment (time_update)
472 	 * and kernel phase adjustment (clock_cpu) are less than the
473 	 * value of tick.
474 	 */
475 	clock_offset.tv_usec += time_update;
476 	if (clock_offset.tv_usec >= 1000000) {
477 		clock_offset.tv_sec++;
478 		clock_offset.tv_usec -= 1000000;
479 	}
480 	if (clock_offset.tv_usec < 0) {
481 		clock_offset.tv_sec--;
482 		clock_offset.tv_usec += 1000000;
483 	}
484 	time.tv_usec += clock_cpu;
485 	clock_cpu = 0;
486 #else
487 	time.tv_usec += time_update;
488 #endif /* HIGHBALL */
489 
490 	/*
491 	 * On rollover of the second the phase adjustment to be used for
492 	 * the next second is calculated. Also, the maximum error is
493 	 * increased by the tolerance. If the PPS frequency discipline
494 	 * code is present, the phase is increased to compensate for the
495 	 * CPU clock oscillator frequency error.
496 	 *
497  	 * On a 32-bit machine and given parameters in the timex.h
498 	 * header file, the maximum phase adjustment is +-512 ms and
499 	 * maximum frequency offset is a tad less than) +-512 ppm. On a
500 	 * 64-bit machine, you shouldn't need to ask.
501 	 */
502 	if (time.tv_usec >= 1000000) {
503 		time.tv_usec -= 1000000;
504 		time.tv_sec++;
505 		time_maxerror += time_tolerance >> SHIFT_USEC;
506 
507 		/*
508 		 * Leap second processing. If in leap-insert state at
509 		 * the end of the day, the system clock is set back one
510 		 * second; if in leap-delete state, the system clock is
511 		 * set ahead one second. The microtime() routine or
512 		 * external clock driver will insure that reported time
513 		 * is always monotonic. The ugly divides should be
514 		 * replaced.
515 		 */
516 		switch (time_state) {
517 		case TIME_OK:
518 			if (time_status & STA_INS)
519 				time_state = TIME_INS;
520 			else if (time_status & STA_DEL)
521 				time_state = TIME_DEL;
522 			break;
523 
524 		case TIME_INS:
525 			if (time.tv_sec % 86400 == 0) {
526 				time.tv_sec--;
527 				time_state = TIME_OOP;
528 			}
529 			break;
530 
531 		case TIME_DEL:
532 			if ((time.tv_sec + 1) % 86400 == 0) {
533 				time.tv_sec++;
534 				time_state = TIME_WAIT;
535 			}
536 			break;
537 
538 		case TIME_OOP:
539 			time_state = TIME_WAIT;
540 			break;
541 
542 		case TIME_WAIT:
543 			if (!(time_status & (STA_INS | STA_DEL)))
544 				time_state = TIME_OK;
545 			break;
546 		}
547 
548 		/*
549 		 * Compute the phase adjustment for the next second. In
550 		 * PLL mode, the offset is reduced by a fixed factor
551 		 * times the time constant. In FLL mode the offset is
552 		 * used directly. In either mode, the maximum phase
553 		 * adjustment for each second is clamped so as to spread
554 		 * the adjustment over not more than the number of
555 		 * seconds between updates.
556 		 */
557 		if (time_offset < 0) {
558 			ltemp = -time_offset;
559 			if (!(time_status & STA_FLL))
560 				ltemp >>= SHIFT_KG + time_constant;
561 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
562 				ltemp = (MAXPHASE / MINSEC) <<
563 				    SHIFT_UPDATE;
564 			time_offset += ltemp;
565 			time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
566 		} else if (time_offset > 0) {
567 			ltemp = time_offset;
568 			if (!(time_status & STA_FLL))
569 				ltemp >>= SHIFT_KG + time_constant;
570 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
571 				ltemp = (MAXPHASE / MINSEC) <<
572 				    SHIFT_UPDATE;
573 			time_offset -= ltemp;
574 			time_adj = ltemp << (shifthz - SHIFT_UPDATE);
575 		} else
576 			time_adj = 0;
577 
578 		/*
579 		 * Compute the frequency estimate and additional phase
580 		 * adjustment due to frequency error for the next
581 		 * second. When the PPS signal is engaged, gnaw on the
582 		 * watchdog counter and update the frequency computed by
583 		 * the pll and the PPS signal.
584 		 */
585 #ifdef PPS_SYNC
586 		pps_valid++;
587 		if (pps_valid == PPS_VALID) {
588 			pps_jitter = MAXTIME;
589 			pps_stabil = MAXFREQ;
590 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
591 			    STA_PPSWANDER | STA_PPSERROR);
592 		}
593 		ltemp = time_freq + pps_freq;
594 #else
595 		ltemp = time_freq;
596 #endif /* PPS_SYNC */
597 
598 		if (ltemp < 0)
599 			time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
600 		else
601 			time_adj += ltemp >> (SHIFT_USEC - shifthz);
602 		time_adj += (long)fixtick << shifthz;
603 
604 		/*
605 		 * When the CPU clock oscillator frequency is not a
606 		 * power of 2 in Hz, shifthz is only an approximate
607 		 * scale factor.
608 		 *
609 		 * To determine the adjustment, you can do the following:
610 		 *   bc -q
611 		 *   scale=24
612 		 *   obase=2
613 		 *   idealhz/realhz
614 		 * where `idealhz' is the next higher power of 2, and `realhz'
615 		 * is the actual value.
616 		 *
617 		 * Likewise, the error can be calculated with (e.g. for 100Hz):
618 		 *   bc -q
619 		 *   scale=24
620 		 *   ((1+2^-2+2^-5)*realhz-idealhz)/idealhz
621 		 * (and then multiply by 100 to get %).
622 		 */
623 		switch (hz) {
624 		case 96:
625 			/* A factor of 1.0101010101 gives about .025% error. */
626 			if (time_adj < 0) {
627 				time_adj -= (-time_adj >> 2);
628 				time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
629 			} else {
630 				time_adj += (time_adj >> 2);
631 				time_adj += (time_adj >> 4) + (time_adj >> 8);
632 			}
633 			break;
634 
635 		case 100:
636 			/* A factor of 1.01001 gives about .1% error. */
637 			if (time_adj < 0)
638 				time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
639 			else
640 				time_adj += (time_adj >> 2) + (time_adj >> 5);
641 			break;
642 
643 		case 60:
644 			/* A factor of 1.00010001 gives about .025% error. */
645 			if (time_adj < 0)
646 				time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
647 			else
648 				time_adj += (time_adj >> 4) + (time_adj >> 8);
649 			break;
650 
651 		case 1000:
652 			 /* A factor of 1.0000011 gives about .055% error. */
653 			if (time_adj < 0)
654 				time_adj -= (-time_adj >> 6) + (-time_adj >> 7);
655 			else
656 				time_adj += (time_adj >> 6) + (time_adj >> 7);
657 			break;
658 		}
659 
660 #ifdef EXT_CLOCK
661 		/*
662 		 * If an external clock is present, it is necessary to
663 		 * discipline the kernel time variable anyway, since not
664 		 * all system components use the microtime() interface.
665 		 * Here, the time offset between the external clock and
666 		 * kernel time variable is computed every so often.
667 		 */
668 		clock_count++;
669 		if (clock_count > CLOCK_INTERVAL) {
670 			clock_count = 0;
671 			microtime(&clock_ext);
672 			delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
673 			delta.tv_usec = clock_ext.tv_usec -
674 			    time.tv_usec;
675 			if (delta.tv_usec < 0)
676 				delta.tv_sec--;
677 			if (delta.tv_usec >= 500000) {
678 				delta.tv_usec -= 1000000;
679 				delta.tv_sec++;
680 			}
681 			if (delta.tv_usec < -500000) {
682 				delta.tv_usec += 1000000;
683 				delta.tv_sec--;
684 			}
685 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
686 			    delta.tv_usec > MAXPHASE) ||
687 			    delta.tv_sec < -1 || (delta.tv_sec == -1 &&
688 			    delta.tv_usec < -MAXPHASE)) {
689 				time = clock_ext;
690 				delta.tv_sec = 0;
691 				delta.tv_usec = 0;
692 			}
693 #ifdef HIGHBALL
694 			clock_cpu = delta.tv_usec;
695 #else /* HIGHBALL */
696 			hardupdate(delta.tv_usec);
697 #endif /* HIGHBALL */
698 		}
699 #endif /* EXT_CLOCK */
700 	}
701 
702 #endif /* NTP */
703 
704 	/*
705 	 * Process callouts at a very low cpu priority, so we don't keep the
706 	 * relatively high clock interrupt priority any longer than necessary.
707 	 */
708 	if (needsoft) {
709 		if (CLKF_BASEPRI(frame)) {
710 			/*
711 			 * Save the overhead of a software interrupt;
712 			 * it will happen as soon as we return, so do it now.
713 			 */
714 			(void)splsoftclock();
715 			softclock();
716 		} else
717 			setsoftclock();
718 	}
719 }
720 
721 /*
722  * Software (low priority) clock interrupt.
723  * Run periodic events from timeout queue.
724  */
725 /*ARGSUSED*/
726 void
727 softclock()
728 {
729 	register struct callout *c;
730 	register void *arg;
731 	register void (*func) __P((void *));
732 	register int s;
733 
734 	s = splhigh();
735 	while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
736 		func = c->c_func;
737 		arg = c->c_arg;
738 		calltodo.c_next = c->c_next;
739 		c->c_next = callfree;
740 		callfree = c;
741 		splx(s);
742 		(*func)(arg);
743 		(void) splhigh();
744 	}
745 	splx(s);
746 }
747 
748 /*
749  * timeout --
750  *	Execute a function after a specified length of time.
751  *
752  * untimeout --
753  *	Cancel previous timeout function call.
754  *
755  *	See AT&T BCI Driver Reference Manual for specification.  This
756  *	implementation differs from that one in that no identification
757  *	value is returned from timeout, rather, the original arguments
758  *	to timeout are used to identify entries for untimeout.
759  */
760 void
761 timeout(ftn, arg, ticks)
762 	void (*ftn) __P((void *));
763 	void *arg;
764 	register int ticks;
765 {
766 	register struct callout *new, *p, *t;
767 	register int s;
768 
769 	if (ticks <= 0)
770 		ticks = 1;
771 
772 	/* Lock out the clock. */
773 	s = splhigh();
774 
775 	/* Fill in the next free callout structure. */
776 	if (callfree == NULL)
777 		panic("timeout table full");
778 	new = callfree;
779 	callfree = new->c_next;
780 	new->c_arg = arg;
781 	new->c_func = ftn;
782 
783 	/*
784 	 * The time for each event is stored as a difference from the time
785 	 * of the previous event on the queue.  Walk the queue, correcting
786 	 * the ticks argument for queue entries passed.  Correct the ticks
787 	 * value for the queue entry immediately after the insertion point
788 	 * as well.  Watch out for negative c_time values; these represent
789 	 * overdue events.
790 	 */
791 	for (p = &calltodo;
792 	    (t = p->c_next) != NULL && ticks > t->c_time; p = t)
793 		if (t->c_time > 0)
794 			ticks -= t->c_time;
795 	new->c_time = ticks;
796 	if (t != NULL)
797 		t->c_time -= ticks;
798 
799 	/* Insert the new entry into the queue. */
800 	p->c_next = new;
801 	new->c_next = t;
802 	splx(s);
803 }
804 
805 void
806 untimeout(ftn, arg)
807 	void (*ftn) __P((void *));
808 	void *arg;
809 {
810 	register struct callout *p, *t;
811 	register int s;
812 
813 	s = splhigh();
814 	for (p = &calltodo; (t = p->c_next) != NULL; p = t)
815 		if (t->c_func == ftn && t->c_arg == arg) {
816 			/* Increment next entry's tick count. */
817 			if (t->c_next && t->c_time > 0)
818 				t->c_next->c_time += t->c_time;
819 
820 			/* Move entry from callout queue to callfree queue. */
821 			p->c_next = t->c_next;
822 			t->c_next = callfree;
823 			callfree = t;
824 			break;
825 		}
826 	splx(s);
827 }
828 
829 /*
830  * Compute number of hz until specified time.  Used to
831  * compute third argument to timeout() from an absolute time.
832  */
833 int
834 hzto(tv)
835 	struct timeval *tv;
836 {
837 	register long ticks, sec;
838 	int s;
839 
840 	/*
841 	 * If number of microseconds will fit in 32 bit arithmetic,
842 	 * then compute number of microseconds to time and scale to
843 	 * ticks.  Otherwise just compute number of hz in time, rounding
844 	 * times greater than representible to maximum value.  (We must
845 	 * compute in microseconds, because hz can be greater than 1000,
846 	 * and thus tick can be less than one millisecond).
847 	 *
848 	 * Delta times less than 14 hours can be computed ``exactly''.
849 	 * (Note that if hz would yeild a non-integral number of us per
850 	 * tick, i.e. tickfix is nonzero, timouts can be a tick longer
851 	 * than they should be.)  Maximum value for any timeout in 10ms
852 	 * ticks is 250 days.
853 	 */
854 	s = splclock();
855 	sec = tv->tv_sec - time.tv_sec;
856 	if (sec <= 0x7fffffff / 1000000 - 1)
857 		ticks = ((tv->tv_sec - time.tv_sec) * 1000000 +
858 			(tv->tv_usec - time.tv_usec)) / tick;
859 	else if (sec <= 0x7fffffff / hz)
860 		ticks = sec * hz;
861 	else
862 		ticks = 0x7fffffff;
863 	splx(s);
864 	return (ticks);
865 }
866 
867 /*
868  * Start profiling on a process.
869  *
870  * Kernel profiling passes proc0 which never exits and hence
871  * keeps the profile clock running constantly.
872  */
873 void
874 startprofclock(p)
875 	register struct proc *p;
876 {
877 	int s;
878 
879 	if ((p->p_flag & P_PROFIL) == 0) {
880 		p->p_flag |= P_PROFIL;
881 		if (++profprocs == 1 && stathz != 0) {
882 			s = splstatclock();
883 			psdiv = pscnt = psratio;
884 			setstatclockrate(profhz);
885 			splx(s);
886 		}
887 	}
888 }
889 
890 /*
891  * Stop profiling on a process.
892  */
893 void
894 stopprofclock(p)
895 	register struct proc *p;
896 {
897 	int s;
898 
899 	if (p->p_flag & P_PROFIL) {
900 		p->p_flag &= ~P_PROFIL;
901 		if (--profprocs == 0 && stathz != 0) {
902 			s = splstatclock();
903 			psdiv = pscnt = 1;
904 			setstatclockrate(stathz);
905 			splx(s);
906 		}
907 	}
908 }
909 
910 /*
911  * Statistics clock.  Grab profile sample, and if divider reaches 0,
912  * do process and kernel statistics.
913  */
914 void
915 statclock(frame)
916 	register struct clockframe *frame;
917 {
918 #ifdef GPROF
919 	register struct gmonparam *g;
920 	register int i;
921 #endif
922 	static int schedclk;
923 	register struct proc *p;
924 
925 	if (CLKF_USERMODE(frame)) {
926 		p = curproc;
927 		if (p->p_flag & P_PROFIL)
928 			addupc_intr(p, CLKF_PC(frame), 1);
929 		if (--pscnt > 0)
930 			return;
931 		/*
932 		 * Came from user mode; CPU was in user state.
933 		 * If this process is being profiled record the tick.
934 		 */
935 		p->p_uticks++;
936 		if (p->p_nice > NZERO)
937 			cp_time[CP_NICE]++;
938 		else
939 			cp_time[CP_USER]++;
940 	} else {
941 #ifdef GPROF
942 		/*
943 		 * Kernel statistics are just like addupc_intr, only easier.
944 		 */
945 		g = &_gmonparam;
946 		if (g->state == GMON_PROF_ON) {
947 			i = CLKF_PC(frame) - g->lowpc;
948 			if (i < g->textsize) {
949 				i /= HISTFRACTION * sizeof(*g->kcount);
950 				g->kcount[i]++;
951 			}
952 		}
953 #endif
954 		if (--pscnt > 0)
955 			return;
956 		/*
957 		 * Came from kernel mode, so we were:
958 		 * - handling an interrupt,
959 		 * - doing syscall or trap work on behalf of the current
960 		 *   user process, or
961 		 * - spinning in the idle loop.
962 		 * Whichever it is, charge the time as appropriate.
963 		 * Note that we charge interrupts to the current process,
964 		 * regardless of whether they are ``for'' that process,
965 		 * so that we know how much of its real time was spent
966 		 * in ``non-process'' (i.e., interrupt) work.
967 		 */
968 		p = curproc;
969 		if (CLKF_INTR(frame)) {
970 			if (p != NULL)
971 				p->p_iticks++;
972 			cp_time[CP_INTR]++;
973 		} else if (p != NULL) {
974 			p->p_sticks++;
975 			cp_time[CP_SYS]++;
976 		} else
977 			cp_time[CP_IDLE]++;
978 	}
979 	pscnt = psdiv;
980 
981 	if (p != NULL) {
982 		++p->p_cpticks;
983 		/*
984 		 * If no schedclock is provided, call it here at ~~12-25 Hz,
985 		 * ~~16 Hz is best
986 		 */
987 		if(schedhz == 0)
988 			if ((++schedclk & 3) == 0)
989 				schedclock(p);
990 	}
991 }
992 
993 
994 #ifdef NTP	/* NTP phase-locked loop in kernel */
995 
996 /*
997  * hardupdate() - local clock update
998  *
999  * This routine is called by ntp_adjtime() to update the local clock
1000  * phase and frequency. The implementation is of an adaptive-parameter,
1001  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1002  * time and frequency offset estimates for each call. If the kernel PPS
1003  * discipline code is configured (PPS_SYNC), the PPS signal itself
1004  * determines the new time offset, instead of the calling argument.
1005  * Presumably, calls to ntp_adjtime() occur only when the caller
1006  * believes the local clock is valid within some bound (+-128 ms with
1007  * NTP). If the caller's time is far different than the PPS time, an
1008  * argument will ensue, and it's not clear who will lose.
1009  *
1010  * For uncompensated quartz crystal oscillatores and nominal update
1011  * intervals less than 1024 s, operation should be in phase-lock mode
1012  * (STA_FLL = 0), where the loop is disciplined to phase. For update
1013  * intervals greater than thiss, operation should be in frequency-lock
1014  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1015  *
1016  * Note: splclock() is in effect.
1017  */
1018 void
1019 hardupdate(offset)
1020 	long offset;
1021 {
1022 	long ltemp, mtemp;
1023 
1024 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1025 		return;
1026 	ltemp = offset;
1027 #ifdef PPS_SYNC
1028 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1029 		ltemp = pps_offset;
1030 #endif /* PPS_SYNC */
1031 
1032 	/*
1033 	 * Scale the phase adjustment and clamp to the operating range.
1034 	 */
1035 	if (ltemp > MAXPHASE)
1036 		time_offset = MAXPHASE << SHIFT_UPDATE;
1037 	else if (ltemp < -MAXPHASE)
1038 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
1039 	else
1040 		time_offset = ltemp << SHIFT_UPDATE;
1041 
1042 	/*
1043 	 * Select whether the frequency is to be controlled and in which
1044 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
1045 	 * multiply/divide should be replaced someday.
1046 	 */
1047 	if (time_status & STA_FREQHOLD || time_reftime == 0)
1048 		time_reftime = time.tv_sec;
1049 	mtemp = time.tv_sec - time_reftime;
1050 	time_reftime = time.tv_sec;
1051 	if (time_status & STA_FLL) {
1052 		if (mtemp >= MINSEC) {
1053 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1054 			    SHIFT_UPDATE));
1055 			if (ltemp < 0)
1056 				time_freq -= -ltemp >> SHIFT_KH;
1057 			else
1058 				time_freq += ltemp >> SHIFT_KH;
1059 		}
1060 	} else {
1061 		if (mtemp < MAXSEC) {
1062 			ltemp *= mtemp;
1063 			if (ltemp < 0)
1064 				time_freq -= -ltemp >> (time_constant +
1065 				    time_constant + SHIFT_KF -
1066 				    SHIFT_USEC);
1067 			else
1068 				time_freq += ltemp >> (time_constant +
1069 				    time_constant + SHIFT_KF -
1070 				    SHIFT_USEC);
1071 		}
1072 	}
1073 	if (time_freq > time_tolerance)
1074 		time_freq = time_tolerance;
1075 	else if (time_freq < -time_tolerance)
1076 		time_freq = -time_tolerance;
1077 }
1078 
1079 #ifdef PPS_SYNC
1080 /*
1081  * hardpps() - discipline CPU clock oscillator to external PPS signal
1082  *
1083  * This routine is called at each PPS interrupt in order to discipline
1084  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1085  * and leaves it in a handy spot for the hardclock() routine. It
1086  * integrates successive PPS phase differences and calculates the
1087  * frequency offset. This is used in hardclock() to discipline the CPU
1088  * clock oscillator so that intrinsic frequency error is cancelled out.
1089  * The code requires the caller to capture the time and hardware counter
1090  * value at the on-time PPS signal transition.
1091  *
1092  * Note that, on some Unix systems, this routine runs at an interrupt
1093  * priority level higher than the timer interrupt routine hardclock().
1094  * Therefore, the variables used are distinct from the hardclock()
1095  * variables, except for certain exceptions: The PPS frequency pps_freq
1096  * and phase pps_offset variables are determined by this routine and
1097  * updated atomically. The time_tolerance variable can be considered a
1098  * constant, since it is infrequently changed, and then only when the
1099  * PPS signal is disabled. The watchdog counter pps_valid is updated
1100  * once per second by hardclock() and is atomically cleared in this
1101  * routine.
1102  */
1103 void
1104 hardpps(tvp, usec)
1105 	struct timeval *tvp;		/* time at PPS */
1106 	long usec;			/* hardware counter at PPS */
1107 {
1108 	long u_usec, v_usec, bigtick;
1109 	long cal_sec, cal_usec;
1110 
1111 	/*
1112 	 * An occasional glitch can be produced when the PPS interrupt
1113 	 * occurs in the hardclock() routine before the time variable is
1114 	 * updated. Here the offset is discarded when the difference
1115 	 * between it and the last one is greater than tick/2, but not
1116 	 * if the interval since the first discard exceeds 30 s.
1117 	 */
1118 	time_status |= STA_PPSSIGNAL;
1119 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1120 	pps_valid = 0;
1121 	u_usec = -tvp->tv_usec;
1122 	if (u_usec < -500000)
1123 		u_usec += 1000000;
1124 	v_usec = pps_offset - u_usec;
1125 	if (v_usec < 0)
1126 		v_usec = -v_usec;
1127 	if (v_usec > (tick >> 1)) {
1128 		if (pps_glitch > MAXGLITCH) {
1129 			pps_glitch = 0;
1130 			pps_tf[2] = u_usec;
1131 			pps_tf[1] = u_usec;
1132 		} else {
1133 			pps_glitch++;
1134 			u_usec = pps_offset;
1135 		}
1136 	} else
1137 		pps_glitch = 0;
1138 
1139 	/*
1140 	 * A three-stage median filter is used to help deglitch the pps
1141 	 * time. The median sample becomes the time offset estimate; the
1142 	 * difference between the other two samples becomes the time
1143 	 * dispersion (jitter) estimate.
1144 	 */
1145 	pps_tf[2] = pps_tf[1];
1146 	pps_tf[1] = pps_tf[0];
1147 	pps_tf[0] = u_usec;
1148 	if (pps_tf[0] > pps_tf[1]) {
1149 		if (pps_tf[1] > pps_tf[2]) {
1150 			pps_offset = pps_tf[1];		/* 0 1 2 */
1151 			v_usec = pps_tf[0] - pps_tf[2];
1152 		} else if (pps_tf[2] > pps_tf[0]) {
1153 			pps_offset = pps_tf[0];		/* 2 0 1 */
1154 			v_usec = pps_tf[2] - pps_tf[1];
1155 		} else {
1156 			pps_offset = pps_tf[2];		/* 0 2 1 */
1157 			v_usec = pps_tf[0] - pps_tf[1];
1158 		}
1159 	} else {
1160 		if (pps_tf[1] < pps_tf[2]) {
1161 			pps_offset = pps_tf[1];		/* 2 1 0 */
1162 			v_usec = pps_tf[2] - pps_tf[0];
1163 		} else  if (pps_tf[2] < pps_tf[0]) {
1164 			pps_offset = pps_tf[0];		/* 1 0 2 */
1165 			v_usec = pps_tf[1] - pps_tf[2];
1166 		} else {
1167 			pps_offset = pps_tf[2];		/* 1 2 0 */
1168 			v_usec = pps_tf[1] - pps_tf[0];
1169 		}
1170 	}
1171 	if (v_usec > MAXTIME)
1172 		pps_jitcnt++;
1173 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
1174 	if (v_usec < 0)
1175 		pps_jitter -= -v_usec >> PPS_AVG;
1176 	else
1177 		pps_jitter += v_usec >> PPS_AVG;
1178 	if (pps_jitter > (MAXTIME >> 1))
1179 		time_status |= STA_PPSJITTER;
1180 
1181 	/*
1182 	 * During the calibration interval adjust the starting time when
1183 	 * the tick overflows. At the end of the interval compute the
1184 	 * duration of the interval and the difference of the hardware
1185 	 * counters at the beginning and end of the interval. This code
1186 	 * is deliciously complicated by the fact valid differences may
1187 	 * exceed the value of tick when using long calibration
1188 	 * intervals and small ticks. Note that the counter can be
1189 	 * greater than tick if caught at just the wrong instant, but
1190 	 * the values returned and used here are correct.
1191 	 */
1192 	bigtick = (long)tick << SHIFT_USEC;
1193 	pps_usec -= pps_freq;
1194 	if (pps_usec >= bigtick)
1195 		pps_usec -= bigtick;
1196 	if (pps_usec < 0)
1197 		pps_usec += bigtick;
1198 	pps_time.tv_sec++;
1199 	pps_count++;
1200 	if (pps_count < (1 << pps_shift))
1201 		return;
1202 	pps_count = 0;
1203 	pps_calcnt++;
1204 	u_usec = usec << SHIFT_USEC;
1205 	v_usec = pps_usec - u_usec;
1206 	if (v_usec >= bigtick >> 1)
1207 		v_usec -= bigtick;
1208 	if (v_usec < -(bigtick >> 1))
1209 		v_usec += bigtick;
1210 	if (v_usec < 0)
1211 		v_usec = -(-v_usec >> pps_shift);
1212 	else
1213 		v_usec = v_usec >> pps_shift;
1214 	pps_usec = u_usec;
1215 	cal_sec = tvp->tv_sec;
1216 	cal_usec = tvp->tv_usec;
1217 	cal_sec -= pps_time.tv_sec;
1218 	cal_usec -= pps_time.tv_usec;
1219 	if (cal_usec < 0) {
1220 		cal_usec += 1000000;
1221 		cal_sec--;
1222 	}
1223 	pps_time = *tvp;
1224 
1225 	/*
1226 	 * Check for lost interrupts, noise, excessive jitter and
1227 	 * excessive frequency error. The number of timer ticks during
1228 	 * the interval may vary +-1 tick. Add to this a margin of one
1229 	 * tick for the PPS signal jitter and maximum frequency
1230 	 * deviation. If the limits are exceeded, the calibration
1231 	 * interval is reset to the minimum and we start over.
1232 	 */
1233 	u_usec = (long)tick << 1;
1234 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1235 	    || (cal_sec == 0 && cal_usec < u_usec))
1236 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
1237 		pps_errcnt++;
1238 		pps_shift = PPS_SHIFT;
1239 		pps_intcnt = 0;
1240 		time_status |= STA_PPSERROR;
1241 		return;
1242 	}
1243 
1244 	/*
1245 	 * A three-stage median filter is used to help deglitch the pps
1246 	 * frequency. The median sample becomes the frequency offset
1247 	 * estimate; the difference between the other two samples
1248 	 * becomes the frequency dispersion (stability) estimate.
1249 	 */
1250 	pps_ff[2] = pps_ff[1];
1251 	pps_ff[1] = pps_ff[0];
1252 	pps_ff[0] = v_usec;
1253 	if (pps_ff[0] > pps_ff[1]) {
1254 		if (pps_ff[1] > pps_ff[2]) {
1255 			u_usec = pps_ff[1];		/* 0 1 2 */
1256 			v_usec = pps_ff[0] - pps_ff[2];
1257 		} else if (pps_ff[2] > pps_ff[0]) {
1258 			u_usec = pps_ff[0];		/* 2 0 1 */
1259 			v_usec = pps_ff[2] - pps_ff[1];
1260 		} else {
1261 			u_usec = pps_ff[2];		/* 0 2 1 */
1262 			v_usec = pps_ff[0] - pps_ff[1];
1263 		}
1264 	} else {
1265 		if (pps_ff[1] < pps_ff[2]) {
1266 			u_usec = pps_ff[1];		/* 2 1 0 */
1267 			v_usec = pps_ff[2] - pps_ff[0];
1268 		} else  if (pps_ff[2] < pps_ff[0]) {
1269 			u_usec = pps_ff[0];		/* 1 0 2 */
1270 			v_usec = pps_ff[1] - pps_ff[2];
1271 		} else {
1272 			u_usec = pps_ff[2];		/* 1 2 0 */
1273 			v_usec = pps_ff[1] - pps_ff[0];
1274 		}
1275 	}
1276 
1277 	/*
1278 	 * Here the frequency dispersion (stability) is updated. If it
1279 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
1280 	 * offset is updated as well, but clamped to the tolerance. It
1281 	 * will be processed later by the hardclock() routine.
1282 	 */
1283 	v_usec = (v_usec >> 1) - pps_stabil;
1284 	if (v_usec < 0)
1285 		pps_stabil -= -v_usec >> PPS_AVG;
1286 	else
1287 		pps_stabil += v_usec >> PPS_AVG;
1288 	if (pps_stabil > MAXFREQ >> 2) {
1289 		pps_stbcnt++;
1290 		time_status |= STA_PPSWANDER;
1291 		return;
1292 	}
1293 	if (time_status & STA_PPSFREQ) {
1294 		if (u_usec < 0) {
1295 			pps_freq -= -u_usec >> PPS_AVG;
1296 			if (pps_freq < -time_tolerance)
1297 				pps_freq = -time_tolerance;
1298 			u_usec = -u_usec;
1299 		} else {
1300 			pps_freq += u_usec >> PPS_AVG;
1301 			if (pps_freq > time_tolerance)
1302 				pps_freq = time_tolerance;
1303 		}
1304 	}
1305 
1306 	/*
1307 	 * Here the calibration interval is adjusted. If the maximum
1308 	 * time difference is greater than tick / 4, reduce the interval
1309 	 * by half. If this is not the case for four consecutive
1310 	 * intervals, double the interval.
1311 	 */
1312 	if (u_usec << pps_shift > bigtick >> 2) {
1313 		pps_intcnt = 0;
1314 		if (pps_shift > PPS_SHIFT)
1315 			pps_shift--;
1316 	} else if (pps_intcnt >= 4) {
1317 		pps_intcnt = 0;
1318 		if (pps_shift < PPS_SHIFTMAX)
1319 			pps_shift++;
1320 	} else
1321 		pps_intcnt++;
1322 }
1323 #endif /* PPS_SYNC */
1324 #endif /* NTP  */
1325 
1326 
1327 /*
1328  * Return information about system clocks.
1329  */
1330 int
1331 sysctl_clockrate(where, sizep)
1332 	register char *where;
1333 	size_t *sizep;
1334 {
1335 	struct clockinfo clkinfo;
1336 
1337 	/*
1338 	 * Construct clockinfo structure.
1339 	 */
1340 	clkinfo.tick = tick;
1341 	clkinfo.tickadj = tickadj;
1342 	clkinfo.hz = hz;
1343 	clkinfo.profhz = profhz;
1344 	clkinfo.stathz = stathz ? stathz : hz;
1345 	return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1346 }
1347 
1348