xref: /netbsd-src/sys/kern/kern_clock.c (revision 0920b4f20b78ab1ccd9f2312fbe10deaf000cbf3)
1 /*	$NetBSD: kern_clock.c,v 1.110 2007/08/09 07:36:18 pooka Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  * This code is derived from software contributed to The NetBSD Foundation
11  * by Charles M. Hannum.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the NetBSD
24  *	Foundation, Inc. and its contributors.
25  * 4. Neither the name of The NetBSD Foundation nor the names of its
26  *    contributors may be used to endorse or promote products derived
27  *    from this software without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
31  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
32  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
33  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
34  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
37  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
39  * POSSIBILITY OF SUCH DAMAGE.
40  */
41 
42 /*-
43  * Copyright (c) 1982, 1986, 1991, 1993
44  *	The Regents of the University of California.  All rights reserved.
45  * (c) UNIX System Laboratories, Inc.
46  * All or some portions of this file are derived from material licensed
47  * to the University of California by American Telephone and Telegraph
48  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
49  * the permission of UNIX System Laboratories, Inc.
50  *
51  * Redistribution and use in source and binary forms, with or without
52  * modification, are permitted provided that the following conditions
53  * are met:
54  * 1. Redistributions of source code must retain the above copyright
55  *    notice, this list of conditions and the following disclaimer.
56  * 2. Redistributions in binary form must reproduce the above copyright
57  *    notice, this list of conditions and the following disclaimer in the
58  *    documentation and/or other materials provided with the distribution.
59  * 3. Neither the name of the University nor the names of its contributors
60  *    may be used to endorse or promote products derived from this software
61  *    without specific prior written permission.
62  *
63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73  * SUCH DAMAGE.
74  *
75  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
76  */
77 
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.110 2007/08/09 07:36:18 pooka Exp $");
80 
81 #include "opt_ntp.h"
82 #include "opt_multiprocessor.h"
83 #include "opt_perfctrs.h"
84 
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/callout.h>
88 #include <sys/kernel.h>
89 #include <sys/proc.h>
90 #include <sys/resourcevar.h>
91 #include <sys/signalvar.h>
92 #include <sys/sysctl.h>
93 #include <sys/timex.h>
94 #include <sys/sched.h>
95 #include <sys/time.h>
96 #include <sys/timetc.h>
97 #include <sys/cpu.h>
98 
99 #ifdef GPROF
100 #include <sys/gmon.h>
101 #endif
102 
103 /*
104  * Clock handling routines.
105  *
106  * This code is written to operate with two timers that run independently of
107  * each other.  The main clock, running hz times per second, is used to keep
108  * track of real time.  The second timer handles kernel and user profiling,
109  * and does resource use estimation.  If the second timer is programmable,
110  * it is randomized to avoid aliasing between the two clocks.  For example,
111  * the randomization prevents an adversary from always giving up the CPU
112  * just before its quantum expires.  Otherwise, it would never accumulate
113  * CPU ticks.  The mean frequency of the second timer is stathz.
114  *
115  * If no second timer exists, stathz will be zero; in this case we drive
116  * profiling and statistics off the main clock.  This WILL NOT be accurate;
117  * do not do it unless absolutely necessary.
118  *
119  * The statistics clock may (or may not) be run at a higher rate while
120  * profiling.  This profile clock runs at profhz.  We require that profhz
121  * be an integral multiple of stathz.
122  *
123  * If the statistics clock is running fast, it must be divided by the ratio
124  * profhz/stathz for statistics.  (For profiling, every tick counts.)
125  */
126 
127 #ifndef __HAVE_TIMECOUNTER
128 #ifdef NTP	/* NTP phase-locked loop in kernel */
129 /*
130  * Phase/frequency-lock loop (PLL/FLL) definitions
131  *
132  * The following variables are read and set by the ntp_adjtime() system
133  * call.
134  *
135  * time_state shows the state of the system clock, with values defined
136  * in the timex.h header file.
137  *
138  * time_status shows the status of the system clock, with bits defined
139  * in the timex.h header file.
140  *
141  * time_offset is used by the PLL/FLL to adjust the system time in small
142  * increments.
143  *
144  * time_constant determines the bandwidth or "stiffness" of the PLL.
145  *
146  * time_tolerance determines maximum frequency error or tolerance of the
147  * CPU clock oscillator and is a property of the architecture; however,
148  * in principle it could change as result of the presence of external
149  * discipline signals, for instance.
150  *
151  * time_precision is usually equal to the kernel tick variable; however,
152  * in cases where a precision clock counter or external clock is
153  * available, the resolution can be much less than this and depend on
154  * whether the external clock is working or not.
155  *
156  * time_maxerror is initialized by a ntp_adjtime() call and increased by
157  * the kernel once each second to reflect the maximum error bound
158  * growth.
159  *
160  * time_esterror is set and read by the ntp_adjtime() call, but
161  * otherwise not used by the kernel.
162  */
163 int time_state = TIME_OK;	/* clock state */
164 int time_status = STA_UNSYNC;	/* clock status bits */
165 long time_offset = 0;		/* time offset (us) */
166 long time_constant = 0;		/* pll time constant */
167 long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
168 long time_precision = 1;	/* clock precision (us) */
169 long time_maxerror = MAXPHASE;	/* maximum error (us) */
170 long time_esterror = MAXPHASE;	/* estimated error (us) */
171 
172 /*
173  * The following variables establish the state of the PLL/FLL and the
174  * residual time and frequency offset of the local clock. The scale
175  * factors are defined in the timex.h header file.
176  *
177  * time_phase and time_freq are the phase increment and the frequency
178  * increment, respectively, of the kernel time variable.
179  *
180  * time_freq is set via ntp_adjtime() from a value stored in a file when
181  * the synchronization daemon is first started. Its value is retrieved
182  * via ntp_adjtime() and written to the file about once per hour by the
183  * daemon.
184  *
185  * time_adj is the adjustment added to the value of tick at each timer
186  * interrupt and is recomputed from time_phase and time_freq at each
187  * seconds rollover.
188  *
189  * time_reftime is the second's portion of the system time at the last
190  * call to ntp_adjtime(). It is used to adjust the time_freq variable
191  * and to increase the time_maxerror as the time since last update
192  * increases.
193  */
194 long time_phase = 0;		/* phase offset (scaled us) */
195 long time_freq = 0;		/* frequency offset (scaled ppm) */
196 long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
197 long time_reftime = 0;		/* time at last adjustment (s) */
198 
199 #ifdef PPS_SYNC
200 /*
201  * The following variables are used only if the kernel PPS discipline
202  * code is configured (PPS_SYNC). The scale factors are defined in the
203  * timex.h header file.
204  *
205  * pps_time contains the time at each calibration interval, as read by
206  * microtime(). pps_count counts the seconds of the calibration
207  * interval, the duration of which is nominally pps_shift in powers of
208  * two.
209  *
210  * pps_offset is the time offset produced by the time median filter
211  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
212  * this filter.
213  *
214  * pps_freq is the frequency offset produced by the frequency median
215  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
216  * by this filter.
217  *
218  * pps_usec is latched from a high resolution counter or external clock
219  * at pps_time. Here we want the hardware counter contents only, not the
220  * contents plus the time_tv.usec as usual.
221  *
222  * pps_valid counts the number of seconds since the last PPS update. It
223  * is used as a watchdog timer to disable the PPS discipline should the
224  * PPS signal be lost.
225  *
226  * pps_glitch counts the number of seconds since the beginning of an
227  * offset burst more than tick/2 from current nominal offset. It is used
228  * mainly to suppress error bursts due to priority conflicts between the
229  * PPS interrupt and timer interrupt.
230  *
231  * pps_intcnt counts the calibration intervals for use in the interval-
232  * adaptation algorithm. It's just too complicated for words.
233  *
234  * pps_kc_hardpps_source contains an arbitrary value that uniquely
235  * identifies the currently bound source of the PPS signal, or NULL
236  * if no source is bound.
237  *
238  * pps_kc_hardpps_mode indicates which transitions, if any, of the PPS
239  * signal should be reported.
240  */
241 struct timeval pps_time;	/* kernel time at last interval */
242 long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
243 long pps_offset = 0;		/* pps time offset (us) */
244 long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
245 long pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
246 long pps_freq = 0;		/* frequency offset (scaled ppm) */
247 long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
248 long pps_usec = 0;		/* microsec counter at last interval */
249 long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
250 int pps_glitch = 0;		/* pps signal glitch counter */
251 int pps_count = 0;		/* calibration interval counter (s) */
252 int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
253 int pps_intcnt = 0;		/* intervals at current duration */
254 void *pps_kc_hardpps_source = NULL; /* current PPS supplier's identifier */
255 int pps_kc_hardpps_mode = 0;	/* interesting edges of PPS signal */
256 
257 /*
258  * PPS signal quality monitors
259  *
260  * pps_jitcnt counts the seconds that have been discarded because the
261  * jitter measured by the time median filter exceeds the limit MAXTIME
262  * (100 us).
263  *
264  * pps_calcnt counts the frequency calibration intervals, which are
265  * variable from 4 s to 256 s.
266  *
267  * pps_errcnt counts the calibration intervals which have been discarded
268  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
269  * calibration interval jitter exceeds two ticks.
270  *
271  * pps_stbcnt counts the calibration intervals that have been discarded
272  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
273  */
274 long pps_jitcnt = 0;		/* jitter limit exceeded */
275 long pps_calcnt = 0;		/* calibration intervals */
276 long pps_errcnt = 0;		/* calibration errors */
277 long pps_stbcnt = 0;		/* stability limit exceeded */
278 #endif /* PPS_SYNC */
279 
280 #ifdef EXT_CLOCK
281 /*
282  * External clock definitions
283  *
284  * The following definitions and declarations are used only if an
285  * external clock is configured on the system.
286  */
287 #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
288 
289 /*
290  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
291  * interrupt and decremented once each second.
292  */
293 int clock_count = 0;		/* CPU clock counter */
294 
295 #ifdef HIGHBALL
296 /*
297  * The clock_offset and clock_cpu variables are used by the HIGHBALL
298  * interface. The clock_offset variable defines the offset between
299  * system time and the HIGBALL counters. The clock_cpu variable contains
300  * the offset between the system clock and the HIGHBALL clock for use in
301  * disciplining the kernel time variable.
302  */
303 extern struct timeval clock_offset; /* Highball clock offset */
304 long clock_cpu = 0;		/* CPU clock adjust */
305 #endif /* HIGHBALL */
306 #endif /* EXT_CLOCK */
307 #endif /* NTP */
308 
309 /*
310  * Bump a timeval by a small number of usec's.
311  */
312 #define BUMPTIME(t, usec) { \
313 	volatile struct timeval *tp = (t); \
314 	long us; \
315  \
316 	tp->tv_usec = us = tp->tv_usec + (usec); \
317 	if (us >= 1000000) { \
318 		tp->tv_usec = us - 1000000; \
319 		tp->tv_sec++; \
320 	} \
321 }
322 #endif /* !__HAVE_TIMECOUNTER */
323 
324 int	stathz;
325 int	profhz;
326 int	profsrc;
327 int	schedhz;
328 int	profprocs;
329 int	hardclock_ticks;
330 static int statscheddiv; /* stat => sched divider (used if schedhz == 0) */
331 static int psdiv;			/* prof => stat divider */
332 int	psratio;			/* ratio: prof / stat */
333 #ifndef __HAVE_TIMECOUNTER
334 int	tickfix, tickfixinterval;	/* used if tick not really integral */
335 #ifndef NTP
336 static int tickfixcnt;			/* accumulated fractional error */
337 #else
338 int	fixtick;			/* used by NTP for same */
339 int	shifthz;
340 #endif
341 
342 /*
343  * We might want ldd to load the both words from time at once.
344  * To succeed we need to be quadword aligned.
345  * The sparc already does that, and that it has worked so far is a fluke.
346  */
347 volatile struct	timeval time  __attribute__((__aligned__(__alignof__(quad_t))));
348 volatile struct	timeval mono_time;
349 #endif /* !__HAVE_TIMECOUNTER */
350 
351 #ifdef __HAVE_TIMECOUNTER
352 static u_int get_intr_timecount(struct timecounter *);
353 
354 static struct timecounter intr_timecounter = {
355 	get_intr_timecount,	/* get_timecount */
356 	0,			/* no poll_pps */
357 	~0u,			/* counter_mask */
358 	0,		        /* frequency */
359 	"clockinterrupt",	/* name */
360 	0,			/* quality - minimum implementation level for a clock */
361 	NULL,			/* prev */
362 	NULL,			/* next */
363 };
364 
365 static u_int
366 get_intr_timecount(struct timecounter *tc)
367 {
368 
369 	return (u_int)hardclock_ticks;
370 }
371 #endif
372 
373 /*
374  * Initialize clock frequencies and start both clocks running.
375  */
376 void
377 initclocks(void)
378 {
379 	int i;
380 
381 	/*
382 	 * Set divisors to 1 (normal case) and let the machine-specific
383 	 * code do its bit.
384 	 */
385 	psdiv = 1;
386 #ifdef __HAVE_TIMECOUNTER
387 	/*
388 	 * provide minimum default time counter
389 	 * will only run at interrupt resolution
390 	 */
391 	intr_timecounter.tc_frequency = hz;
392 	tc_init(&intr_timecounter);
393 #endif
394 	cpu_initclocks();
395 
396 	/*
397 	 * Compute profhz and stathz, fix profhz if needed.
398 	 */
399 	i = stathz ? stathz : hz;
400 	if (profhz == 0)
401 		profhz = i;
402 	psratio = profhz / i;
403 	if (schedhz == 0) {
404 		/* 16Hz is best */
405 		statscheddiv = i / 16;
406 		if (statscheddiv <= 0)
407 			panic("statscheddiv");
408 	}
409 
410 #ifndef __HAVE_TIMECOUNTER
411 #ifdef NTP
412 	switch (hz) {
413 	case 1:
414 		shifthz = SHIFT_SCALE - 0;
415 		break;
416 	case 2:
417 		shifthz = SHIFT_SCALE - 1;
418 		break;
419 	case 4:
420 		shifthz = SHIFT_SCALE - 2;
421 		break;
422 	case 8:
423 		shifthz = SHIFT_SCALE - 3;
424 		break;
425 	case 16:
426 		shifthz = SHIFT_SCALE - 4;
427 		break;
428 	case 32:
429 		shifthz = SHIFT_SCALE - 5;
430 		break;
431 	case 50:
432 	case 60:
433 	case 64:
434 		shifthz = SHIFT_SCALE - 6;
435 		break;
436 	case 96:
437 	case 100:
438 	case 128:
439 		shifthz = SHIFT_SCALE - 7;
440 		break;
441 	case 256:
442 		shifthz = SHIFT_SCALE - 8;
443 		break;
444 	case 512:
445 		shifthz = SHIFT_SCALE - 9;
446 		break;
447 	case 1000:
448 	case 1024:
449 		shifthz = SHIFT_SCALE - 10;
450 		break;
451 	case 1200:
452 	case 2048:
453 		shifthz = SHIFT_SCALE - 11;
454 		break;
455 	case 4096:
456 		shifthz = SHIFT_SCALE - 12;
457 		break;
458 	case 8192:
459 		shifthz = SHIFT_SCALE - 13;
460 		break;
461 	case 16384:
462 		shifthz = SHIFT_SCALE - 14;
463 		break;
464 	case 32768:
465 		shifthz = SHIFT_SCALE - 15;
466 		break;
467 	case 65536:
468 		shifthz = SHIFT_SCALE - 16;
469 		break;
470 	default:
471 		panic("weird hz");
472 	}
473 	if (fixtick == 0) {
474 		/*
475 		 * Give MD code a chance to set this to a better
476 		 * value; but, if it doesn't, we should.
477 		 */
478 		fixtick = (1000000 - (hz*tick));
479 	}
480 #endif /* NTP */
481 #endif /* !__HAVE_TIMECOUNTER */
482 }
483 
484 /*
485  * The real-time timer, interrupting hz times per second.
486  */
487 void
488 hardclock(struct clockframe *frame)
489 {
490 	struct lwp *l;
491 	struct proc *p;
492 	struct cpu_info *ci = curcpu();
493 	struct ptimer *pt;
494 #ifndef __HAVE_TIMECOUNTER
495 	int delta;
496 	extern int tickdelta;
497 	extern long timedelta;
498 #ifdef NTP
499 	int time_update;
500 	int ltemp;
501 #endif /* NTP */
502 #endif /* __HAVE_TIMECOUNTER */
503 
504 	l = curlwp;
505 	if (!CURCPU_IDLE_P()) {
506 		p = l->l_proc;
507 		/*
508 		 * Run current process's virtual and profile time, as needed.
509 		 */
510 		if (CLKF_USERMODE(frame) && p->p_timers &&
511 		    (pt = LIST_FIRST(&p->p_timers->pts_virtual)) != NULL)
512 			if (itimerdecr(pt, tick) == 0)
513 				itimerfire(pt);
514 		if (p->p_timers &&
515 		    (pt = LIST_FIRST(&p->p_timers->pts_prof)) != NULL)
516 			if (itimerdecr(pt, tick) == 0)
517 				itimerfire(pt);
518 	}
519 
520 	/*
521 	 * If no separate statistics clock is available, run it from here.
522 	 */
523 	if (stathz == 0)
524 		statclock(frame);
525 	if ((--ci->ci_schedstate.spc_ticks) <= 0)
526 		sched_tick(ci);
527 
528 #if defined(MULTIPROCESSOR)
529 	/*
530 	 * If we are not the primary CPU, we're not allowed to do
531 	 * any more work.
532 	 */
533 	if (CPU_IS_PRIMARY(ci) == 0)
534 		return;
535 #endif
536 
537 	hardclock_ticks++;
538 
539 #ifdef __HAVE_TIMECOUNTER
540 	tc_ticktock();
541 #else /* __HAVE_TIMECOUNTER */
542 	/*
543 	 * Increment the time-of-day.  The increment is normally just
544 	 * ``tick''.  If the machine is one which has a clock frequency
545 	 * such that ``hz'' would not divide the second evenly into
546 	 * milliseconds, a periodic adjustment must be applied.  Finally,
547 	 * if we are still adjusting the time (see adjtime()),
548 	 * ``tickdelta'' may also be added in.
549 	 */
550 	delta = tick;
551 
552 #ifndef NTP
553 	if (tickfix) {
554 		tickfixcnt += tickfix;
555 		if (tickfixcnt >= tickfixinterval) {
556 			delta++;
557 			tickfixcnt -= tickfixinterval;
558 		}
559 	}
560 #endif /* !NTP */
561 	/* Imprecise 4bsd adjtime() handling */
562 	if (timedelta != 0) {
563 		delta += tickdelta;
564 		timedelta -= tickdelta;
565 	}
566 
567 #ifdef notyet
568 	microset();
569 #endif
570 
571 #ifndef NTP
572 	BUMPTIME(&time, delta);		/* XXX Now done using NTP code below */
573 #endif
574 	BUMPTIME(&mono_time, delta);
575 
576 #ifdef NTP
577 	time_update = delta;
578 
579 	/*
580 	 * Compute the phase adjustment. If the low-order bits
581 	 * (time_phase) of the update overflow, bump the high-order bits
582 	 * (time_update).
583 	 */
584 	time_phase += time_adj;
585 	if (time_phase <= -FINEUSEC) {
586 		ltemp = -time_phase >> SHIFT_SCALE;
587 		time_phase += ltemp << SHIFT_SCALE;
588 		time_update -= ltemp;
589 	} else if (time_phase >= FINEUSEC) {
590 		ltemp = time_phase >> SHIFT_SCALE;
591 		time_phase -= ltemp << SHIFT_SCALE;
592 		time_update += ltemp;
593 	}
594 
595 #ifdef HIGHBALL
596 	/*
597 	 * If the HIGHBALL board is installed, we need to adjust the
598 	 * external clock offset in order to close the hardware feedback
599 	 * loop. This will adjust the external clock phase and frequency
600 	 * in small amounts. The additional phase noise and frequency
601 	 * wander this causes should be minimal. We also need to
602 	 * discipline the kernel time variable, since the PLL is used to
603 	 * discipline the external clock. If the Highball board is not
604 	 * present, we discipline kernel time with the PLL as usual. We
605 	 * assume that the external clock phase adjustment (time_update)
606 	 * and kernel phase adjustment (clock_cpu) are less than the
607 	 * value of tick.
608 	 */
609 	clock_offset.tv_usec += time_update;
610 	if (clock_offset.tv_usec >= 1000000) {
611 		clock_offset.tv_sec++;
612 		clock_offset.tv_usec -= 1000000;
613 	}
614 	if (clock_offset.tv_usec < 0) {
615 		clock_offset.tv_sec--;
616 		clock_offset.tv_usec += 1000000;
617 	}
618 	time.tv_usec += clock_cpu;
619 	clock_cpu = 0;
620 #else
621 	time.tv_usec += time_update;
622 #endif /* HIGHBALL */
623 
624 	/*
625 	 * On rollover of the second the phase adjustment to be used for
626 	 * the next second is calculated. Also, the maximum error is
627 	 * increased by the tolerance. If the PPS frequency discipline
628 	 * code is present, the phase is increased to compensate for the
629 	 * CPU clock oscillator frequency error.
630 	 *
631  	 * On a 32-bit machine and given parameters in the timex.h
632 	 * header file, the maximum phase adjustment is +-512 ms and
633 	 * maximum frequency offset is a tad less than) +-512 ppm. On a
634 	 * 64-bit machine, you shouldn't need to ask.
635 	 */
636 	if (time.tv_usec >= 1000000) {
637 		time.tv_usec -= 1000000;
638 		time.tv_sec++;
639 		time_maxerror += time_tolerance >> SHIFT_USEC;
640 
641 		/*
642 		 * Leap second processing. If in leap-insert state at
643 		 * the end of the day, the system clock is set back one
644 		 * second; if in leap-delete state, the system clock is
645 		 * set ahead one second. The microtime() routine or
646 		 * external clock driver will insure that reported time
647 		 * is always monotonic. The ugly divides should be
648 		 * replaced.
649 		 */
650 		switch (time_state) {
651 		case TIME_OK:
652 			if (time_status & STA_INS)
653 				time_state = TIME_INS;
654 			else if (time_status & STA_DEL)
655 				time_state = TIME_DEL;
656 			break;
657 
658 		case TIME_INS:
659 			if (time.tv_sec % 86400 == 0) {
660 				time.tv_sec--;
661 				time_state = TIME_OOP;
662 			}
663 			break;
664 
665 		case TIME_DEL:
666 			if ((time.tv_sec + 1) % 86400 == 0) {
667 				time.tv_sec++;
668 				time_state = TIME_WAIT;
669 			}
670 			break;
671 
672 		case TIME_OOP:
673 			time_state = TIME_WAIT;
674 			break;
675 
676 		case TIME_WAIT:
677 			if (!(time_status & (STA_INS | STA_DEL)))
678 				time_state = TIME_OK;
679 			break;
680 		}
681 
682 		/*
683 		 * Compute the phase adjustment for the next second. In
684 		 * PLL mode, the offset is reduced by a fixed factor
685 		 * times the time constant. In FLL mode the offset is
686 		 * used directly. In either mode, the maximum phase
687 		 * adjustment for each second is clamped so as to spread
688 		 * the adjustment over not more than the number of
689 		 * seconds between updates.
690 		 */
691 		if (time_offset < 0) {
692 			ltemp = -time_offset;
693 			if (!(time_status & STA_FLL))
694 				ltemp >>= SHIFT_KG + time_constant;
695 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
696 				ltemp = (MAXPHASE / MINSEC) <<
697 				    SHIFT_UPDATE;
698 			time_offset += ltemp;
699 			time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
700 		} else if (time_offset > 0) {
701 			ltemp = time_offset;
702 			if (!(time_status & STA_FLL))
703 				ltemp >>= SHIFT_KG + time_constant;
704 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
705 				ltemp = (MAXPHASE / MINSEC) <<
706 				    SHIFT_UPDATE;
707 			time_offset -= ltemp;
708 			time_adj = ltemp << (shifthz - SHIFT_UPDATE);
709 		} else
710 			time_adj = 0;
711 
712 		/*
713 		 * Compute the frequency estimate and additional phase
714 		 * adjustment due to frequency error for the next
715 		 * second. When the PPS signal is engaged, gnaw on the
716 		 * watchdog counter and update the frequency computed by
717 		 * the pll and the PPS signal.
718 		 */
719 #ifdef PPS_SYNC
720 		pps_valid++;
721 		if (pps_valid == PPS_VALID) {
722 			pps_jitter = MAXTIME;
723 			pps_stabil = MAXFREQ;
724 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
725 			    STA_PPSWANDER | STA_PPSERROR);
726 		}
727 		ltemp = time_freq + pps_freq;
728 #else
729 		ltemp = time_freq;
730 #endif /* PPS_SYNC */
731 
732 		if (ltemp < 0)
733 			time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
734 		else
735 			time_adj += ltemp >> (SHIFT_USEC - shifthz);
736 		time_adj += (long)fixtick << shifthz;
737 
738 		/*
739 		 * When the CPU clock oscillator frequency is not a
740 		 * power of 2 in Hz, shifthz is only an approximate
741 		 * scale factor.
742 		 *
743 		 * To determine the adjustment, you can do the following:
744 		 *   bc -q
745 		 *   scale=24
746 		 *   obase=2
747 		 *   idealhz/realhz
748 		 * where `idealhz' is the next higher power of 2, and `realhz'
749 		 * is the actual value.  You may need to factor this result
750 		 * into a sequence of 2 multipliers to get better precision.
751 		 *
752 		 * Likewise, the error can be calculated with (e.g. for 100Hz):
753 		 *   bc -q
754 		 *   scale=24
755 		 *   ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
756 		 * (and then multiply by 1000000 to get ppm).
757 		 */
758 		switch (hz) {
759 		case 60:
760 			/* A factor of 1.000100010001 gives about 15ppm
761 			   error. */
762 			if (time_adj < 0) {
763 				time_adj -= (-time_adj >> 4);
764 				time_adj -= (-time_adj >> 8);
765 			} else {
766 				time_adj += (time_adj >> 4);
767 				time_adj += (time_adj >> 8);
768 			}
769 			break;
770 
771 		case 96:
772 			/* A factor of 1.0101010101 gives about 244ppm error. */
773 			if (time_adj < 0) {
774 				time_adj -= (-time_adj >> 2);
775 				time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
776 			} else {
777 				time_adj += (time_adj >> 2);
778 				time_adj += (time_adj >> 4) + (time_adj >> 8);
779 			}
780 			break;
781 
782 		case 50:
783 		case 100:
784 			/* A factor of 1.010001111010111 gives about 1ppm
785 			   error. */
786 			if (time_adj < 0) {
787 				time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
788 				time_adj += (-time_adj >> 10);
789 			} else {
790 				time_adj += (time_adj >> 2) + (time_adj >> 5);
791 				time_adj -= (time_adj >> 10);
792 			}
793 			break;
794 
795 		case 1000:
796 			/* A factor of 1.000001100010100001 gives about 50ppm
797 			   error. */
798 			if (time_adj < 0) {
799 				time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
800 				time_adj -= (-time_adj >> 7);
801 			} else {
802 				time_adj += (time_adj >> 6) + (time_adj >> 11);
803 				time_adj += (time_adj >> 7);
804 			}
805 			break;
806 
807 		case 1200:
808 			/* A factor of 1.1011010011100001 gives about 64ppm
809 			   error. */
810 			if (time_adj < 0) {
811 				time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
812 				time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
813 			} else {
814 				time_adj += (time_adj >> 1) + (time_adj >> 6);
815 				time_adj += (time_adj >> 3) + (time_adj >> 10);
816 			}
817 			break;
818 		}
819 
820 #ifdef EXT_CLOCK
821 		/*
822 		 * If an external clock is present, it is necessary to
823 		 * discipline the kernel time variable anyway, since not
824 		 * all system components use the microtime() interface.
825 		 * Here, the time offset between the external clock and
826 		 * kernel time variable is computed every so often.
827 		 */
828 		clock_count++;
829 		if (clock_count > CLOCK_INTERVAL) {
830 			clock_count = 0;
831 			microtime(&clock_ext);
832 			delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
833 			delta.tv_usec = clock_ext.tv_usec -
834 			    time.tv_usec;
835 			if (delta.tv_usec < 0)
836 				delta.tv_sec--;
837 			if (delta.tv_usec >= 500000) {
838 				delta.tv_usec -= 1000000;
839 				delta.tv_sec++;
840 			}
841 			if (delta.tv_usec < -500000) {
842 				delta.tv_usec += 1000000;
843 				delta.tv_sec--;
844 			}
845 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
846 			    delta.tv_usec > MAXPHASE) ||
847 			    delta.tv_sec < -1 || (delta.tv_sec == -1 &&
848 			    delta.tv_usec < -MAXPHASE)) {
849 				time = clock_ext;
850 				delta.tv_sec = 0;
851 				delta.tv_usec = 0;
852 			}
853 #ifdef HIGHBALL
854 			clock_cpu = delta.tv_usec;
855 #else /* HIGHBALL */
856 			hardupdate(delta.tv_usec);
857 #endif /* HIGHBALL */
858 		}
859 #endif /* EXT_CLOCK */
860 	}
861 
862 #endif /* NTP */
863 #endif /* !__HAVE_TIMECOUNTER */
864 
865 	/*
866 	 * Update real-time timeout queue.  Callouts are processed at a
867 	 * very low CPU priority, so we don't keep the relatively high
868 	 * clock interrupt priority any longer than necessary.
869 	 */
870 	callout_hardclock();
871 }
872 
873 /*
874  * Start profiling on a process.
875  *
876  * Kernel profiling passes proc0 which never exits and hence
877  * keeps the profile clock running constantly.
878  */
879 void
880 startprofclock(struct proc *p)
881 {
882 
883 	KASSERT(mutex_owned(&p->p_stmutex));
884 
885 	if ((p->p_stflag & PST_PROFIL) == 0) {
886 		p->p_stflag |= PST_PROFIL;
887 		/*
888 		 * This is only necessary if using the clock as the
889 		 * profiling source.
890 		 */
891 		if (++profprocs == 1 && stathz != 0)
892 			psdiv = psratio;
893 	}
894 }
895 
896 /*
897  * Stop profiling on a process.
898  */
899 void
900 stopprofclock(struct proc *p)
901 {
902 
903 	KASSERT(mutex_owned(&p->p_stmutex));
904 
905 	if (p->p_stflag & PST_PROFIL) {
906 		p->p_stflag &= ~PST_PROFIL;
907 		/*
908 		 * This is only necessary if using the clock as the
909 		 * profiling source.
910 		 */
911 		if (--profprocs == 0 && stathz != 0)
912 			psdiv = 1;
913 	}
914 }
915 
916 #if defined(PERFCTRS)
917 /*
918  * Independent profiling "tick" in case we're using a separate
919  * clock or profiling event source.  Currently, that's just
920  * performance counters--hence the wrapper.
921  */
922 void
923 proftick(struct clockframe *frame)
924 {
925 #ifdef GPROF
926         struct gmonparam *g;
927         intptr_t i;
928 #endif
929 	struct lwp *l;
930 	struct proc *p;
931 
932 	l = curlwp;
933 	p = (l ? l->l_proc : NULL);
934 	if (CLKF_USERMODE(frame)) {
935 		mutex_spin_enter(&p->p_stmutex);
936 		if (p->p_stflag & PST_PROFIL)
937 			addupc_intr(l, CLKF_PC(frame));
938 		mutex_spin_exit(&p->p_stmutex);
939 	} else {
940 #ifdef GPROF
941 		g = &_gmonparam;
942 		if (g->state == GMON_PROF_ON) {
943 			i = CLKF_PC(frame) - g->lowpc;
944 			if (i < g->textsize) {
945 				i /= HISTFRACTION * sizeof(*g->kcount);
946 				g->kcount[i]++;
947 			}
948 		}
949 #endif
950 #ifdef PROC_PC
951 		if (p != NULL) {
952 			mutex_spin_enter(&p->p_stmutex);
953 			if (p->p_stflag & PST_PROFIL))
954 				addupc_intr(l, PROC_PC(p));
955 			mutex_spin_exit(&p->p_stmutex);
956 		}
957 #endif
958 	}
959 }
960 #endif
961 
962 void
963 schedclock(struct lwp *l)
964 {
965 
966 	if ((l->l_flag & LW_IDLE) != 0)
967 		return;
968 
969 	sched_schedclock(l);
970 }
971 
972 /*
973  * Statistics clock.  Grab profile sample, and if divider reaches 0,
974  * do process and kernel statistics.
975  */
976 void
977 statclock(struct clockframe *frame)
978 {
979 #ifdef GPROF
980 	struct gmonparam *g;
981 	intptr_t i;
982 #endif
983 	struct cpu_info *ci = curcpu();
984 	struct schedstate_percpu *spc = &ci->ci_schedstate;
985 	struct proc *p;
986 	struct lwp *l;
987 
988 	/*
989 	 * Notice changes in divisor frequency, and adjust clock
990 	 * frequency accordingly.
991 	 */
992 	if (spc->spc_psdiv != psdiv) {
993 		spc->spc_psdiv = psdiv;
994 		spc->spc_pscnt = psdiv;
995 		if (psdiv == 1) {
996 			setstatclockrate(stathz);
997 		} else {
998 			setstatclockrate(profhz);
999 		}
1000 	}
1001 	l = curlwp;
1002 	if ((l->l_flag & LW_IDLE) != 0) {
1003 		/*
1004 		 * don't account idle lwps as swapper.
1005 		 */
1006 		p = NULL;
1007 	} else {
1008 		p = l->l_proc;
1009 		mutex_spin_enter(&p->p_stmutex);
1010 	}
1011 
1012 	if (CLKF_USERMODE(frame)) {
1013 		if ((p->p_stflag & PST_PROFIL) && profsrc == PROFSRC_CLOCK)
1014 			addupc_intr(l, CLKF_PC(frame));
1015 		if (--spc->spc_pscnt > 0) {
1016 			mutex_spin_exit(&p->p_stmutex);
1017 			return;
1018 		}
1019 
1020 		/*
1021 		 * Came from user mode; CPU was in user state.
1022 		 * If this process is being profiled record the tick.
1023 		 */
1024 		p->p_uticks++;
1025 		if (p->p_nice > NZERO)
1026 			spc->spc_cp_time[CP_NICE]++;
1027 		else
1028 			spc->spc_cp_time[CP_USER]++;
1029 	} else {
1030 #ifdef GPROF
1031 		/*
1032 		 * Kernel statistics are just like addupc_intr, only easier.
1033 		 */
1034 		g = &_gmonparam;
1035 		if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
1036 			i = CLKF_PC(frame) - g->lowpc;
1037 			if (i < g->textsize) {
1038 				i /= HISTFRACTION * sizeof(*g->kcount);
1039 				g->kcount[i]++;
1040 			}
1041 		}
1042 #endif
1043 #ifdef LWP_PC
1044 		if (p != NULL && profsrc == PROFSRC_CLOCK &&
1045 		    (p->p_stflag & PST_PROFIL)) {
1046 			addupc_intr(l, LWP_PC(l));
1047 		}
1048 #endif
1049 		if (--spc->spc_pscnt > 0) {
1050 			if (p != NULL)
1051 				mutex_spin_exit(&p->p_stmutex);
1052 			return;
1053 		}
1054 		/*
1055 		 * Came from kernel mode, so we were:
1056 		 * - handling an interrupt,
1057 		 * - doing syscall or trap work on behalf of the current
1058 		 *   user process, or
1059 		 * - spinning in the idle loop.
1060 		 * Whichever it is, charge the time as appropriate.
1061 		 * Note that we charge interrupts to the current process,
1062 		 * regardless of whether they are ``for'' that process,
1063 		 * so that we know how much of its real time was spent
1064 		 * in ``non-process'' (i.e., interrupt) work.
1065 		 */
1066 		if (CLKF_INTR(frame) || (l->l_flag & LW_INTR) != 0) {
1067 			if (p != NULL) {
1068 				p->p_iticks++;
1069 			}
1070 			spc->spc_cp_time[CP_INTR]++;
1071 		} else if (p != NULL) {
1072 			p->p_sticks++;
1073 			spc->spc_cp_time[CP_SYS]++;
1074 		} else {
1075 			spc->spc_cp_time[CP_IDLE]++;
1076 		}
1077 	}
1078 	spc->spc_pscnt = psdiv;
1079 
1080 	if (p != NULL) {
1081 		++l->l_cpticks;
1082 		mutex_spin_exit(&p->p_stmutex);
1083 	}
1084 
1085 	/*
1086 	 * If no separate schedclock is provided, call it here
1087 	 * at about 16 Hz.
1088 	 */
1089 	if (schedhz == 0) {
1090 		if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) {
1091 			schedclock(l);
1092 			ci->ci_schedstate.spc_schedticks = statscheddiv;
1093 		}
1094 	}
1095 }
1096 
1097 #ifndef __HAVE_TIMECOUNTER
1098 #ifdef NTP	/* NTP phase-locked loop in kernel */
1099 /*
1100  * hardupdate() - local clock update
1101  *
1102  * This routine is called by ntp_adjtime() to update the local clock
1103  * phase and frequency. The implementation is of an adaptive-parameter,
1104  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1105  * time and frequency offset estimates for each call. If the kernel PPS
1106  * discipline code is configured (PPS_SYNC), the PPS signal itself
1107  * determines the new time offset, instead of the calling argument.
1108  * Presumably, calls to ntp_adjtime() occur only when the caller
1109  * believes the local clock is valid within some bound (+-128 ms with
1110  * NTP). If the caller's time is far different than the PPS time, an
1111  * argument will ensue, and it's not clear who will lose.
1112  *
1113  * For uncompensated quartz crystal oscillatores and nominal update
1114  * intervals less than 1024 s, operation should be in phase-lock mode
1115  * (STA_FLL = 0), where the loop is disciplined to phase. For update
1116  * intervals greater than thiss, operation should be in frequency-lock
1117  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1118  *
1119  * Note: splclock() is in effect.
1120  */
1121 void
1122 hardupdate(long offset)
1123 {
1124 	long ltemp, mtemp;
1125 
1126 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1127 		return;
1128 	ltemp = offset;
1129 #ifdef PPS_SYNC
1130 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1131 		ltemp = pps_offset;
1132 #endif /* PPS_SYNC */
1133 
1134 	/*
1135 	 * Scale the phase adjustment and clamp to the operating range.
1136 	 */
1137 	if (ltemp > MAXPHASE)
1138 		time_offset = MAXPHASE << SHIFT_UPDATE;
1139 	else if (ltemp < -MAXPHASE)
1140 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
1141 	else
1142 		time_offset = ltemp << SHIFT_UPDATE;
1143 
1144 	/*
1145 	 * Select whether the frequency is to be controlled and in which
1146 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
1147 	 * multiply/divide should be replaced someday.
1148 	 */
1149 	if (time_status & STA_FREQHOLD || time_reftime == 0)
1150 		time_reftime = time.tv_sec;
1151 	mtemp = time.tv_sec - time_reftime;
1152 	time_reftime = time.tv_sec;
1153 	if (time_status & STA_FLL) {
1154 		if (mtemp >= MINSEC) {
1155 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1156 			    SHIFT_UPDATE));
1157 			if (ltemp < 0)
1158 				time_freq -= -ltemp >> SHIFT_KH;
1159 			else
1160 				time_freq += ltemp >> SHIFT_KH;
1161 		}
1162 	} else {
1163 		if (mtemp < MAXSEC) {
1164 			ltemp *= mtemp;
1165 			if (ltemp < 0)
1166 				time_freq -= -ltemp >> (time_constant +
1167 				    time_constant + SHIFT_KF -
1168 				    SHIFT_USEC);
1169 			else
1170 				time_freq += ltemp >> (time_constant +
1171 				    time_constant + SHIFT_KF -
1172 				    SHIFT_USEC);
1173 		}
1174 	}
1175 	if (time_freq > time_tolerance)
1176 		time_freq = time_tolerance;
1177 	else if (time_freq < -time_tolerance)
1178 		time_freq = -time_tolerance;
1179 }
1180 
1181 #ifdef PPS_SYNC
1182 /*
1183  * hardpps() - discipline CPU clock oscillator to external PPS signal
1184  *
1185  * This routine is called at each PPS interrupt in order to discipline
1186  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1187  * and leaves it in a handy spot for the hardclock() routine. It
1188  * integrates successive PPS phase differences and calculates the
1189  * frequency offset. This is used in hardclock() to discipline the CPU
1190  * clock oscillator so that intrinsic frequency error is cancelled out.
1191  * The code requires the caller to capture the time and hardware counter
1192  * value at the on-time PPS signal transition.
1193  *
1194  * Note that, on some Unix systems, this routine runs at an interrupt
1195  * priority level higher than the timer interrupt routine hardclock().
1196  * Therefore, the variables used are distinct from the hardclock()
1197  * variables, except for certain exceptions: The PPS frequency pps_freq
1198  * and phase pps_offset variables are determined by this routine and
1199  * updated atomically. The time_tolerance variable can be considered a
1200  * constant, since it is infrequently changed, and then only when the
1201  * PPS signal is disabled. The watchdog counter pps_valid is updated
1202  * once per second by hardclock() and is atomically cleared in this
1203  * routine.
1204  */
1205 void
1206 hardpps(struct timeval *tvp,		/* time at PPS */
1207 	long usec			/* hardware counter at PPS */)
1208 {
1209 	long u_usec, v_usec, bigtick;
1210 	long cal_sec, cal_usec;
1211 
1212 	/*
1213 	 * An occasional glitch can be produced when the PPS interrupt
1214 	 * occurs in the hardclock() routine before the time variable is
1215 	 * updated. Here the offset is discarded when the difference
1216 	 * between it and the last one is greater than tick/2, but not
1217 	 * if the interval since the first discard exceeds 30 s.
1218 	 */
1219 	time_status |= STA_PPSSIGNAL;
1220 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1221 	pps_valid = 0;
1222 	u_usec = -tvp->tv_usec;
1223 	if (u_usec < -500000)
1224 		u_usec += 1000000;
1225 	v_usec = pps_offset - u_usec;
1226 	if (v_usec < 0)
1227 		v_usec = -v_usec;
1228 	if (v_usec > (tick >> 1)) {
1229 		if (pps_glitch > MAXGLITCH) {
1230 			pps_glitch = 0;
1231 			pps_tf[2] = u_usec;
1232 			pps_tf[1] = u_usec;
1233 		} else {
1234 			pps_glitch++;
1235 			u_usec = pps_offset;
1236 		}
1237 	} else
1238 		pps_glitch = 0;
1239 
1240 	/*
1241 	 * A three-stage median filter is used to help deglitch the pps
1242 	 * time. The median sample becomes the time offset estimate; the
1243 	 * difference between the other two samples becomes the time
1244 	 * dispersion (jitter) estimate.
1245 	 */
1246 	pps_tf[2] = pps_tf[1];
1247 	pps_tf[1] = pps_tf[0];
1248 	pps_tf[0] = u_usec;
1249 	if (pps_tf[0] > pps_tf[1]) {
1250 		if (pps_tf[1] > pps_tf[2]) {
1251 			pps_offset = pps_tf[1];		/* 0 1 2 */
1252 			v_usec = pps_tf[0] - pps_tf[2];
1253 		} else if (pps_tf[2] > pps_tf[0]) {
1254 			pps_offset = pps_tf[0];		/* 2 0 1 */
1255 			v_usec = pps_tf[2] - pps_tf[1];
1256 		} else {
1257 			pps_offset = pps_tf[2];		/* 0 2 1 */
1258 			v_usec = pps_tf[0] - pps_tf[1];
1259 		}
1260 	} else {
1261 		if (pps_tf[1] < pps_tf[2]) {
1262 			pps_offset = pps_tf[1];		/* 2 1 0 */
1263 			v_usec = pps_tf[2] - pps_tf[0];
1264 		} else  if (pps_tf[2] < pps_tf[0]) {
1265 			pps_offset = pps_tf[0];		/* 1 0 2 */
1266 			v_usec = pps_tf[1] - pps_tf[2];
1267 		} else {
1268 			pps_offset = pps_tf[2];		/* 1 2 0 */
1269 			v_usec = pps_tf[1] - pps_tf[0];
1270 		}
1271 	}
1272 	if (v_usec > MAXTIME)
1273 		pps_jitcnt++;
1274 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
1275 	if (v_usec < 0)
1276 		pps_jitter -= -v_usec >> PPS_AVG;
1277 	else
1278 		pps_jitter += v_usec >> PPS_AVG;
1279 	if (pps_jitter > (MAXTIME >> 1))
1280 		time_status |= STA_PPSJITTER;
1281 
1282 	/*
1283 	 * During the calibration interval adjust the starting time when
1284 	 * the tick overflows. At the end of the interval compute the
1285 	 * duration of the interval and the difference of the hardware
1286 	 * counters at the beginning and end of the interval. This code
1287 	 * is deliciously complicated by the fact valid differences may
1288 	 * exceed the value of tick when using long calibration
1289 	 * intervals and small ticks. Note that the counter can be
1290 	 * greater than tick if caught at just the wrong instant, but
1291 	 * the values returned and used here are correct.
1292 	 */
1293 	bigtick = (long)tick << SHIFT_USEC;
1294 	pps_usec -= pps_freq;
1295 	if (pps_usec >= bigtick)
1296 		pps_usec -= bigtick;
1297 	if (pps_usec < 0)
1298 		pps_usec += bigtick;
1299 	pps_time.tv_sec++;
1300 	pps_count++;
1301 	if (pps_count < (1 << pps_shift))
1302 		return;
1303 	pps_count = 0;
1304 	pps_calcnt++;
1305 	u_usec = usec << SHIFT_USEC;
1306 	v_usec = pps_usec - u_usec;
1307 	if (v_usec >= bigtick >> 1)
1308 		v_usec -= bigtick;
1309 	if (v_usec < -(bigtick >> 1))
1310 		v_usec += bigtick;
1311 	if (v_usec < 0)
1312 		v_usec = -(-v_usec >> pps_shift);
1313 	else
1314 		v_usec = v_usec >> pps_shift;
1315 	pps_usec = u_usec;
1316 	cal_sec = tvp->tv_sec;
1317 	cal_usec = tvp->tv_usec;
1318 	cal_sec -= pps_time.tv_sec;
1319 	cal_usec -= pps_time.tv_usec;
1320 	if (cal_usec < 0) {
1321 		cal_usec += 1000000;
1322 		cal_sec--;
1323 	}
1324 	pps_time = *tvp;
1325 
1326 	/*
1327 	 * Check for lost interrupts, noise, excessive jitter and
1328 	 * excessive frequency error. The number of timer ticks during
1329 	 * the interval may vary +-1 tick. Add to this a margin of one
1330 	 * tick for the PPS signal jitter and maximum frequency
1331 	 * deviation. If the limits are exceeded, the calibration
1332 	 * interval is reset to the minimum and we start over.
1333 	 */
1334 	u_usec = (long)tick << 1;
1335 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1336 	    || (cal_sec == 0 && cal_usec < u_usec))
1337 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
1338 		pps_errcnt++;
1339 		pps_shift = PPS_SHIFT;
1340 		pps_intcnt = 0;
1341 		time_status |= STA_PPSERROR;
1342 		return;
1343 	}
1344 
1345 	/*
1346 	 * A three-stage median filter is used to help deglitch the pps
1347 	 * frequency. The median sample becomes the frequency offset
1348 	 * estimate; the difference between the other two samples
1349 	 * becomes the frequency dispersion (stability) estimate.
1350 	 */
1351 	pps_ff[2] = pps_ff[1];
1352 	pps_ff[1] = pps_ff[0];
1353 	pps_ff[0] = v_usec;
1354 	if (pps_ff[0] > pps_ff[1]) {
1355 		if (pps_ff[1] > pps_ff[2]) {
1356 			u_usec = pps_ff[1];		/* 0 1 2 */
1357 			v_usec = pps_ff[0] - pps_ff[2];
1358 		} else if (pps_ff[2] > pps_ff[0]) {
1359 			u_usec = pps_ff[0];		/* 2 0 1 */
1360 			v_usec = pps_ff[2] - pps_ff[1];
1361 		} else {
1362 			u_usec = pps_ff[2];		/* 0 2 1 */
1363 			v_usec = pps_ff[0] - pps_ff[1];
1364 		}
1365 	} else {
1366 		if (pps_ff[1] < pps_ff[2]) {
1367 			u_usec = pps_ff[1];		/* 2 1 0 */
1368 			v_usec = pps_ff[2] - pps_ff[0];
1369 		} else  if (pps_ff[2] < pps_ff[0]) {
1370 			u_usec = pps_ff[0];		/* 1 0 2 */
1371 			v_usec = pps_ff[1] - pps_ff[2];
1372 		} else {
1373 			u_usec = pps_ff[2];		/* 1 2 0 */
1374 			v_usec = pps_ff[1] - pps_ff[0];
1375 		}
1376 	}
1377 
1378 	/*
1379 	 * Here the frequency dispersion (stability) is updated. If it
1380 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
1381 	 * offset is updated as well, but clamped to the tolerance. It
1382 	 * will be processed later by the hardclock() routine.
1383 	 */
1384 	v_usec = (v_usec >> 1) - pps_stabil;
1385 	if (v_usec < 0)
1386 		pps_stabil -= -v_usec >> PPS_AVG;
1387 	else
1388 		pps_stabil += v_usec >> PPS_AVG;
1389 	if (pps_stabil > MAXFREQ >> 2) {
1390 		pps_stbcnt++;
1391 		time_status |= STA_PPSWANDER;
1392 		return;
1393 	}
1394 	if (time_status & STA_PPSFREQ) {
1395 		if (u_usec < 0) {
1396 			pps_freq -= -u_usec >> PPS_AVG;
1397 			if (pps_freq < -time_tolerance)
1398 				pps_freq = -time_tolerance;
1399 			u_usec = -u_usec;
1400 		} else {
1401 			pps_freq += u_usec >> PPS_AVG;
1402 			if (pps_freq > time_tolerance)
1403 				pps_freq = time_tolerance;
1404 		}
1405 	}
1406 
1407 	/*
1408 	 * Here the calibration interval is adjusted. If the maximum
1409 	 * time difference is greater than tick / 4, reduce the interval
1410 	 * by half. If this is not the case for four consecutive
1411 	 * intervals, double the interval.
1412 	 */
1413 	if (u_usec << pps_shift > bigtick >> 2) {
1414 		pps_intcnt = 0;
1415 		if (pps_shift > PPS_SHIFT)
1416 			pps_shift--;
1417 	} else if (pps_intcnt >= 4) {
1418 		pps_intcnt = 0;
1419 		if (pps_shift < PPS_SHIFTMAX)
1420 			pps_shift++;
1421 	} else
1422 		pps_intcnt++;
1423 }
1424 #endif /* PPS_SYNC */
1425 #endif /* NTP  */
1426 
1427 /* timecounter compat functions */
1428 void
1429 nanotime(struct timespec *ts)
1430 {
1431 	struct timeval tv;
1432 
1433 	microtime(&tv);
1434 	TIMEVAL_TO_TIMESPEC(&tv, ts);
1435 }
1436 
1437 void
1438 getbinuptime(struct bintime *bt)
1439 {
1440 	struct timeval tv;
1441 
1442 	microtime(&tv);
1443 	timeval2bintime(&tv, bt);
1444 }
1445 
1446 void
1447 nanouptime(struct timespec *tsp)
1448 {
1449 	int s;
1450 
1451 	s = splclock();
1452 	TIMEVAL_TO_TIMESPEC(&mono_time, tsp);
1453 	splx(s);
1454 }
1455 
1456 void
1457 getnanouptime(struct timespec *tsp)
1458 {
1459 	int s;
1460 
1461 	s = splclock();
1462 	TIMEVAL_TO_TIMESPEC(&mono_time, tsp);
1463 	splx(s);
1464 }
1465 
1466 void
1467 getmicrouptime(struct timeval *tvp)
1468 {
1469 	int s;
1470 
1471 	s = splclock();
1472 	*tvp = mono_time;
1473 	splx(s);
1474 }
1475 
1476 void
1477 getnanotime(struct timespec *tsp)
1478 {
1479 	int s;
1480 
1481 	s = splclock();
1482 	TIMEVAL_TO_TIMESPEC(&time, tsp);
1483 	splx(s);
1484 }
1485 
1486 void
1487 getmicrotime(struct timeval *tvp)
1488 {
1489 	int s;
1490 
1491 	s = splclock();
1492 	*tvp = time;
1493 	splx(s);
1494 }
1495 
1496 u_int64_t
1497 tc_getfrequency(void)
1498 {
1499 	return hz;
1500 }
1501 #endif /* !__HAVE_TIMECOUNTER */
1502