1 /* $NetBSD: kern_clock.c,v 1.47 1999/02/28 18:14:57 ross Exp $ */ 2 3 /*- 4 * Copyright (c) 1982, 1986, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 41 */ 42 43 #include "opt_ntp.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/dkstat.h> 48 #include <sys/callout.h> 49 #include <sys/kernel.h> 50 #include <sys/proc.h> 51 #include <sys/resourcevar.h> 52 #include <sys/signalvar.h> 53 #include <vm/vm.h> 54 #include <sys/sysctl.h> 55 #include <sys/timex.h> 56 #include <sys/sched.h> 57 58 #include <machine/cpu.h> 59 60 #ifdef GPROF 61 #include <sys/gmon.h> 62 #endif 63 64 /* 65 * Clock handling routines. 66 * 67 * This code is written to operate with two timers that run independently of 68 * each other. The main clock, running hz times per second, is used to keep 69 * track of real time. The second timer handles kernel and user profiling, 70 * and does resource use estimation. If the second timer is programmable, 71 * it is randomized to avoid aliasing between the two clocks. For example, 72 * the randomization prevents an adversary from always giving up the cpu 73 * just before its quantum expires. Otherwise, it would never accumulate 74 * cpu ticks. The mean frequency of the second timer is stathz. 75 * 76 * If no second timer exists, stathz will be zero; in this case we drive 77 * profiling and statistics off the main clock. This WILL NOT be accurate; 78 * do not do it unless absolutely necessary. 79 * 80 * The statistics clock may (or may not) be run at a higher rate while 81 * profiling. This profile clock runs at profhz. We require that profhz 82 * be an integral multiple of stathz. 83 * 84 * If the statistics clock is running fast, it must be divided by the ratio 85 * profhz/stathz for statistics. (For profiling, every tick counts.) 86 */ 87 88 /* 89 * TODO: 90 * allocate more timeout table slots when table overflows. 91 */ 92 93 94 #ifdef NTP /* NTP phase-locked loop in kernel */ 95 /* 96 * Phase/frequency-lock loop (PLL/FLL) definitions 97 * 98 * The following variables are read and set by the ntp_adjtime() system 99 * call. 100 * 101 * time_state shows the state of the system clock, with values defined 102 * in the timex.h header file. 103 * 104 * time_status shows the status of the system clock, with bits defined 105 * in the timex.h header file. 106 * 107 * time_offset is used by the PLL/FLL to adjust the system time in small 108 * increments. 109 * 110 * time_constant determines the bandwidth or "stiffness" of the PLL. 111 * 112 * time_tolerance determines maximum frequency error or tolerance of the 113 * CPU clock oscillator and is a property of the architecture; however, 114 * in principle it could change as result of the presence of external 115 * discipline signals, for instance. 116 * 117 * time_precision is usually equal to the kernel tick variable; however, 118 * in cases where a precision clock counter or external clock is 119 * available, the resolution can be much less than this and depend on 120 * whether the external clock is working or not. 121 * 122 * time_maxerror is initialized by a ntp_adjtime() call and increased by 123 * the kernel once each second to reflect the maximum error bound 124 * growth. 125 * 126 * time_esterror is set and read by the ntp_adjtime() call, but 127 * otherwise not used by the kernel. 128 */ 129 int time_state = TIME_OK; /* clock state */ 130 int time_status = STA_UNSYNC; /* clock status bits */ 131 long time_offset = 0; /* time offset (us) */ 132 long time_constant = 0; /* pll time constant */ 133 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 134 long time_precision = 1; /* clock precision (us) */ 135 long time_maxerror = MAXPHASE; /* maximum error (us) */ 136 long time_esterror = MAXPHASE; /* estimated error (us) */ 137 138 /* 139 * The following variables establish the state of the PLL/FLL and the 140 * residual time and frequency offset of the local clock. The scale 141 * factors are defined in the timex.h header file. 142 * 143 * time_phase and time_freq are the phase increment and the frequency 144 * increment, respectively, of the kernel time variable. 145 * 146 * time_freq is set via ntp_adjtime() from a value stored in a file when 147 * the synchronization daemon is first started. Its value is retrieved 148 * via ntp_adjtime() and written to the file about once per hour by the 149 * daemon. 150 * 151 * time_adj is the adjustment added to the value of tick at each timer 152 * interrupt and is recomputed from time_phase and time_freq at each 153 * seconds rollover. 154 * 155 * time_reftime is the second's portion of the system time at the last 156 * call to ntp_adjtime(). It is used to adjust the time_freq variable 157 * and to increase the time_maxerror as the time since last update 158 * increases. 159 */ 160 long time_phase = 0; /* phase offset (scaled us) */ 161 long time_freq = 0; /* frequency offset (scaled ppm) */ 162 long time_adj = 0; /* tick adjust (scaled 1 / hz) */ 163 long time_reftime = 0; /* time at last adjustment (s) */ 164 165 #ifdef PPS_SYNC 166 /* 167 * The following variables are used only if the kernel PPS discipline 168 * code is configured (PPS_SYNC). The scale factors are defined in the 169 * timex.h header file. 170 * 171 * pps_time contains the time at each calibration interval, as read by 172 * microtime(). pps_count counts the seconds of the calibration 173 * interval, the duration of which is nominally pps_shift in powers of 174 * two. 175 * 176 * pps_offset is the time offset produced by the time median filter 177 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 178 * this filter. 179 * 180 * pps_freq is the frequency offset produced by the frequency median 181 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 182 * by this filter. 183 * 184 * pps_usec is latched from a high resolution counter or external clock 185 * at pps_time. Here we want the hardware counter contents only, not the 186 * contents plus the time_tv.usec as usual. 187 * 188 * pps_valid counts the number of seconds since the last PPS update. It 189 * is used as a watchdog timer to disable the PPS discipline should the 190 * PPS signal be lost. 191 * 192 * pps_glitch counts the number of seconds since the beginning of an 193 * offset burst more than tick/2 from current nominal offset. It is used 194 * mainly to suppress error bursts due to priority conflicts between the 195 * PPS interrupt and timer interrupt. 196 * 197 * pps_intcnt counts the calibration intervals for use in the interval- 198 * adaptation algorithm. It's just too complicated for words. 199 */ 200 struct timeval pps_time; /* kernel time at last interval */ 201 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 202 long pps_offset = 0; /* pps time offset (us) */ 203 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 204 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 205 long pps_freq = 0; /* frequency offset (scaled ppm) */ 206 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 207 long pps_usec = 0; /* microsec counter at last interval */ 208 long pps_valid = PPS_VALID; /* pps signal watchdog counter */ 209 int pps_glitch = 0; /* pps signal glitch counter */ 210 int pps_count = 0; /* calibration interval counter (s) */ 211 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 212 int pps_intcnt = 0; /* intervals at current duration */ 213 214 /* 215 * PPS signal quality monitors 216 * 217 * pps_jitcnt counts the seconds that have been discarded because the 218 * jitter measured by the time median filter exceeds the limit MAXTIME 219 * (100 us). 220 * 221 * pps_calcnt counts the frequency calibration intervals, which are 222 * variable from 4 s to 256 s. 223 * 224 * pps_errcnt counts the calibration intervals which have been discarded 225 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 226 * calibration interval jitter exceeds two ticks. 227 * 228 * pps_stbcnt counts the calibration intervals that have been discarded 229 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 230 */ 231 long pps_jitcnt = 0; /* jitter limit exceeded */ 232 long pps_calcnt = 0; /* calibration intervals */ 233 long pps_errcnt = 0; /* calibration errors */ 234 long pps_stbcnt = 0; /* stability limit exceeded */ 235 #endif /* PPS_SYNC */ 236 237 #ifdef EXT_CLOCK 238 /* 239 * External clock definitions 240 * 241 * The following definitions and declarations are used only if an 242 * external clock is configured on the system. 243 */ 244 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */ 245 246 /* 247 * The clock_count variable is set to CLOCK_INTERVAL at each PPS 248 * interrupt and decremented once each second. 249 */ 250 int clock_count = 0; /* CPU clock counter */ 251 252 #ifdef HIGHBALL 253 /* 254 * The clock_offset and clock_cpu variables are used by the HIGHBALL 255 * interface. The clock_offset variable defines the offset between 256 * system time and the HIGBALL counters. The clock_cpu variable contains 257 * the offset between the system clock and the HIGHBALL clock for use in 258 * disciplining the kernel time variable. 259 */ 260 extern struct timeval clock_offset; /* Highball clock offset */ 261 long clock_cpu = 0; /* CPU clock adjust */ 262 #endif /* HIGHBALL */ 263 #endif /* EXT_CLOCK */ 264 #endif /* NTP */ 265 266 267 /* 268 * Bump a timeval by a small number of usec's. 269 */ 270 #define BUMPTIME(t, usec) { \ 271 register volatile struct timeval *tp = (t); \ 272 register long us; \ 273 \ 274 tp->tv_usec = us = tp->tv_usec + (usec); \ 275 if (us >= 1000000) { \ 276 tp->tv_usec = us - 1000000; \ 277 tp->tv_sec++; \ 278 } \ 279 } 280 281 int stathz; 282 int profhz; 283 int profprocs; 284 int ticks; 285 static int psdiv, pscnt; /* prof => stat divider */ 286 int psratio; /* ratio: prof / stat */ 287 int tickfix, tickfixinterval; /* used if tick not really integral */ 288 #ifndef NTP 289 static int tickfixcnt; /* accumulated fractional error */ 290 #else 291 int fixtick; /* used by NTP for same */ 292 int shifthz; 293 #endif 294 295 volatile struct timeval time; 296 volatile struct timeval mono_time; 297 298 /* 299 * Initialize clock frequencies and start both clocks running. 300 */ 301 void 302 initclocks() 303 { 304 register int i; 305 306 /* 307 * Set divisors to 1 (normal case) and let the machine-specific 308 * code do its bit. 309 */ 310 psdiv = pscnt = 1; 311 cpu_initclocks(); 312 313 /* 314 * Compute profhz/stathz, and fix profhz if needed. 315 */ 316 i = stathz ? stathz : hz; 317 if (profhz == 0) 318 profhz = i; 319 psratio = profhz / i; 320 321 #ifdef NTP 322 switch (hz) { 323 case 60: 324 case 64: 325 shifthz = SHIFT_SCALE - 6; 326 break; 327 case 96: 328 case 100: 329 case 128: 330 shifthz = SHIFT_SCALE - 7; 331 break; 332 case 256: 333 shifthz = SHIFT_SCALE - 8; 334 break; 335 case 512: 336 shifthz = SHIFT_SCALE - 9; 337 break; 338 case 1000: 339 case 1024: 340 shifthz = SHIFT_SCALE - 10; 341 break; 342 default: 343 panic("weird hz"); 344 } 345 #endif 346 } 347 348 /* 349 * The real-time timer, interrupting hz times per second. 350 */ 351 void 352 hardclock(frame) 353 register struct clockframe *frame; 354 { 355 register struct callout *p1; 356 register struct proc *p; 357 register int delta, needsoft; 358 extern int tickdelta; 359 extern long timedelta; 360 #ifdef NTP 361 register int time_update; 362 register int ltemp; 363 #endif 364 365 /* 366 * Update real-time timeout queue. 367 * At front of queue are some number of events which are ``due''. 368 * The time to these is <= 0 and if negative represents the 369 * number of ticks which have passed since it was supposed to happen. 370 * The rest of the q elements (times > 0) are events yet to happen, 371 * where the time for each is given as a delta from the previous. 372 * Decrementing just the first of these serves to decrement the time 373 * to all events. 374 */ 375 needsoft = 0; 376 for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) { 377 if (--p1->c_time > 0) 378 break; 379 needsoft = 1; 380 if (p1->c_time == 0) 381 break; 382 } 383 384 p = curproc; 385 if (p) { 386 register struct pstats *pstats; 387 388 /* 389 * Run current process's virtual and profile time, as needed. 390 */ 391 pstats = p->p_stats; 392 if (CLKF_USERMODE(frame) && 393 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 394 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 395 psignal(p, SIGVTALRM); 396 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) && 397 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 398 psignal(p, SIGPROF); 399 } 400 401 /* 402 * If no separate statistics clock is available, run it from here. 403 */ 404 if (stathz == 0) 405 statclock(frame); 406 407 /* 408 * Increment the time-of-day. The increment is normally just 409 * ``tick''. If the machine is one which has a clock frequency 410 * such that ``hz'' would not divide the second evenly into 411 * milliseconds, a periodic adjustment must be applied. Finally, 412 * if we are still adjusting the time (see adjtime()), 413 * ``tickdelta'' may also be added in. 414 */ 415 ticks++; 416 delta = tick; 417 418 #ifndef NTP 419 if (tickfix) { 420 tickfixcnt += tickfix; 421 if (tickfixcnt >= tickfixinterval) { 422 delta++; 423 tickfixcnt -= tickfixinterval; 424 } 425 } 426 #endif /* !NTP */ 427 /* Imprecise 4bsd adjtime() handling */ 428 if (timedelta != 0) { 429 delta += tickdelta; 430 timedelta -= tickdelta; 431 } 432 433 #ifdef notyet 434 microset(); 435 #endif 436 437 #ifndef NTP 438 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */ 439 #endif 440 BUMPTIME(&mono_time, delta); 441 442 #ifdef NTP 443 time_update = delta; 444 445 /* 446 * Compute the phase adjustment. If the low-order bits 447 * (time_phase) of the update overflow, bump the high-order bits 448 * (time_update). 449 */ 450 time_phase += time_adj; 451 if (time_phase <= -FINEUSEC) { 452 ltemp = -time_phase >> SHIFT_SCALE; 453 time_phase += ltemp << SHIFT_SCALE; 454 time_update -= ltemp; 455 } else if (time_phase >= FINEUSEC) { 456 ltemp = time_phase >> SHIFT_SCALE; 457 time_phase -= ltemp << SHIFT_SCALE; 458 time_update += ltemp; 459 } 460 461 #ifdef HIGHBALL 462 /* 463 * If the HIGHBALL board is installed, we need to adjust the 464 * external clock offset in order to close the hardware feedback 465 * loop. This will adjust the external clock phase and frequency 466 * in small amounts. The additional phase noise and frequency 467 * wander this causes should be minimal. We also need to 468 * discipline the kernel time variable, since the PLL is used to 469 * discipline the external clock. If the Highball board is not 470 * present, we discipline kernel time with the PLL as usual. We 471 * assume that the external clock phase adjustment (time_update) 472 * and kernel phase adjustment (clock_cpu) are less than the 473 * value of tick. 474 */ 475 clock_offset.tv_usec += time_update; 476 if (clock_offset.tv_usec >= 1000000) { 477 clock_offset.tv_sec++; 478 clock_offset.tv_usec -= 1000000; 479 } 480 if (clock_offset.tv_usec < 0) { 481 clock_offset.tv_sec--; 482 clock_offset.tv_usec += 1000000; 483 } 484 time.tv_usec += clock_cpu; 485 clock_cpu = 0; 486 #else 487 time.tv_usec += time_update; 488 #endif /* HIGHBALL */ 489 490 /* 491 * On rollover of the second the phase adjustment to be used for 492 * the next second is calculated. Also, the maximum error is 493 * increased by the tolerance. If the PPS frequency discipline 494 * code is present, the phase is increased to compensate for the 495 * CPU clock oscillator frequency error. 496 * 497 * On a 32-bit machine and given parameters in the timex.h 498 * header file, the maximum phase adjustment is +-512 ms and 499 * maximum frequency offset is a tad less than) +-512 ppm. On a 500 * 64-bit machine, you shouldn't need to ask. 501 */ 502 if (time.tv_usec >= 1000000) { 503 time.tv_usec -= 1000000; 504 time.tv_sec++; 505 time_maxerror += time_tolerance >> SHIFT_USEC; 506 507 /* 508 * Leap second processing. If in leap-insert state at 509 * the end of the day, the system clock is set back one 510 * second; if in leap-delete state, the system clock is 511 * set ahead one second. The microtime() routine or 512 * external clock driver will insure that reported time 513 * is always monotonic. The ugly divides should be 514 * replaced. 515 */ 516 switch (time_state) { 517 case TIME_OK: 518 if (time_status & STA_INS) 519 time_state = TIME_INS; 520 else if (time_status & STA_DEL) 521 time_state = TIME_DEL; 522 break; 523 524 case TIME_INS: 525 if (time.tv_sec % 86400 == 0) { 526 time.tv_sec--; 527 time_state = TIME_OOP; 528 } 529 break; 530 531 case TIME_DEL: 532 if ((time.tv_sec + 1) % 86400 == 0) { 533 time.tv_sec++; 534 time_state = TIME_WAIT; 535 } 536 break; 537 538 case TIME_OOP: 539 time_state = TIME_WAIT; 540 break; 541 542 case TIME_WAIT: 543 if (!(time_status & (STA_INS | STA_DEL))) 544 time_state = TIME_OK; 545 break; 546 } 547 548 /* 549 * Compute the phase adjustment for the next second. In 550 * PLL mode, the offset is reduced by a fixed factor 551 * times the time constant. In FLL mode the offset is 552 * used directly. In either mode, the maximum phase 553 * adjustment for each second is clamped so as to spread 554 * the adjustment over not more than the number of 555 * seconds between updates. 556 */ 557 if (time_offset < 0) { 558 ltemp = -time_offset; 559 if (!(time_status & STA_FLL)) 560 ltemp >>= SHIFT_KG + time_constant; 561 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 562 ltemp = (MAXPHASE / MINSEC) << 563 SHIFT_UPDATE; 564 time_offset += ltemp; 565 time_adj = -ltemp << (shifthz - SHIFT_UPDATE); 566 } else if (time_offset > 0) { 567 ltemp = time_offset; 568 if (!(time_status & STA_FLL)) 569 ltemp >>= SHIFT_KG + time_constant; 570 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 571 ltemp = (MAXPHASE / MINSEC) << 572 SHIFT_UPDATE; 573 time_offset -= ltemp; 574 time_adj = ltemp << (shifthz - SHIFT_UPDATE); 575 } else 576 time_adj = 0; 577 578 /* 579 * Compute the frequency estimate and additional phase 580 * adjustment due to frequency error for the next 581 * second. When the PPS signal is engaged, gnaw on the 582 * watchdog counter and update the frequency computed by 583 * the pll and the PPS signal. 584 */ 585 #ifdef PPS_SYNC 586 pps_valid++; 587 if (pps_valid == PPS_VALID) { 588 pps_jitter = MAXTIME; 589 pps_stabil = MAXFREQ; 590 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 591 STA_PPSWANDER | STA_PPSERROR); 592 } 593 ltemp = time_freq + pps_freq; 594 #else 595 ltemp = time_freq; 596 #endif /* PPS_SYNC */ 597 598 if (ltemp < 0) 599 time_adj -= -ltemp >> (SHIFT_USEC - shifthz); 600 else 601 time_adj += ltemp >> (SHIFT_USEC - shifthz); 602 time_adj += (long)fixtick << shifthz; 603 604 /* 605 * When the CPU clock oscillator frequency is not a 606 * power of 2 in Hz, shifthz is only an approximate 607 * scale factor. 608 * 609 * To determine the adjustment, you can do the following: 610 * bc -q 611 * scale=24 612 * obase=2 613 * idealhz/realhz 614 * where `idealhz' is the next higher power of 2, and `realhz' 615 * is the actual value. 616 * 617 * Likewise, the error can be calculated with (e.g. for 100Hz): 618 * bc -q 619 * scale=24 620 * ((1+2^-2+2^-5)*realhz-idealhz)/idealhz 621 * (and then multiply by 100 to get %). 622 */ 623 switch (hz) { 624 case 96: 625 /* A factor of 1.0101010101 gives about .025% error. */ 626 if (time_adj < 0) { 627 time_adj -= (-time_adj >> 2); 628 time_adj -= (-time_adj >> 4) + (-time_adj >> 8); 629 } else { 630 time_adj += (time_adj >> 2); 631 time_adj += (time_adj >> 4) + (time_adj >> 8); 632 } 633 break; 634 635 case 100: 636 /* A factor of 1.01001 gives about .1% error. */ 637 if (time_adj < 0) 638 time_adj -= (-time_adj >> 2) + (-time_adj >> 5); 639 else 640 time_adj += (time_adj >> 2) + (time_adj >> 5); 641 break; 642 643 case 60: 644 /* A factor of 1.00010001 gives about .025% error. */ 645 if (time_adj < 0) 646 time_adj -= (-time_adj >> 4) + (-time_adj >> 8); 647 else 648 time_adj += (time_adj >> 4) + (time_adj >> 8); 649 break; 650 651 case 1000: 652 /* A factor of 1.0000011 gives about .055% error. */ 653 if (time_adj < 0) 654 time_adj -= (-time_adj >> 6) + (-time_adj >> 7); 655 else 656 time_adj += (time_adj >> 6) + (time_adj >> 7); 657 break; 658 } 659 660 #ifdef EXT_CLOCK 661 /* 662 * If an external clock is present, it is necessary to 663 * discipline the kernel time variable anyway, since not 664 * all system components use the microtime() interface. 665 * Here, the time offset between the external clock and 666 * kernel time variable is computed every so often. 667 */ 668 clock_count++; 669 if (clock_count > CLOCK_INTERVAL) { 670 clock_count = 0; 671 microtime(&clock_ext); 672 delta.tv_sec = clock_ext.tv_sec - time.tv_sec; 673 delta.tv_usec = clock_ext.tv_usec - 674 time.tv_usec; 675 if (delta.tv_usec < 0) 676 delta.tv_sec--; 677 if (delta.tv_usec >= 500000) { 678 delta.tv_usec -= 1000000; 679 delta.tv_sec++; 680 } 681 if (delta.tv_usec < -500000) { 682 delta.tv_usec += 1000000; 683 delta.tv_sec--; 684 } 685 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 686 delta.tv_usec > MAXPHASE) || 687 delta.tv_sec < -1 || (delta.tv_sec == -1 && 688 delta.tv_usec < -MAXPHASE)) { 689 time = clock_ext; 690 delta.tv_sec = 0; 691 delta.tv_usec = 0; 692 } 693 #ifdef HIGHBALL 694 clock_cpu = delta.tv_usec; 695 #else /* HIGHBALL */ 696 hardupdate(delta.tv_usec); 697 #endif /* HIGHBALL */ 698 } 699 #endif /* EXT_CLOCK */ 700 } 701 702 #endif /* NTP */ 703 704 /* 705 * Process callouts at a very low cpu priority, so we don't keep the 706 * relatively high clock interrupt priority any longer than necessary. 707 */ 708 if (needsoft) { 709 if (CLKF_BASEPRI(frame)) { 710 /* 711 * Save the overhead of a software interrupt; 712 * it will happen as soon as we return, so do it now. 713 */ 714 (void)splsoftclock(); 715 softclock(); 716 } else 717 setsoftclock(); 718 } 719 } 720 721 /* 722 * Software (low priority) clock interrupt. 723 * Run periodic events from timeout queue. 724 */ 725 /*ARGSUSED*/ 726 void 727 softclock() 728 { 729 register struct callout *c; 730 register void *arg; 731 register void (*func) __P((void *)); 732 register int s; 733 734 s = splhigh(); 735 while ((c = calltodo.c_next) != NULL && c->c_time <= 0) { 736 func = c->c_func; 737 arg = c->c_arg; 738 calltodo.c_next = c->c_next; 739 c->c_next = callfree; 740 callfree = c; 741 splx(s); 742 (*func)(arg); 743 (void) splhigh(); 744 } 745 splx(s); 746 } 747 748 /* 749 * timeout -- 750 * Execute a function after a specified length of time. 751 * 752 * untimeout -- 753 * Cancel previous timeout function call. 754 * 755 * See AT&T BCI Driver Reference Manual for specification. This 756 * implementation differs from that one in that no identification 757 * value is returned from timeout, rather, the original arguments 758 * to timeout are used to identify entries for untimeout. 759 */ 760 void 761 timeout(ftn, arg, ticks) 762 void (*ftn) __P((void *)); 763 void *arg; 764 register int ticks; 765 { 766 register struct callout *new, *p, *t; 767 register int s; 768 769 if (ticks <= 0) 770 ticks = 1; 771 772 /* Lock out the clock. */ 773 s = splhigh(); 774 775 /* Fill in the next free callout structure. */ 776 if (callfree == NULL) 777 panic("timeout table full"); 778 new = callfree; 779 callfree = new->c_next; 780 new->c_arg = arg; 781 new->c_func = ftn; 782 783 /* 784 * The time for each event is stored as a difference from the time 785 * of the previous event on the queue. Walk the queue, correcting 786 * the ticks argument for queue entries passed. Correct the ticks 787 * value for the queue entry immediately after the insertion point 788 * as well. Watch out for negative c_time values; these represent 789 * overdue events. 790 */ 791 for (p = &calltodo; 792 (t = p->c_next) != NULL && ticks > t->c_time; p = t) 793 if (t->c_time > 0) 794 ticks -= t->c_time; 795 new->c_time = ticks; 796 if (t != NULL) 797 t->c_time -= ticks; 798 799 /* Insert the new entry into the queue. */ 800 p->c_next = new; 801 new->c_next = t; 802 splx(s); 803 } 804 805 void 806 untimeout(ftn, arg) 807 void (*ftn) __P((void *)); 808 void *arg; 809 { 810 register struct callout *p, *t; 811 register int s; 812 813 s = splhigh(); 814 for (p = &calltodo; (t = p->c_next) != NULL; p = t) 815 if (t->c_func == ftn && t->c_arg == arg) { 816 /* Increment next entry's tick count. */ 817 if (t->c_next && t->c_time > 0) 818 t->c_next->c_time += t->c_time; 819 820 /* Move entry from callout queue to callfree queue. */ 821 p->c_next = t->c_next; 822 t->c_next = callfree; 823 callfree = t; 824 break; 825 } 826 splx(s); 827 } 828 829 /* 830 * Compute number of hz until specified time. Used to 831 * compute third argument to timeout() from an absolute time. 832 */ 833 int 834 hzto(tv) 835 struct timeval *tv; 836 { 837 register long ticks, sec; 838 int s; 839 840 /* 841 * If number of microseconds will fit in 32 bit arithmetic, 842 * then compute number of microseconds to time and scale to 843 * ticks. Otherwise just compute number of hz in time, rounding 844 * times greater than representible to maximum value. (We must 845 * compute in microseconds, because hz can be greater than 1000, 846 * and thus tick can be less than one millisecond). 847 * 848 * Delta times less than 14 hours can be computed ``exactly''. 849 * (Note that if hz would yeild a non-integral number of us per 850 * tick, i.e. tickfix is nonzero, timouts can be a tick longer 851 * than they should be.) Maximum value for any timeout in 10ms 852 * ticks is 250 days. 853 */ 854 s = splclock(); 855 sec = tv->tv_sec - time.tv_sec; 856 if (sec <= 0x7fffffff / 1000000 - 1) 857 ticks = ((tv->tv_sec - time.tv_sec) * 1000000 + 858 (tv->tv_usec - time.tv_usec)) / tick; 859 else if (sec <= 0x7fffffff / hz) 860 ticks = sec * hz; 861 else 862 ticks = 0x7fffffff; 863 splx(s); 864 return (ticks); 865 } 866 867 /* 868 * Start profiling on a process. 869 * 870 * Kernel profiling passes proc0 which never exits and hence 871 * keeps the profile clock running constantly. 872 */ 873 void 874 startprofclock(p) 875 register struct proc *p; 876 { 877 int s; 878 879 if ((p->p_flag & P_PROFIL) == 0) { 880 p->p_flag |= P_PROFIL; 881 if (++profprocs == 1 && stathz != 0) { 882 s = splstatclock(); 883 psdiv = pscnt = psratio; 884 setstatclockrate(profhz); 885 splx(s); 886 } 887 } 888 } 889 890 /* 891 * Stop profiling on a process. 892 */ 893 void 894 stopprofclock(p) 895 register struct proc *p; 896 { 897 int s; 898 899 if (p->p_flag & P_PROFIL) { 900 p->p_flag &= ~P_PROFIL; 901 if (--profprocs == 0 && stathz != 0) { 902 s = splstatclock(); 903 psdiv = pscnt = 1; 904 setstatclockrate(stathz); 905 splx(s); 906 } 907 } 908 } 909 910 /* 911 * Statistics clock. Grab profile sample, and if divider reaches 0, 912 * do process and kernel statistics. 913 */ 914 void 915 statclock(frame) 916 register struct clockframe *frame; 917 { 918 #ifdef GPROF 919 register struct gmonparam *g; 920 register int i; 921 #endif 922 static int schedclk; 923 register struct proc *p; 924 925 if (CLKF_USERMODE(frame)) { 926 p = curproc; 927 if (p->p_flag & P_PROFIL) 928 addupc_intr(p, CLKF_PC(frame), 1); 929 if (--pscnt > 0) 930 return; 931 /* 932 * Came from user mode; CPU was in user state. 933 * If this process is being profiled record the tick. 934 */ 935 p->p_uticks++; 936 if (p->p_nice > NZERO) 937 cp_time[CP_NICE]++; 938 else 939 cp_time[CP_USER]++; 940 } else { 941 #ifdef GPROF 942 /* 943 * Kernel statistics are just like addupc_intr, only easier. 944 */ 945 g = &_gmonparam; 946 if (g->state == GMON_PROF_ON) { 947 i = CLKF_PC(frame) - g->lowpc; 948 if (i < g->textsize) { 949 i /= HISTFRACTION * sizeof(*g->kcount); 950 g->kcount[i]++; 951 } 952 } 953 #endif 954 if (--pscnt > 0) 955 return; 956 /* 957 * Came from kernel mode, so we were: 958 * - handling an interrupt, 959 * - doing syscall or trap work on behalf of the current 960 * user process, or 961 * - spinning in the idle loop. 962 * Whichever it is, charge the time as appropriate. 963 * Note that we charge interrupts to the current process, 964 * regardless of whether they are ``for'' that process, 965 * so that we know how much of its real time was spent 966 * in ``non-process'' (i.e., interrupt) work. 967 */ 968 p = curproc; 969 if (CLKF_INTR(frame)) { 970 if (p != NULL) 971 p->p_iticks++; 972 cp_time[CP_INTR]++; 973 } else if (p != NULL) { 974 p->p_sticks++; 975 cp_time[CP_SYS]++; 976 } else 977 cp_time[CP_IDLE]++; 978 } 979 pscnt = psdiv; 980 981 if (p != NULL) { 982 ++p->p_cpticks; 983 /* 984 * If no schedclock is provided, call it here at ~~12-25 Hz, 985 * ~~16 Hz is best 986 */ 987 if(schedhz == 0) 988 if ((++schedclk & 3) == 0) 989 schedclock(p); 990 } 991 } 992 993 994 #ifdef NTP /* NTP phase-locked loop in kernel */ 995 996 /* 997 * hardupdate() - local clock update 998 * 999 * This routine is called by ntp_adjtime() to update the local clock 1000 * phase and frequency. The implementation is of an adaptive-parameter, 1001 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new 1002 * time and frequency offset estimates for each call. If the kernel PPS 1003 * discipline code is configured (PPS_SYNC), the PPS signal itself 1004 * determines the new time offset, instead of the calling argument. 1005 * Presumably, calls to ntp_adjtime() occur only when the caller 1006 * believes the local clock is valid within some bound (+-128 ms with 1007 * NTP). If the caller's time is far different than the PPS time, an 1008 * argument will ensue, and it's not clear who will lose. 1009 * 1010 * For uncompensated quartz crystal oscillatores and nominal update 1011 * intervals less than 1024 s, operation should be in phase-lock mode 1012 * (STA_FLL = 0), where the loop is disciplined to phase. For update 1013 * intervals greater than thiss, operation should be in frequency-lock 1014 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 1015 * 1016 * Note: splclock() is in effect. 1017 */ 1018 void 1019 hardupdate(offset) 1020 long offset; 1021 { 1022 long ltemp, mtemp; 1023 1024 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 1025 return; 1026 ltemp = offset; 1027 #ifdef PPS_SYNC 1028 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) 1029 ltemp = pps_offset; 1030 #endif /* PPS_SYNC */ 1031 1032 /* 1033 * Scale the phase adjustment and clamp to the operating range. 1034 */ 1035 if (ltemp > MAXPHASE) 1036 time_offset = MAXPHASE << SHIFT_UPDATE; 1037 else if (ltemp < -MAXPHASE) 1038 time_offset = -(MAXPHASE << SHIFT_UPDATE); 1039 else 1040 time_offset = ltemp << SHIFT_UPDATE; 1041 1042 /* 1043 * Select whether the frequency is to be controlled and in which 1044 * mode (PLL or FLL). Clamp to the operating range. Ugly 1045 * multiply/divide should be replaced someday. 1046 */ 1047 if (time_status & STA_FREQHOLD || time_reftime == 0) 1048 time_reftime = time.tv_sec; 1049 mtemp = time.tv_sec - time_reftime; 1050 time_reftime = time.tv_sec; 1051 if (time_status & STA_FLL) { 1052 if (mtemp >= MINSEC) { 1053 ltemp = ((time_offset / mtemp) << (SHIFT_USEC - 1054 SHIFT_UPDATE)); 1055 if (ltemp < 0) 1056 time_freq -= -ltemp >> SHIFT_KH; 1057 else 1058 time_freq += ltemp >> SHIFT_KH; 1059 } 1060 } else { 1061 if (mtemp < MAXSEC) { 1062 ltemp *= mtemp; 1063 if (ltemp < 0) 1064 time_freq -= -ltemp >> (time_constant + 1065 time_constant + SHIFT_KF - 1066 SHIFT_USEC); 1067 else 1068 time_freq += ltemp >> (time_constant + 1069 time_constant + SHIFT_KF - 1070 SHIFT_USEC); 1071 } 1072 } 1073 if (time_freq > time_tolerance) 1074 time_freq = time_tolerance; 1075 else if (time_freq < -time_tolerance) 1076 time_freq = -time_tolerance; 1077 } 1078 1079 #ifdef PPS_SYNC 1080 /* 1081 * hardpps() - discipline CPU clock oscillator to external PPS signal 1082 * 1083 * This routine is called at each PPS interrupt in order to discipline 1084 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1085 * and leaves it in a handy spot for the hardclock() routine. It 1086 * integrates successive PPS phase differences and calculates the 1087 * frequency offset. This is used in hardclock() to discipline the CPU 1088 * clock oscillator so that intrinsic frequency error is cancelled out. 1089 * The code requires the caller to capture the time and hardware counter 1090 * value at the on-time PPS signal transition. 1091 * 1092 * Note that, on some Unix systems, this routine runs at an interrupt 1093 * priority level higher than the timer interrupt routine hardclock(). 1094 * Therefore, the variables used are distinct from the hardclock() 1095 * variables, except for certain exceptions: The PPS frequency pps_freq 1096 * and phase pps_offset variables are determined by this routine and 1097 * updated atomically. The time_tolerance variable can be considered a 1098 * constant, since it is infrequently changed, and then only when the 1099 * PPS signal is disabled. The watchdog counter pps_valid is updated 1100 * once per second by hardclock() and is atomically cleared in this 1101 * routine. 1102 */ 1103 void 1104 hardpps(tvp, usec) 1105 struct timeval *tvp; /* time at PPS */ 1106 long usec; /* hardware counter at PPS */ 1107 { 1108 long u_usec, v_usec, bigtick; 1109 long cal_sec, cal_usec; 1110 1111 /* 1112 * An occasional glitch can be produced when the PPS interrupt 1113 * occurs in the hardclock() routine before the time variable is 1114 * updated. Here the offset is discarded when the difference 1115 * between it and the last one is greater than tick/2, but not 1116 * if the interval since the first discard exceeds 30 s. 1117 */ 1118 time_status |= STA_PPSSIGNAL; 1119 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1120 pps_valid = 0; 1121 u_usec = -tvp->tv_usec; 1122 if (u_usec < -500000) 1123 u_usec += 1000000; 1124 v_usec = pps_offset - u_usec; 1125 if (v_usec < 0) 1126 v_usec = -v_usec; 1127 if (v_usec > (tick >> 1)) { 1128 if (pps_glitch > MAXGLITCH) { 1129 pps_glitch = 0; 1130 pps_tf[2] = u_usec; 1131 pps_tf[1] = u_usec; 1132 } else { 1133 pps_glitch++; 1134 u_usec = pps_offset; 1135 } 1136 } else 1137 pps_glitch = 0; 1138 1139 /* 1140 * A three-stage median filter is used to help deglitch the pps 1141 * time. The median sample becomes the time offset estimate; the 1142 * difference between the other two samples becomes the time 1143 * dispersion (jitter) estimate. 1144 */ 1145 pps_tf[2] = pps_tf[1]; 1146 pps_tf[1] = pps_tf[0]; 1147 pps_tf[0] = u_usec; 1148 if (pps_tf[0] > pps_tf[1]) { 1149 if (pps_tf[1] > pps_tf[2]) { 1150 pps_offset = pps_tf[1]; /* 0 1 2 */ 1151 v_usec = pps_tf[0] - pps_tf[2]; 1152 } else if (pps_tf[2] > pps_tf[0]) { 1153 pps_offset = pps_tf[0]; /* 2 0 1 */ 1154 v_usec = pps_tf[2] - pps_tf[1]; 1155 } else { 1156 pps_offset = pps_tf[2]; /* 0 2 1 */ 1157 v_usec = pps_tf[0] - pps_tf[1]; 1158 } 1159 } else { 1160 if (pps_tf[1] < pps_tf[2]) { 1161 pps_offset = pps_tf[1]; /* 2 1 0 */ 1162 v_usec = pps_tf[2] - pps_tf[0]; 1163 } else if (pps_tf[2] < pps_tf[0]) { 1164 pps_offset = pps_tf[0]; /* 1 0 2 */ 1165 v_usec = pps_tf[1] - pps_tf[2]; 1166 } else { 1167 pps_offset = pps_tf[2]; /* 1 2 0 */ 1168 v_usec = pps_tf[1] - pps_tf[0]; 1169 } 1170 } 1171 if (v_usec > MAXTIME) 1172 pps_jitcnt++; 1173 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1174 if (v_usec < 0) 1175 pps_jitter -= -v_usec >> PPS_AVG; 1176 else 1177 pps_jitter += v_usec >> PPS_AVG; 1178 if (pps_jitter > (MAXTIME >> 1)) 1179 time_status |= STA_PPSJITTER; 1180 1181 /* 1182 * During the calibration interval adjust the starting time when 1183 * the tick overflows. At the end of the interval compute the 1184 * duration of the interval and the difference of the hardware 1185 * counters at the beginning and end of the interval. This code 1186 * is deliciously complicated by the fact valid differences may 1187 * exceed the value of tick when using long calibration 1188 * intervals and small ticks. Note that the counter can be 1189 * greater than tick if caught at just the wrong instant, but 1190 * the values returned and used here are correct. 1191 */ 1192 bigtick = (long)tick << SHIFT_USEC; 1193 pps_usec -= pps_freq; 1194 if (pps_usec >= bigtick) 1195 pps_usec -= bigtick; 1196 if (pps_usec < 0) 1197 pps_usec += bigtick; 1198 pps_time.tv_sec++; 1199 pps_count++; 1200 if (pps_count < (1 << pps_shift)) 1201 return; 1202 pps_count = 0; 1203 pps_calcnt++; 1204 u_usec = usec << SHIFT_USEC; 1205 v_usec = pps_usec - u_usec; 1206 if (v_usec >= bigtick >> 1) 1207 v_usec -= bigtick; 1208 if (v_usec < -(bigtick >> 1)) 1209 v_usec += bigtick; 1210 if (v_usec < 0) 1211 v_usec = -(-v_usec >> pps_shift); 1212 else 1213 v_usec = v_usec >> pps_shift; 1214 pps_usec = u_usec; 1215 cal_sec = tvp->tv_sec; 1216 cal_usec = tvp->tv_usec; 1217 cal_sec -= pps_time.tv_sec; 1218 cal_usec -= pps_time.tv_usec; 1219 if (cal_usec < 0) { 1220 cal_usec += 1000000; 1221 cal_sec--; 1222 } 1223 pps_time = *tvp; 1224 1225 /* 1226 * Check for lost interrupts, noise, excessive jitter and 1227 * excessive frequency error. The number of timer ticks during 1228 * the interval may vary +-1 tick. Add to this a margin of one 1229 * tick for the PPS signal jitter and maximum frequency 1230 * deviation. If the limits are exceeded, the calibration 1231 * interval is reset to the minimum and we start over. 1232 */ 1233 u_usec = (long)tick << 1; 1234 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec)) 1235 || (cal_sec == 0 && cal_usec < u_usec)) 1236 || v_usec > time_tolerance || v_usec < -time_tolerance) { 1237 pps_errcnt++; 1238 pps_shift = PPS_SHIFT; 1239 pps_intcnt = 0; 1240 time_status |= STA_PPSERROR; 1241 return; 1242 } 1243 1244 /* 1245 * A three-stage median filter is used to help deglitch the pps 1246 * frequency. The median sample becomes the frequency offset 1247 * estimate; the difference between the other two samples 1248 * becomes the frequency dispersion (stability) estimate. 1249 */ 1250 pps_ff[2] = pps_ff[1]; 1251 pps_ff[1] = pps_ff[0]; 1252 pps_ff[0] = v_usec; 1253 if (pps_ff[0] > pps_ff[1]) { 1254 if (pps_ff[1] > pps_ff[2]) { 1255 u_usec = pps_ff[1]; /* 0 1 2 */ 1256 v_usec = pps_ff[0] - pps_ff[2]; 1257 } else if (pps_ff[2] > pps_ff[0]) { 1258 u_usec = pps_ff[0]; /* 2 0 1 */ 1259 v_usec = pps_ff[2] - pps_ff[1]; 1260 } else { 1261 u_usec = pps_ff[2]; /* 0 2 1 */ 1262 v_usec = pps_ff[0] - pps_ff[1]; 1263 } 1264 } else { 1265 if (pps_ff[1] < pps_ff[2]) { 1266 u_usec = pps_ff[1]; /* 2 1 0 */ 1267 v_usec = pps_ff[2] - pps_ff[0]; 1268 } else if (pps_ff[2] < pps_ff[0]) { 1269 u_usec = pps_ff[0]; /* 1 0 2 */ 1270 v_usec = pps_ff[1] - pps_ff[2]; 1271 } else { 1272 u_usec = pps_ff[2]; /* 1 2 0 */ 1273 v_usec = pps_ff[1] - pps_ff[0]; 1274 } 1275 } 1276 1277 /* 1278 * Here the frequency dispersion (stability) is updated. If it 1279 * is less than one-fourth the maximum (MAXFREQ), the frequency 1280 * offset is updated as well, but clamped to the tolerance. It 1281 * will be processed later by the hardclock() routine. 1282 */ 1283 v_usec = (v_usec >> 1) - pps_stabil; 1284 if (v_usec < 0) 1285 pps_stabil -= -v_usec >> PPS_AVG; 1286 else 1287 pps_stabil += v_usec >> PPS_AVG; 1288 if (pps_stabil > MAXFREQ >> 2) { 1289 pps_stbcnt++; 1290 time_status |= STA_PPSWANDER; 1291 return; 1292 } 1293 if (time_status & STA_PPSFREQ) { 1294 if (u_usec < 0) { 1295 pps_freq -= -u_usec >> PPS_AVG; 1296 if (pps_freq < -time_tolerance) 1297 pps_freq = -time_tolerance; 1298 u_usec = -u_usec; 1299 } else { 1300 pps_freq += u_usec >> PPS_AVG; 1301 if (pps_freq > time_tolerance) 1302 pps_freq = time_tolerance; 1303 } 1304 } 1305 1306 /* 1307 * Here the calibration interval is adjusted. If the maximum 1308 * time difference is greater than tick / 4, reduce the interval 1309 * by half. If this is not the case for four consecutive 1310 * intervals, double the interval. 1311 */ 1312 if (u_usec << pps_shift > bigtick >> 2) { 1313 pps_intcnt = 0; 1314 if (pps_shift > PPS_SHIFT) 1315 pps_shift--; 1316 } else if (pps_intcnt >= 4) { 1317 pps_intcnt = 0; 1318 if (pps_shift < PPS_SHIFTMAX) 1319 pps_shift++; 1320 } else 1321 pps_intcnt++; 1322 } 1323 #endif /* PPS_SYNC */ 1324 #endif /* NTP */ 1325 1326 1327 /* 1328 * Return information about system clocks. 1329 */ 1330 int 1331 sysctl_clockrate(where, sizep) 1332 register char *where; 1333 size_t *sizep; 1334 { 1335 struct clockinfo clkinfo; 1336 1337 /* 1338 * Construct clockinfo structure. 1339 */ 1340 clkinfo.tick = tick; 1341 clkinfo.tickadj = tickadj; 1342 clkinfo.hz = hz; 1343 clkinfo.profhz = profhz; 1344 clkinfo.stathz = stathz ? stathz : hz; 1345 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo))); 1346 } 1347 1348