1 /* $NetBSD: udf_subr.c,v 1.148 2020/01/17 20:08:08 ad Exp $ */ 2 3 /* 4 * Copyright (c) 2006, 2008 Reinoud Zandijk 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * 27 */ 28 29 30 #include <sys/cdefs.h> 31 #ifndef lint 32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.148 2020/01/17 20:08:08 ad Exp $"); 33 #endif /* not lint */ 34 35 36 #if defined(_KERNEL_OPT) 37 #include "opt_compat_netbsd.h" 38 #endif 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/sysctl.h> 43 #include <sys/namei.h> 44 #include <sys/proc.h> 45 #include <sys/kernel.h> 46 #include <sys/vnode.h> 47 #include <miscfs/genfs/genfs_node.h> 48 #include <sys/mount.h> 49 #include <sys/buf.h> 50 #include <sys/file.h> 51 #include <sys/device.h> 52 #include <sys/disklabel.h> 53 #include <sys/ioctl.h> 54 #include <sys/malloc.h> 55 #include <sys/dirent.h> 56 #include <sys/stat.h> 57 #include <sys/conf.h> 58 #include <sys/kauth.h> 59 #include <fs/unicode.h> 60 #include <dev/clock_subr.h> 61 62 #include <fs/udf/ecma167-udf.h> 63 #include <fs/udf/udf_mount.h> 64 #include <sys/dirhash.h> 65 66 #include "udf.h" 67 #include "udf_subr.h" 68 #include "udf_bswap.h" 69 70 71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data) 72 73 #define UDF_SET_SYSTEMFILE(vp) \ 74 /* XXXAD Is the vnode locked? */ \ 75 (vp)->v_vflag |= VV_SYSTEM; \ 76 vref((vp)); \ 77 vput((vp)); \ 78 79 extern int syncer_maxdelay; /* maximum delay time */ 80 extern int (**udf_vnodeop_p)(void *); 81 82 /* --------------------------------------------------------------------- */ 83 84 //#ifdef DEBUG 85 #if 1 86 87 #if 0 88 static void 89 udf_dumpblob(boid *blob, uint32_t dlen) 90 { 91 int i, j; 92 93 printf("blob = %p\n", blob); 94 printf("dump of %d bytes\n", dlen); 95 96 for (i = 0; i < dlen; i+ = 16) { 97 printf("%04x ", i); 98 for (j = 0; j < 16; j++) { 99 if (i+j < dlen) { 100 printf("%02x ", blob[i+j]); 101 } else { 102 printf(" "); 103 } 104 } 105 for (j = 0; j < 16; j++) { 106 if (i+j < dlen) { 107 if (blob[i+j]>32 && blob[i+j]! = 127) { 108 printf("%c", blob[i+j]); 109 } else { 110 printf("."); 111 } 112 } 113 } 114 printf("\n"); 115 } 116 printf("\n"); 117 Debugger(); 118 } 119 #endif 120 121 static void 122 udf_dump_discinfo(struct udf_mount *ump) 123 { 124 char bits[128]; 125 struct mmc_discinfo *di = &ump->discinfo; 126 127 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0) 128 return; 129 130 printf("Device/media info :\n"); 131 printf("\tMMC profile 0x%02x\n", di->mmc_profile); 132 printf("\tderived class %d\n", di->mmc_class); 133 printf("\tsector size %d\n", di->sector_size); 134 printf("\tdisc state %d\n", di->disc_state); 135 printf("\tlast ses state %d\n", di->last_session_state); 136 printf("\tbg format state %d\n", di->bg_format_state); 137 printf("\tfrst track %d\n", di->first_track); 138 printf("\tfst on last ses %d\n", di->first_track_last_session); 139 printf("\tlst on last ses %d\n", di->last_track_last_session); 140 printf("\tlink block penalty %d\n", di->link_block_penalty); 141 snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags); 142 printf("\tdisc flags %s\n", bits); 143 printf("\tdisc id %x\n", di->disc_id); 144 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode); 145 146 printf("\tnum sessions %d\n", di->num_sessions); 147 printf("\tnum tracks %d\n", di->num_tracks); 148 149 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur); 150 printf("\tcapabilities cur %s\n", bits); 151 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap); 152 printf("\tcapabilities cap %s\n", bits); 153 } 154 155 static void 156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo) 157 { 158 char bits[128]; 159 160 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0) 161 return; 162 163 printf("Trackinfo for track %d:\n", trackinfo->tracknr); 164 printf("\tsessionnr %d\n", trackinfo->sessionnr); 165 printf("\ttrack mode %d\n", trackinfo->track_mode); 166 printf("\tdata mode %d\n", trackinfo->data_mode); 167 snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags); 168 printf("\tflags %s\n", bits); 169 170 printf("\ttrack start %d\n", trackinfo->track_start); 171 printf("\tnext_writable %d\n", trackinfo->next_writable); 172 printf("\tfree_blocks %d\n", trackinfo->free_blocks); 173 printf("\tpacket_size %d\n", trackinfo->packet_size); 174 printf("\ttrack size %d\n", trackinfo->track_size); 175 printf("\tlast recorded block %d\n", trackinfo->last_recorded); 176 } 177 178 #else 179 #define udf_dump_discinfo(a); 180 #define udf_dump_trackinfo(a); 181 #endif 182 183 184 /* --------------------------------------------------------------------- */ 185 186 /* not called often */ 187 int 188 udf_update_discinfo(struct udf_mount *ump) 189 { 190 struct vnode *devvp = ump->devvp; 191 uint64_t psize; 192 unsigned secsize; 193 struct mmc_discinfo *di; 194 int error; 195 196 DPRINTF(VOLUMES, ("read/update disc info\n")); 197 di = &ump->discinfo; 198 memset(di, 0, sizeof(struct mmc_discinfo)); 199 200 /* check if we're on a MMC capable device, i.e. CD/DVD */ 201 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED); 202 if (error == 0) { 203 udf_dump_discinfo(ump); 204 return 0; 205 } 206 207 /* disc partition support */ 208 error = getdisksize(devvp, &psize, &secsize); 209 if (error) 210 return error; 211 212 /* set up a disc info profile for partitions */ 213 di->mmc_profile = 0x01; /* disc type */ 214 di->mmc_class = MMC_CLASS_DISC; 215 di->disc_state = MMC_STATE_CLOSED; 216 di->last_session_state = MMC_STATE_CLOSED; 217 di->bg_format_state = MMC_BGFSTATE_COMPLETED; 218 di->link_block_penalty = 0; 219 220 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE | 221 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE; 222 di->mmc_cap = di->mmc_cur; 223 di->disc_flags = MMC_DFLAGS_UNRESTRICTED; 224 225 /* TODO problem with last_possible_lba on resizable VND; request */ 226 di->last_possible_lba = psize; 227 di->sector_size = secsize; 228 229 di->num_sessions = 1; 230 di->num_tracks = 1; 231 232 di->first_track = 1; 233 di->first_track_last_session = di->last_track_last_session = 1; 234 235 udf_dump_discinfo(ump); 236 return 0; 237 } 238 239 240 int 241 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti) 242 { 243 struct vnode *devvp = ump->devvp; 244 struct mmc_discinfo *di = &ump->discinfo; 245 int error, class; 246 247 DPRINTF(VOLUMES, ("read track info\n")); 248 249 class = di->mmc_class; 250 if (class != MMC_CLASS_DISC) { 251 /* tracknr specified in struct ti */ 252 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED); 253 return error; 254 } 255 256 /* disc partition support */ 257 if (ti->tracknr != 1) 258 return EIO; 259 260 /* create fake ti (TODO check for resized vnds) */ 261 ti->sessionnr = 1; 262 263 ti->track_mode = 0; /* XXX */ 264 ti->data_mode = 0; /* XXX */ 265 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID; 266 267 ti->track_start = 0; 268 ti->packet_size = 1; 269 270 /* TODO support for resizable vnd */ 271 ti->track_size = di->last_possible_lba; 272 ti->next_writable = di->last_possible_lba; 273 ti->last_recorded = ti->next_writable; 274 ti->free_blocks = 0; 275 276 return 0; 277 } 278 279 280 int 281 udf_setup_writeparams(struct udf_mount *ump) 282 { 283 struct mmc_writeparams mmc_writeparams; 284 int error; 285 286 if (ump->discinfo.mmc_class == MMC_CLASS_DISC) 287 return 0; 288 289 /* 290 * only CD burning normally needs setting up, but other disc types 291 * might need other settings to be made. The MMC framework will set up 292 * the nessisary recording parameters according to the disc 293 * characteristics read in. Modifications can be made in the discinfo 294 * structure passed to change the nature of the disc. 295 */ 296 297 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams)); 298 mmc_writeparams.mmc_class = ump->discinfo.mmc_class; 299 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur; 300 301 /* 302 * UDF dictates first track to determine track mode for the whole 303 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1] 304 * To prevent problems with a `reserved' track in front we start with 305 * the 2nd track and if that is not valid, go for the 1st. 306 */ 307 mmc_writeparams.tracknr = 2; 308 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */ 309 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */ 310 311 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams, 312 FKIOCTL, NOCRED); 313 if (error) { 314 mmc_writeparams.tracknr = 1; 315 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, 316 &mmc_writeparams, FKIOCTL, NOCRED); 317 } 318 return error; 319 } 320 321 322 void 323 udf_mmc_synchronise_caches(struct udf_mount *ump) 324 { 325 struct mmc_op mmc_op; 326 327 DPRINTF(CALL, ("udf_mcc_synchronise_caches()\n")); 328 329 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 330 return; 331 332 /* discs are done now */ 333 if (ump->discinfo.mmc_class == MMC_CLASS_DISC) 334 return; 335 336 memset(&mmc_op, 0, sizeof(struct mmc_op)); 337 mmc_op.operation = MMC_OP_SYNCHRONISECACHE; 338 339 /* ignore return code */ 340 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED); 341 } 342 343 /* --------------------------------------------------------------------- */ 344 345 /* track/session searching for mounting */ 346 int 347 udf_search_tracks(struct udf_mount *ump, struct udf_args *args, 348 int *first_tracknr, int *last_tracknr) 349 { 350 struct mmc_trackinfo trackinfo; 351 uint32_t tracknr, start_track, num_tracks; 352 int error; 353 354 /* if negative, sessionnr is relative to last session */ 355 if (args->sessionnr < 0) { 356 args->sessionnr += ump->discinfo.num_sessions; 357 } 358 359 /* sanity */ 360 if (args->sessionnr < 0) 361 args->sessionnr = 0; 362 if (args->sessionnr > ump->discinfo.num_sessions) 363 args->sessionnr = ump->discinfo.num_sessions; 364 365 /* search the tracks for this session, zero session nr indicates last */ 366 if (args->sessionnr == 0) 367 args->sessionnr = ump->discinfo.num_sessions; 368 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) 369 args->sessionnr--; 370 371 /* sanity again */ 372 if (args->sessionnr < 0) 373 args->sessionnr = 0; 374 375 /* search the first and last track of the specified session */ 376 num_tracks = ump->discinfo.num_tracks; 377 start_track = ump->discinfo.first_track; 378 379 /* search for first track of this session */ 380 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) { 381 /* get track info */ 382 trackinfo.tracknr = tracknr; 383 error = udf_update_trackinfo(ump, &trackinfo); 384 if (error) 385 return error; 386 387 if (trackinfo.sessionnr == args->sessionnr) 388 break; 389 } 390 *first_tracknr = tracknr; 391 392 /* search for last track of this session */ 393 for (;tracknr <= num_tracks; tracknr++) { 394 /* get track info */ 395 trackinfo.tracknr = tracknr; 396 error = udf_update_trackinfo(ump, &trackinfo); 397 if (error || (trackinfo.sessionnr != args->sessionnr)) { 398 tracknr--; 399 break; 400 } 401 } 402 if (tracknr > num_tracks) 403 tracknr--; 404 405 *last_tracknr = tracknr; 406 407 if (*last_tracknr < *first_tracknr) { 408 printf( "udf_search_tracks: sanity check on drive+disc failed, " 409 "drive returned garbage\n"); 410 return EINVAL; 411 } 412 413 assert(*last_tracknr >= *first_tracknr); 414 return 0; 415 } 416 417 418 /* 419 * NOTE: this is the only routine in this file that directly peeks into the 420 * metadata file but since its at a larval state of the mount it can't hurt. 421 * 422 * XXX candidate for udf_allocation.c 423 * XXX clean me up!, change to new node reading code. 424 */ 425 426 static void 427 udf_check_track_metadata_overlap(struct udf_mount *ump, 428 struct mmc_trackinfo *trackinfo) 429 { 430 struct part_desc *part; 431 struct file_entry *fe; 432 struct extfile_entry *efe; 433 struct short_ad *s_ad; 434 struct long_ad *l_ad; 435 uint32_t track_start, track_end; 436 uint32_t phys_part_start, phys_part_end, part_start, part_end; 437 uint32_t sector_size, len, alloclen, plb_num; 438 uint8_t *pos; 439 int addr_type, icblen, icbflags; 440 441 /* get our track extents */ 442 track_start = trackinfo->track_start; 443 track_end = track_start + trackinfo->track_size; 444 445 /* get our base partition extent */ 446 KASSERT(ump->node_part == ump->fids_part); 447 part = ump->partitions[ump->vtop[ump->node_part]]; 448 phys_part_start = udf_rw32(part->start_loc); 449 phys_part_end = phys_part_start + udf_rw32(part->part_len); 450 451 /* no use if its outside the physical partition */ 452 if ((phys_part_start >= track_end) || (phys_part_end < track_start)) 453 return; 454 455 /* 456 * now follow all extents in the fe/efe to see if they refer to this 457 * track 458 */ 459 460 sector_size = ump->discinfo.sector_size; 461 462 /* XXX should we claim exclusive access to the metafile ? */ 463 /* TODO: move to new node read code */ 464 fe = ump->metadata_node->fe; 465 efe = ump->metadata_node->efe; 466 if (fe) { 467 alloclen = udf_rw32(fe->l_ad); 468 pos = &fe->data[0] + udf_rw32(fe->l_ea); 469 icbflags = udf_rw16(fe->icbtag.flags); 470 } else { 471 assert(efe); 472 alloclen = udf_rw32(efe->l_ad); 473 pos = &efe->data[0] + udf_rw32(efe->l_ea); 474 icbflags = udf_rw16(efe->icbtag.flags); 475 } 476 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 477 478 while (alloclen) { 479 if (addr_type == UDF_ICB_SHORT_ALLOC) { 480 icblen = sizeof(struct short_ad); 481 s_ad = (struct short_ad *) pos; 482 len = udf_rw32(s_ad->len); 483 plb_num = udf_rw32(s_ad->lb_num); 484 } else { 485 /* should not be present, but why not */ 486 icblen = sizeof(struct long_ad); 487 l_ad = (struct long_ad *) pos; 488 len = udf_rw32(l_ad->len); 489 plb_num = udf_rw32(l_ad->loc.lb_num); 490 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */ 491 } 492 /* process extent */ 493 len = UDF_EXT_LEN(len); 494 495 part_start = phys_part_start + plb_num; 496 part_end = part_start + (len / sector_size); 497 498 if ((part_start >= track_start) && (part_end <= track_end)) { 499 /* extent is enclosed within this track */ 500 ump->metadata_track = *trackinfo; 501 return; 502 } 503 504 pos += icblen; 505 alloclen -= icblen; 506 } 507 } 508 509 510 int 511 udf_search_writing_tracks(struct udf_mount *ump) 512 { 513 struct vnode *devvp = ump->devvp; 514 struct mmc_trackinfo trackinfo; 515 struct mmc_op mmc_op; 516 struct part_desc *part; 517 uint32_t tracknr, start_track, num_tracks; 518 uint32_t track_start, track_end, part_start, part_end; 519 int node_alloc, error; 520 521 /* 522 * in the CD/(HD)DVD/BD recordable device model a few tracks within 523 * the last session might be open but in the UDF device model at most 524 * three tracks can be open: a reserved track for delayed ISO VRS 525 * writing, a data track and a metadata track. We search here for the 526 * data track and the metadata track. Note that the reserved track is 527 * troublesome but can be detected by its small size of < 512 sectors. 528 */ 529 530 /* update discinfo since it might have changed */ 531 error = udf_update_discinfo(ump); 532 if (error) 533 return error; 534 535 num_tracks = ump->discinfo.num_tracks; 536 start_track = ump->discinfo.first_track; 537 538 /* fetch info on first and possibly only track */ 539 trackinfo.tracknr = start_track; 540 error = udf_update_trackinfo(ump, &trackinfo); 541 if (error) 542 return error; 543 544 /* copy results to our mount point */ 545 ump->data_track = trackinfo; 546 ump->metadata_track = trackinfo; 547 548 /* if not sequential, we're done */ 549 if (num_tracks == 1) 550 return 0; 551 552 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) { 553 /* get track info */ 554 trackinfo.tracknr = tracknr; 555 error = udf_update_trackinfo(ump, &trackinfo); 556 if (error) 557 return error; 558 559 /* 560 * If this track is marked damaged, ask for repair. This is an 561 * optional command, so ignore its error but report warning. 562 */ 563 if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) { 564 memset(&mmc_op, 0, sizeof(mmc_op)); 565 mmc_op.operation = MMC_OP_REPAIRTRACK; 566 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 567 mmc_op.tracknr = tracknr; 568 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED); 569 if (error) 570 (void)printf("Drive can't explicitly repair " 571 "damaged track %d, but it might " 572 "autorepair\n", tracknr); 573 574 /* reget track info */ 575 error = udf_update_trackinfo(ump, &trackinfo); 576 if (error) 577 return error; 578 } 579 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0) 580 continue; 581 582 track_start = trackinfo.track_start; 583 track_end = track_start + trackinfo.track_size; 584 585 /* check for overlap on data partition */ 586 part = ump->partitions[ump->data_part]; 587 part_start = udf_rw32(part->start_loc); 588 part_end = part_start + udf_rw32(part->part_len); 589 if ((part_start < track_end) && (part_end > track_start)) { 590 ump->data_track = trackinfo; 591 /* TODO check if UDF partition data_part is writable */ 592 } 593 594 /* check for overlap on metadata partition */ 595 node_alloc = ump->vtop_alloc[ump->node_part]; 596 if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) || 597 (node_alloc == UDF_ALLOC_METABITMAP)) { 598 udf_check_track_metadata_overlap(ump, &trackinfo); 599 } else { 600 ump->metadata_track = trackinfo; 601 } 602 } 603 604 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0) 605 return EROFS; 606 607 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0) 608 return EROFS; 609 610 return 0; 611 } 612 613 /* --------------------------------------------------------------------- */ 614 615 /* 616 * Check if the blob starts with a good UDF tag. Tags are protected by a 617 * checksum over the reader except one byte at position 4 that is the checksum 618 * itself. 619 */ 620 621 int 622 udf_check_tag(void *blob) 623 { 624 struct desc_tag *tag = blob; 625 uint8_t *pos, sum, cnt; 626 627 /* check TAG header checksum */ 628 pos = (uint8_t *) tag; 629 sum = 0; 630 631 for(cnt = 0; cnt < 16; cnt++) { 632 if (cnt != 4) 633 sum += *pos; 634 pos++; 635 } 636 if (sum != tag->cksum) { 637 /* bad tag header checksum; this is not a valid tag */ 638 return EINVAL; 639 } 640 641 return 0; 642 } 643 644 645 /* 646 * check tag payload will check descriptor CRC as specified. 647 * If the descriptor is too long, it will return EIO otherwise EINVAL. 648 */ 649 650 int 651 udf_check_tag_payload(void *blob, uint32_t max_length) 652 { 653 struct desc_tag *tag = blob; 654 uint16_t crc, crc_len; 655 656 crc_len = udf_rw16(tag->desc_crc_len); 657 658 /* check payload CRC if applicable */ 659 if (crc_len == 0) 660 return 0; 661 662 if (crc_len > max_length) 663 return EIO; 664 665 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len); 666 if (crc != udf_rw16(tag->desc_crc)) { 667 /* bad payload CRC; this is a broken tag */ 668 return EINVAL; 669 } 670 671 return 0; 672 } 673 674 675 void 676 udf_validate_tag_sum(void *blob) 677 { 678 struct desc_tag *tag = blob; 679 uint8_t *pos, sum, cnt; 680 681 /* calculate TAG header checksum */ 682 pos = (uint8_t *) tag; 683 sum = 0; 684 685 for(cnt = 0; cnt < 16; cnt++) { 686 if (cnt != 4) sum += *pos; 687 pos++; 688 } 689 tag->cksum = sum; /* 8 bit */ 690 } 691 692 693 /* assumes sector number of descriptor to be saved already present */ 694 void 695 udf_validate_tag_and_crc_sums(void *blob) 696 { 697 struct desc_tag *tag = blob; 698 uint8_t *btag = (uint8_t *) tag; 699 uint16_t crc, crc_len; 700 701 crc_len = udf_rw16(tag->desc_crc_len); 702 703 /* check payload CRC if applicable */ 704 if (crc_len > 0) { 705 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len); 706 tag->desc_crc = udf_rw16(crc); 707 } 708 709 /* calculate TAG header checksum */ 710 udf_validate_tag_sum(blob); 711 } 712 713 /* --------------------------------------------------------------------- */ 714 715 /* 716 * XXX note the different semantics from udfclient: for FIDs it still rounds 717 * up to sectors. Use udf_fidsize() for a correct length. 718 */ 719 720 int 721 udf_tagsize(union dscrptr *dscr, uint32_t lb_size) 722 { 723 uint32_t size, tag_id, num_lb, elmsz; 724 725 tag_id = udf_rw16(dscr->tag.id); 726 727 switch (tag_id) { 728 case TAGID_LOGVOL : 729 size = sizeof(struct logvol_desc) - 1; 730 size += udf_rw32(dscr->lvd.mt_l); 731 break; 732 case TAGID_UNALLOC_SPACE : 733 elmsz = sizeof(struct extent_ad); 734 size = sizeof(struct unalloc_sp_desc) - elmsz; 735 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz; 736 break; 737 case TAGID_FID : 738 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu); 739 size = (size + 3) & ~3; 740 break; 741 case TAGID_LOGVOL_INTEGRITY : 742 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t); 743 size += udf_rw32(dscr->lvid.l_iu); 744 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t)); 745 break; 746 case TAGID_SPACE_BITMAP : 747 size = sizeof(struct space_bitmap_desc) - 1; 748 size += udf_rw32(dscr->sbd.num_bytes); 749 break; 750 case TAGID_SPARING_TABLE : 751 elmsz = sizeof(struct spare_map_entry); 752 size = sizeof(struct udf_sparing_table) - elmsz; 753 size += udf_rw16(dscr->spt.rt_l) * elmsz; 754 break; 755 case TAGID_FENTRY : 756 size = sizeof(struct file_entry); 757 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1; 758 break; 759 case TAGID_EXTFENTRY : 760 size = sizeof(struct extfile_entry); 761 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1; 762 break; 763 case TAGID_FSD : 764 size = sizeof(struct fileset_desc); 765 break; 766 default : 767 size = sizeof(union dscrptr); 768 break; 769 } 770 771 if ((size == 0) || (lb_size == 0)) 772 return 0; 773 774 if (lb_size == 1) 775 return size; 776 777 /* round up in sectors */ 778 num_lb = (size + lb_size -1) / lb_size; 779 return num_lb * lb_size; 780 } 781 782 783 int 784 udf_fidsize(struct fileid_desc *fid) 785 { 786 uint32_t size; 787 788 if (udf_rw16(fid->tag.id) != TAGID_FID) 789 panic("got udf_fidsize on non FID\n"); 790 791 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu); 792 size = (size + 3) & ~3; 793 794 return size; 795 } 796 797 /* --------------------------------------------------------------------- */ 798 799 void 800 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno) 801 { 802 int ret; 803 804 mutex_enter(&udf_node->node_mutex); 805 /* wait until free */ 806 while (udf_node->i_flags & IN_LOCKED) { 807 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8); 808 /* TODO check if we should return error; abort */ 809 if (ret == EWOULDBLOCK) { 810 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block " 811 "wanted at %s:%d, previously locked at %s:%d\n", 812 udf_node, fname, lineno, 813 udf_node->lock_fname, udf_node->lock_lineno)); 814 } 815 } 816 /* grab */ 817 udf_node->i_flags |= IN_LOCKED | flag; 818 /* debug */ 819 udf_node->lock_fname = fname; 820 udf_node->lock_lineno = lineno; 821 822 mutex_exit(&udf_node->node_mutex); 823 } 824 825 826 void 827 udf_unlock_node(struct udf_node *udf_node, int flag) 828 { 829 mutex_enter(&udf_node->node_mutex); 830 udf_node->i_flags &= ~(IN_LOCKED | flag); 831 cv_broadcast(&udf_node->node_lock); 832 mutex_exit(&udf_node->node_mutex); 833 } 834 835 836 /* --------------------------------------------------------------------- */ 837 838 static int 839 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst) 840 { 841 int error; 842 843 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD, 844 (union dscrptr **) dst); 845 if (!error) { 846 /* blank terminator blocks are not allowed here */ 847 if (*dst == NULL) 848 return ENOENT; 849 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) { 850 error = ENOENT; 851 free(*dst, M_UDFVOLD); 852 *dst = NULL; 853 DPRINTF(VOLUMES, ("Not an anchor\n")); 854 } 855 } 856 857 return error; 858 } 859 860 861 int 862 udf_read_anchors(struct udf_mount *ump) 863 { 864 struct udf_args *args = &ump->mount_args; 865 struct mmc_trackinfo first_track; 866 struct mmc_trackinfo second_track; 867 struct mmc_trackinfo last_track; 868 struct anchor_vdp **anchorsp; 869 uint32_t track_start; 870 uint32_t track_end; 871 uint32_t positions[4]; 872 int first_tracknr, last_tracknr; 873 int error, anch, ok, first_anchor; 874 875 /* search the first and last track of the specified session */ 876 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr); 877 if (!error) { 878 first_track.tracknr = first_tracknr; 879 error = udf_update_trackinfo(ump, &first_track); 880 } 881 if (!error) { 882 last_track.tracknr = last_tracknr; 883 error = udf_update_trackinfo(ump, &last_track); 884 } 885 if ((!error) && (first_tracknr != last_tracknr)) { 886 second_track.tracknr = first_tracknr+1; 887 error = udf_update_trackinfo(ump, &second_track); 888 } 889 if (error) { 890 printf("UDF mount: reading disc geometry failed\n"); 891 return 0; 892 } 893 894 track_start = first_track.track_start; 895 896 /* `end' is not as straitforward as start. */ 897 track_end = last_track.track_start 898 + last_track.track_size - last_track.free_blocks - 1; 899 900 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) { 901 /* end of track is not straitforward here */ 902 if (last_track.flags & MMC_TRACKINFO_LRA_VALID) 903 track_end = last_track.last_recorded; 904 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID) 905 track_end = last_track.next_writable 906 - ump->discinfo.link_block_penalty; 907 } 908 909 /* its no use reading a blank track */ 910 first_anchor = 0; 911 if (first_track.flags & MMC_TRACKINFO_BLANK) 912 first_anchor = 1; 913 914 /* get our packet size */ 915 ump->packet_size = first_track.packet_size; 916 if (first_track.flags & MMC_TRACKINFO_BLANK) 917 ump->packet_size = second_track.packet_size; 918 919 if (ump->packet_size <= 1) { 920 /* take max, but not bigger than 64 */ 921 ump->packet_size = MAXPHYS / ump->discinfo.sector_size; 922 ump->packet_size = MIN(ump->packet_size, 64); 923 } 924 KASSERT(ump->packet_size >= 1); 925 926 /* read anchors start+256, start+512, end-256, end */ 927 positions[0] = track_start+256; 928 positions[1] = track_end-256; 929 positions[2] = track_end; 930 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */ 931 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */ 932 933 ok = 0; 934 anchorsp = ump->anchors; 935 for (anch = first_anchor; anch < 4; anch++) { 936 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch, 937 positions[anch])); 938 error = udf_read_anchor(ump, positions[anch], anchorsp); 939 if (!error) { 940 anchorsp++; 941 ok++; 942 } 943 } 944 945 /* VATs are only recorded on sequential media, but initialise */ 946 ump->first_possible_vat_location = track_start + 2; 947 ump->last_possible_vat_location = track_end; 948 949 return ok; 950 } 951 952 /* --------------------------------------------------------------------- */ 953 954 int 955 udf_get_c_type(struct udf_node *udf_node) 956 { 957 int isdir, what; 958 959 isdir = (udf_node->vnode->v_type == VDIR); 960 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA; 961 962 if (udf_node->ump) 963 if (udf_node == udf_node->ump->metadatabitmap_node) 964 what = UDF_C_METADATA_SBM; 965 966 return what; 967 } 968 969 970 int 971 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type) 972 { 973 int vpart_num; 974 975 vpart_num = ump->data_part; 976 if (udf_c_type == UDF_C_NODE) 977 vpart_num = ump->node_part; 978 if (udf_c_type == UDF_C_FIDS) 979 vpart_num = ump->fids_part; 980 981 return vpart_num; 982 } 983 984 985 /* 986 * BUGALERT: some rogue implementations use random physical partition 987 * numbers to break other implementations so lookup the number. 988 */ 989 990 static uint16_t 991 udf_find_raw_phys(struct udf_mount *ump, uint16_t raw_phys_part) 992 { 993 struct part_desc *part; 994 uint16_t phys_part; 995 996 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 997 part = ump->partitions[phys_part]; 998 if (part == NULL) 999 break; 1000 if (udf_rw16(part->part_num) == raw_phys_part) 1001 break; 1002 } 1003 return phys_part; 1004 } 1005 1006 /* --------------------------------------------------------------------- */ 1007 1008 /* we dont try to be smart; we just record the parts */ 1009 #define UDF_UPDATE_DSCR(name, dscr) \ 1010 if (name) \ 1011 free(name, M_UDFVOLD); \ 1012 name = dscr; 1013 1014 static int 1015 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr) 1016 { 1017 uint16_t phys_part, raw_phys_part; 1018 1019 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n", 1020 udf_rw16(dscr->tag.id))); 1021 switch (udf_rw16(dscr->tag.id)) { 1022 case TAGID_PRI_VOL : /* primary partition */ 1023 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd); 1024 break; 1025 case TAGID_LOGVOL : /* logical volume */ 1026 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd); 1027 break; 1028 case TAGID_UNALLOC_SPACE : /* unallocated space */ 1029 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd); 1030 break; 1031 case TAGID_IMP_VOL : /* implementation */ 1032 /* XXX do we care about multiple impl. descr ? */ 1033 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd); 1034 break; 1035 case TAGID_PARTITION : /* physical partition */ 1036 /* not much use if its not allocated */ 1037 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) { 1038 free(dscr, M_UDFVOLD); 1039 break; 1040 } 1041 1042 /* 1043 * BUGALERT: some rogue implementations use random physical 1044 * partition numbers to break other implementations so lookup 1045 * the number. 1046 */ 1047 raw_phys_part = udf_rw16(dscr->pd.part_num); 1048 phys_part = udf_find_raw_phys(ump, raw_phys_part); 1049 1050 if (phys_part == UDF_PARTITIONS) { 1051 free(dscr, M_UDFVOLD); 1052 return EINVAL; 1053 } 1054 1055 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd); 1056 break; 1057 case TAGID_VOL : /* volume space extender; rare */ 1058 DPRINTF(VOLUMES, ("VDS extender ignored\n")); 1059 free(dscr, M_UDFVOLD); 1060 break; 1061 default : 1062 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n", 1063 udf_rw16(dscr->tag.id))); 1064 free(dscr, M_UDFVOLD); 1065 } 1066 1067 return 0; 1068 } 1069 #undef UDF_UPDATE_DSCR 1070 1071 /* --------------------------------------------------------------------- */ 1072 1073 static int 1074 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len) 1075 { 1076 union dscrptr *dscr; 1077 uint32_t sector_size, dscr_size; 1078 int error; 1079 1080 sector_size = ump->discinfo.sector_size; 1081 1082 /* loc is sectornr, len is in bytes */ 1083 error = EIO; 1084 while (len) { 1085 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr); 1086 if (error) 1087 return error; 1088 1089 /* blank block is a terminator */ 1090 if (dscr == NULL) 1091 return 0; 1092 1093 /* TERM descriptor is a terminator */ 1094 if (udf_rw16(dscr->tag.id) == TAGID_TERM) { 1095 free(dscr, M_UDFVOLD); 1096 return 0; 1097 } 1098 1099 /* process all others */ 1100 dscr_size = udf_tagsize(dscr, sector_size); 1101 error = udf_process_vds_descriptor(ump, dscr); 1102 if (error) { 1103 free(dscr, M_UDFVOLD); 1104 break; 1105 } 1106 assert((dscr_size % sector_size) == 0); 1107 1108 len -= dscr_size; 1109 loc += dscr_size / sector_size; 1110 } 1111 1112 return error; 1113 } 1114 1115 1116 int 1117 udf_read_vds_space(struct udf_mount *ump) 1118 { 1119 /* struct udf_args *args = &ump->mount_args; */ 1120 struct anchor_vdp *anchor, *anchor2; 1121 size_t size; 1122 uint32_t main_loc, main_len; 1123 uint32_t reserve_loc, reserve_len; 1124 int error; 1125 1126 /* 1127 * read in VDS space provided by the anchors; if one descriptor read 1128 * fails, try the mirror sector. 1129 * 1130 * check if 2nd anchor is different from 1st; if so, go for 2nd. This 1131 * avoids the `compatibility features' of DirectCD that may confuse 1132 * stuff completely. 1133 */ 1134 1135 anchor = ump->anchors[0]; 1136 anchor2 = ump->anchors[1]; 1137 assert(anchor); 1138 1139 if (anchor2) { 1140 size = sizeof(struct extent_ad); 1141 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size)) 1142 anchor = anchor2; 1143 /* reserve is specified to be a literal copy of main */ 1144 } 1145 1146 main_loc = udf_rw32(anchor->main_vds_ex.loc); 1147 main_len = udf_rw32(anchor->main_vds_ex.len); 1148 1149 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc); 1150 reserve_len = udf_rw32(anchor->reserve_vds_ex.len); 1151 1152 error = udf_read_vds_extent(ump, main_loc, main_len); 1153 if (error) { 1154 printf("UDF mount: reading in reserve VDS extent\n"); 1155 error = udf_read_vds_extent(ump, reserve_loc, reserve_len); 1156 } 1157 1158 return error; 1159 } 1160 1161 /* --------------------------------------------------------------------- */ 1162 1163 /* 1164 * Read in the logical volume integrity sequence pointed to by our logical 1165 * volume descriptor. Its a sequence that can be extended using fields in the 1166 * integrity descriptor itself. On sequential media only one is found, on 1167 * rewritable media a sequence of descriptors can be found as a form of 1168 * history keeping and on non sequential write-once media the chain is vital 1169 * to allow more and more descriptors to be written. The last descriptor 1170 * written in an extent needs to claim space for a new extent. 1171 */ 1172 1173 static int 1174 udf_retrieve_lvint(struct udf_mount *ump) 1175 { 1176 union dscrptr *dscr; 1177 struct logvol_int_desc *lvint; 1178 struct udf_lvintq *trace; 1179 uint32_t lb_size, lbnum, len; 1180 int dscr_type, error, trace_len; 1181 1182 lb_size = udf_rw32(ump->logical_vol->lb_size); 1183 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len); 1184 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc); 1185 1186 /* clean trace */ 1187 memset(ump->lvint_trace, 0, 1188 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq)); 1189 1190 trace_len = 0; 1191 trace = ump->lvint_trace; 1192 trace->start = lbnum; 1193 trace->end = lbnum + len/lb_size; 1194 trace->pos = 0; 1195 trace->wpos = 0; 1196 1197 lvint = NULL; 1198 dscr = NULL; 1199 error = 0; 1200 while (len) { 1201 trace->pos = lbnum - trace->start; 1202 trace->wpos = trace->pos + 1; 1203 1204 /* read in our integrity descriptor */ 1205 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr); 1206 if (!error) { 1207 if (dscr == NULL) { 1208 trace->wpos = trace->pos; 1209 break; /* empty terminates */ 1210 } 1211 dscr_type = udf_rw16(dscr->tag.id); 1212 if (dscr_type == TAGID_TERM) { 1213 trace->wpos = trace->pos; 1214 break; /* clean terminator */ 1215 } 1216 if (dscr_type != TAGID_LOGVOL_INTEGRITY) { 1217 /* fatal... corrupt disc */ 1218 error = ENOENT; 1219 break; 1220 } 1221 if (lvint) 1222 free(lvint, M_UDFVOLD); 1223 lvint = &dscr->lvid; 1224 dscr = NULL; 1225 } /* else hope for the best... maybe the next is ok */ 1226 1227 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n", 1228 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN")); 1229 1230 /* proceed sequential */ 1231 lbnum += 1; 1232 len -= lb_size; 1233 1234 /* are we linking to a new piece? */ 1235 if (dscr && lvint->next_extent.len) { 1236 len = udf_rw32(lvint->next_extent.len); 1237 lbnum = udf_rw32(lvint->next_extent.loc); 1238 1239 if (trace_len >= UDF_LVDINT_SEGMENTS-1) { 1240 /* IEK! segment link full... */ 1241 DPRINTF(VOLUMES, ("lvdint segments full\n")); 1242 error = EINVAL; 1243 } else { 1244 trace++; 1245 trace_len++; 1246 1247 trace->start = lbnum; 1248 trace->end = lbnum + len/lb_size; 1249 trace->pos = 0; 1250 trace->wpos = 0; 1251 } 1252 } 1253 } 1254 1255 /* clean up the mess, esp. when there is an error */ 1256 if (dscr) 1257 free(dscr, M_UDFVOLD); 1258 1259 if (error && lvint) { 1260 free(lvint, M_UDFVOLD); 1261 lvint = NULL; 1262 } 1263 1264 if (!lvint) 1265 error = ENOENT; 1266 1267 ump->logvol_integrity = lvint; 1268 return error; 1269 } 1270 1271 1272 static int 1273 udf_loose_lvint_history(struct udf_mount *ump) 1274 { 1275 union dscrptr **bufs, *dscr, *last_dscr; 1276 struct udf_lvintq *trace, *in_trace, *out_trace; 1277 struct logvol_int_desc *lvint; 1278 uint32_t in_ext, in_pos, in_len; 1279 uint32_t out_ext, out_wpos, out_len; 1280 uint32_t lb_num; 1281 uint32_t len, start; 1282 int ext, sumext, extlen, cnt, cpy_len, dscr_type; 1283 int losing; 1284 int error; 1285 1286 DPRINTF(VOLUMES, ("need to lose some lvint history\n")); 1287 1288 /* search smallest extent */ 1289 trace = &ump->lvint_trace[0]; 1290 sumext = trace->end - trace->start; 1291 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) { 1292 trace = &ump->lvint_trace[ext]; 1293 extlen = trace->end - trace->start; 1294 if (extlen == 0) 1295 break; 1296 sumext += extlen; 1297 } 1298 1299 /* just one element? its not legal but be bug compatible */ 1300 if (sumext == 1) { 1301 /* overwrite the only entry */ 1302 DPRINTF(VOLUMES, ("\tLinux bugcompat overwriting sole entry\n")); 1303 trace = &ump->lvint_trace[0]; 1304 trace->wpos = 0; 1305 return 0; 1306 } 1307 1308 losing = MIN(sumext, UDF_LVINT_LOSSAGE); 1309 1310 /* no sense wiping too much */ 1311 if (sumext == UDF_LVINT_LOSSAGE) 1312 losing = UDF_LVINT_LOSSAGE/2; 1313 1314 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing)); 1315 1316 /* get buffer for pieces */ 1317 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK); 1318 1319 in_ext = 0; 1320 in_pos = losing; 1321 in_trace = &ump->lvint_trace[in_ext]; 1322 in_len = in_trace->end - in_trace->start; 1323 out_ext = 0; 1324 out_wpos = 0; 1325 out_trace = &ump->lvint_trace[out_ext]; 1326 out_len = out_trace->end - out_trace->start; 1327 1328 last_dscr = NULL; 1329 for(;;) { 1330 out_trace->pos = out_wpos; 1331 out_trace->wpos = out_trace->pos; 1332 if (in_pos >= in_len) { 1333 in_ext++; 1334 in_pos = 0; 1335 in_trace = &ump->lvint_trace[in_ext]; 1336 in_len = in_trace->end - in_trace->start; 1337 } 1338 if (out_wpos >= out_len) { 1339 out_ext++; 1340 out_wpos = 0; 1341 out_trace = &ump->lvint_trace[out_ext]; 1342 out_len = out_trace->end - out_trace->start; 1343 } 1344 /* copy overlap contents */ 1345 cpy_len = MIN(in_len - in_pos, out_len - out_wpos); 1346 cpy_len = MIN(cpy_len, in_len - in_trace->pos); 1347 if (cpy_len == 0) 1348 break; 1349 1350 /* copy */ 1351 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len)); 1352 for (cnt = 0; cnt < cpy_len; cnt++) { 1353 /* read in our integrity descriptor */ 1354 lb_num = in_trace->start + in_pos + cnt; 1355 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, 1356 &dscr); 1357 if (error) { 1358 /* copy last one */ 1359 dscr = last_dscr; 1360 } 1361 bufs[cnt] = dscr; 1362 if (!error) { 1363 if (dscr == NULL) { 1364 out_trace->pos = out_wpos + cnt; 1365 out_trace->wpos = out_trace->pos; 1366 break; /* empty terminates */ 1367 } 1368 dscr_type = udf_rw16(dscr->tag.id); 1369 if (dscr_type == TAGID_TERM) { 1370 out_trace->pos = out_wpos + cnt; 1371 out_trace->wpos = out_trace->pos; 1372 break; /* clean terminator */ 1373 } 1374 if (dscr_type != TAGID_LOGVOL_INTEGRITY) { 1375 panic( "UDF integrity sequence " 1376 "corrupted while mounted!\n"); 1377 } 1378 last_dscr = dscr; 1379 } 1380 } 1381 1382 /* patch up if first entry was on error */ 1383 if (bufs[0] == NULL) { 1384 for (cnt = 0; cnt < cpy_len; cnt++) 1385 if (bufs[cnt] != NULL) 1386 break; 1387 last_dscr = bufs[cnt]; 1388 for (; cnt > 0; cnt--) { 1389 bufs[cnt] = last_dscr; 1390 } 1391 } 1392 1393 /* glue + write out */ 1394 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len)); 1395 for (cnt = 0; cnt < cpy_len; cnt++) { 1396 lb_num = out_trace->start + out_wpos + cnt; 1397 lvint = &bufs[cnt]->lvid; 1398 1399 /* set continuation */ 1400 len = 0; 1401 start = 0; 1402 if (out_wpos + cnt == out_len) { 1403 /* get continuation */ 1404 trace = &ump->lvint_trace[out_ext+1]; 1405 len = trace->end - trace->start; 1406 start = trace->start; 1407 } 1408 lvint->next_extent.len = udf_rw32(len); 1409 lvint->next_extent.loc = udf_rw32(start); 1410 1411 lb_num = trace->start + trace->wpos; 1412 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1413 bufs[cnt], lb_num, lb_num); 1414 DPRINTFIF(VOLUMES, error, 1415 ("error writing lvint lb_num\n")); 1416 } 1417 1418 /* free non repeating descriptors */ 1419 last_dscr = NULL; 1420 for (cnt = 0; cnt < cpy_len; cnt++) { 1421 if (bufs[cnt] != last_dscr) 1422 free(bufs[cnt], M_UDFVOLD); 1423 last_dscr = bufs[cnt]; 1424 } 1425 1426 /* advance */ 1427 in_pos += cpy_len; 1428 out_wpos += cpy_len; 1429 } 1430 1431 free(bufs, M_TEMP); 1432 1433 return 0; 1434 } 1435 1436 1437 static int 1438 udf_writeout_lvint(struct udf_mount *ump, int lvflag) 1439 { 1440 struct udf_lvintq *trace; 1441 struct timeval now_v; 1442 struct timespec now_s; 1443 uint32_t sector; 1444 int logvol_integrity; 1445 int space, error; 1446 1447 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n")); 1448 1449 /* get free space in last chunk */ 1450 trace = ump->lvint_trace; 1451 while (trace->wpos > (trace->end - trace->start)) { 1452 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, " 1453 "wpos = %d\n", trace->start, trace->end, 1454 trace->pos, trace->wpos)); 1455 trace++; 1456 } 1457 1458 /* check if there is space to append */ 1459 space = (trace->end - trace->start) - trace->wpos; 1460 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, " 1461 "space = %d\n", trace->start, trace->end, trace->pos, 1462 trace->wpos, space)); 1463 1464 /* get state */ 1465 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 1466 if (logvol_integrity == UDF_INTEGRITY_CLOSED) { 1467 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) { 1468 /* TODO extent LVINT space if possible */ 1469 return EROFS; 1470 } 1471 } 1472 1473 if (space < 1) { 1474 if (lvflag & UDF_APPENDONLY_LVINT) 1475 return EROFS; 1476 1477 /* loose history by re-writing extents */ 1478 error = udf_loose_lvint_history(ump); 1479 if (error) 1480 return error; 1481 1482 trace = ump->lvint_trace; 1483 while (trace->wpos > (trace->end - trace->start)) 1484 trace++; 1485 space = (trace->end - trace->start) - trace->wpos; 1486 DPRINTF(VOLUMES, ("new try: write start = %d, end = %d, " 1487 "pos = %d, wpos = %d, " 1488 "space = %d\n", trace->start, trace->end, 1489 trace->pos, trace->wpos, space)); 1490 } 1491 1492 /* update our integrity descriptor to identify us and timestamp it */ 1493 DPRINTF(VOLUMES, ("updating integrity descriptor\n")); 1494 microtime(&now_v); 1495 TIMEVAL_TO_TIMESPEC(&now_v, &now_s); 1496 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time); 1497 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME); 1498 udf_add_impl_regid(ump, &ump->logvol_info->impl_id); 1499 1500 /* writeout integrity descriptor */ 1501 sector = trace->start + trace->wpos; 1502 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1503 (union dscrptr *) ump->logvol_integrity, 1504 sector, sector); 1505 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error)); 1506 if (error) 1507 return error; 1508 1509 /* advance write position */ 1510 trace->wpos++; space--; 1511 if (space >= 1) { 1512 /* append terminator */ 1513 sector = trace->start + trace->wpos; 1514 error = udf_write_terminator(ump, sector); 1515 1516 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error)); 1517 } 1518 1519 space = (trace->end - trace->start) - trace->wpos; 1520 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, " 1521 "space = %d\n", trace->start, trace->end, trace->pos, 1522 trace->wpos, space)); 1523 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor " 1524 "successfull\n")); 1525 1526 return error; 1527 } 1528 1529 /* --------------------------------------------------------------------- */ 1530 1531 static int 1532 udf_read_physical_partition_spacetables(struct udf_mount *ump) 1533 { 1534 union dscrptr *dscr; 1535 /* struct udf_args *args = &ump->mount_args; */ 1536 struct part_desc *partd; 1537 struct part_hdr_desc *parthdr; 1538 struct udf_bitmap *bitmap; 1539 uint32_t phys_part; 1540 uint32_t lb_num, len; 1541 int error, dscr_type; 1542 1543 /* unallocated space map */ 1544 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1545 partd = ump->partitions[phys_part]; 1546 if (partd == NULL) 1547 continue; 1548 parthdr = &partd->_impl_use.part_hdr; 1549 1550 lb_num = udf_rw32(partd->start_loc); 1551 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num); 1552 len = udf_rw32(parthdr->unalloc_space_bitmap.len); 1553 if (len == 0) 1554 continue; 1555 1556 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num)); 1557 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 1558 if (!error && dscr) { 1559 /* analyse */ 1560 dscr_type = udf_rw16(dscr->tag.id); 1561 if (dscr_type == TAGID_SPACE_BITMAP) { 1562 DPRINTF(VOLUMES, ("Accepting space bitmap\n")); 1563 ump->part_unalloc_dscr[phys_part] = &dscr->sbd; 1564 1565 /* fill in ump->part_unalloc_bits */ 1566 bitmap = &ump->part_unalloc_bits[phys_part]; 1567 bitmap->blob = (uint8_t *) dscr; 1568 bitmap->bits = dscr->sbd.data; 1569 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1570 bitmap->pages = NULL; /* TODO */ 1571 bitmap->data_pos = 0; 1572 bitmap->metadata_pos = 0; 1573 } else { 1574 free(dscr, M_UDFVOLD); 1575 1576 printf( "UDF mount: error reading unallocated " 1577 "space bitmap\n"); 1578 return EROFS; 1579 } 1580 } else { 1581 /* blank not allowed */ 1582 printf("UDF mount: blank unallocated space bitmap\n"); 1583 return EROFS; 1584 } 1585 } 1586 1587 /* unallocated space table (not supported) */ 1588 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1589 partd = ump->partitions[phys_part]; 1590 if (partd == NULL) 1591 continue; 1592 parthdr = &partd->_impl_use.part_hdr; 1593 1594 len = udf_rw32(parthdr->unalloc_space_table.len); 1595 if (len) { 1596 printf("UDF mount: space tables not supported\n"); 1597 return EROFS; 1598 } 1599 } 1600 1601 /* freed space map */ 1602 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1603 partd = ump->partitions[phys_part]; 1604 if (partd == NULL) 1605 continue; 1606 parthdr = &partd->_impl_use.part_hdr; 1607 1608 /* freed space map */ 1609 lb_num = udf_rw32(partd->start_loc); 1610 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num); 1611 len = udf_rw32(parthdr->freed_space_bitmap.len); 1612 if (len == 0) 1613 continue; 1614 1615 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num)); 1616 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 1617 if (!error && dscr) { 1618 /* analyse */ 1619 dscr_type = udf_rw16(dscr->tag.id); 1620 if (dscr_type == TAGID_SPACE_BITMAP) { 1621 DPRINTF(VOLUMES, ("Accepting space bitmap\n")); 1622 ump->part_freed_dscr[phys_part] = &dscr->sbd; 1623 1624 /* fill in ump->part_freed_bits */ 1625 bitmap = &ump->part_unalloc_bits[phys_part]; 1626 bitmap->blob = (uint8_t *) dscr; 1627 bitmap->bits = dscr->sbd.data; 1628 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1629 bitmap->pages = NULL; /* TODO */ 1630 bitmap->data_pos = 0; 1631 bitmap->metadata_pos = 0; 1632 } else { 1633 free(dscr, M_UDFVOLD); 1634 1635 printf( "UDF mount: error reading freed " 1636 "space bitmap\n"); 1637 return EROFS; 1638 } 1639 } else { 1640 /* blank not allowed */ 1641 printf("UDF mount: blank freed space bitmap\n"); 1642 return EROFS; 1643 } 1644 } 1645 1646 /* freed space table (not supported) */ 1647 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1648 partd = ump->partitions[phys_part]; 1649 if (partd == NULL) 1650 continue; 1651 parthdr = &partd->_impl_use.part_hdr; 1652 1653 len = udf_rw32(parthdr->freed_space_table.len); 1654 if (len) { 1655 printf("UDF mount: space tables not supported\n"); 1656 return EROFS; 1657 } 1658 } 1659 1660 return 0; 1661 } 1662 1663 1664 /* TODO implement async writeout */ 1665 int 1666 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor) 1667 { 1668 union dscrptr *dscr; 1669 /* struct udf_args *args = &ump->mount_args; */ 1670 struct part_desc *partd; 1671 struct part_hdr_desc *parthdr; 1672 uint32_t phys_part; 1673 uint32_t lb_num, len, ptov; 1674 int error_all, error; 1675 1676 error_all = 0; 1677 /* unallocated space map */ 1678 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1679 partd = ump->partitions[phys_part]; 1680 if (partd == NULL) 1681 continue; 1682 parthdr = &partd->_impl_use.part_hdr; 1683 1684 ptov = udf_rw32(partd->start_loc); 1685 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num); 1686 len = udf_rw32(parthdr->unalloc_space_bitmap.len); 1687 if (len == 0) 1688 continue; 1689 1690 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n", 1691 lb_num + ptov)); 1692 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part]; 1693 1694 /* force a sane minimum for descriptors CRC length */ 1695 /* see UDF 2.3.1.2 and 2.3.8.1 */ 1696 KASSERT(udf_rw16(dscr->sbd.tag.id) == TAGID_SPACE_BITMAP); 1697 if (udf_rw16(dscr->sbd.tag.desc_crc_len) == 0) 1698 dscr->sbd.tag.desc_crc_len = udf_rw16(8); 1699 1700 /* write out space bitmap */ 1701 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1702 (union dscrptr *) dscr, 1703 ptov + lb_num, lb_num); 1704 if (error) { 1705 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error)); 1706 error_all = error; 1707 } 1708 } 1709 1710 /* freed space map */ 1711 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1712 partd = ump->partitions[phys_part]; 1713 if (partd == NULL) 1714 continue; 1715 parthdr = &partd->_impl_use.part_hdr; 1716 1717 /* freed space map */ 1718 ptov = udf_rw32(partd->start_loc); 1719 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num); 1720 len = udf_rw32(parthdr->freed_space_bitmap.len); 1721 if (len == 0) 1722 continue; 1723 1724 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n", 1725 lb_num + ptov)); 1726 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part]; 1727 1728 /* force a sane minimum for descriptors CRC length */ 1729 /* see UDF 2.3.1.2 and 2.3.8.1 */ 1730 KASSERT(udf_rw16(dscr->sbd.tag.id) == TAGID_SPACE_BITMAP); 1731 if (udf_rw16(dscr->sbd.tag.desc_crc_len) == 0) 1732 dscr->sbd.tag.desc_crc_len = udf_rw16(8); 1733 1734 /* write out space bitmap */ 1735 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1736 (union dscrptr *) dscr, 1737 ptov + lb_num, lb_num); 1738 if (error) { 1739 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error)); 1740 error_all = error; 1741 } 1742 } 1743 1744 return error_all; 1745 } 1746 1747 1748 static int 1749 udf_read_metadata_partition_spacetable(struct udf_mount *ump) 1750 { 1751 struct udf_node *bitmap_node; 1752 union dscrptr *dscr; 1753 struct udf_bitmap *bitmap; 1754 uint64_t inflen; 1755 int error, dscr_type; 1756 1757 bitmap_node = ump->metadatabitmap_node; 1758 1759 /* only read in when metadata bitmap node is read in */ 1760 if (bitmap_node == NULL) 1761 return 0; 1762 1763 if (bitmap_node->fe) { 1764 inflen = udf_rw64(bitmap_node->fe->inf_len); 1765 } else { 1766 KASSERT(bitmap_node->efe); 1767 inflen = udf_rw64(bitmap_node->efe->inf_len); 1768 } 1769 1770 DPRINTF(VOLUMES, ("Reading metadata space bitmap for " 1771 "%"PRIu64" bytes\n", inflen)); 1772 1773 /* allocate space for bitmap */ 1774 dscr = malloc(inflen, M_UDFVOLD, M_WAITOK); 1775 if (!dscr) 1776 return ENOMEM; 1777 1778 /* set vnode type to regular file or we can't read from it! */ 1779 bitmap_node->vnode->v_type = VREG; 1780 1781 /* read in complete metadata bitmap file */ 1782 error = vn_rdwr(UIO_READ, bitmap_node->vnode, 1783 dscr, 1784 inflen, 0, 1785 UIO_SYSSPACE, 1786 IO_SYNC | IO_ALTSEMANTICS, FSCRED, 1787 NULL, NULL); 1788 if (error) { 1789 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n")); 1790 goto errorout; 1791 } 1792 1793 /* analyse */ 1794 dscr_type = udf_rw16(dscr->tag.id); 1795 if (dscr_type == TAGID_SPACE_BITMAP) { 1796 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n")); 1797 ump->metadata_unalloc_dscr = &dscr->sbd; 1798 1799 /* fill in bitmap bits */ 1800 bitmap = &ump->metadata_unalloc_bits; 1801 bitmap->blob = (uint8_t *) dscr; 1802 bitmap->bits = dscr->sbd.data; 1803 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1804 bitmap->pages = NULL; /* TODO */ 1805 bitmap->data_pos = 0; 1806 bitmap->metadata_pos = 0; 1807 } else { 1808 DPRINTF(VOLUMES, ("No valid bitmap found!\n")); 1809 goto errorout; 1810 } 1811 1812 return 0; 1813 1814 errorout: 1815 free(dscr, M_UDFVOLD); 1816 printf( "UDF mount: error reading unallocated " 1817 "space bitmap for metadata partition\n"); 1818 return EROFS; 1819 } 1820 1821 1822 int 1823 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor) 1824 { 1825 struct udf_node *bitmap_node; 1826 union dscrptr *dscr; 1827 uint64_t new_inflen; 1828 int dummy, error; 1829 1830 bitmap_node = ump->metadatabitmap_node; 1831 1832 /* only write out when metadata bitmap node is known */ 1833 if (bitmap_node == NULL) 1834 return 0; 1835 1836 if (!bitmap_node->fe) { 1837 KASSERT(bitmap_node->efe); 1838 } 1839 1840 /* reduce length to zero */ 1841 dscr = (union dscrptr *) ump->metadata_unalloc_dscr; 1842 new_inflen = udf_tagsize(dscr, 1); 1843 1844 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap " 1845 " for %"PRIu64" bytes\n", new_inflen)); 1846 1847 error = udf_resize_node(bitmap_node, new_inflen, &dummy); 1848 if (error) 1849 printf("Error resizing metadata space bitmap\n"); 1850 1851 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode, 1852 dscr, 1853 new_inflen, 0, 1854 UIO_SYSSPACE, 1855 IO_ALTSEMANTICS, FSCRED, 1856 NULL, NULL); 1857 1858 bitmap_node->i_flags |= IN_MODIFIED; 1859 error = vflushbuf(bitmap_node->vnode, FSYNC_WAIT); 1860 if (error == 0) 1861 error = VOP_FSYNC(bitmap_node->vnode, 1862 FSCRED, FSYNC_WAIT, 0, 0); 1863 1864 if (error) 1865 printf( "Error writing out metadata partition unalloced " 1866 "space bitmap!\n"); 1867 1868 return error; 1869 } 1870 1871 1872 /* --------------------------------------------------------------------- */ 1873 1874 /* 1875 * Checks if ump's vds information is correct and complete 1876 */ 1877 1878 int 1879 udf_process_vds(struct udf_mount *ump) { 1880 union udf_pmap *mapping; 1881 /* struct udf_args *args = &ump->mount_args; */ 1882 struct logvol_int_desc *lvint; 1883 struct udf_logvol_info *lvinfo; 1884 uint32_t n_pm; 1885 uint8_t *pmap_pos; 1886 char *domain_name, *map_name; 1887 const char *check_name; 1888 char bits[128]; 1889 int pmap_stype, pmap_size; 1890 int pmap_type, log_part, phys_part, raw_phys_part, maps_on; 1891 int n_phys, n_virt, n_spar, n_meta; 1892 int len; 1893 1894 if (ump == NULL) 1895 return ENOENT; 1896 1897 /* we need at least an anchor (trivial, but for safety) */ 1898 if (ump->anchors[0] == NULL) 1899 return EINVAL; 1900 1901 /* we need at least one primary and one logical volume descriptor */ 1902 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL) 1903 return EINVAL; 1904 1905 /* we need at least one partition descriptor */ 1906 if (ump->partitions[0] == NULL) 1907 return EINVAL; 1908 1909 /* check logical volume sector size verses device sector size */ 1910 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) { 1911 printf("UDF mount: format violation, lb_size != sector size\n"); 1912 return EINVAL; 1913 } 1914 1915 /* check domain name */ 1916 domain_name = ump->logical_vol->domain_id.id; 1917 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) { 1918 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n"); 1919 return EINVAL; 1920 } 1921 1922 /* retrieve logical volume integrity sequence */ 1923 (void)udf_retrieve_lvint(ump); 1924 1925 /* 1926 * We need at least one logvol integrity descriptor recorded. Note 1927 * that its OK to have an open logical volume integrity here. The VAT 1928 * will close/update the integrity. 1929 */ 1930 if (ump->logvol_integrity == NULL) 1931 return EINVAL; 1932 1933 /* process derived structures */ 1934 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 1935 lvint = ump->logvol_integrity; 1936 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]); 1937 ump->logvol_info = lvinfo; 1938 1939 /* TODO check udf versions? */ 1940 1941 /* 1942 * check logvol mappings: effective virt->log partmap translation 1943 * check and recording of the mapping results. Saves expensive 1944 * strncmp() in tight places. 1945 */ 1946 DPRINTF(VOLUMES, ("checking logvol mappings\n")); 1947 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 1948 pmap_pos = ump->logical_vol->maps; 1949 1950 if (n_pm > UDF_PMAPS) { 1951 printf("UDF mount: too many mappings\n"); 1952 return EINVAL; 1953 } 1954 1955 /* count types and set partition numbers */ 1956 ump->data_part = ump->node_part = ump->fids_part = 0; 1957 n_phys = n_virt = n_spar = n_meta = 0; 1958 for (log_part = 0; log_part < n_pm; log_part++) { 1959 mapping = (union udf_pmap *) pmap_pos; 1960 pmap_stype = pmap_pos[0]; 1961 pmap_size = pmap_pos[1]; 1962 switch (pmap_stype) { 1963 case 1: /* physical mapping */ 1964 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */ 1965 raw_phys_part = udf_rw16(mapping->pm1.part_num); 1966 pmap_type = UDF_VTOP_TYPE_PHYS; 1967 n_phys++; 1968 ump->data_part = log_part; 1969 ump->node_part = log_part; 1970 ump->fids_part = log_part; 1971 break; 1972 case 2: /* virtual/sparable/meta mapping */ 1973 map_name = mapping->pm2.part_id.id; 1974 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */ 1975 raw_phys_part = udf_rw16(mapping->pm2.part_num); 1976 pmap_type = UDF_VTOP_TYPE_UNKNOWN; 1977 len = UDF_REGID_ID_SIZE; 1978 1979 check_name = "*UDF Virtual Partition"; 1980 if (strncmp(map_name, check_name, len) == 0) { 1981 pmap_type = UDF_VTOP_TYPE_VIRT; 1982 n_virt++; 1983 ump->node_part = log_part; 1984 break; 1985 } 1986 check_name = "*UDF Sparable Partition"; 1987 if (strncmp(map_name, check_name, len) == 0) { 1988 pmap_type = UDF_VTOP_TYPE_SPARABLE; 1989 n_spar++; 1990 ump->data_part = log_part; 1991 ump->node_part = log_part; 1992 ump->fids_part = log_part; 1993 break; 1994 } 1995 check_name = "*UDF Metadata Partition"; 1996 if (strncmp(map_name, check_name, len) == 0) { 1997 pmap_type = UDF_VTOP_TYPE_META; 1998 n_meta++; 1999 ump->node_part = log_part; 2000 ump->fids_part = log_part; 2001 break; 2002 } 2003 break; 2004 default: 2005 return EINVAL; 2006 } 2007 2008 /* 2009 * BUGALERT: some rogue implementations use random physical 2010 * partition numbers to break other implementations so lookup 2011 * the number. 2012 */ 2013 phys_part = udf_find_raw_phys(ump, raw_phys_part); 2014 2015 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part, 2016 raw_phys_part, phys_part, pmap_type)); 2017 2018 if (phys_part == UDF_PARTITIONS) 2019 return EINVAL; 2020 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN) 2021 return EINVAL; 2022 2023 ump->vtop [log_part] = phys_part; 2024 ump->vtop_tp[log_part] = pmap_type; 2025 2026 pmap_pos += pmap_size; 2027 } 2028 /* not winning the beauty contest */ 2029 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW; 2030 2031 /* test some basic UDF assertions/requirements */ 2032 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1)) 2033 return EINVAL; 2034 2035 if (n_virt) { 2036 if ((n_phys == 0) || n_spar || n_meta) 2037 return EINVAL; 2038 } 2039 if (n_spar + n_phys == 0) 2040 return EINVAL; 2041 2042 /* select allocation type for each logical partition */ 2043 for (log_part = 0; log_part < n_pm; log_part++) { 2044 maps_on = ump->vtop[log_part]; 2045 switch (ump->vtop_tp[log_part]) { 2046 case UDF_VTOP_TYPE_PHYS : 2047 assert(maps_on == log_part); 2048 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP; 2049 break; 2050 case UDF_VTOP_TYPE_VIRT : 2051 ump->vtop_alloc[log_part] = UDF_ALLOC_VAT; 2052 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL; 2053 break; 2054 case UDF_VTOP_TYPE_SPARABLE : 2055 assert(maps_on == log_part); 2056 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP; 2057 break; 2058 case UDF_VTOP_TYPE_META : 2059 ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP; 2060 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) { 2061 /* special case for UDF 2.60 */ 2062 ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL; 2063 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL; 2064 } 2065 break; 2066 default: 2067 panic("bad alloction type in udf's ump->vtop\n"); 2068 } 2069 } 2070 2071 /* determine logical volume open/closure actions */ 2072 if (n_virt) { 2073 ump->lvopen = 0; 2074 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) 2075 ump->lvopen |= UDF_OPEN_SESSION ; 2076 ump->lvclose = UDF_WRITE_VAT; 2077 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION) 2078 ump->lvclose |= UDF_CLOSE_SESSION; 2079 } else { 2080 /* `normal' rewritable or non sequential media */ 2081 ump->lvopen = UDF_WRITE_LVINT; 2082 ump->lvclose = UDF_WRITE_LVINT; 2083 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0) 2084 ump->lvopen |= UDF_APPENDONLY_LVINT; 2085 if ((ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE)) 2086 ump->lvopen &= ~UDF_APPENDONLY_LVINT; 2087 } 2088 2089 /* 2090 * Determine sheduler error behaviour. For virtual partitions, update 2091 * the trackinfo; for sparable partitions replace a whole block on the 2092 * sparable table. Allways requeue. 2093 */ 2094 ump->lvreadwrite = 0; 2095 if (n_virt) 2096 ump->lvreadwrite = UDF_UPDATE_TRACKINFO; 2097 if (n_spar) 2098 ump->lvreadwrite = UDF_REMAP_BLOCK; 2099 2100 /* 2101 * Select our sheduler 2102 */ 2103 ump->strategy = &udf_strat_rmw; 2104 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE)) 2105 ump->strategy = &udf_strat_sequential; 2106 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) || 2107 (ump->discinfo.mmc_class == MMC_CLASS_UNKN)) 2108 ump->strategy = &udf_strat_direct; 2109 if (n_spar) 2110 ump->strategy = &udf_strat_rmw; 2111 2112 #if 0 2113 /* read-only access won't benefit from the other shedulers */ 2114 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 2115 ump->strategy = &udf_strat_direct; 2116 #endif 2117 2118 /* print results */ 2119 DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part)); 2120 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part])); 2121 DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part)); 2122 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part])); 2123 DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part)); 2124 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part])); 2125 2126 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen); 2127 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits)); 2128 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose); 2129 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits)); 2130 snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite); 2131 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits)); 2132 2133 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n", 2134 (ump->strategy == &udf_strat_direct) ? "Direct" : 2135 (ump->strategy == &udf_strat_sequential) ? "Sequential" : 2136 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!")); 2137 2138 /* signal its OK for now */ 2139 return 0; 2140 } 2141 2142 /* --------------------------------------------------------------------- */ 2143 2144 /* 2145 * Update logical volume name in all structures that keep a record of it. We 2146 * use memmove since each of them might be specified as a source. 2147 * 2148 * Note that it doesn't update the VAT structure! 2149 */ 2150 2151 static void 2152 udf_update_logvolname(struct udf_mount *ump, char *logvol_id) 2153 { 2154 struct logvol_desc *lvd = NULL; 2155 struct fileset_desc *fsd = NULL; 2156 struct udf_lv_info *lvi = NULL; 2157 2158 DPRINTF(VOLUMES, ("Updating logical volume name\n")); 2159 lvd = ump->logical_vol; 2160 fsd = ump->fileset_desc; 2161 if (ump->implementation) 2162 lvi = &ump->implementation->_impl_use.lv_info; 2163 2164 /* logvol's id might be specified as origional so use memmove here */ 2165 memmove(lvd->logvol_id, logvol_id, 128); 2166 if (fsd) 2167 memmove(fsd->logvol_id, logvol_id, 128); 2168 if (lvi) 2169 memmove(lvi->logvol_id, logvol_id, 128); 2170 } 2171 2172 /* --------------------------------------------------------------------- */ 2173 2174 void 2175 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid, 2176 uint32_t sector) 2177 { 2178 assert(ump->logical_vol); 2179 2180 tag->id = udf_rw16(tagid); 2181 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver; 2182 tag->cksum = 0; 2183 tag->reserved = 0; 2184 tag->serial_num = ump->logical_vol->tag.serial_num; 2185 tag->tag_loc = udf_rw32(sector); 2186 } 2187 2188 2189 uint64_t 2190 udf_advance_uniqueid(struct udf_mount *ump) 2191 { 2192 uint64_t unique_id; 2193 2194 mutex_enter(&ump->logvol_mutex); 2195 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id); 2196 if (unique_id < 0x10) 2197 unique_id = 0x10; 2198 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1); 2199 mutex_exit(&ump->logvol_mutex); 2200 2201 return unique_id; 2202 } 2203 2204 2205 static void 2206 udf_adjust_filecount(struct udf_node *udf_node, int sign) 2207 { 2208 struct udf_mount *ump = udf_node->ump; 2209 uint32_t num_dirs, num_files; 2210 int udf_file_type; 2211 2212 /* get file type */ 2213 if (udf_node->fe) { 2214 udf_file_type = udf_node->fe->icbtag.file_type; 2215 } else { 2216 udf_file_type = udf_node->efe->icbtag.file_type; 2217 } 2218 2219 /* adjust file count */ 2220 mutex_enter(&ump->allocate_mutex); 2221 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) { 2222 num_dirs = udf_rw32(ump->logvol_info->num_directories); 2223 ump->logvol_info->num_directories = 2224 udf_rw32((num_dirs + sign)); 2225 } else { 2226 num_files = udf_rw32(ump->logvol_info->num_files); 2227 ump->logvol_info->num_files = 2228 udf_rw32((num_files + sign)); 2229 } 2230 mutex_exit(&ump->allocate_mutex); 2231 } 2232 2233 2234 void 2235 udf_osta_charset(struct charspec *charspec) 2236 { 2237 memset(charspec, 0, sizeof(struct charspec)); 2238 charspec->type = 0; 2239 strcpy((char *) charspec->inf, "OSTA Compressed Unicode"); 2240 } 2241 2242 2243 /* first call udf_set_regid and then the suffix */ 2244 void 2245 udf_set_regid(struct regid *regid, char const *name) 2246 { 2247 memset(regid, 0, sizeof(struct regid)); 2248 regid->flags = 0; /* not dirty and not protected */ 2249 strcpy((char *) regid->id, name); 2250 } 2251 2252 2253 void 2254 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid) 2255 { 2256 uint16_t *ver; 2257 2258 ver = (uint16_t *) regid->id_suffix; 2259 *ver = ump->logvol_info->min_udf_readver; 2260 } 2261 2262 2263 void 2264 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid) 2265 { 2266 uint16_t *ver; 2267 2268 ver = (uint16_t *) regid->id_suffix; 2269 *ver = ump->logvol_info->min_udf_readver; 2270 2271 regid->id_suffix[2] = 4; /* unix */ 2272 regid->id_suffix[3] = 8; /* NetBSD */ 2273 } 2274 2275 2276 void 2277 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid) 2278 { 2279 regid->id_suffix[0] = 4; /* unix */ 2280 regid->id_suffix[1] = 8; /* NetBSD */ 2281 } 2282 2283 2284 void 2285 udf_add_app_regid(struct udf_mount *ump, struct regid *regid) 2286 { 2287 regid->id_suffix[0] = APP_VERSION_MAIN; 2288 regid->id_suffix[1] = APP_VERSION_SUB; 2289 } 2290 2291 static int 2292 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid, 2293 struct long_ad *parent, uint64_t unique_id) 2294 { 2295 /* the size of an empty FID is 38 but needs to be a multiple of 4 */ 2296 int fidsize = 40; 2297 2298 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num)); 2299 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */ 2300 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR; 2301 fid->icb = *parent; 2302 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id); 2303 fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH); 2304 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 2305 2306 return fidsize; 2307 } 2308 2309 /* --------------------------------------------------------------------- */ 2310 2311 /* 2312 * Extended attribute support. UDF knows of 3 places for extended attributes: 2313 * 2314 * (a) inside the file's (e)fe in the length of the extended attribute area 2315 * before the allocation descriptors/filedata 2316 * 2317 * (b) in a file referenced by (e)fe->ext_attr_icb and 2318 * 2319 * (c) in the e(fe)'s associated stream directory that can hold various 2320 * sub-files. In the stream directory a few fixed named subfiles are reserved 2321 * for NT/Unix ACL's and OS/2 attributes. 2322 * 2323 * NOTE: Extended attributes are read randomly but allways written 2324 * *atomicaly*. For ACL's this interface is propably different but not known 2325 * to me yet. 2326 * 2327 * Order of extended attributes in a space : 2328 * ECMA 167 EAs 2329 * Non block aligned Implementation Use EAs 2330 * Block aligned Implementation Use EAs 2331 * Application Use EAs 2332 */ 2333 2334 static int 2335 udf_impl_extattr_check(struct impl_extattr_entry *implext) 2336 { 2337 uint16_t *spos; 2338 2339 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) { 2340 /* checksum valid? */ 2341 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n")); 2342 spos = (uint16_t *) implext->data; 2343 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext)) 2344 return EINVAL; 2345 } 2346 return 0; 2347 } 2348 2349 static void 2350 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext) 2351 { 2352 uint16_t *spos; 2353 2354 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) { 2355 /* set checksum */ 2356 spos = (uint16_t *) implext->data; 2357 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext)); 2358 } 2359 } 2360 2361 2362 int 2363 udf_extattr_search_intern(struct udf_node *node, 2364 uint32_t sattr, char const *sattrname, 2365 uint32_t *offsetp, uint32_t *lengthp) 2366 { 2367 struct extattrhdr_desc *eahdr; 2368 struct extattr_entry *attrhdr; 2369 struct impl_extattr_entry *implext; 2370 uint32_t offset, a_l, sector_size; 2371 int32_t l_ea; 2372 uint8_t *pos; 2373 int error; 2374 2375 /* get mountpoint */ 2376 sector_size = node->ump->discinfo.sector_size; 2377 2378 /* get information from fe/efe */ 2379 if (node->fe) { 2380 l_ea = udf_rw32(node->fe->l_ea); 2381 eahdr = (struct extattrhdr_desc *) node->fe->data; 2382 } else { 2383 assert(node->efe); 2384 l_ea = udf_rw32(node->efe->l_ea); 2385 eahdr = (struct extattrhdr_desc *) node->efe->data; 2386 } 2387 2388 /* something recorded here? */ 2389 if (l_ea == 0) 2390 return ENOENT; 2391 2392 /* check extended attribute tag; what to do if it fails? */ 2393 error = udf_check_tag(eahdr); 2394 if (error) 2395 return EINVAL; 2396 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR) 2397 return EINVAL; 2398 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc)); 2399 if (error) 2400 return EINVAL; 2401 2402 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea)); 2403 2404 /* looking for Ecma-167 attributes? */ 2405 offset = sizeof(struct extattrhdr_desc); 2406 2407 /* looking for either implemenation use or application use */ 2408 if (sattr == 2048) { /* [4/48.10.8] */ 2409 offset = udf_rw32(eahdr->impl_attr_loc); 2410 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2411 return ENOENT; 2412 } 2413 if (sattr == 65536) { /* [4/48.10.9] */ 2414 offset = udf_rw32(eahdr->appl_attr_loc); 2415 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT) 2416 return ENOENT; 2417 } 2418 2419 /* paranoia check offset and l_ea */ 2420 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry)) 2421 return EINVAL; 2422 2423 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset)); 2424 2425 /* find our extended attribute */ 2426 l_ea -= offset; 2427 pos = (uint8_t *) eahdr + offset; 2428 2429 while (l_ea >= sizeof(struct extattr_entry)) { 2430 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea)); 2431 attrhdr = (struct extattr_entry *) pos; 2432 implext = (struct impl_extattr_entry *) pos; 2433 2434 /* get complete attribute length and check for roque values */ 2435 a_l = udf_rw32(attrhdr->a_l); 2436 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n", 2437 udf_rw32(attrhdr->type), 2438 attrhdr->subtype, a_l, l_ea)); 2439 if ((a_l == 0) || (a_l > l_ea)) 2440 return EINVAL; 2441 2442 if (attrhdr->type != sattr) 2443 goto next_attribute; 2444 2445 /* we might have found it! */ 2446 if (attrhdr->type < 2048) { /* Ecma-167 attribute */ 2447 *offsetp = offset; 2448 *lengthp = a_l; 2449 return 0; /* success */ 2450 } 2451 2452 /* 2453 * Implementation use and application use extended attributes 2454 * have a name to identify. They share the same structure only 2455 * UDF implementation use extended attributes have a checksum 2456 * we need to check 2457 */ 2458 2459 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id)); 2460 if (strcmp(implext->imp_id.id, sattrname) == 0) { 2461 /* we have found our appl/implementation attribute */ 2462 *offsetp = offset; 2463 *lengthp = a_l; 2464 return 0; /* success */ 2465 } 2466 2467 next_attribute: 2468 /* next attribute */ 2469 pos += a_l; 2470 l_ea -= a_l; 2471 offset += a_l; 2472 } 2473 /* not found */ 2474 return ENOENT; 2475 } 2476 2477 2478 static void 2479 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr, 2480 struct extattr_entry *extattr) 2481 { 2482 struct file_entry *fe; 2483 struct extfile_entry *efe; 2484 struct extattrhdr_desc *extattrhdr; 2485 struct impl_extattr_entry *implext; 2486 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len; 2487 uint32_t *l_eap, l_ad; 2488 uint16_t *spos; 2489 uint8_t *bpos, *data; 2490 2491 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) { 2492 fe = &dscr->fe; 2493 data = fe->data; 2494 l_eap = &fe->l_ea; 2495 l_ad = udf_rw32(fe->l_ad); 2496 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) { 2497 efe = &dscr->efe; 2498 data = efe->data; 2499 l_eap = &efe->l_ea; 2500 l_ad = udf_rw32(efe->l_ad); 2501 } else { 2502 panic("Bad tag passed to udf_extattr_insert_internal"); 2503 } 2504 2505 /* can't append already written to file descriptors yet */ 2506 assert(l_ad == 0); 2507 __USE(l_ad); 2508 2509 /* should have a header! */ 2510 extattrhdr = (struct extattrhdr_desc *) data; 2511 l_ea = udf_rw32(*l_eap); 2512 if (l_ea == 0) { 2513 /* create empty extended attribute header */ 2514 exthdr_len = sizeof(struct extattrhdr_desc); 2515 2516 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR, 2517 /* loc */ 0); 2518 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len); 2519 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len); 2520 extattrhdr->tag.desc_crc_len = udf_rw16(8); 2521 2522 /* record extended attribute header length */ 2523 l_ea = exthdr_len; 2524 *l_eap = udf_rw32(l_ea); 2525 } 2526 2527 /* extract locations */ 2528 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc); 2529 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc); 2530 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2531 impl_attr_loc = l_ea; 2532 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2533 appl_attr_loc = l_ea; 2534 2535 /* Ecma 167 EAs */ 2536 if (udf_rw32(extattr->type) < 2048) { 2537 assert(impl_attr_loc == l_ea); 2538 assert(appl_attr_loc == l_ea); 2539 } 2540 2541 /* implementation use extended attributes */ 2542 if (udf_rw32(extattr->type) == 2048) { 2543 assert(appl_attr_loc == l_ea); 2544 2545 /* calculate and write extended attribute header checksum */ 2546 implext = (struct impl_extattr_entry *) extattr; 2547 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */ 2548 spos = (uint16_t *) implext->data; 2549 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext)); 2550 } 2551 2552 /* application use extended attributes */ 2553 assert(udf_rw32(extattr->type) != 65536); 2554 assert(appl_attr_loc == l_ea); 2555 2556 /* append the attribute at the end of the current space */ 2557 bpos = data + udf_rw32(*l_eap); 2558 a_l = udf_rw32(extattr->a_l); 2559 2560 /* update impl. attribute locations */ 2561 if (udf_rw32(extattr->type) < 2048) { 2562 impl_attr_loc = l_ea + a_l; 2563 appl_attr_loc = l_ea + a_l; 2564 } 2565 if (udf_rw32(extattr->type) == 2048) { 2566 appl_attr_loc = l_ea + a_l; 2567 } 2568 2569 /* copy and advance */ 2570 memcpy(bpos, extattr, a_l); 2571 l_ea += a_l; 2572 *l_eap = udf_rw32(l_ea); 2573 2574 /* do the `dance` again backwards */ 2575 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) { 2576 if (impl_attr_loc == l_ea) 2577 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT; 2578 if (appl_attr_loc == l_ea) 2579 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT; 2580 } 2581 2582 /* store offsets */ 2583 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc); 2584 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc); 2585 } 2586 2587 2588 /* --------------------------------------------------------------------- */ 2589 2590 static int 2591 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node) 2592 { 2593 struct udf_mount *ump; 2594 struct udf_logvol_info *lvinfo; 2595 struct impl_extattr_entry *implext; 2596 struct vatlvext_extattr_entry lvext; 2597 const char *extstr = "*UDF VAT LVExtension"; 2598 uint64_t vat_uniqueid; 2599 uint32_t offset, a_l; 2600 uint8_t *ea_start, *lvextpos; 2601 int error; 2602 2603 /* get mountpoint and lvinfo */ 2604 ump = vat_node->ump; 2605 lvinfo = ump->logvol_info; 2606 2607 /* get information from fe/efe */ 2608 if (vat_node->fe) { 2609 vat_uniqueid = udf_rw64(vat_node->fe->unique_id); 2610 ea_start = vat_node->fe->data; 2611 } else { 2612 vat_uniqueid = udf_rw64(vat_node->efe->unique_id); 2613 ea_start = vat_node->efe->data; 2614 } 2615 2616 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l); 2617 if (error) 2618 return error; 2619 2620 implext = (struct impl_extattr_entry *) (ea_start + offset); 2621 error = udf_impl_extattr_check(implext); 2622 if (error) 2623 return error; 2624 2625 /* paranoia */ 2626 if (a_l != sizeof(*implext) -2 + udf_rw32(implext->iu_l) + sizeof(lvext)) { 2627 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n")); 2628 return EINVAL; 2629 } 2630 2631 /* 2632 * we have found our "VAT LVExtension attribute. BUT due to a 2633 * bug in the specification it might not be word aligned so 2634 * copy first to avoid panics on some machines (!!) 2635 */ 2636 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n")); 2637 lvextpos = implext->data + udf_rw32(implext->iu_l); 2638 memcpy(&lvext, lvextpos, sizeof(lvext)); 2639 2640 /* check if it was updated the last time */ 2641 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) { 2642 lvinfo->num_files = lvext.num_files; 2643 lvinfo->num_directories = lvext.num_directories; 2644 udf_update_logvolname(ump, lvext.logvol_id); 2645 } else { 2646 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n")); 2647 /* replace VAT LVExt by free space EA */ 2648 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE); 2649 strcpy(implext->imp_id.id, "*UDF FreeEASpace"); 2650 udf_calc_impl_extattr_checksum(implext); 2651 } 2652 2653 return 0; 2654 } 2655 2656 2657 static int 2658 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node) 2659 { 2660 struct udf_mount *ump; 2661 struct udf_logvol_info *lvinfo; 2662 struct impl_extattr_entry *implext; 2663 struct vatlvext_extattr_entry lvext; 2664 const char *extstr = "*UDF VAT LVExtension"; 2665 uint64_t vat_uniqueid; 2666 uint32_t offset, a_l; 2667 uint8_t *ea_start, *lvextpos; 2668 int error; 2669 2670 /* get mountpoint and lvinfo */ 2671 ump = vat_node->ump; 2672 lvinfo = ump->logvol_info; 2673 2674 /* get information from fe/efe */ 2675 if (vat_node->fe) { 2676 vat_uniqueid = udf_rw64(vat_node->fe->unique_id); 2677 ea_start = vat_node->fe->data; 2678 } else { 2679 vat_uniqueid = udf_rw64(vat_node->efe->unique_id); 2680 ea_start = vat_node->efe->data; 2681 } 2682 2683 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l); 2684 if (error) 2685 return error; 2686 /* found, it existed */ 2687 2688 /* paranoia */ 2689 implext = (struct impl_extattr_entry *) (ea_start + offset); 2690 error = udf_impl_extattr_check(implext); 2691 if (error) { 2692 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n")); 2693 return error; 2694 } 2695 /* it is correct */ 2696 2697 /* 2698 * we have found our "VAT LVExtension attribute. BUT due to a 2699 * bug in the specification it might not be word aligned so 2700 * copy first to avoid panics on some machines (!!) 2701 */ 2702 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n")); 2703 lvextpos = implext->data + udf_rw32(implext->iu_l); 2704 2705 lvext.unique_id_chk = vat_uniqueid; 2706 lvext.num_files = lvinfo->num_files; 2707 lvext.num_directories = lvinfo->num_directories; 2708 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128); 2709 2710 memcpy(lvextpos, &lvext, sizeof(lvext)); 2711 2712 return 0; 2713 } 2714 2715 /* --------------------------------------------------------------------- */ 2716 2717 int 2718 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset) 2719 { 2720 struct udf_mount *ump = vat_node->ump; 2721 2722 if (offset + size > ump->vat_offset + ump->vat_entries * 4) 2723 return EINVAL; 2724 2725 memcpy(blob, ump->vat_table + offset, size); 2726 return 0; 2727 } 2728 2729 int 2730 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset) 2731 { 2732 struct udf_mount *ump = vat_node->ump; 2733 uint32_t offset_high; 2734 uint8_t *new_vat_table; 2735 2736 /* extent VAT allocation if needed */ 2737 offset_high = offset + size; 2738 if (offset_high >= ump->vat_table_alloc_len) { 2739 /* realloc */ 2740 new_vat_table = realloc(ump->vat_table, 2741 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE, 2742 M_UDFVOLD, M_WAITOK); 2743 if (!new_vat_table) { 2744 printf("udf_vat_write: can't extent VAT, out of mem\n"); 2745 return ENOMEM; 2746 } 2747 ump->vat_table = new_vat_table; 2748 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE; 2749 } 2750 ump->vat_table_len = MAX(ump->vat_table_len, offset_high); 2751 2752 memcpy(ump->vat_table + offset, blob, size); 2753 return 0; 2754 } 2755 2756 /* --------------------------------------------------------------------- */ 2757 2758 /* TODO support previous VAT location writeout */ 2759 static int 2760 udf_update_vat_descriptor(struct udf_mount *ump) 2761 { 2762 struct udf_node *vat_node = ump->vat_node; 2763 struct udf_logvol_info *lvinfo = ump->logvol_info; 2764 struct icb_tag *icbtag; 2765 struct udf_oldvat_tail *oldvat_tl; 2766 struct udf_vat *vat; 2767 uint64_t unique_id; 2768 uint32_t lb_size; 2769 uint8_t *raw_vat; 2770 int filetype, error; 2771 2772 KASSERT(vat_node); 2773 KASSERT(lvinfo); 2774 lb_size = udf_rw32(ump->logical_vol->lb_size); 2775 2776 /* get our new unique_id */ 2777 unique_id = udf_advance_uniqueid(ump); 2778 2779 /* get information from fe/efe */ 2780 if (vat_node->fe) { 2781 icbtag = &vat_node->fe->icbtag; 2782 vat_node->fe->unique_id = udf_rw64(unique_id); 2783 } else { 2784 icbtag = &vat_node->efe->icbtag; 2785 vat_node->efe->unique_id = udf_rw64(unique_id); 2786 } 2787 2788 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ 2789 filetype = icbtag->file_type; 2790 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT)); 2791 2792 /* allocate piece to process head or tail of VAT file */ 2793 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK); 2794 2795 if (filetype == 0) { 2796 /* 2797 * Update "*UDF VAT LVExtension" extended attribute from the 2798 * lvint if present. 2799 */ 2800 udf_update_vat_extattr_from_lvid(vat_node); 2801 2802 /* setup identifying regid */ 2803 oldvat_tl = (struct udf_oldvat_tail *) raw_vat; 2804 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail)); 2805 2806 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl"); 2807 udf_add_udf_regid(ump, &oldvat_tl->id); 2808 oldvat_tl->prev_vat = udf_rw32(0xffffffff); 2809 2810 /* write out new tail of virtual allocation table file */ 2811 error = udf_vat_write(vat_node, raw_vat, 2812 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4); 2813 } else { 2814 /* compose the VAT2 header */ 2815 vat = (struct udf_vat *) raw_vat; 2816 memset(vat, 0, sizeof(struct udf_vat)); 2817 2818 vat->header_len = udf_rw16(152); /* as per spec */ 2819 vat->impl_use_len = udf_rw16(0); 2820 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128); 2821 vat->prev_vat = udf_rw32(0xffffffff); 2822 vat->num_files = lvinfo->num_files; 2823 vat->num_directories = lvinfo->num_directories; 2824 vat->min_udf_readver = lvinfo->min_udf_readver; 2825 vat->min_udf_writever = lvinfo->min_udf_writever; 2826 vat->max_udf_writever = lvinfo->max_udf_writever; 2827 2828 error = udf_vat_write(vat_node, raw_vat, 2829 sizeof(struct udf_vat), 0); 2830 } 2831 free(raw_vat, M_TEMP); 2832 2833 return error; /* success! */ 2834 } 2835 2836 2837 int 2838 udf_writeout_vat(struct udf_mount *ump) 2839 { 2840 struct udf_node *vat_node = ump->vat_node; 2841 int error; 2842 2843 KASSERT(vat_node); 2844 2845 DPRINTF(CALL, ("udf_writeout_vat\n")); 2846 2847 // mutex_enter(&ump->allocate_mutex); 2848 udf_update_vat_descriptor(ump); 2849 2850 /* write out the VAT contents ; TODO intelligent writing */ 2851 error = vn_rdwr(UIO_WRITE, vat_node->vnode, 2852 ump->vat_table, ump->vat_table_len, 0, 2853 UIO_SYSSPACE, 0, FSCRED, NULL, NULL); 2854 if (error) { 2855 printf("udf_writeout_vat: failed to write out VAT contents\n"); 2856 goto out; 2857 } 2858 2859 // mutex_exit(&ump->allocate_mutex); 2860 2861 error = vflushbuf(ump->vat_node->vnode, FSYNC_WAIT); 2862 if (error) 2863 goto out; 2864 error = VOP_FSYNC(ump->vat_node->vnode, 2865 FSCRED, FSYNC_WAIT, 0, 0); 2866 if (error) 2867 printf("udf_writeout_vat: error writing VAT node!\n"); 2868 out: 2869 return error; 2870 } 2871 2872 /* --------------------------------------------------------------------- */ 2873 2874 /* 2875 * Read in relevant pieces of VAT file and check if its indeed a VAT file 2876 * descriptor. If OK, read in complete VAT file. 2877 */ 2878 2879 static int 2880 udf_check_for_vat(struct udf_node *vat_node) 2881 { 2882 struct udf_mount *ump; 2883 struct icb_tag *icbtag; 2884 struct timestamp *mtime; 2885 struct udf_vat *vat; 2886 struct udf_oldvat_tail *oldvat_tl; 2887 struct udf_logvol_info *lvinfo; 2888 uint64_t unique_id; 2889 uint32_t vat_length; 2890 uint32_t vat_offset, vat_entries, vat_table_alloc_len; 2891 uint32_t sector_size; 2892 uint32_t *raw_vat; 2893 uint8_t *vat_table; 2894 char *regid_name; 2895 int filetype; 2896 int error; 2897 2898 /* vat_length is really 64 bits though impossible */ 2899 2900 DPRINTF(VOLUMES, ("Checking for VAT\n")); 2901 if (!vat_node) 2902 return ENOENT; 2903 2904 /* get mount info */ 2905 ump = vat_node->ump; 2906 sector_size = udf_rw32(ump->logical_vol->lb_size); 2907 2908 /* check assertions */ 2909 assert(vat_node->fe || vat_node->efe); 2910 assert(ump->logvol_integrity); 2911 2912 /* set vnode type to regular file or we can't read from it! */ 2913 vat_node->vnode->v_type = VREG; 2914 2915 /* get information from fe/efe */ 2916 if (vat_node->fe) { 2917 vat_length = udf_rw64(vat_node->fe->inf_len); 2918 icbtag = &vat_node->fe->icbtag; 2919 mtime = &vat_node->fe->mtime; 2920 unique_id = udf_rw64(vat_node->fe->unique_id); 2921 } else { 2922 vat_length = udf_rw64(vat_node->efe->inf_len); 2923 icbtag = &vat_node->efe->icbtag; 2924 mtime = &vat_node->efe->mtime; 2925 unique_id = udf_rw64(vat_node->efe->unique_id); 2926 } 2927 2928 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ 2929 filetype = icbtag->file_type; 2930 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT)) 2931 return ENOENT; 2932 2933 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length)); 2934 2935 vat_table_alloc_len = 2936 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE) 2937 * UDF_VAT_CHUNKSIZE; 2938 2939 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD, M_WAITOK); 2940 if (vat_table == NULL) { 2941 printf("allocation of %d bytes failed for VAT\n", 2942 vat_table_alloc_len); 2943 return ENOMEM; 2944 } 2945 2946 /* allocate piece to read in head or tail of VAT file */ 2947 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK); 2948 2949 /* 2950 * check contents of the file if its the old 1.50 VAT table format. 2951 * Its notoriously broken and allthough some implementations support an 2952 * extention as defined in the UDF 1.50 errata document, its doubtfull 2953 * to be useable since a lot of implementations don't maintain it. 2954 */ 2955 lvinfo = ump->logvol_info; 2956 2957 if (filetype == 0) { 2958 /* definition */ 2959 vat_offset = 0; 2960 vat_entries = (vat_length-36)/4; 2961 2962 /* read in tail of virtual allocation table file */ 2963 error = vn_rdwr(UIO_READ, vat_node->vnode, 2964 (uint8_t *) raw_vat, 2965 sizeof(struct udf_oldvat_tail), 2966 vat_entries * 4, 2967 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2968 NULL, NULL); 2969 if (error) 2970 goto out; 2971 2972 /* check 1.50 VAT */ 2973 oldvat_tl = (struct udf_oldvat_tail *) raw_vat; 2974 regid_name = (char *) oldvat_tl->id.id; 2975 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22); 2976 if (error) { 2977 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n")); 2978 error = ENOENT; 2979 goto out; 2980 } 2981 2982 /* 2983 * update LVID from "*UDF VAT LVExtension" extended attribute 2984 * if present. 2985 */ 2986 udf_update_lvid_from_vat_extattr(vat_node); 2987 } else { 2988 /* read in head of virtual allocation table file */ 2989 error = vn_rdwr(UIO_READ, vat_node->vnode, 2990 (uint8_t *) raw_vat, 2991 sizeof(struct udf_vat), 0, 2992 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2993 NULL, NULL); 2994 if (error) 2995 goto out; 2996 2997 /* definition */ 2998 vat = (struct udf_vat *) raw_vat; 2999 vat_offset = vat->header_len; 3000 vat_entries = (vat_length - vat_offset)/4; 3001 3002 assert(lvinfo); 3003 lvinfo->num_files = vat->num_files; 3004 lvinfo->num_directories = vat->num_directories; 3005 lvinfo->min_udf_readver = vat->min_udf_readver; 3006 lvinfo->min_udf_writever = vat->min_udf_writever; 3007 lvinfo->max_udf_writever = vat->max_udf_writever; 3008 3009 udf_update_logvolname(ump, vat->logvol_id); 3010 } 3011 3012 /* read in complete VAT file */ 3013 error = vn_rdwr(UIO_READ, vat_node->vnode, 3014 vat_table, 3015 vat_length, 0, 3016 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 3017 NULL, NULL); 3018 if (error) 3019 printf("read in of complete VAT file failed (error %d)\n", 3020 error); 3021 if (error) 3022 goto out; 3023 3024 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n")); 3025 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id); 3026 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); 3027 ump->logvol_integrity->time = *mtime; 3028 3029 /* if we're updating, free old allocated space */ 3030 if (ump->vat_table) 3031 free(ump->vat_table, M_UDFVOLD); 3032 3033 ump->vat_table_len = vat_length; 3034 ump->vat_table_alloc_len = vat_table_alloc_len; 3035 ump->vat_table = vat_table; 3036 ump->vat_offset = vat_offset; 3037 ump->vat_entries = vat_entries; 3038 ump->vat_last_free_lb = 0; /* start at beginning */ 3039 3040 out: 3041 if (error) { 3042 if (vat_table) 3043 free(vat_table, M_UDFVOLD); 3044 } 3045 free(raw_vat, M_TEMP); 3046 3047 return error; 3048 } 3049 3050 /* --------------------------------------------------------------------- */ 3051 3052 static int 3053 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping) 3054 { 3055 struct udf_node *vat_node, *accepted_vat_node; 3056 struct long_ad icb_loc; 3057 uint32_t early_vat_loc, late_vat_loc, vat_loc; 3058 int error; 3059 3060 /* mapping info not needed */ 3061 mapping = mapping; 3062 3063 DPRINTF(VOLUMES, ("Searching VAT\n")); 3064 3065 /* 3066 * Start reading forward in blocks from the first possible vat 3067 * location. If not found in this block, start again a bit before 3068 * until we get a hit. 3069 */ 3070 late_vat_loc = ump->last_possible_vat_location; 3071 early_vat_loc = MAX(late_vat_loc - 64, ump->first_possible_vat_location); 3072 3073 DPRINTF(VOLUMES, ("\tfull range %d to %d\n", early_vat_loc, late_vat_loc)); 3074 accepted_vat_node = NULL; 3075 do { 3076 vat_loc = early_vat_loc; 3077 DPRINTF(VOLUMES, ("\tchecking range %d to %d\n", 3078 early_vat_loc, late_vat_loc)); 3079 do { 3080 DPRINTF(VOLUMES, ("\t\tChecking for VAT at sector %d\n", 3081 vat_loc)); 3082 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART); 3083 icb_loc.loc.lb_num = udf_rw32(vat_loc); 3084 3085 error = udf_get_node(ump, &icb_loc, &vat_node, 3086 LK_EXCLUSIVE); 3087 if (!error) { 3088 error = udf_check_for_vat(vat_node); 3089 vat_node->i_flags = 0; /* reset access */ 3090 } 3091 if (!error) { 3092 DPRINTFIF(VOLUMES, !error, 3093 ("VAT candidate accepted at %d\n", 3094 vat_loc)); 3095 if (accepted_vat_node) 3096 vput(accepted_vat_node->vnode); 3097 accepted_vat_node = vat_node; 3098 accepted_vat_node->i_flags |= IN_NO_DELETE; 3099 vat_node = NULL; 3100 } 3101 if (vat_node) 3102 vput(vat_node->vnode); 3103 vat_loc++; /* walk forward */ 3104 } while (vat_loc < late_vat_loc); 3105 if (accepted_vat_node) 3106 break; 3107 3108 early_vat_loc = MAX(early_vat_loc - 64, ump->first_possible_vat_location); 3109 late_vat_loc = MIN(early_vat_loc + 64, ump->last_possible_vat_location); 3110 } while (late_vat_loc > ump->first_possible_vat_location); 3111 3112 /* keep our last accepted VAT node around */ 3113 if (accepted_vat_node) { 3114 /* revert no delete flag again to avoid potential side effects */ 3115 accepted_vat_node->i_flags &= ~IN_NO_DELETE; 3116 3117 UDF_SET_SYSTEMFILE(accepted_vat_node->vnode); 3118 ump->vat_node = accepted_vat_node; 3119 return 0; 3120 } 3121 3122 return error; 3123 } 3124 3125 /* --------------------------------------------------------------------- */ 3126 3127 static int 3128 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping) 3129 { 3130 union dscrptr *dscr; 3131 struct part_map_spare *pms = &mapping->pms; 3132 uint32_t lb_num; 3133 int spar, error; 3134 3135 /* 3136 * The partition mapping passed on to us specifies the information we 3137 * need to locate and initialise the sparable partition mapping 3138 * information we need. 3139 */ 3140 3141 DPRINTF(VOLUMES, ("Read sparable table\n")); 3142 ump->sparable_packet_size = udf_rw16(pms->packet_len); 3143 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */ 3144 3145 for (spar = 0; spar < pms->n_st; spar++) { 3146 lb_num = pms->st_loc[spar]; 3147 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num)); 3148 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 3149 if (!error && dscr) { 3150 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) { 3151 if (ump->sparing_table) 3152 free(ump->sparing_table, M_UDFVOLD); 3153 ump->sparing_table = &dscr->spt; 3154 dscr = NULL; 3155 DPRINTF(VOLUMES, 3156 ("Sparing table accepted (%d entries)\n", 3157 udf_rw16(ump->sparing_table->rt_l))); 3158 break; /* we're done */ 3159 } 3160 } 3161 if (dscr) 3162 free(dscr, M_UDFVOLD); 3163 } 3164 3165 if (ump->sparing_table) 3166 return 0; 3167 3168 return ENOENT; 3169 } 3170 3171 /* --------------------------------------------------------------------- */ 3172 3173 static int 3174 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping) 3175 { 3176 struct part_map_meta *pmm = &mapping->pmm; 3177 struct long_ad icb_loc; 3178 struct vnode *vp; 3179 uint16_t raw_phys_part, phys_part; 3180 int error; 3181 3182 /* 3183 * BUGALERT: some rogue implementations use random physical 3184 * partition numbers to break other implementations so lookup 3185 * the number. 3186 */ 3187 3188 /* extract our allocation parameters set up on format */ 3189 ump->metadata_alloc_unit_size = udf_rw32(mapping->pmm.alloc_unit_size); 3190 ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size); 3191 ump->metadata_flags = mapping->pmm.flags; 3192 3193 DPRINTF(VOLUMES, ("Reading in Metadata files\n")); 3194 raw_phys_part = udf_rw16(pmm->part_num); 3195 phys_part = udf_find_raw_phys(ump, raw_phys_part); 3196 3197 icb_loc.loc.part_num = udf_rw16(phys_part); 3198 3199 DPRINTF(VOLUMES, ("Metadata file\n")); 3200 icb_loc.loc.lb_num = pmm->meta_file_lbn; 3201 error = udf_get_node(ump, &icb_loc, &ump->metadata_node, 3202 LK_EXCLUSIVE); 3203 if (ump->metadata_node) { 3204 vp = ump->metadata_node->vnode; 3205 UDF_SET_SYSTEMFILE(vp); 3206 } 3207 3208 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn; 3209 if (icb_loc.loc.lb_num != -1) { 3210 DPRINTF(VOLUMES, ("Metadata copy file\n")); 3211 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node, 3212 LK_EXCLUSIVE); 3213 if (ump->metadatamirror_node) { 3214 vp = ump->metadatamirror_node->vnode; 3215 UDF_SET_SYSTEMFILE(vp); 3216 } 3217 } 3218 3219 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn; 3220 if (icb_loc.loc.lb_num != -1) { 3221 DPRINTF(VOLUMES, ("Metadata bitmap file\n")); 3222 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node, 3223 LK_EXCLUSIVE); 3224 if (ump->metadatabitmap_node) { 3225 vp = ump->metadatabitmap_node->vnode; 3226 UDF_SET_SYSTEMFILE(vp); 3227 } 3228 } 3229 3230 /* if we're mounting read-only we relax the requirements */ 3231 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) { 3232 error = EFAULT; 3233 if (ump->metadata_node) 3234 error = 0; 3235 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) { 3236 printf( "udf mount: Metadata file not readable, " 3237 "substituting Metadata copy file\n"); 3238 ump->metadata_node = ump->metadatamirror_node; 3239 ump->metadatamirror_node = NULL; 3240 error = 0; 3241 } 3242 } else { 3243 /* mounting read/write */ 3244 /* XXX DISABLED! metadata writing is not working yet XXX */ 3245 if (error) 3246 error = EROFS; 3247 } 3248 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read " 3249 "metadata files\n")); 3250 return error; 3251 } 3252 3253 /* --------------------------------------------------------------------- */ 3254 3255 int 3256 udf_read_vds_tables(struct udf_mount *ump) 3257 { 3258 union udf_pmap *mapping; 3259 /* struct udf_args *args = &ump->mount_args; */ 3260 uint32_t n_pm; 3261 uint32_t log_part; 3262 uint8_t *pmap_pos; 3263 int pmap_size; 3264 int error; 3265 3266 /* Iterate (again) over the part mappings for locations */ 3267 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 3268 pmap_pos = ump->logical_vol->maps; 3269 3270 for (log_part = 0; log_part < n_pm; log_part++) { 3271 mapping = (union udf_pmap *) pmap_pos; 3272 switch (ump->vtop_tp[log_part]) { 3273 case UDF_VTOP_TYPE_PHYS : 3274 /* nothing */ 3275 break; 3276 case UDF_VTOP_TYPE_VIRT : 3277 /* search and load VAT */ 3278 error = udf_search_vat(ump, mapping); 3279 if (error) 3280 return ENOENT; 3281 break; 3282 case UDF_VTOP_TYPE_SPARABLE : 3283 /* load one of the sparable tables */ 3284 error = udf_read_sparables(ump, mapping); 3285 if (error) 3286 return ENOENT; 3287 break; 3288 case UDF_VTOP_TYPE_META : 3289 /* load the associated file descriptors */ 3290 error = udf_read_metadata_nodes(ump, mapping); 3291 if (error) 3292 return ENOENT; 3293 break; 3294 default: 3295 break; 3296 } 3297 pmap_size = pmap_pos[1]; 3298 pmap_pos += pmap_size; 3299 } 3300 3301 /* read in and check unallocated and free space info if writing */ 3302 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) { 3303 error = udf_read_physical_partition_spacetables(ump); 3304 if (error) 3305 return error; 3306 3307 /* also read in metadata partition spacebitmap if defined */ 3308 error = udf_read_metadata_partition_spacetable(ump); 3309 return error; 3310 } 3311 3312 return 0; 3313 } 3314 3315 /* --------------------------------------------------------------------- */ 3316 3317 int 3318 udf_read_rootdirs(struct udf_mount *ump) 3319 { 3320 union dscrptr *dscr; 3321 /* struct udf_args *args = &ump->mount_args; */ 3322 struct udf_node *rootdir_node, *streamdir_node; 3323 struct long_ad fsd_loc, *dir_loc; 3324 uint32_t lb_num, dummy; 3325 uint32_t fsd_len; 3326 int dscr_type; 3327 int error; 3328 3329 /* TODO implement FSD reading in separate function like integrity? */ 3330 /* get fileset descriptor sequence */ 3331 fsd_loc = ump->logical_vol->lv_fsd_loc; 3332 fsd_len = udf_rw32(fsd_loc.len); 3333 3334 dscr = NULL; 3335 error = 0; 3336 while (fsd_len || error) { 3337 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len)); 3338 /* translate fsd_loc to lb_num */ 3339 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy); 3340 if (error) 3341 break; 3342 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num)); 3343 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 3344 /* end markers */ 3345 if (error || (dscr == NULL)) 3346 break; 3347 3348 /* analyse */ 3349 dscr_type = udf_rw16(dscr->tag.id); 3350 if (dscr_type == TAGID_TERM) 3351 break; 3352 if (dscr_type != TAGID_FSD) { 3353 free(dscr, M_UDFVOLD); 3354 return ENOENT; 3355 } 3356 3357 /* 3358 * TODO check for multiple fileset descriptors; its only 3359 * picking the last now. Also check for FSD 3360 * correctness/interpretability 3361 */ 3362 3363 /* update */ 3364 if (ump->fileset_desc) { 3365 free(ump->fileset_desc, M_UDFVOLD); 3366 } 3367 ump->fileset_desc = &dscr->fsd; 3368 dscr = NULL; 3369 3370 /* continue to the next fsd */ 3371 fsd_len -= ump->discinfo.sector_size; 3372 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1); 3373 3374 /* follow up to fsd->next_ex (long_ad) if its not null */ 3375 if (udf_rw32(ump->fileset_desc->next_ex.len)) { 3376 DPRINTF(VOLUMES, ("follow up FSD extent\n")); 3377 fsd_loc = ump->fileset_desc->next_ex; 3378 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len); 3379 } 3380 } 3381 if (dscr) 3382 free(dscr, M_UDFVOLD); 3383 3384 /* there has to be one */ 3385 if (ump->fileset_desc == NULL) 3386 return ENOENT; 3387 3388 DPRINTF(VOLUMES, ("FSD read in fine\n")); 3389 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n")); 3390 udf_update_logvolname(ump, ump->logical_vol->logvol_id); 3391 3392 /* 3393 * Now the FSD is known, read in the rootdirectory and if one exists, 3394 * the system stream dir. Some files in the system streamdir are not 3395 * wanted in this implementation since they are not maintained. If 3396 * writing is enabled we'll delete these files if they exist. 3397 */ 3398 3399 rootdir_node = streamdir_node = NULL; 3400 dir_loc = NULL; 3401 3402 /* try to read in the rootdir */ 3403 dir_loc = &ump->fileset_desc->rootdir_icb; 3404 error = udf_get_node(ump, dir_loc, &rootdir_node, LK_EXCLUSIVE); 3405 if (error) 3406 return ENOENT; 3407 3408 /* aparently it read in fine */ 3409 3410 /* 3411 * Try the system stream directory; not very likely in the ones we 3412 * test, but for completeness. 3413 */ 3414 dir_loc = &ump->fileset_desc->streamdir_icb; 3415 if (udf_rw32(dir_loc->len)) { 3416 printf("udf_read_rootdirs: streamdir defined "); 3417 error = udf_get_node(ump, dir_loc, &streamdir_node, 3418 LK_EXCLUSIVE); 3419 if (error) { 3420 printf("but error in streamdir reading\n"); 3421 } else { 3422 printf("but ignored\n"); 3423 /* 3424 * TODO process streamdir `baddies' i.e. files we dont 3425 * want if R/W 3426 */ 3427 } 3428 } 3429 3430 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n")); 3431 3432 /* release the vnodes again; they'll be auto-recycled later */ 3433 if (streamdir_node) { 3434 vput(streamdir_node->vnode); 3435 } 3436 if (rootdir_node) { 3437 vput(rootdir_node->vnode); 3438 } 3439 3440 return 0; 3441 } 3442 3443 /* --------------------------------------------------------------------- */ 3444 3445 /* To make absolutely sure we are NOT returning zero, add one :) */ 3446 3447 long 3448 udf_get_node_id(const struct long_ad *icbptr) 3449 { 3450 /* ought to be enough since each mountpoint has its own chain */ 3451 return udf_rw32(icbptr->loc.lb_num) + 1; 3452 } 3453 3454 3455 int 3456 udf_compare_icb(const struct long_ad *a, const struct long_ad *b) 3457 { 3458 if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num)) 3459 return -1; 3460 if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num)) 3461 return 1; 3462 3463 if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num)) 3464 return -1; 3465 if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num)) 3466 return 1; 3467 3468 return 0; 3469 } 3470 3471 3472 static int 3473 udf_compare_rbnodes(void *ctx, const void *a, const void *b) 3474 { 3475 const struct udf_node *a_node = a; 3476 const struct udf_node *b_node = b; 3477 3478 return udf_compare_icb(&a_node->loc, &b_node->loc); 3479 } 3480 3481 3482 static int 3483 udf_compare_rbnode_icb(void *ctx, const void *a, const void *key) 3484 { 3485 const struct udf_node *a_node = a; 3486 const struct long_ad * const icb = key; 3487 3488 return udf_compare_icb(&a_node->loc, icb); 3489 } 3490 3491 3492 static const rb_tree_ops_t udf_node_rbtree_ops = { 3493 .rbto_compare_nodes = udf_compare_rbnodes, 3494 .rbto_compare_key = udf_compare_rbnode_icb, 3495 .rbto_node_offset = offsetof(struct udf_node, rbnode), 3496 .rbto_context = NULL 3497 }; 3498 3499 3500 void 3501 udf_init_nodes_tree(struct udf_mount *ump) 3502 { 3503 3504 rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops); 3505 } 3506 3507 3508 /* --------------------------------------------------------------------- */ 3509 3510 static int 3511 udf_validate_session_start(struct udf_mount *ump) 3512 { 3513 struct mmc_trackinfo trackinfo; 3514 struct vrs_desc *vrs; 3515 uint32_t tracknr, sessionnr, sector, sector_size; 3516 uint32_t iso9660_vrs, write_track_start; 3517 uint8_t *buffer, *blank, *pos; 3518 int blks, max_sectors, vrs_len; 3519 int error; 3520 3521 /* disc appendable? */ 3522 if (ump->discinfo.disc_state == MMC_STATE_FULL) 3523 return EROFS; 3524 3525 /* already written here? if so, there should be an ISO VDS */ 3526 if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE) 3527 return 0; 3528 3529 /* 3530 * Check if the first track of the session is blank and if so, copy or 3531 * create a dummy ISO descriptor so the disc is valid again. 3532 */ 3533 3534 tracknr = ump->discinfo.first_track_last_session; 3535 memset(&trackinfo, 0, sizeof(struct mmc_trackinfo)); 3536 trackinfo.tracknr = tracknr; 3537 error = udf_update_trackinfo(ump, &trackinfo); 3538 if (error) 3539 return error; 3540 3541 udf_dump_trackinfo(&trackinfo); 3542 KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED)); 3543 KASSERT(trackinfo.sessionnr > 1); 3544 3545 KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID); 3546 write_track_start = trackinfo.next_writable; 3547 3548 /* we have to copy the ISO VRS from a former session */ 3549 DPRINTF(VOLUMES, ("validate_session_start: " 3550 "blank or reserved track, copying VRS\n")); 3551 3552 /* sessionnr should be the session we're mounting */ 3553 sessionnr = ump->mount_args.sessionnr; 3554 3555 /* start at the first track */ 3556 tracknr = ump->discinfo.first_track; 3557 while (tracknr <= ump->discinfo.num_tracks) { 3558 trackinfo.tracknr = tracknr; 3559 error = udf_update_trackinfo(ump, &trackinfo); 3560 if (error) { 3561 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n")); 3562 return error; 3563 } 3564 if (trackinfo.sessionnr == sessionnr) 3565 break; 3566 tracknr++; 3567 } 3568 if (trackinfo.sessionnr != sessionnr) { 3569 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n")); 3570 return ENOENT; 3571 } 3572 3573 DPRINTF(VOLUMES, ("found possible former ISO VRS at\n")); 3574 udf_dump_trackinfo(&trackinfo); 3575 3576 /* 3577 * location of iso9660 vrs is defined as first sector AFTER 32kb, 3578 * minimum ISO `sector size' 2048 3579 */ 3580 sector_size = ump->discinfo.sector_size; 3581 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size) 3582 + trackinfo.track_start; 3583 3584 buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK); 3585 max_sectors = UDF_ISO_VRS_SIZE / sector_size; 3586 blks = MAX(1, 2048 / sector_size); 3587 3588 error = 0; 3589 for (sector = 0; sector < max_sectors; sector += blks) { 3590 pos = buffer + sector * sector_size; 3591 error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos, 3592 iso9660_vrs + sector, blks); 3593 if (error) 3594 break; 3595 /* check this ISO descriptor */ 3596 vrs = (struct vrs_desc *) pos; 3597 DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier)); 3598 if (strncmp(vrs->identifier, VRS_CD001, 5) == 0) 3599 continue; 3600 if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0) 3601 continue; 3602 if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0) 3603 continue; 3604 if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0) 3605 continue; 3606 if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0) 3607 continue; 3608 if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0) 3609 break; 3610 /* now what? for now, end of sequence */ 3611 break; 3612 } 3613 vrs_len = sector + blks; 3614 if (error) { 3615 DPRINTF(VOLUMES, ("error reading old ISO VRS\n")); 3616 DPRINTF(VOLUMES, ("creating minimal ISO VRS\n")); 3617 3618 memset(buffer, 0, UDF_ISO_VRS_SIZE); 3619 3620 vrs = (struct vrs_desc *) (buffer); 3621 vrs->struct_type = 0; 3622 vrs->version = 1; 3623 memcpy(vrs->identifier,VRS_BEA01, 5); 3624 3625 vrs = (struct vrs_desc *) (buffer + 2048); 3626 vrs->struct_type = 0; 3627 vrs->version = 1; 3628 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) { 3629 memcpy(vrs->identifier,VRS_NSR02, 5); 3630 } else { 3631 memcpy(vrs->identifier,VRS_NSR03, 5); 3632 } 3633 3634 vrs = (struct vrs_desc *) (buffer + 4096); 3635 vrs->struct_type = 0; 3636 vrs->version = 1; 3637 memcpy(vrs->identifier, VRS_TEA01, 5); 3638 3639 vrs_len = 3*blks; 3640 } 3641 3642 DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len)); 3643 3644 /* 3645 * location of iso9660 vrs is defined as first sector AFTER 32kb, 3646 * minimum ISO `sector size' 2048 3647 */ 3648 sector_size = ump->discinfo.sector_size; 3649 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size) 3650 + write_track_start; 3651 3652 /* write out 32 kb */ 3653 blank = malloc(sector_size, M_TEMP, M_WAITOK); 3654 memset(blank, 0, sector_size); 3655 error = 0; 3656 for (sector = write_track_start; sector < iso9660_vrs; sector ++) { 3657 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, 3658 blank, sector, 1); 3659 if (error) 3660 break; 3661 } 3662 if (!error) { 3663 /* write out our ISO VRS */ 3664 KASSERT(sector == iso9660_vrs); 3665 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer, 3666 sector, vrs_len); 3667 sector += vrs_len; 3668 } 3669 if (!error) { 3670 /* fill upto the first anchor at S+256 */ 3671 for (; sector < write_track_start+256; sector++) { 3672 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, 3673 blank, sector, 1); 3674 if (error) 3675 break; 3676 } 3677 } 3678 if (!error) { 3679 /* write out anchor; write at ABSOLUTE place! */ 3680 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE, 3681 (union dscrptr *) ump->anchors[0], sector, sector); 3682 if (error) 3683 printf("writeout of anchor failed!\n"); 3684 } 3685 3686 free(blank, M_TEMP); 3687 free(buffer, M_TEMP); 3688 3689 if (error) 3690 printf("udf_open_session: error writing iso vrs! : " 3691 "leaving disc in compromised state!\n"); 3692 3693 /* synchronise device caches */ 3694 (void) udf_synchronise_caches(ump); 3695 3696 return error; 3697 } 3698 3699 3700 int 3701 udf_open_logvol(struct udf_mount *ump) 3702 { 3703 int logvol_integrity; 3704 int error; 3705 3706 /* already/still open? */ 3707 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 3708 if (logvol_integrity == UDF_INTEGRITY_OPEN) 3709 return 0; 3710 3711 /* can we open it ? */ 3712 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 3713 return EROFS; 3714 3715 /* setup write parameters */ 3716 DPRINTF(VOLUMES, ("Setting up write parameters\n")); 3717 if ((error = udf_setup_writeparams(ump)) != 0) 3718 return error; 3719 3720 /* determine data and metadata tracks (most likely same) */ 3721 error = udf_search_writing_tracks(ump); 3722 if (error) { 3723 /* most likely lack of space */ 3724 printf("udf_open_logvol: error searching writing tracks\n"); 3725 return EROFS; 3726 } 3727 3728 /* writeout/update lvint on disc or only in memory */ 3729 DPRINTF(VOLUMES, ("Opening logical volume\n")); 3730 if (ump->lvopen & UDF_OPEN_SESSION) { 3731 /* TODO optional track reservation opening */ 3732 error = udf_validate_session_start(ump); 3733 if (error) 3734 return error; 3735 3736 /* determine data and metadata tracks again */ 3737 error = udf_search_writing_tracks(ump); 3738 3739 if (ump->lvclose & UDF_WRITE_VAT) { 3740 /* 3741 * we writeout the VAT to get a self-sustained session 3742 * for fsck 3743 */ 3744 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n")); 3745 3746 /* write out the VAT data and all its descriptors */ 3747 DPRINTF(VOLUMES, ("writeout vat_node\n")); 3748 udf_writeout_vat(ump); 3749 3750 /* force everything to be synchronized on the device */ 3751 (void) udf_synchronise_caches(ump); 3752 } 3753 } 3754 3755 /* mark it open */ 3756 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN); 3757 3758 /* do we need to write it out? */ 3759 if (ump->lvopen & UDF_WRITE_LVINT) { 3760 error = udf_writeout_lvint(ump, ump->lvopen); 3761 /* if we couldn't write it mark it closed again */ 3762 if (error) { 3763 ump->logvol_integrity->integrity_type = 3764 udf_rw32(UDF_INTEGRITY_CLOSED); 3765 return error; 3766 } 3767 } 3768 3769 return 0; 3770 } 3771 3772 3773 int 3774 udf_close_logvol(struct udf_mount *ump, int mntflags) 3775 { 3776 struct vnode *devvp = ump->devvp; 3777 struct mmc_op mmc_op; 3778 int logvol_integrity; 3779 int error = 0, error1 = 0, error2 = 0; 3780 int tracknr; 3781 int nvats, n, nok; 3782 3783 /* already/still closed? */ 3784 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 3785 if (logvol_integrity == UDF_INTEGRITY_CLOSED) 3786 return 0; 3787 3788 /* writeout/update lvint or write out VAT */ 3789 DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n")); 3790 #ifdef DIAGNOSTIC 3791 if (ump->lvclose & UDF_CLOSE_SESSION) 3792 KASSERT(ump->lvclose & UDF_WRITE_VAT); 3793 #endif 3794 3795 if (ump->lvclose & UDF_WRITE_VAT) { 3796 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n")); 3797 3798 /* write out the VAT data and all its descriptors */ 3799 DPRINTF(VOLUMES, ("writeout vat_node\n")); 3800 udf_writeout_vat(ump); 3801 3802 /* at least two DVD packets and 3 CD-R packets */ 3803 nvats = 32; 3804 3805 #if notyet 3806 /* 3807 * TODO calculate the available space and if the disc is 3808 * allmost full, write out till end-256-1 with banks, write 3809 * AVDP and fill up with VATs, then close session and close 3810 * disc. 3811 */ 3812 if (ump->lvclose & UDF_FINALISE_DISC) { 3813 error = udf_write_phys_dscr_sync(ump, NULL, 3814 UDF_C_FLOAT_DSCR, 3815 (union dscrptr *) ump->anchors[0], 3816 0, 0); 3817 if (error) 3818 printf("writeout of anchor failed!\n"); 3819 3820 /* pad space with VAT ICBs */ 3821 nvats = 256; 3822 } 3823 #endif 3824 3825 /* write out a number of VAT nodes */ 3826 nok = 0; 3827 for (n = 0; n < nvats; n++) { 3828 /* will now only write last FE/EFE */ 3829 ump->vat_node->i_flags |= IN_MODIFIED; 3830 error = VOP_FSYNC(ump->vat_node->vnode, 3831 FSCRED, FSYNC_WAIT, 0, 0); 3832 if (!error) 3833 nok++; 3834 } 3835 /* force everything to be synchronized on the device */ 3836 (void) udf_synchronise_caches(ump); 3837 3838 if (nok < 14) { 3839 /* arbitrary; but at least one or two CD frames */ 3840 printf("writeout of at least 14 VATs failed\n"); 3841 return error; 3842 } 3843 } 3844 3845 /* NOTE the disc is in a (minimal) valid state now; no erroring out */ 3846 3847 /* finish closing of session */ 3848 if (ump->lvclose & UDF_CLOSE_SESSION) { 3849 DPRINTF(VOLUMES, ("udf_close_logvol: closing session " 3850 "as requested\n")); 3851 error = udf_validate_session_start(ump); 3852 if (error) 3853 return error; 3854 3855 (void) udf_synchronise_caches(ump); 3856 3857 /* close all associated tracks */ 3858 tracknr = ump->discinfo.first_track_last_session; 3859 error = 0; 3860 while (tracknr <= ump->discinfo.last_track_last_session) { 3861 DPRINTF(VOLUMES, ("\tclosing possible open " 3862 "track %d\n", tracknr)); 3863 memset(&mmc_op, 0, sizeof(mmc_op)); 3864 mmc_op.operation = MMC_OP_CLOSETRACK; 3865 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 3866 mmc_op.tracknr = tracknr; 3867 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, 3868 FKIOCTL, NOCRED); 3869 if (error) 3870 printf("udf_close_logvol: closing of " 3871 "track %d failed\n", tracknr); 3872 tracknr ++; 3873 } 3874 if (!error) { 3875 DPRINTF(VOLUMES, ("closing session\n")); 3876 memset(&mmc_op, 0, sizeof(mmc_op)); 3877 mmc_op.operation = MMC_OP_CLOSESESSION; 3878 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 3879 mmc_op.sessionnr = ump->discinfo.num_sessions; 3880 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, 3881 FKIOCTL, NOCRED); 3882 if (error) 3883 printf("udf_close_logvol: closing of session" 3884 "failed\n"); 3885 } 3886 if (!error) 3887 ump->lvopen |= UDF_OPEN_SESSION; 3888 if (error) { 3889 printf("udf_close_logvol: leaving disc as it is\n"); 3890 ump->lvclose &= ~UDF_FINALISE_DISC; 3891 } 3892 } 3893 3894 if (ump->lvclose & UDF_FINALISE_DISC) { 3895 memset(&mmc_op, 0, sizeof(mmc_op)); 3896 mmc_op.operation = MMC_OP_FINALISEDISC; 3897 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 3898 mmc_op.sessionnr = ump->discinfo.num_sessions; 3899 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, 3900 FKIOCTL, NOCRED); 3901 if (error) 3902 printf("udf_close_logvol: finalising disc" 3903 "failed\n"); 3904 } 3905 3906 /* write out partition bitmaps if requested */ 3907 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) { 3908 /* sync writeout metadata spacetable if existing */ 3909 error1 = udf_write_metadata_partition_spacetable(ump, true); 3910 if (error1) 3911 printf( "udf_close_logvol: writeout of metadata space " 3912 "bitmap failed\n"); 3913 3914 /* sync writeout partition spacetables */ 3915 error2 = udf_write_physical_partition_spacetables(ump, true); 3916 if (error2) 3917 printf( "udf_close_logvol: writeout of space tables " 3918 "failed\n"); 3919 3920 if (error1 || error2) 3921 return (error1 | error2); 3922 3923 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS; 3924 } 3925 3926 /* write out metadata partition nodes if requested */ 3927 if (ump->lvclose & UDF_WRITE_METAPART_NODES) { 3928 /* sync writeout metadata descriptor node */ 3929 error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT); 3930 if (error1) 3931 printf( "udf_close_logvol: writeout of metadata partition " 3932 "node failed\n"); 3933 3934 /* duplicate metadata partition descriptor if needed */ 3935 udf_synchronise_metadatamirror_node(ump); 3936 3937 /* sync writeout metadatamirror descriptor node */ 3938 error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT); 3939 if (error2) 3940 printf( "udf_close_logvol: writeout of metadata partition " 3941 "mirror node failed\n"); 3942 3943 if (error1 || error2) 3944 return (error1 | error2); 3945 3946 ump->lvclose &= ~UDF_WRITE_METAPART_NODES; 3947 } 3948 3949 /* mark it closed */ 3950 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); 3951 3952 /* do we need to write out the logical volume integrity? */ 3953 if (ump->lvclose & UDF_WRITE_LVINT) 3954 error = udf_writeout_lvint(ump, ump->lvopen); 3955 if (error) { 3956 /* HELP now what? mark it open again for now */ 3957 ump->logvol_integrity->integrity_type = 3958 udf_rw32(UDF_INTEGRITY_OPEN); 3959 return error; 3960 } 3961 3962 (void) udf_synchronise_caches(ump); 3963 3964 return 0; 3965 } 3966 3967 /* --------------------------------------------------------------------- */ 3968 3969 /* 3970 * Genfs interfacing 3971 * 3972 * static const struct genfs_ops udf_genfsops = { 3973 * .gop_size = genfs_size, 3974 * size of transfers 3975 * .gop_alloc = udf_gop_alloc, 3976 * allocate len bytes at offset 3977 * .gop_write = genfs_gop_write, 3978 * putpages interface code 3979 * .gop_markupdate = udf_gop_markupdate, 3980 * set update/modify flags etc. 3981 * } 3982 */ 3983 3984 /* 3985 * Genfs interface. These four functions are the only ones defined though not 3986 * documented... great.... 3987 */ 3988 3989 /* 3990 * Called for allocating an extent of the file either by VOP_WRITE() or by 3991 * genfs filling up gaps. 3992 */ 3993 static int 3994 udf_gop_alloc(struct vnode *vp, off_t off, 3995 off_t len, int flags, kauth_cred_t cred) 3996 { 3997 struct udf_node *udf_node = VTOI(vp); 3998 struct udf_mount *ump = udf_node->ump; 3999 uint64_t lb_start, lb_end; 4000 uint32_t lb_size, num_lb; 4001 int udf_c_type, vpart_num, can_fail; 4002 int error; 4003 4004 DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n", 4005 off, len, flags? "SYNC":"NONE")); 4006 4007 /* 4008 * request the pages of our vnode and see how many pages will need to 4009 * be allocated and reserve that space 4010 */ 4011 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); 4012 lb_start = off / lb_size; 4013 lb_end = (off + len + lb_size -1) / lb_size; 4014 num_lb = lb_end - lb_start; 4015 4016 udf_c_type = udf_get_c_type(udf_node); 4017 vpart_num = udf_get_record_vpart(ump, udf_c_type); 4018 4019 /* all requests can fail */ 4020 can_fail = true; 4021 4022 /* fid's (directories) can't fail */ 4023 if (udf_c_type == UDF_C_FIDS) 4024 can_fail = false; 4025 4026 /* system files can't fail */ 4027 if (vp->v_vflag & VV_SYSTEM) 4028 can_fail = false; 4029 4030 error = udf_reserve_space(ump, udf_node, udf_c_type, 4031 vpart_num, num_lb, can_fail); 4032 4033 DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n", 4034 lb_start, lb_end, num_lb)); 4035 4036 return error; 4037 } 4038 4039 4040 /* 4041 * callback from genfs to update our flags 4042 */ 4043 static void 4044 udf_gop_markupdate(struct vnode *vp, int flags) 4045 { 4046 struct udf_node *udf_node = VTOI(vp); 4047 u_long mask = 0; 4048 4049 if ((flags & GOP_UPDATE_ACCESSED) != 0) { 4050 mask = IN_ACCESS; 4051 } 4052 if ((flags & GOP_UPDATE_MODIFIED) != 0) { 4053 if (vp->v_type == VREG) { 4054 mask |= IN_CHANGE | IN_UPDATE; 4055 } else { 4056 mask |= IN_MODIFY; 4057 } 4058 } 4059 if (mask) { 4060 udf_node->i_flags |= mask; 4061 } 4062 } 4063 4064 4065 static const struct genfs_ops udf_genfsops = { 4066 .gop_size = genfs_size, 4067 .gop_alloc = udf_gop_alloc, 4068 .gop_write = genfs_gop_write_rwmap, 4069 .gop_markupdate = udf_gop_markupdate, 4070 .gop_putrange = genfs_gop_putrange, 4071 }; 4072 4073 4074 /* --------------------------------------------------------------------- */ 4075 4076 int 4077 udf_write_terminator(struct udf_mount *ump, uint32_t sector) 4078 { 4079 union dscrptr *dscr; 4080 int error; 4081 4082 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO); 4083 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector); 4084 4085 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */ 4086 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH); 4087 (void) udf_validate_tag_and_crc_sums(dscr); 4088 4089 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 4090 dscr, sector, sector); 4091 4092 free(dscr, M_TEMP); 4093 4094 return error; 4095 } 4096 4097 4098 /* --------------------------------------------------------------------- */ 4099 4100 /* UDF<->unix converters */ 4101 4102 /* --------------------------------------------------------------------- */ 4103 4104 static mode_t 4105 udf_perm_to_unix_mode(uint32_t perm) 4106 { 4107 mode_t mode; 4108 4109 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) ); 4110 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2); 4111 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4); 4112 4113 return mode; 4114 } 4115 4116 /* --------------------------------------------------------------------- */ 4117 4118 static uint32_t 4119 unix_mode_to_udf_perm(mode_t mode) 4120 { 4121 uint32_t perm; 4122 4123 perm = ((mode & S_IRWXO) ); 4124 perm |= ((mode & S_IRWXG) << 2); 4125 perm |= ((mode & S_IRWXU) << 4); 4126 perm |= ((mode & S_IWOTH) << 3); 4127 perm |= ((mode & S_IWGRP) << 5); 4128 perm |= ((mode & S_IWUSR) << 7); 4129 4130 return perm; 4131 } 4132 4133 /* --------------------------------------------------------------------- */ 4134 4135 static uint32_t 4136 udf_icb_to_unix_filetype(uint32_t icbftype) 4137 { 4138 switch (icbftype) { 4139 case UDF_ICB_FILETYPE_DIRECTORY : 4140 case UDF_ICB_FILETYPE_STREAMDIR : 4141 return S_IFDIR; 4142 case UDF_ICB_FILETYPE_FIFO : 4143 return S_IFIFO; 4144 case UDF_ICB_FILETYPE_CHARDEVICE : 4145 return S_IFCHR; 4146 case UDF_ICB_FILETYPE_BLOCKDEVICE : 4147 return S_IFBLK; 4148 case UDF_ICB_FILETYPE_RANDOMACCESS : 4149 case UDF_ICB_FILETYPE_REALTIME : 4150 return S_IFREG; 4151 case UDF_ICB_FILETYPE_SYMLINK : 4152 return S_IFLNK; 4153 case UDF_ICB_FILETYPE_SOCKET : 4154 return S_IFSOCK; 4155 } 4156 /* no idea what this is */ 4157 return 0; 4158 } 4159 4160 /* --------------------------------------------------------------------- */ 4161 4162 void 4163 udf_to_unix_name(char *result, int result_len, char *id, int len, 4164 struct charspec *chsp) 4165 { 4166 uint16_t *raw_name, *unix_name; 4167 uint16_t *inchp, ch; 4168 uint8_t *outchp; 4169 const char *osta_id = "OSTA Compressed Unicode"; 4170 int ucode_chars, nice_uchars, is_osta_typ0, nout; 4171 4172 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK); 4173 unix_name = raw_name + 1024; /* split space in half */ 4174 assert(sizeof(char) == sizeof(uint8_t)); 4175 outchp = (uint8_t *) result; 4176 4177 is_osta_typ0 = (chsp->type == 0); 4178 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0); 4179 if (is_osta_typ0) { 4180 /* TODO clean up */ 4181 *raw_name = *unix_name = 0; 4182 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name); 4183 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name)); 4184 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars); 4185 /* output UTF8 */ 4186 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) { 4187 ch = *inchp; 4188 nout = wput_utf8(outchp, result_len, ch); 4189 outchp += nout; result_len -= nout; 4190 if (!ch) break; 4191 } 4192 *outchp++ = 0; 4193 } else { 4194 /* assume 8bit char length byte latin-1 */ 4195 assert(*id == 8); 4196 assert(strlen((char *) (id+1)) <= NAME_MAX); 4197 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1))); 4198 } 4199 free(raw_name, M_UDFTEMP); 4200 } 4201 4202 /* --------------------------------------------------------------------- */ 4203 4204 void 4205 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len, 4206 struct charspec *chsp) 4207 { 4208 uint16_t *raw_name; 4209 uint16_t *outchp; 4210 const char *inchp; 4211 const char *osta_id = "OSTA Compressed Unicode"; 4212 int udf_chars, is_osta_typ0, bits; 4213 size_t cnt; 4214 4215 /* allocate temporary unicode-16 buffer */ 4216 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK); 4217 4218 /* convert utf8 to unicode-16 */ 4219 *raw_name = 0; 4220 inchp = name; 4221 outchp = raw_name; 4222 bits = 8; 4223 for (cnt = name_len, udf_chars = 0; cnt;) { 4224 *outchp = wget_utf8(&inchp, &cnt); 4225 if (*outchp > 0xff) 4226 bits=16; 4227 outchp++; 4228 udf_chars++; 4229 } 4230 /* null terminate just in case */ 4231 *outchp++ = 0; 4232 4233 is_osta_typ0 = (chsp->type == 0); 4234 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0); 4235 if (is_osta_typ0) { 4236 udf_chars = udf_CompressUnicode(udf_chars, bits, 4237 (unicode_t *) raw_name, 4238 (byte *) result); 4239 } else { 4240 printf("unix to udf name: no CHSP0 ?\n"); 4241 /* XXX assume 8bit char length byte latin-1 */ 4242 *result++ = 8; udf_chars = 1; 4243 strncpy(result, name + 1, name_len); 4244 udf_chars += name_len; 4245 } 4246 *result_len = udf_chars; 4247 free(raw_name, M_UDFTEMP); 4248 } 4249 4250 /* --------------------------------------------------------------------- */ 4251 4252 void 4253 udf_timestamp_to_timespec(struct udf_mount *ump, 4254 struct timestamp *timestamp, 4255 struct timespec *timespec) 4256 { 4257 struct clock_ymdhms ymdhms; 4258 uint32_t usecs, secs, nsecs; 4259 uint16_t tz; 4260 4261 /* fill in ymdhms structure from timestamp */ 4262 memset(&ymdhms, 0, sizeof(ymdhms)); 4263 ymdhms.dt_year = udf_rw16(timestamp->year); 4264 ymdhms.dt_mon = timestamp->month; 4265 ymdhms.dt_day = timestamp->day; 4266 ymdhms.dt_wday = 0; /* ? */ 4267 ymdhms.dt_hour = timestamp->hour; 4268 ymdhms.dt_min = timestamp->minute; 4269 ymdhms.dt_sec = timestamp->second; 4270 4271 secs = clock_ymdhms_to_secs(&ymdhms); 4272 usecs = timestamp->usec + 4273 100*timestamp->hund_usec + 10000*timestamp->centisec; 4274 nsecs = usecs * 1000; 4275 4276 /* 4277 * Calculate the time zone. The timezone is 12 bit signed 2's 4278 * compliment, so we gotta do some extra magic to handle it right. 4279 */ 4280 tz = udf_rw16(timestamp->type_tz); 4281 tz &= 0x0fff; /* only lower 12 bits are significant */ 4282 if (tz & 0x0800) /* sign extention */ 4283 tz |= 0xf000; 4284 4285 /* TODO check timezone conversion */ 4286 /* check if we are specified a timezone to convert */ 4287 if (udf_rw16(timestamp->type_tz) & 0x1000) { 4288 if ((int16_t) tz != -2047) 4289 secs -= (int16_t) tz * 60; 4290 } else { 4291 secs -= ump->mount_args.gmtoff; 4292 } 4293 4294 timespec->tv_sec = secs; 4295 timespec->tv_nsec = nsecs; 4296 } 4297 4298 4299 void 4300 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp) 4301 { 4302 struct clock_ymdhms ymdhms; 4303 uint32_t husec, usec, csec; 4304 4305 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms); 4306 4307 usec = timespec->tv_nsec / 1000; 4308 husec = usec / 100; 4309 usec -= husec * 100; /* only 0-99 in usec */ 4310 csec = husec / 100; /* only 0-99 in csec */ 4311 husec -= csec * 100; /* only 0-99 in husec */ 4312 4313 /* set method 1 for CUT/GMT */ 4314 timestamp->type_tz = udf_rw16((1<<12) + 0); 4315 timestamp->year = udf_rw16(ymdhms.dt_year); 4316 timestamp->month = ymdhms.dt_mon; 4317 timestamp->day = ymdhms.dt_day; 4318 timestamp->hour = ymdhms.dt_hour; 4319 timestamp->minute = ymdhms.dt_min; 4320 timestamp->second = ymdhms.dt_sec; 4321 timestamp->centisec = csec; 4322 timestamp->hund_usec = husec; 4323 timestamp->usec = usec; 4324 } 4325 4326 /* --------------------------------------------------------------------- */ 4327 4328 /* 4329 * Attribute and filetypes converters with get/set pairs 4330 */ 4331 4332 uint32_t 4333 udf_getaccessmode(struct udf_node *udf_node) 4334 { 4335 struct file_entry *fe = udf_node->fe; 4336 struct extfile_entry *efe = udf_node->efe; 4337 uint32_t udf_perm, icbftype; 4338 uint32_t mode, ftype; 4339 uint16_t icbflags; 4340 4341 UDF_LOCK_NODE(udf_node, 0); 4342 if (fe) { 4343 udf_perm = udf_rw32(fe->perm); 4344 icbftype = fe->icbtag.file_type; 4345 icbflags = udf_rw16(fe->icbtag.flags); 4346 } else { 4347 assert(udf_node->efe); 4348 udf_perm = udf_rw32(efe->perm); 4349 icbftype = efe->icbtag.file_type; 4350 icbflags = udf_rw16(efe->icbtag.flags); 4351 } 4352 4353 mode = udf_perm_to_unix_mode(udf_perm); 4354 ftype = udf_icb_to_unix_filetype(icbftype); 4355 4356 /* set suid, sgid, sticky from flags in fe/efe */ 4357 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID) 4358 mode |= S_ISUID; 4359 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID) 4360 mode |= S_ISGID; 4361 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY) 4362 mode |= S_ISVTX; 4363 4364 UDF_UNLOCK_NODE(udf_node, 0); 4365 4366 return mode | ftype; 4367 } 4368 4369 4370 void 4371 udf_setaccessmode(struct udf_node *udf_node, mode_t mode) 4372 { 4373 struct file_entry *fe = udf_node->fe; 4374 struct extfile_entry *efe = udf_node->efe; 4375 uint32_t udf_perm; 4376 uint16_t icbflags; 4377 4378 UDF_LOCK_NODE(udf_node, 0); 4379 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS); 4380 if (fe) { 4381 icbflags = udf_rw16(fe->icbtag.flags); 4382 } else { 4383 icbflags = udf_rw16(efe->icbtag.flags); 4384 } 4385 4386 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID; 4387 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID; 4388 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY; 4389 if (mode & S_ISUID) 4390 icbflags |= UDF_ICB_TAG_FLAGS_SETUID; 4391 if (mode & S_ISGID) 4392 icbflags |= UDF_ICB_TAG_FLAGS_SETGID; 4393 if (mode & S_ISVTX) 4394 icbflags |= UDF_ICB_TAG_FLAGS_STICKY; 4395 4396 if (fe) { 4397 fe->perm = udf_rw32(udf_perm); 4398 fe->icbtag.flags = udf_rw16(icbflags); 4399 } else { 4400 efe->perm = udf_rw32(udf_perm); 4401 efe->icbtag.flags = udf_rw16(icbflags); 4402 } 4403 4404 UDF_UNLOCK_NODE(udf_node, 0); 4405 } 4406 4407 4408 void 4409 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp) 4410 { 4411 struct udf_mount *ump = udf_node->ump; 4412 struct file_entry *fe = udf_node->fe; 4413 struct extfile_entry *efe = udf_node->efe; 4414 uid_t uid; 4415 gid_t gid; 4416 4417 UDF_LOCK_NODE(udf_node, 0); 4418 if (fe) { 4419 uid = (uid_t)udf_rw32(fe->uid); 4420 gid = (gid_t)udf_rw32(fe->gid); 4421 } else { 4422 assert(udf_node->efe); 4423 uid = (uid_t)udf_rw32(efe->uid); 4424 gid = (gid_t)udf_rw32(efe->gid); 4425 } 4426 4427 /* do the uid/gid translation game */ 4428 if (uid == (uid_t) -1) 4429 uid = ump->mount_args.anon_uid; 4430 if (gid == (gid_t) -1) 4431 gid = ump->mount_args.anon_gid; 4432 4433 *uidp = uid; 4434 *gidp = gid; 4435 4436 UDF_UNLOCK_NODE(udf_node, 0); 4437 } 4438 4439 4440 void 4441 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid) 4442 { 4443 struct udf_mount *ump = udf_node->ump; 4444 struct file_entry *fe = udf_node->fe; 4445 struct extfile_entry *efe = udf_node->efe; 4446 uid_t nobody_uid; 4447 gid_t nobody_gid; 4448 4449 UDF_LOCK_NODE(udf_node, 0); 4450 4451 /* do the uid/gid translation game */ 4452 nobody_uid = ump->mount_args.nobody_uid; 4453 nobody_gid = ump->mount_args.nobody_gid; 4454 if (uid == nobody_uid) 4455 uid = (uid_t) -1; 4456 if (gid == nobody_gid) 4457 gid = (gid_t) -1; 4458 4459 if (fe) { 4460 fe->uid = udf_rw32((uint32_t) uid); 4461 fe->gid = udf_rw32((uint32_t) gid); 4462 } else { 4463 efe->uid = udf_rw32((uint32_t) uid); 4464 efe->gid = udf_rw32((uint32_t) gid); 4465 } 4466 4467 UDF_UNLOCK_NODE(udf_node, 0); 4468 } 4469 4470 4471 /* --------------------------------------------------------------------- */ 4472 4473 4474 int 4475 udf_dirhash_fill(struct udf_node *dir_node) 4476 { 4477 struct vnode *dvp = dir_node->vnode; 4478 struct dirhash *dirh; 4479 struct file_entry *fe = dir_node->fe; 4480 struct extfile_entry *efe = dir_node->efe; 4481 struct fileid_desc *fid; 4482 struct dirent *dirent; 4483 uint64_t file_size, pre_diroffset, diroffset; 4484 uint32_t lb_size; 4485 int error; 4486 4487 /* make sure we have a dirhash to work on */ 4488 dirh = dir_node->dir_hash; 4489 KASSERT(dirh); 4490 KASSERT(dirh->refcnt > 0); 4491 4492 if (dirh->flags & DIRH_BROKEN) 4493 return EIO; 4494 if (dirh->flags & DIRH_COMPLETE) 4495 return 0; 4496 4497 /* make sure we have a clean dirhash to add to */ 4498 dirhash_purge_entries(dirh); 4499 4500 /* get directory filesize */ 4501 if (fe) { 4502 file_size = udf_rw64(fe->inf_len); 4503 } else { 4504 assert(efe); 4505 file_size = udf_rw64(efe->inf_len); 4506 } 4507 4508 /* allocate temporary space for fid */ 4509 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4510 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4511 4512 /* allocate temporary space for dirent */ 4513 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4514 4515 error = 0; 4516 diroffset = 0; 4517 while (diroffset < file_size) { 4518 /* transfer a new fid/dirent */ 4519 pre_diroffset = diroffset; 4520 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4521 if (error) { 4522 /* TODO what to do? continue but not add? */ 4523 dirh->flags |= DIRH_BROKEN; 4524 dirhash_purge_entries(dirh); 4525 break; 4526 } 4527 4528 if ((fid->file_char & UDF_FILE_CHAR_DEL)) { 4529 /* register deleted extent for reuse */ 4530 dirhash_enter_freed(dirh, pre_diroffset, 4531 udf_fidsize(fid)); 4532 } else { 4533 /* append to the dirhash */ 4534 dirhash_enter(dirh, dirent, pre_diroffset, 4535 udf_fidsize(fid), 0); 4536 } 4537 } 4538 dirh->flags |= DIRH_COMPLETE; 4539 4540 free(fid, M_UDFTEMP); 4541 free(dirent, M_UDFTEMP); 4542 4543 return error; 4544 } 4545 4546 4547 /* --------------------------------------------------------------------- */ 4548 4549 /* 4550 * Directory read and manipulation functions. 4551 * 4552 */ 4553 4554 int 4555 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen, 4556 struct long_ad *icb_loc, int *found) 4557 { 4558 struct udf_node *dir_node = VTOI(vp); 4559 struct dirhash *dirh; 4560 struct dirhash_entry *dirh_ep; 4561 struct fileid_desc *fid; 4562 struct dirent *dirent, *s_dirent; 4563 struct charspec osta_charspec; 4564 uint64_t diroffset; 4565 uint32_t lb_size; 4566 int hit, error; 4567 4568 /* set default return */ 4569 *found = 0; 4570 4571 /* get our dirhash and make sure its read in */ 4572 dirhash_get(&dir_node->dir_hash); 4573 error = udf_dirhash_fill(dir_node); 4574 if (error) { 4575 dirhash_put(dir_node->dir_hash); 4576 return error; 4577 } 4578 dirh = dir_node->dir_hash; 4579 4580 /* allocate temporary space for fid */ 4581 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4582 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4583 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4584 s_dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4585 4586 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n", 4587 namelen, namelen, name)); 4588 4589 /* convert given unix name to canonical unix name */ 4590 udf_osta_charset(&osta_charspec); 4591 unix_to_udf_name((char *) fid->data, &fid->l_fi, 4592 name, namelen, &osta_charspec); 4593 udf_to_unix_name(s_dirent->d_name, NAME_MAX, 4594 (char *) fid->data, fid->l_fi, 4595 &osta_charspec); 4596 s_dirent->d_namlen = strlen(s_dirent->d_name); 4597 4598 /* search our dirhash hits */ 4599 memset(icb_loc, 0, sizeof(*icb_loc)); 4600 dirh_ep = NULL; 4601 for (;;) { 4602 hit = dirhash_lookup(dirh, s_dirent->d_name, s_dirent->d_namlen, &dirh_ep); 4603 /* if no hit, abort the search */ 4604 if (!hit) 4605 break; 4606 4607 /* check this hit */ 4608 diroffset = dirh_ep->offset; 4609 4610 /* transfer a new fid/dirent */ 4611 error = udf_read_fid_stream(vp, &diroffset, fid, dirent); 4612 if (error) 4613 break; 4614 4615 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n", 4616 dirent->d_namlen, dirent->d_namlen, dirent->d_name)); 4617 4618 /* see if its our entry */ 4619 if (strncmp(dirent->d_name, s_dirent->d_name, s_dirent->d_namlen) == 0) { 4620 *found = 1; 4621 *icb_loc = fid->icb; 4622 break; 4623 } 4624 } 4625 free(fid, M_UDFTEMP); 4626 free(dirent, M_UDFTEMP); 4627 free(s_dirent, M_UDFTEMP); 4628 4629 dirhash_put(dir_node->dir_hash); 4630 4631 return error; 4632 } 4633 4634 /* --------------------------------------------------------------------- */ 4635 4636 static int 4637 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type, 4638 struct long_ad *node_icb, struct long_ad *parent_icb, 4639 uint64_t parent_unique_id) 4640 { 4641 struct timespec now; 4642 struct icb_tag *icb; 4643 struct filetimes_extattr_entry *ft_extattr; 4644 uint64_t unique_id; 4645 uint32_t fidsize, lb_num; 4646 uint8_t *bpos; 4647 int crclen, attrlen; 4648 4649 lb_num = udf_rw32(node_icb->loc.lb_num); 4650 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num); 4651 icb = &fe->icbtag; 4652 4653 /* 4654 * Always use strategy type 4 unless on WORM wich we don't support 4655 * (yet). Fill in defaults and set for internal allocation of data. 4656 */ 4657 icb->strat_type = udf_rw16(4); 4658 icb->max_num_entries = udf_rw16(1); 4659 icb->file_type = file_type; /* 8 bit */ 4660 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC); 4661 4662 fe->perm = udf_rw32(0x7fff); /* all is allowed */ 4663 fe->link_cnt = udf_rw16(0); /* explicit setting */ 4664 4665 fe->ckpoint = udf_rw32(1); /* user supplied file version */ 4666 4667 vfs_timestamp(&now); 4668 udf_timespec_to_timestamp(&now, &fe->atime); 4669 udf_timespec_to_timestamp(&now, &fe->attrtime); 4670 udf_timespec_to_timestamp(&now, &fe->mtime); 4671 4672 udf_set_regid(&fe->imp_id, IMPL_NAME); 4673 udf_add_impl_regid(ump, &fe->imp_id); 4674 4675 unique_id = udf_advance_uniqueid(ump); 4676 fe->unique_id = udf_rw64(unique_id); 4677 fe->l_ea = udf_rw32(0); 4678 4679 /* create extended attribute to record our creation time */ 4680 attrlen = UDF_FILETIMES_ATTR_SIZE(1); 4681 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK); 4682 memset(ft_extattr, 0, attrlen); 4683 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO); 4684 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */ 4685 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1)); 4686 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */ 4687 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION; 4688 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]); 4689 4690 udf_extattr_insert_internal(ump, (union dscrptr *) fe, 4691 (struct extattr_entry *) ft_extattr); 4692 free(ft_extattr, M_UDFTEMP); 4693 4694 /* if its a directory, create '..' */ 4695 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea); 4696 fidsize = 0; 4697 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) { 4698 fidsize = udf_create_parentfid(ump, 4699 (struct fileid_desc *) bpos, parent_icb, 4700 parent_unique_id); 4701 } 4702 4703 /* record fidlength information */ 4704 fe->inf_len = udf_rw64(fidsize); 4705 fe->l_ad = udf_rw32(fidsize); 4706 fe->logblks_rec = udf_rw64(0); /* intern */ 4707 4708 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH; 4709 crclen += udf_rw32(fe->l_ea) + fidsize; 4710 fe->tag.desc_crc_len = udf_rw16(crclen); 4711 4712 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe); 4713 4714 return fidsize; 4715 } 4716 4717 /* --------------------------------------------------------------------- */ 4718 4719 static int 4720 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe, 4721 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb, 4722 uint64_t parent_unique_id) 4723 { 4724 struct timespec now; 4725 struct icb_tag *icb; 4726 uint64_t unique_id; 4727 uint32_t fidsize, lb_num; 4728 uint8_t *bpos; 4729 int crclen; 4730 4731 lb_num = udf_rw32(node_icb->loc.lb_num); 4732 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num); 4733 icb = &efe->icbtag; 4734 4735 /* 4736 * Always use strategy type 4 unless on WORM wich we don't support 4737 * (yet). Fill in defaults and set for internal allocation of data. 4738 */ 4739 icb->strat_type = udf_rw16(4); 4740 icb->max_num_entries = udf_rw16(1); 4741 icb->file_type = file_type; /* 8 bit */ 4742 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC); 4743 4744 efe->perm = udf_rw32(0x7fff); /* all is allowed */ 4745 efe->link_cnt = udf_rw16(0); /* explicit setting */ 4746 4747 efe->ckpoint = udf_rw32(1); /* user supplied file version */ 4748 4749 vfs_timestamp(&now); 4750 udf_timespec_to_timestamp(&now, &efe->ctime); 4751 udf_timespec_to_timestamp(&now, &efe->atime); 4752 udf_timespec_to_timestamp(&now, &efe->attrtime); 4753 udf_timespec_to_timestamp(&now, &efe->mtime); 4754 4755 udf_set_regid(&efe->imp_id, IMPL_NAME); 4756 udf_add_impl_regid(ump, &efe->imp_id); 4757 4758 unique_id = udf_advance_uniqueid(ump); 4759 efe->unique_id = udf_rw64(unique_id); 4760 efe->l_ea = udf_rw32(0); 4761 4762 /* if its a directory, create '..' */ 4763 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea); 4764 fidsize = 0; 4765 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) { 4766 fidsize = udf_create_parentfid(ump, 4767 (struct fileid_desc *) bpos, parent_icb, 4768 parent_unique_id); 4769 } 4770 4771 /* record fidlength information */ 4772 efe->obj_size = udf_rw64(fidsize); 4773 efe->inf_len = udf_rw64(fidsize); 4774 efe->l_ad = udf_rw32(fidsize); 4775 efe->logblks_rec = udf_rw64(0); /* intern */ 4776 4777 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH; 4778 crclen += udf_rw32(efe->l_ea) + fidsize; 4779 efe->tag.desc_crc_len = udf_rw16(crclen); 4780 4781 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe); 4782 4783 return fidsize; 4784 } 4785 4786 /* --------------------------------------------------------------------- */ 4787 4788 int 4789 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node, 4790 struct udf_node *udf_node, struct componentname *cnp) 4791 { 4792 struct vnode *dvp = dir_node->vnode; 4793 struct dirhash *dirh; 4794 struct dirhash_entry *dirh_ep; 4795 struct file_entry *fe = dir_node->fe; 4796 struct fileid_desc *fid; 4797 struct dirent *dirent, *s_dirent; 4798 struct charspec osta_charspec; 4799 uint64_t diroffset; 4800 uint32_t lb_size, fidsize; 4801 int found, error; 4802 int hit, refcnt; 4803 4804 /* get our dirhash and make sure its read in */ 4805 dirhash_get(&dir_node->dir_hash); 4806 error = udf_dirhash_fill(dir_node); 4807 if (error) { 4808 dirhash_put(dir_node->dir_hash); 4809 return error; 4810 } 4811 dirh = dir_node->dir_hash; 4812 4813 /* get directory filesize */ 4814 if (!fe) { 4815 assert(dir_node->efe); 4816 } 4817 4818 /* allocate temporary space for fid and dirents */ 4819 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4820 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4821 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4822 s_dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4823 4824 /* convert given unix name to canonical unix name */ 4825 udf_osta_charset(&osta_charspec); 4826 unix_to_udf_name((char *) fid->data, &fid->l_fi, 4827 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); 4828 udf_to_unix_name(s_dirent->d_name, NAME_MAX, 4829 (char *) fid->data, fid->l_fi, 4830 &osta_charspec); 4831 s_dirent->d_namlen = strlen(s_dirent->d_name); 4832 4833 /* search our dirhash hits */ 4834 found = 0; 4835 dirh_ep = NULL; 4836 for (;;) { 4837 hit = dirhash_lookup(dirh, s_dirent->d_name, s_dirent->d_namlen, &dirh_ep); 4838 /* if no hit, abort the search */ 4839 if (!hit) 4840 break; 4841 4842 /* check this hit */ 4843 diroffset = dirh_ep->offset; 4844 4845 /* transfer a new fid/dirent */ 4846 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4847 if (error) 4848 break; 4849 4850 /* see if its our entry */ 4851 KASSERT(dirent->d_namlen == s_dirent->d_namlen); 4852 if (strncmp(dirent->d_name, s_dirent->d_name, s_dirent->d_namlen) == 0) { 4853 found = 1; 4854 break; 4855 } 4856 } 4857 4858 if (!found) 4859 error = ENOENT; 4860 if (error) 4861 goto error_out; 4862 4863 /* mark deleted */ 4864 fid->file_char |= UDF_FILE_CHAR_DEL; 4865 #ifdef UDF_COMPLETE_DELETE 4866 memset(&fid->icb, 0, sizeof(fid->icb)); 4867 #endif 4868 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 4869 4870 /* get size of fid and compensate for the read_fid_stream advance */ 4871 fidsize = udf_fidsize(fid); 4872 diroffset -= fidsize; 4873 4874 /* write out */ 4875 error = vn_rdwr(UIO_WRITE, dir_node->vnode, 4876 fid, fidsize, diroffset, 4877 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 4878 FSCRED, NULL, NULL); 4879 if (error) 4880 goto error_out; 4881 4882 /* get reference count of attached node */ 4883 if (udf_node->fe) { 4884 refcnt = udf_rw16(udf_node->fe->link_cnt); 4885 } else { 4886 KASSERT(udf_node->efe); 4887 refcnt = udf_rw16(udf_node->efe->link_cnt); 4888 } 4889 #ifdef UDF_COMPLETE_DELETE 4890 /* substract reference counter in attached node */ 4891 refcnt -= 1; 4892 if (udf_node->fe) { 4893 udf_node->fe->link_cnt = udf_rw16(refcnt); 4894 } else { 4895 udf_node->efe->link_cnt = udf_rw16(refcnt); 4896 } 4897 4898 /* prevent writeout when refcnt == 0 */ 4899 if (refcnt == 0) 4900 udf_node->i_flags |= IN_DELETED; 4901 4902 if (fid->file_char & UDF_FILE_CHAR_DIR) { 4903 int drefcnt; 4904 4905 /* substract reference counter in directory node */ 4906 /* note subtract 2 (?) for its was also backreferenced */ 4907 if (dir_node->fe) { 4908 drefcnt = udf_rw16(dir_node->fe->link_cnt); 4909 drefcnt -= 1; 4910 dir_node->fe->link_cnt = udf_rw16(drefcnt); 4911 } else { 4912 KASSERT(dir_node->efe); 4913 drefcnt = udf_rw16(dir_node->efe->link_cnt); 4914 drefcnt -= 1; 4915 dir_node->efe->link_cnt = udf_rw16(drefcnt); 4916 } 4917 } 4918 4919 udf_node->i_flags |= IN_MODIFIED; 4920 dir_node->i_flags |= IN_MODIFIED; 4921 #endif 4922 /* if it is/was a hardlink adjust the file count */ 4923 if (refcnt > 0) 4924 udf_adjust_filecount(udf_node, -1); 4925 4926 /* remove from the dirhash */ 4927 dirhash_remove(dirh, dirent, diroffset, 4928 udf_fidsize(fid)); 4929 4930 error_out: 4931 free(fid, M_UDFTEMP); 4932 free(dirent, M_UDFTEMP); 4933 free(s_dirent, M_UDFTEMP); 4934 4935 dirhash_put(dir_node->dir_hash); 4936 4937 return error; 4938 } 4939 4940 /* --------------------------------------------------------------------- */ 4941 4942 int 4943 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node, 4944 struct udf_node *new_parent_node) 4945 { 4946 struct vnode *dvp = dir_node->vnode; 4947 struct dirhash *dirh; 4948 struct dirhash_entry *dirh_ep; 4949 struct file_entry *fe; 4950 struct extfile_entry *efe; 4951 struct fileid_desc *fid; 4952 struct dirent *dirent; 4953 uint64_t diroffset; 4954 uint64_t new_parent_unique_id; 4955 uint32_t lb_size, fidsize; 4956 int found, error; 4957 char const *name = ".."; 4958 int namelen = 2; 4959 int hit; 4960 4961 /* get our dirhash and make sure its read in */ 4962 dirhash_get(&dir_node->dir_hash); 4963 error = udf_dirhash_fill(dir_node); 4964 if (error) { 4965 dirhash_put(dir_node->dir_hash); 4966 return error; 4967 } 4968 dirh = dir_node->dir_hash; 4969 4970 /* get new parent's unique ID */ 4971 fe = new_parent_node->fe; 4972 efe = new_parent_node->efe; 4973 if (fe) { 4974 new_parent_unique_id = udf_rw64(fe->unique_id); 4975 } else { 4976 assert(efe); 4977 new_parent_unique_id = udf_rw64(efe->unique_id); 4978 } 4979 4980 /* get directory filesize */ 4981 fe = dir_node->fe; 4982 efe = dir_node->efe; 4983 if (!fe) { 4984 assert(efe); 4985 } 4986 4987 /* allocate temporary space for fid */ 4988 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4989 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4990 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4991 4992 /* 4993 * NOTE the standard does not dictate the FID entry '..' should be 4994 * first, though in practice it will most likely be. 4995 */ 4996 4997 /* search our dirhash hits */ 4998 found = 0; 4999 dirh_ep = NULL; 5000 for (;;) { 5001 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep); 5002 /* if no hit, abort the search */ 5003 if (!hit) 5004 break; 5005 5006 /* check this hit */ 5007 diroffset = dirh_ep->offset; 5008 5009 /* transfer a new fid/dirent */ 5010 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 5011 if (error) 5012 break; 5013 5014 /* see if its our entry */ 5015 KASSERT(dirent->d_namlen == namelen); 5016 if (strncmp(dirent->d_name, name, namelen) == 0) { 5017 found = 1; 5018 break; 5019 } 5020 } 5021 5022 if (!found) 5023 error = ENOENT; 5024 if (error) 5025 goto error_out; 5026 5027 /* update our ICB to the new parent, hit of lower 32 bits of uniqueid */ 5028 fid->icb = new_parent_node->write_loc; 5029 fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id); 5030 5031 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 5032 5033 /* get size of fid and compensate for the read_fid_stream advance */ 5034 fidsize = udf_fidsize(fid); 5035 diroffset -= fidsize; 5036 5037 /* write out */ 5038 error = vn_rdwr(UIO_WRITE, dir_node->vnode, 5039 fid, fidsize, diroffset, 5040 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 5041 FSCRED, NULL, NULL); 5042 5043 /* nothing to be done in the dirhash */ 5044 5045 error_out: 5046 free(fid, M_UDFTEMP); 5047 free(dirent, M_UDFTEMP); 5048 5049 dirhash_put(dir_node->dir_hash); 5050 5051 return error; 5052 } 5053 5054 /* --------------------------------------------------------------------- */ 5055 5056 /* 5057 * We are not allowed to split the fid tag itself over an logical block so 5058 * check the space remaining in the logical block. 5059 * 5060 * We try to select the smallest candidate for recycling or when none is 5061 * found, append a new one at the end of the directory. 5062 */ 5063 5064 int 5065 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node, 5066 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp) 5067 { 5068 struct vnode *dvp = dir_node->vnode; 5069 struct dirhash *dirh; 5070 struct dirhash_entry *dirh_ep; 5071 struct fileid_desc *fid; 5072 struct icb_tag *icbtag; 5073 struct charspec osta_charspec; 5074 struct dirent dirent; 5075 uint64_t unique_id, dir_size; 5076 uint64_t fid_pos, end_fid_pos, chosen_fid_pos; 5077 uint32_t chosen_size, chosen_size_diff; 5078 int lb_size, lb_rest, fidsize, this_fidsize, size_diff; 5079 int file_char, refcnt, icbflags, addr_type, hit, error; 5080 5081 /* get our dirhash and make sure its read in */ 5082 dirhash_get(&dir_node->dir_hash); 5083 error = udf_dirhash_fill(dir_node); 5084 if (error) { 5085 dirhash_put(dir_node->dir_hash); 5086 return error; 5087 } 5088 dirh = dir_node->dir_hash; 5089 5090 /* get info */ 5091 lb_size = udf_rw32(ump->logical_vol->lb_size); 5092 udf_osta_charset(&osta_charspec); 5093 5094 if (dir_node->fe) { 5095 dir_size = udf_rw64(dir_node->fe->inf_len); 5096 icbtag = &dir_node->fe->icbtag; 5097 } else { 5098 dir_size = udf_rw64(dir_node->efe->inf_len); 5099 icbtag = &dir_node->efe->icbtag; 5100 } 5101 5102 icbflags = udf_rw16(icbtag->flags); 5103 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 5104 5105 if (udf_node->fe) { 5106 unique_id = udf_rw64(udf_node->fe->unique_id); 5107 refcnt = udf_rw16(udf_node->fe->link_cnt); 5108 } else { 5109 unique_id = udf_rw64(udf_node->efe->unique_id); 5110 refcnt = udf_rw16(udf_node->efe->link_cnt); 5111 } 5112 5113 if (refcnt > 0) { 5114 unique_id = udf_advance_uniqueid(ump); 5115 udf_adjust_filecount(udf_node, 1); 5116 } 5117 5118 /* determine file characteristics */ 5119 file_char = 0; /* visible non deleted file and not stream metadata */ 5120 if (vap->va_type == VDIR) 5121 file_char = UDF_FILE_CHAR_DIR; 5122 5123 /* malloc scrap buffer */ 5124 fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO); 5125 5126 /* calculate _minimum_ fid size */ 5127 unix_to_udf_name((char *) fid->data, &fid->l_fi, 5128 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); 5129 fidsize = UDF_FID_SIZE + fid->l_fi; 5130 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */ 5131 5132 /* find position that will fit the FID */ 5133 chosen_fid_pos = dir_size; 5134 chosen_size = 0; 5135 chosen_size_diff = UINT_MAX; 5136 5137 /* shut up gcc */ 5138 dirent.d_namlen = 0; 5139 5140 /* search our dirhash hits */ 5141 error = 0; 5142 dirh_ep = NULL; 5143 for (;;) { 5144 hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep); 5145 /* if no hit, abort the search */ 5146 if (!hit) 5147 break; 5148 5149 /* check this hit for size */ 5150 this_fidsize = dirh_ep->entry_size; 5151 5152 /* check this hit */ 5153 fid_pos = dirh_ep->offset; 5154 end_fid_pos = fid_pos + this_fidsize; 5155 size_diff = this_fidsize - fidsize; 5156 lb_rest = lb_size - (end_fid_pos % lb_size); 5157 5158 #ifndef UDF_COMPLETE_DELETE 5159 /* transfer a new fid/dirent */ 5160 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent); 5161 if (error) 5162 goto error_out; 5163 5164 /* only reuse entries that are wiped */ 5165 /* check if the len + loc are marked zero */ 5166 if (udf_rw32(fid->icb.len) != 0) 5167 continue; 5168 if (udf_rw32(fid->icb.loc.lb_num) != 0) 5169 continue; 5170 if (udf_rw16(fid->icb.loc.part_num) != 0) 5171 continue; 5172 #endif /* UDF_COMPLETE_DELETE */ 5173 5174 /* select if not splitting the tag and its smaller */ 5175 if ((size_diff >= 0) && 5176 (size_diff < chosen_size_diff) && 5177 (lb_rest >= sizeof(struct desc_tag))) 5178 { 5179 /* UDF 2.3.4.2+3 specifies rules for iu size */ 5180 if ((size_diff == 0) || (size_diff >= 32)) { 5181 chosen_fid_pos = fid_pos; 5182 chosen_size = this_fidsize; 5183 chosen_size_diff = size_diff; 5184 } 5185 } 5186 } 5187 5188 5189 /* extend directory if no other candidate found */ 5190 if (chosen_size == 0) { 5191 chosen_fid_pos = dir_size; 5192 chosen_size = fidsize; 5193 chosen_size_diff = 0; 5194 5195 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */ 5196 if (addr_type == UDF_ICB_INTERN_ALLOC) { 5197 /* pre-grow directory to see if we're to switch */ 5198 udf_grow_node(dir_node, dir_size + chosen_size); 5199 5200 icbflags = udf_rw16(icbtag->flags); 5201 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 5202 } 5203 5204 /* make sure the next fid desc_tag won't be splitted */ 5205 if (addr_type != UDF_ICB_INTERN_ALLOC) { 5206 end_fid_pos = chosen_fid_pos + chosen_size; 5207 lb_rest = lb_size - (end_fid_pos % lb_size); 5208 5209 /* pad with implementation use regid if needed */ 5210 if (lb_rest < sizeof(struct desc_tag)) 5211 chosen_size += 32; 5212 } 5213 } 5214 chosen_size_diff = chosen_size - fidsize; 5215 5216 /* populate the FID */ 5217 memset(fid, 0, lb_size); 5218 udf_inittag(ump, &fid->tag, TAGID_FID, 0); 5219 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */ 5220 fid->file_char = file_char; 5221 fid->icb = udf_node->loc; 5222 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id); 5223 fid->l_iu = udf_rw16(0); 5224 5225 if (chosen_size > fidsize) { 5226 /* insert implementation-use regid to space it correctly */ 5227 fid->l_iu = udf_rw16(chosen_size_diff); 5228 5229 /* set implementation use */ 5230 udf_set_regid((struct regid *) fid->data, IMPL_NAME); 5231 udf_add_impl_regid(ump, (struct regid *) fid->data); 5232 } 5233 5234 /* fill in name */ 5235 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu), 5236 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); 5237 5238 fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH); 5239 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 5240 5241 /* writeout FID/update parent directory */ 5242 error = vn_rdwr(UIO_WRITE, dvp, 5243 fid, chosen_size, chosen_fid_pos, 5244 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 5245 FSCRED, NULL, NULL); 5246 5247 if (error) 5248 goto error_out; 5249 5250 /* add reference counter in attached node */ 5251 if (udf_node->fe) { 5252 refcnt = udf_rw16(udf_node->fe->link_cnt); 5253 udf_node->fe->link_cnt = udf_rw16(refcnt+1); 5254 } else { 5255 KASSERT(udf_node->efe); 5256 refcnt = udf_rw16(udf_node->efe->link_cnt); 5257 udf_node->efe->link_cnt = udf_rw16(refcnt+1); 5258 } 5259 5260 /* mark not deleted if it was... just in case, but do warn */ 5261 if (udf_node->i_flags & IN_DELETED) { 5262 printf("udf: warning, marking a file undeleted\n"); 5263 udf_node->i_flags &= ~IN_DELETED; 5264 } 5265 5266 if (file_char & UDF_FILE_CHAR_DIR) { 5267 /* add reference counter in directory node for '..' */ 5268 if (dir_node->fe) { 5269 refcnt = udf_rw16(dir_node->fe->link_cnt); 5270 refcnt++; 5271 dir_node->fe->link_cnt = udf_rw16(refcnt); 5272 } else { 5273 KASSERT(dir_node->efe); 5274 refcnt = udf_rw16(dir_node->efe->link_cnt); 5275 refcnt++; 5276 dir_node->efe->link_cnt = udf_rw16(refcnt); 5277 } 5278 } 5279 5280 /* append to the dirhash */ 5281 /* NOTE do not use dirent anymore or it won't match later! */ 5282 udf_to_unix_name(dirent.d_name, NAME_MAX, 5283 (char *) fid->data + udf_rw16(fid->l_iu), fid->l_fi, &osta_charspec); 5284 dirent.d_namlen = strlen(dirent.d_name); 5285 dirhash_enter(dirh, &dirent, chosen_fid_pos, 5286 udf_fidsize(fid), 1); 5287 5288 /* note updates */ 5289 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */ 5290 /* VN_KNOTE(udf_node, ...) */ 5291 udf_update(udf_node->vnode, NULL, NULL, NULL, 0); 5292 5293 error_out: 5294 free(fid, M_TEMP); 5295 5296 dirhash_put(dir_node->dir_hash); 5297 5298 return error; 5299 } 5300 5301 /* --------------------------------------------------------------------- */ 5302 5303 /* 5304 * Each node can have an attached streamdir node though not recursively. These 5305 * are otherwise known as named substreams/named extended attributes that have 5306 * no size limitations. 5307 * 5308 * `Normal' extended attributes are indicated with a number and are recorded 5309 * in either the fe/efe descriptor itself for small descriptors or recorded in 5310 * the attached extended attribute file. Since these spaces can get 5311 * fragmented, care ought to be taken. 5312 * 5313 * Since the size of the space reserved for allocation descriptors is limited, 5314 * there is a mechanim provided for extending this space; this is done by a 5315 * special extent to allow schrinking of the allocations without breaking the 5316 * linkage to the allocation extent descriptor. 5317 */ 5318 5319 int 5320 udf_loadvnode(struct mount *mp, struct vnode *vp, 5321 const void *key, size_t key_len, const void **new_key) 5322 { 5323 union dscrptr *dscr; 5324 struct udf_mount *ump; 5325 struct udf_node *udf_node; 5326 struct long_ad node_icb_loc, icb_loc, next_icb_loc, last_fe_icb_loc; 5327 uint64_t file_size; 5328 uint32_t lb_size, sector, dummy; 5329 int udf_file_type, dscr_type, strat, strat4096, needs_indirect; 5330 int slot, eof, error; 5331 int num_indir_followed = 0; 5332 5333 DPRINTF(NODE, ("udf_loadvnode called\n")); 5334 udf_node = NULL; 5335 ump = VFSTOUDF(mp); 5336 5337 KASSERT(key_len == sizeof(node_icb_loc.loc)); 5338 memset(&node_icb_loc, 0, sizeof(node_icb_loc)); 5339 node_icb_loc.len = ump->logical_vol->lb_size; 5340 memcpy(&node_icb_loc.loc, key, key_len); 5341 5342 /* garbage check: translate udf_node_icb_loc to sectornr */ 5343 error = udf_translate_vtop(ump, &node_icb_loc, §or, &dummy); 5344 if (error) { 5345 DPRINTF(NODE, ("\tcan't translate icb address!\n")); 5346 /* no use, this will fail anyway */ 5347 return EINVAL; 5348 } 5349 5350 /* build udf_node (do initialise!) */ 5351 udf_node = pool_get(&udf_node_pool, PR_WAITOK); 5352 memset(udf_node, 0, sizeof(struct udf_node)); 5353 5354 vp->v_tag = VT_UDF; 5355 vp->v_op = udf_vnodeop_p; 5356 vp->v_data = udf_node; 5357 5358 /* initialise crosslinks, note location of fe/efe for hashing */ 5359 udf_node->ump = ump; 5360 udf_node->vnode = vp; 5361 udf_node->loc = node_icb_loc; 5362 udf_node->lockf = 0; 5363 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE); 5364 cv_init(&udf_node->node_lock, "udf_nlk"); 5365 genfs_node_init(vp, &udf_genfsops); /* inititise genfs */ 5366 udf_node->outstanding_bufs = 0; 5367 udf_node->outstanding_nodedscr = 0; 5368 udf_node->uncommitted_lbs = 0; 5369 5370 /* check if we're fetching the root */ 5371 if (ump->fileset_desc) 5372 if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb, 5373 sizeof(struct long_ad)) == 0) 5374 vp->v_vflag |= VV_ROOT; 5375 5376 icb_loc = node_icb_loc; 5377 needs_indirect = 0; 5378 strat4096 = 0; 5379 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN; 5380 file_size = 0; 5381 lb_size = udf_rw32(ump->logical_vol->lb_size); 5382 5383 DPRINTF(NODE, ("\tstart reading descriptors\n")); 5384 do { 5385 /* try to read in fe/efe */ 5386 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr); 5387 5388 /* blank sector marks end of sequence, check this */ 5389 if ((dscr == NULL) && (!strat4096)) 5390 error = ENOENT; 5391 5392 /* break if read error or blank sector */ 5393 if (error || (dscr == NULL)) 5394 break; 5395 5396 /* process descriptor based on the descriptor type */ 5397 dscr_type = udf_rw16(dscr->tag.id); 5398 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type)); 5399 5400 /* if dealing with an indirect entry, follow the link */ 5401 if (dscr_type == TAGID_INDIRECTENTRY) { 5402 needs_indirect = 0; 5403 next_icb_loc = dscr->inde.indirect_icb; 5404 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5405 icb_loc = next_icb_loc; 5406 if (++num_indir_followed > UDF_MAX_INDIRS_FOLLOW) { 5407 error = EMLINK; 5408 break; 5409 } 5410 continue; 5411 } 5412 5413 /* only file entries and extended file entries allowed here */ 5414 if ((dscr_type != TAGID_FENTRY) && 5415 (dscr_type != TAGID_EXTFENTRY)) { 5416 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5417 error = ENOENT; 5418 break; 5419 } 5420 5421 KASSERT(udf_tagsize(dscr, lb_size) == lb_size); 5422 5423 /* choose this one */ 5424 last_fe_icb_loc = icb_loc; 5425 5426 /* record and process/update (ext)fentry */ 5427 if (dscr_type == TAGID_FENTRY) { 5428 if (udf_node->fe) 5429 udf_free_logvol_dscr(ump, &last_fe_icb_loc, 5430 udf_node->fe); 5431 udf_node->fe = &dscr->fe; 5432 strat = udf_rw16(udf_node->fe->icbtag.strat_type); 5433 udf_file_type = udf_node->fe->icbtag.file_type; 5434 file_size = udf_rw64(udf_node->fe->inf_len); 5435 } else { 5436 if (udf_node->efe) 5437 udf_free_logvol_dscr(ump, &last_fe_icb_loc, 5438 udf_node->efe); 5439 udf_node->efe = &dscr->efe; 5440 strat = udf_rw16(udf_node->efe->icbtag.strat_type); 5441 udf_file_type = udf_node->efe->icbtag.file_type; 5442 file_size = udf_rw64(udf_node->efe->inf_len); 5443 } 5444 5445 /* check recording strategy (structure) */ 5446 5447 /* 5448 * Strategy 4096 is a daisy linked chain terminating with an 5449 * unrecorded sector or a TERM descriptor. The next 5450 * descriptor is to be found in the sector that follows the 5451 * current sector. 5452 */ 5453 if (strat == 4096) { 5454 strat4096 = 1; 5455 needs_indirect = 1; 5456 5457 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1; 5458 } 5459 5460 /* 5461 * Strategy 4 is the normal strategy and terminates, but if 5462 * we're in strategy 4096, we can't have strategy 4 mixed in 5463 */ 5464 5465 if (strat == 4) { 5466 if (strat4096) { 5467 error = EINVAL; 5468 break; 5469 } 5470 break; /* done */ 5471 } 5472 } while (!error); 5473 5474 /* first round of cleanup code */ 5475 if (error) { 5476 DPRINTF(NODE, ("\tnode fe/efe failed!\n")); 5477 /* recycle udf_node */ 5478 udf_dispose_node(udf_node); 5479 5480 return EINVAL; /* error code ok? */ 5481 } 5482 DPRINTF(NODE, ("\tnode fe/efe read in fine\n")); 5483 5484 /* assert no references to dscr anymore beyong this point */ 5485 assert((udf_node->fe) || (udf_node->efe)); 5486 dscr = NULL; 5487 5488 /* 5489 * Remember where to record an updated version of the descriptor. If 5490 * there is a sequence of indirect entries, icb_loc will have been 5491 * updated. Its the write disipline to allocate new space and to make 5492 * sure the chain is maintained. 5493 * 5494 * `needs_indirect' flags if the next location is to be filled with 5495 * with an indirect entry. 5496 */ 5497 udf_node->write_loc = icb_loc; 5498 udf_node->needs_indirect = needs_indirect; 5499 5500 /* 5501 * Go trough all allocations extents of this descriptor and when 5502 * encountering a redirect read in the allocation extension. These are 5503 * daisy-chained. 5504 */ 5505 UDF_LOCK_NODE(udf_node, 0); 5506 udf_node->num_extensions = 0; 5507 5508 error = 0; 5509 slot = 0; 5510 for (;;) { 5511 udf_get_adslot(udf_node, slot, &icb_loc, &eof); 5512 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, " 5513 "lb_num = %d, part = %d\n", slot, eof, 5514 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)), 5515 UDF_EXT_LEN(udf_rw32(icb_loc.len)), 5516 udf_rw32(icb_loc.loc.lb_num), 5517 udf_rw16(icb_loc.loc.part_num))); 5518 if (eof) 5519 break; 5520 slot++; 5521 5522 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT) 5523 continue; 5524 5525 DPRINTF(NODE, ("\tgot redirect extent\n")); 5526 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) { 5527 DPRINTF(ALLOC, ("udf_get_node: implementation limit, " 5528 "too many allocation extensions on " 5529 "udf_node\n")); 5530 error = EINVAL; 5531 break; 5532 } 5533 5534 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */ 5535 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) { 5536 DPRINTF(ALLOC, ("udf_get_node: bad allocation " 5537 "extension size in udf_node\n")); 5538 error = EINVAL; 5539 break; 5540 } 5541 5542 DPRINTF(NODE, ("read allocation extent at lb_num %d\n", 5543 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num)))); 5544 /* load in allocation extent */ 5545 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr); 5546 if (error || (dscr == NULL)) 5547 break; 5548 5549 /* process read-in descriptor */ 5550 dscr_type = udf_rw16(dscr->tag.id); 5551 5552 if (dscr_type != TAGID_ALLOCEXTENT) { 5553 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5554 error = ENOENT; 5555 break; 5556 } 5557 5558 DPRINTF(NODE, ("\trecording redirect extent\n")); 5559 udf_node->ext[udf_node->num_extensions] = &dscr->aee; 5560 udf_node->ext_loc[udf_node->num_extensions] = icb_loc; 5561 5562 udf_node->num_extensions++; 5563 5564 } /* while */ 5565 UDF_UNLOCK_NODE(udf_node, 0); 5566 5567 /* second round of cleanup code */ 5568 if (error) { 5569 /* recycle udf_node */ 5570 udf_dispose_node(udf_node); 5571 5572 return EINVAL; /* error code ok? */ 5573 } 5574 5575 DPRINTF(NODE, ("\tnode read in fine\n")); 5576 5577 /* 5578 * Translate UDF filetypes into vnode types. 5579 * 5580 * Systemfiles like the meta main and mirror files are not treated as 5581 * normal files, so we type them as having no type. UDF dictates that 5582 * they are not allowed to be visible. 5583 */ 5584 5585 switch (udf_file_type) { 5586 case UDF_ICB_FILETYPE_DIRECTORY : 5587 case UDF_ICB_FILETYPE_STREAMDIR : 5588 vp->v_type = VDIR; 5589 break; 5590 case UDF_ICB_FILETYPE_BLOCKDEVICE : 5591 vp->v_type = VBLK; 5592 break; 5593 case UDF_ICB_FILETYPE_CHARDEVICE : 5594 vp->v_type = VCHR; 5595 break; 5596 case UDF_ICB_FILETYPE_SOCKET : 5597 vp->v_type = VSOCK; 5598 break; 5599 case UDF_ICB_FILETYPE_FIFO : 5600 vp->v_type = VFIFO; 5601 break; 5602 case UDF_ICB_FILETYPE_SYMLINK : 5603 vp->v_type = VLNK; 5604 break; 5605 case UDF_ICB_FILETYPE_VAT : 5606 case UDF_ICB_FILETYPE_META_MAIN : 5607 case UDF_ICB_FILETYPE_META_MIRROR : 5608 vp->v_type = VNON; 5609 break; 5610 case UDF_ICB_FILETYPE_RANDOMACCESS : 5611 case UDF_ICB_FILETYPE_REALTIME : 5612 vp->v_type = VREG; 5613 break; 5614 default: 5615 /* YIKES, something else */ 5616 vp->v_type = VNON; 5617 } 5618 5619 /* TODO specfs, fifofs etc etc. vnops setting */ 5620 5621 /* don't forget to set vnode's v_size */ 5622 uvm_vnp_setsize(vp, file_size); 5623 5624 /* TODO ext attr and streamdir udf_nodes */ 5625 5626 *new_key = &udf_node->loc.loc; 5627 5628 return 0; 5629 } 5630 5631 int 5632 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc, 5633 struct udf_node **udf_noderes, int lktype) 5634 { 5635 int error; 5636 struct vnode *vp; 5637 5638 *udf_noderes = NULL; 5639 5640 error = vcache_get(ump->vfs_mountp, &node_icb_loc->loc, 5641 sizeof(node_icb_loc->loc), &vp); 5642 if (error) 5643 return error; 5644 error = vn_lock(vp, LK_EXCLUSIVE); 5645 if (error) { 5646 vrele(vp); 5647 return error; 5648 } 5649 *udf_noderes = VTOI(vp); 5650 return 0; 5651 } 5652 5653 /* --------------------------------------------------------------------- */ 5654 5655 int 5656 udf_writeout_node(struct udf_node *udf_node, int waitfor) 5657 { 5658 union dscrptr *dscr; 5659 struct long_ad *loc; 5660 int extnr, error; 5661 5662 DPRINTF(NODE, ("udf_writeout_node called\n")); 5663 5664 KASSERT(udf_node->outstanding_bufs == 0); 5665 KASSERT(udf_node->outstanding_nodedscr == 0); 5666 5667 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd)); 5668 5669 if (udf_node->i_flags & IN_DELETED) { 5670 DPRINTF(NODE, ("\tnode deleted; not writing out\n")); 5671 udf_cleanup_reservation(udf_node); 5672 return 0; 5673 } 5674 5675 /* lock node; unlocked in callback */ 5676 UDF_LOCK_NODE(udf_node, 0); 5677 5678 /* remove pending reservations, we're written out */ 5679 udf_cleanup_reservation(udf_node); 5680 5681 /* at least one descriptor writeout */ 5682 udf_node->outstanding_nodedscr = 1; 5683 5684 /* we're going to write out the descriptor so clear the flags */ 5685 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED); 5686 5687 /* if we were rebuild, write out the allocation extents */ 5688 if (udf_node->i_flags & IN_NODE_REBUILD) { 5689 /* mark outstanding node descriptors and issue them */ 5690 udf_node->outstanding_nodedscr += udf_node->num_extensions; 5691 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) { 5692 loc = &udf_node->ext_loc[extnr]; 5693 dscr = (union dscrptr *) udf_node->ext[extnr]; 5694 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0); 5695 if (error) 5696 return error; 5697 } 5698 /* mark allocation extents written out */ 5699 udf_node->i_flags &= ~(IN_NODE_REBUILD); 5700 } 5701 5702 if (udf_node->fe) { 5703 KASSERT(udf_node->efe == NULL); 5704 dscr = (union dscrptr *) udf_node->fe; 5705 } else { 5706 KASSERT(udf_node->efe); 5707 KASSERT(udf_node->fe == NULL); 5708 dscr = (union dscrptr *) udf_node->efe; 5709 } 5710 KASSERT(dscr); 5711 5712 loc = &udf_node->write_loc; 5713 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor); 5714 5715 return error; 5716 } 5717 5718 /* --------------------------------------------------------------------- */ 5719 5720 int 5721 udf_dispose_node(struct udf_node *udf_node) 5722 { 5723 struct vnode *vp; 5724 int extnr; 5725 5726 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node)); 5727 if (!udf_node) { 5728 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n")); 5729 return 0; 5730 } 5731 5732 vp = udf_node->vnode; 5733 #ifdef DIAGNOSTIC 5734 if (vp->v_numoutput) 5735 panic("disposing UDF node with pending I/O's, udf_node = %p, " 5736 "v_numoutput = %d", udf_node, vp->v_numoutput); 5737 #endif 5738 5739 udf_cleanup_reservation(udf_node); 5740 5741 /* TODO extended attributes and streamdir */ 5742 5743 /* remove dirhash if present */ 5744 dirhash_purge(&udf_node->dir_hash); 5745 5746 /* destroy our lock */ 5747 mutex_destroy(&udf_node->node_mutex); 5748 cv_destroy(&udf_node->node_lock); 5749 5750 /* dissociate our udf_node from the vnode */ 5751 genfs_node_destroy(udf_node->vnode); 5752 mutex_enter(vp->v_interlock); 5753 vp->v_data = NULL; 5754 mutex_exit(vp->v_interlock); 5755 5756 /* free associated memory and the node itself */ 5757 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) { 5758 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr], 5759 udf_node->ext[extnr]); 5760 udf_node->ext[extnr] = (void *) 0xdeadcccc; 5761 } 5762 5763 if (udf_node->fe) 5764 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc, 5765 udf_node->fe); 5766 if (udf_node->efe) 5767 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc, 5768 udf_node->efe); 5769 5770 udf_node->fe = (void *) 0xdeadaaaa; 5771 udf_node->efe = (void *) 0xdeadbbbb; 5772 udf_node->ump = (void *) 0xdeadbeef; 5773 pool_put(&udf_node_pool, udf_node); 5774 5775 return 0; 5776 } 5777 5778 5779 5780 /* 5781 * create a new node using the specified dvp, vap and cnp. 5782 * This allows special files to be created. Use with care. 5783 */ 5784 5785 int 5786 udf_newvnode(struct mount *mp, struct vnode *dvp, struct vnode *vp, 5787 struct vattr *vap, kauth_cred_t cred, void *extra, 5788 size_t *key_len, const void **new_key) 5789 { 5790 union dscrptr *dscr; 5791 struct udf_node *dir_node = VTOI(dvp); 5792 struct udf_node *udf_node; 5793 struct udf_mount *ump = dir_node->ump; 5794 struct long_ad node_icb_loc; 5795 uint64_t parent_unique_id; 5796 uint64_t lmapping; 5797 uint32_t lb_size, lb_num; 5798 uint16_t vpart_num; 5799 uid_t uid; 5800 gid_t gid, parent_gid; 5801 int (**vnodeops)(void *); 5802 int udf_file_type, fid_size, error; 5803 5804 vnodeops = udf_vnodeop_p; 5805 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS; 5806 5807 switch (vap->va_type) { 5808 case VREG : 5809 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS; 5810 break; 5811 case VDIR : 5812 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY; 5813 break; 5814 case VLNK : 5815 udf_file_type = UDF_ICB_FILETYPE_SYMLINK; 5816 break; 5817 case VBLK : 5818 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE; 5819 /* specfs */ 5820 return ENOTSUP; 5821 break; 5822 case VCHR : 5823 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE; 5824 /* specfs */ 5825 return ENOTSUP; 5826 break; 5827 case VFIFO : 5828 udf_file_type = UDF_ICB_FILETYPE_FIFO; 5829 /* fifofs */ 5830 return ENOTSUP; 5831 break; 5832 case VSOCK : 5833 udf_file_type = UDF_ICB_FILETYPE_SOCKET; 5834 return ENOTSUP; 5835 break; 5836 case VNON : 5837 case VBAD : 5838 default : 5839 /* nothing; can we even create these? */ 5840 return EINVAL; 5841 } 5842 5843 lb_size = udf_rw32(ump->logical_vol->lb_size); 5844 5845 /* reserve space for one logical block */ 5846 vpart_num = ump->node_part; 5847 error = udf_reserve_space(ump, NULL, UDF_C_NODE, 5848 vpart_num, 1, /* can_fail */ true); 5849 if (error) 5850 return error; 5851 5852 /* allocate node */ 5853 error = udf_allocate_space(ump, NULL, UDF_C_NODE, 5854 vpart_num, 1, &lmapping); 5855 if (error) { 5856 udf_do_unreserve_space(ump, NULL, vpart_num, 1); 5857 return error; 5858 } 5859 5860 lb_num = lmapping; 5861 5862 /* initialise pointer to location */ 5863 memset(&node_icb_loc, 0, sizeof(struct long_ad)); 5864 node_icb_loc.len = udf_rw32(lb_size); 5865 node_icb_loc.loc.lb_num = udf_rw32(lb_num); 5866 node_icb_loc.loc.part_num = udf_rw16(vpart_num); 5867 5868 /* build udf_node (do initialise!) */ 5869 udf_node = pool_get(&udf_node_pool, PR_WAITOK); 5870 memset(udf_node, 0, sizeof(struct udf_node)); 5871 5872 /* initialise crosslinks, note location of fe/efe for hashing */ 5873 /* bugalert: synchronise with udf_get_node() */ 5874 udf_node->ump = ump; 5875 udf_node->vnode = vp; 5876 vp->v_data = udf_node; 5877 udf_node->loc = node_icb_loc; 5878 udf_node->write_loc = node_icb_loc; 5879 udf_node->lockf = 0; 5880 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE); 5881 cv_init(&udf_node->node_lock, "udf_nlk"); 5882 udf_node->outstanding_bufs = 0; 5883 udf_node->outstanding_nodedscr = 0; 5884 udf_node->uncommitted_lbs = 0; 5885 5886 vp->v_tag = VT_UDF; 5887 vp->v_op = vnodeops; 5888 5889 /* initialise genfs */ 5890 genfs_node_init(vp, &udf_genfsops); 5891 5892 /* get parent's unique ID for refering '..' if its a directory */ 5893 if (dir_node->fe) { 5894 parent_unique_id = udf_rw64(dir_node->fe->unique_id); 5895 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid); 5896 } else { 5897 parent_unique_id = udf_rw64(dir_node->efe->unique_id); 5898 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid); 5899 } 5900 5901 /* get descriptor */ 5902 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr); 5903 5904 /* choose a fe or an efe for it */ 5905 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) { 5906 udf_node->fe = &dscr->fe; 5907 fid_size = udf_create_new_fe(ump, udf_node->fe, 5908 udf_file_type, &udf_node->loc, 5909 &dir_node->loc, parent_unique_id); 5910 /* TODO add extended attribute for creation time */ 5911 } else { 5912 udf_node->efe = &dscr->efe; 5913 fid_size = udf_create_new_efe(ump, udf_node->efe, 5914 udf_file_type, &udf_node->loc, 5915 &dir_node->loc, parent_unique_id); 5916 } 5917 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num); 5918 5919 /* update vnode's size and type */ 5920 vp->v_type = vap->va_type; 5921 uvm_vnp_setsize(vp, fid_size); 5922 5923 /* set access mode */ 5924 udf_setaccessmode(udf_node, vap->va_mode); 5925 5926 /* set ownership */ 5927 uid = kauth_cred_geteuid(cred); 5928 gid = parent_gid; 5929 udf_setownership(udf_node, uid, gid); 5930 5931 *key_len = sizeof(udf_node->loc.loc); 5932 *new_key = &udf_node->loc.loc; 5933 5934 return 0; 5935 } 5936 5937 5938 int 5939 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap, 5940 struct componentname *cnp) 5941 { 5942 struct udf_node *udf_node, *dir_node = VTOI(dvp); 5943 struct udf_mount *ump = dir_node->ump; 5944 int error; 5945 5946 error = vcache_new(dvp->v_mount, dvp, vap, cnp->cn_cred, NULL, vpp); 5947 if (error) 5948 return error; 5949 5950 udf_node = VTOI(*vpp); 5951 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp); 5952 if (error) { 5953 struct long_ad *node_icb_loc = &udf_node->loc; 5954 uint32_t lb_num = udf_rw32(node_icb_loc->loc.lb_num); 5955 uint16_t vpart_num = udf_rw16(node_icb_loc->loc.part_num); 5956 5957 /* free disc allocation for node */ 5958 udf_free_allocated_space(ump, lb_num, vpart_num, 1); 5959 5960 /* recycle udf_node */ 5961 udf_dispose_node(udf_node); 5962 vrele(*vpp); 5963 5964 *vpp = NULL; 5965 return error; 5966 } 5967 5968 /* adjust file count */ 5969 udf_adjust_filecount(udf_node, 1); 5970 5971 cache_enter(dvp, *vpp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_flags); 5972 return 0; 5973 } 5974 5975 /* --------------------------------------------------------------------- */ 5976 5977 static void 5978 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem) 5979 { 5980 struct udf_mount *ump = udf_node->ump; 5981 uint32_t lb_size, lb_num, len, num_lb; 5982 uint16_t vpart_num; 5983 5984 /* is there really one? */ 5985 if (mem == NULL) 5986 return; 5987 5988 /* got a descriptor here */ 5989 len = UDF_EXT_LEN(udf_rw32(loc->len)); 5990 lb_num = udf_rw32(loc->loc.lb_num); 5991 vpart_num = udf_rw16(loc->loc.part_num); 5992 5993 lb_size = udf_rw32(ump->logical_vol->lb_size); 5994 num_lb = (len + lb_size -1) / lb_size; 5995 5996 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb); 5997 } 5998 5999 void 6000 udf_delete_node(struct udf_node *udf_node) 6001 { 6002 void *dscr; 6003 struct long_ad *loc; 6004 int extnr, lvint, dummy; 6005 6006 if (udf_node->i_flags & IN_NO_DELETE) 6007 return; 6008 6009 /* paranoia check on integrity; should be open!; we could panic */ 6010 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type); 6011 if (lvint == UDF_INTEGRITY_CLOSED) 6012 printf("\tIntegrity was CLOSED!\n"); 6013 6014 /* whatever the node type, change its size to zero */ 6015 (void) udf_resize_node(udf_node, 0, &dummy); 6016 6017 /* force it to be `clean'; no use writing it out */ 6018 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS | 6019 IN_CHANGE | IN_UPDATE | IN_MODIFY); 6020 6021 /* adjust file count */ 6022 udf_adjust_filecount(udf_node, -1); 6023 6024 /* 6025 * Free its allocated descriptors; memory will be released when 6026 * vop_reclaim() is called. 6027 */ 6028 loc = &udf_node->loc; 6029 6030 dscr = udf_node->fe; 6031 udf_free_descriptor_space(udf_node, loc, dscr); 6032 dscr = udf_node->efe; 6033 udf_free_descriptor_space(udf_node, loc, dscr); 6034 6035 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) { 6036 dscr = udf_node->ext[extnr]; 6037 loc = &udf_node->ext_loc[extnr]; 6038 udf_free_descriptor_space(udf_node, loc, dscr); 6039 } 6040 } 6041 6042 /* --------------------------------------------------------------------- */ 6043 6044 /* set new filesize; node but be LOCKED on entry and is locked on exit */ 6045 int 6046 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended) 6047 { 6048 struct file_entry *fe = udf_node->fe; 6049 struct extfile_entry *efe = udf_node->efe; 6050 uint64_t file_size; 6051 int error; 6052 6053 if (fe) { 6054 file_size = udf_rw64(fe->inf_len); 6055 } else { 6056 assert(udf_node->efe); 6057 file_size = udf_rw64(efe->inf_len); 6058 } 6059 6060 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n", 6061 file_size, new_size)); 6062 6063 /* if not changing, we're done */ 6064 if (file_size == new_size) 6065 return 0; 6066 6067 *extended = (new_size > file_size); 6068 if (*extended) { 6069 error = udf_grow_node(udf_node, new_size); 6070 } else { 6071 error = udf_shrink_node(udf_node, new_size); 6072 } 6073 6074 return error; 6075 } 6076 6077 6078 /* --------------------------------------------------------------------- */ 6079 6080 void 6081 udf_itimes(struct udf_node *udf_node, struct timespec *acc, 6082 struct timespec *mod, struct timespec *birth) 6083 { 6084 struct timespec now; 6085 struct file_entry *fe; 6086 struct extfile_entry *efe; 6087 struct filetimes_extattr_entry *ft_extattr; 6088 struct timestamp *atime, *mtime, *attrtime, *ctime; 6089 struct timestamp fe_ctime; 6090 struct timespec cur_birth; 6091 uint32_t offset, a_l; 6092 uint8_t *filedata; 6093 int error; 6094 6095 /* protect against rogue values */ 6096 if (!udf_node) 6097 return; 6098 6099 fe = udf_node->fe; 6100 efe = udf_node->efe; 6101 6102 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY))) 6103 return; 6104 6105 /* get descriptor information */ 6106 if (fe) { 6107 atime = &fe->atime; 6108 mtime = &fe->mtime; 6109 attrtime = &fe->attrtime; 6110 filedata = fe->data; 6111 6112 /* initial save dummy setting */ 6113 ctime = &fe_ctime; 6114 6115 /* check our extended attribute if present */ 6116 error = udf_extattr_search_intern(udf_node, 6117 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l); 6118 if (!error) { 6119 ft_extattr = (struct filetimes_extattr_entry *) 6120 (filedata + offset); 6121 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION) 6122 ctime = &ft_extattr->times[0]; 6123 } 6124 /* TODO create the extended attribute if not found ? */ 6125 } else { 6126 assert(udf_node->efe); 6127 atime = &efe->atime; 6128 mtime = &efe->mtime; 6129 attrtime = &efe->attrtime; 6130 ctime = &efe->ctime; 6131 } 6132 6133 vfs_timestamp(&now); 6134 6135 /* set access time */ 6136 if (udf_node->i_flags & IN_ACCESS) { 6137 if (acc == NULL) 6138 acc = &now; 6139 udf_timespec_to_timestamp(acc, atime); 6140 } 6141 6142 /* set modification time */ 6143 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) { 6144 if (mod == NULL) 6145 mod = &now; 6146 udf_timespec_to_timestamp(mod, mtime); 6147 6148 /* ensure birthtime is older than set modification! */ 6149 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth); 6150 if ((cur_birth.tv_sec > mod->tv_sec) || 6151 ((cur_birth.tv_sec == mod->tv_sec) && 6152 (cur_birth.tv_nsec > mod->tv_nsec))) { 6153 udf_timespec_to_timestamp(mod, ctime); 6154 } 6155 } 6156 6157 /* update birthtime if specified */ 6158 /* XXX we assume here that given birthtime is older than mod */ 6159 if (birth && (birth->tv_sec != VNOVAL)) { 6160 udf_timespec_to_timestamp(birth, ctime); 6161 } 6162 6163 /* set change time */ 6164 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY)) 6165 udf_timespec_to_timestamp(&now, attrtime); 6166 6167 /* notify updates to the node itself */ 6168 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY)) 6169 udf_node->i_flags |= IN_ACCESSED; 6170 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE)) 6171 udf_node->i_flags |= IN_MODIFIED; 6172 6173 /* clear modification flags */ 6174 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY); 6175 } 6176 6177 /* --------------------------------------------------------------------- */ 6178 6179 int 6180 udf_update(struct vnode *vp, struct timespec *acc, 6181 struct timespec *mod, struct timespec *birth, int updflags) 6182 { 6183 union dscrptr *dscrptr; 6184 struct udf_node *udf_node = VTOI(vp); 6185 struct udf_mount *ump = udf_node->ump; 6186 struct regid *impl_id; 6187 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC); 6188 int waitfor, flags; 6189 6190 #ifdef DEBUG 6191 char bits[128]; 6192 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth, 6193 updflags)); 6194 snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags); 6195 DPRINTF(CALL, ("\tnode flags %s\n", bits)); 6196 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async)); 6197 #endif 6198 6199 /* set our times */ 6200 udf_itimes(udf_node, acc, mod, birth); 6201 6202 /* set our implementation id */ 6203 if (udf_node->fe) { 6204 dscrptr = (union dscrptr *) udf_node->fe; 6205 impl_id = &udf_node->fe->imp_id; 6206 } else { 6207 dscrptr = (union dscrptr *) udf_node->efe; 6208 impl_id = &udf_node->efe->imp_id; 6209 } 6210 6211 /* set our ID */ 6212 udf_set_regid(impl_id, IMPL_NAME); 6213 udf_add_impl_regid(ump, impl_id); 6214 6215 /* update our crc! on RMW we are not allowed to change a thing */ 6216 udf_validate_tag_and_crc_sums(dscrptr); 6217 6218 /* if called when mounted readonly, never write back */ 6219 if (vp->v_mount->mnt_flag & MNT_RDONLY) 6220 return 0; 6221 6222 /* check if the node is dirty 'enough'*/ 6223 if (updflags & UPDATE_CLOSE) { 6224 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED); 6225 } else { 6226 flags = udf_node->i_flags & IN_MODIFIED; 6227 } 6228 if (flags == 0) 6229 return 0; 6230 6231 /* determine if we need to write sync or async */ 6232 waitfor = 0; 6233 if ((flags & IN_MODIFIED) && (mnt_async == 0)) { 6234 /* sync mounted */ 6235 waitfor = updflags & UPDATE_WAIT; 6236 if (updflags & UPDATE_DIROP) 6237 waitfor |= UPDATE_WAIT; 6238 } 6239 if (waitfor) 6240 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0); 6241 6242 return 0; 6243 } 6244 6245 6246 /* --------------------------------------------------------------------- */ 6247 6248 6249 /* 6250 * Read one fid and process it into a dirent and advance to the next (*fid) 6251 * has to be allocated a logical block in size, (*dirent) struct dirent length 6252 */ 6253 6254 int 6255 udf_read_fid_stream(struct vnode *vp, uint64_t *offset, 6256 struct fileid_desc *fid, struct dirent *dirent) 6257 { 6258 struct udf_node *dir_node = VTOI(vp); 6259 struct udf_mount *ump = dir_node->ump; 6260 struct file_entry *fe = dir_node->fe; 6261 struct extfile_entry *efe = dir_node->efe; 6262 uint32_t fid_size, lb_size; 6263 uint64_t file_size; 6264 char *fid_name; 6265 int enough, error; 6266 6267 assert(fid); 6268 assert(dirent); 6269 assert(dir_node); 6270 assert(offset); 6271 assert(*offset != 1); 6272 6273 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset)); 6274 /* check if we're past the end of the directory */ 6275 if (fe) { 6276 file_size = udf_rw64(fe->inf_len); 6277 } else { 6278 assert(dir_node->efe); 6279 file_size = udf_rw64(efe->inf_len); 6280 } 6281 if (*offset >= file_size) 6282 return EINVAL; 6283 6284 /* get maximum length of FID descriptor */ 6285 lb_size = udf_rw32(ump->logical_vol->lb_size); 6286 6287 /* initialise return values */ 6288 fid_size = 0; 6289 memset(dirent, 0, sizeof(struct dirent)); 6290 memset(fid, 0, lb_size); 6291 6292 enough = (file_size - (*offset) >= UDF_FID_SIZE); 6293 if (!enough) { 6294 /* short dir ... */ 6295 return EIO; 6296 } 6297 6298 error = vn_rdwr(UIO_READ, vp, 6299 fid, MIN(file_size - (*offset), lb_size), *offset, 6300 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED, 6301 NULL, NULL); 6302 if (error) 6303 return error; 6304 6305 DPRINTF(FIDS, ("\tfid piece read in fine\n")); 6306 /* 6307 * Check if we got a whole descriptor. 6308 * TODO Try to `resync' directory stream when something is very wrong. 6309 */ 6310 6311 /* check if our FID header is OK */ 6312 error = udf_check_tag(fid); 6313 if (error) { 6314 goto brokendir; 6315 } 6316 DPRINTF(FIDS, ("\ttag check ok\n")); 6317 6318 if (udf_rw16(fid->tag.id) != TAGID_FID) { 6319 error = EIO; 6320 goto brokendir; 6321 } 6322 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n")); 6323 6324 /* check for length */ 6325 fid_size = udf_fidsize(fid); 6326 enough = (file_size - (*offset) >= fid_size); 6327 if (!enough) { 6328 error = EIO; 6329 goto brokendir; 6330 } 6331 DPRINTF(FIDS, ("\tthe complete fid is read in\n")); 6332 6333 /* check FID contents */ 6334 error = udf_check_tag_payload((union dscrptr *) fid, lb_size); 6335 brokendir: 6336 if (error) { 6337 /* note that is sometimes a bit quick to report */ 6338 printf("UDF: BROKEN DIRECTORY ENTRY\n"); 6339 /* RESYNC? */ 6340 /* TODO: use udf_resync_fid_stream */ 6341 return EIO; 6342 } 6343 DPRINTF(FIDS, ("\tpayload checked ok\n")); 6344 6345 /* we got a whole and valid descriptor! */ 6346 DPRINTF(FIDS, ("\tinterpret FID\n")); 6347 6348 /* create resulting dirent structure */ 6349 fid_name = (char *) fid->data + udf_rw16(fid->l_iu); 6350 udf_to_unix_name(dirent->d_name, NAME_MAX, 6351 fid_name, fid->l_fi, &ump->logical_vol->desc_charset); 6352 6353 /* '..' has no name, so provide one */ 6354 if (fid->file_char & UDF_FILE_CHAR_PAR) 6355 strcpy(dirent->d_name, ".."); 6356 6357 dirent->d_fileno = udf_get_node_id(&fid->icb); /* inode hash XXX */ 6358 dirent->d_namlen = strlen(dirent->d_name); 6359 dirent->d_reclen = _DIRENT_SIZE(dirent); 6360 6361 /* 6362 * Note that its not worth trying to go for the filetypes now... its 6363 * too expensive too 6364 */ 6365 dirent->d_type = DT_UNKNOWN; 6366 6367 /* initial guess for filetype we can make */ 6368 if (fid->file_char & UDF_FILE_CHAR_DIR) 6369 dirent->d_type = DT_DIR; 6370 6371 /* advance */ 6372 *offset += fid_size; 6373 6374 return error; 6375 } 6376 6377 6378 /* --------------------------------------------------------------------- */ 6379 6380 static void 6381 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int pass, int *ndirty) 6382 { 6383 struct udf_node *udf_node, *n_udf_node; 6384 struct vnode *vp; 6385 int vdirty, error; 6386 6387 KASSERT(mutex_owned(&ump->sync_lock)); 6388 6389 DPRINTF(SYNC, ("sync_pass %d\n", pass)); 6390 udf_node = RB_TREE_MIN(&ump->udf_node_tree); 6391 for (;udf_node; udf_node = n_udf_node) { 6392 DPRINTF(SYNC, (".")); 6393 6394 vp = udf_node->vnode; 6395 6396 n_udf_node = rb_tree_iterate(&ump->udf_node_tree, 6397 udf_node, RB_DIR_RIGHT); 6398 6399 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT); 6400 if (error) { 6401 KASSERT(error == EBUSY); 6402 *ndirty += 1; 6403 continue; 6404 } 6405 6406 switch (pass) { 6407 case 1: 6408 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0); 6409 break; 6410 case 2: 6411 vdirty = vp->v_numoutput; 6412 if (vp->v_tag == VT_UDF) 6413 vdirty += udf_node->outstanding_bufs + 6414 udf_node->outstanding_nodedscr; 6415 if (vdirty == 0) 6416 VOP_FSYNC(vp, cred, 0,0,0); 6417 *ndirty += vdirty; 6418 break; 6419 case 3: 6420 vdirty = vp->v_numoutput; 6421 if (vp->v_tag == VT_UDF) 6422 vdirty += udf_node->outstanding_bufs + 6423 udf_node->outstanding_nodedscr; 6424 *ndirty += vdirty; 6425 break; 6426 } 6427 6428 VOP_UNLOCK(vp); 6429 } 6430 DPRINTF(SYNC, ("END sync_pass %d\n", pass)); 6431 } 6432 6433 6434 static bool 6435 udf_sync_selector(void *cl, struct vnode *vp) 6436 { 6437 struct udf_node *udf_node; 6438 6439 KASSERT(mutex_owned(vp->v_interlock)); 6440 6441 udf_node = VTOI(vp); 6442 6443 if (vp->v_vflag & VV_SYSTEM) 6444 return false; 6445 if (vp->v_type == VNON) 6446 return false; 6447 if (udf_node == NULL) 6448 return false; 6449 if ((udf_node->i_flags & (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0) 6450 return false; 6451 if (LIST_EMPTY(&vp->v_dirtyblkhd) && UVM_OBJ_IS_CLEAN(&vp->v_uobj)) 6452 return false; 6453 6454 return true; 6455 } 6456 6457 void 6458 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor) 6459 { 6460 struct vnode_iterator *marker; 6461 struct vnode *vp; 6462 struct udf_node *udf_node, *udf_next_node; 6463 int dummy, ndirty; 6464 6465 if (waitfor == MNT_LAZY) 6466 return; 6467 6468 mutex_enter(&ump->sync_lock); 6469 6470 /* Fill the rbtree with nodes to sync. */ 6471 vfs_vnode_iterator_init(ump->vfs_mountp, &marker); 6472 while ((vp = vfs_vnode_iterator_next(marker, 6473 udf_sync_selector, NULL)) != NULL) { 6474 udf_node = VTOI(vp); 6475 udf_node->i_flags |= IN_SYNCED; 6476 rb_tree_insert_node(&ump->udf_node_tree, udf_node); 6477 } 6478 vfs_vnode_iterator_destroy(marker); 6479 6480 dummy = 0; 6481 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n")); 6482 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n")); 6483 udf_sync_pass(ump, cred, 1, &dummy); 6484 6485 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n")); 6486 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n")); 6487 udf_sync_pass(ump, cred, 2, &dummy); 6488 6489 if (waitfor == MNT_WAIT) { 6490 recount: 6491 ndirty = ump->devvp->v_numoutput; 6492 DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n", 6493 ndirty)); 6494 udf_sync_pass(ump, cred, 3, &ndirty); 6495 DPRINTF(SYNC, ("counted num dirty pending blocks %d\n", 6496 ndirty)); 6497 6498 if (ndirty) { 6499 /* 1/4 second wait */ 6500 kpause("udfsync2", false, hz/4, NULL); 6501 goto recount; 6502 } 6503 } 6504 6505 /* Clean the rbtree. */ 6506 for (udf_node = RB_TREE_MIN(&ump->udf_node_tree); 6507 udf_node; udf_node = udf_next_node) { 6508 udf_next_node = rb_tree_iterate(&ump->udf_node_tree, 6509 udf_node, RB_DIR_RIGHT); 6510 rb_tree_remove_node(&ump->udf_node_tree, udf_node); 6511 udf_node->i_flags &= ~IN_SYNCED; 6512 vrele(udf_node->vnode); 6513 } 6514 6515 mutex_exit(&ump->sync_lock); 6516 } 6517 6518 /* --------------------------------------------------------------------- */ 6519 6520 /* 6521 * Read and write file extent in/from the buffer. 6522 * 6523 * The splitup of the extent into separate request-buffers is to minimise 6524 * copying around as much as possible. 6525 * 6526 * block based file reading and writing 6527 */ 6528 6529 static int 6530 udf_read_internal(struct udf_node *node, uint8_t *blob) 6531 { 6532 struct udf_mount *ump; 6533 struct file_entry *fe = node->fe; 6534 struct extfile_entry *efe = node->efe; 6535 uint64_t inflen; 6536 uint32_t sector_size; 6537 uint8_t *srcpos; 6538 int icbflags, addr_type; 6539 6540 /* get extent and do some paranoia checks */ 6541 ump = node->ump; 6542 sector_size = ump->discinfo.sector_size; 6543 6544 /* 6545 * XXX there should be real bounds-checking logic here, 6546 * in case ->l_ea or ->inf_len contains nonsense. 6547 */ 6548 6549 if (fe) { 6550 inflen = udf_rw64(fe->inf_len); 6551 srcpos = &fe->data[0] + udf_rw32(fe->l_ea); 6552 icbflags = udf_rw16(fe->icbtag.flags); 6553 } else { 6554 assert(node->efe); 6555 inflen = udf_rw64(efe->inf_len); 6556 srcpos = &efe->data[0] + udf_rw32(efe->l_ea); 6557 icbflags = udf_rw16(efe->icbtag.flags); 6558 } 6559 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 6560 6561 assert(addr_type == UDF_ICB_INTERN_ALLOC); 6562 __USE(addr_type); 6563 assert(inflen < sector_size); 6564 6565 /* copy out info */ 6566 memcpy(blob, srcpos, inflen); 6567 memset(&blob[inflen], 0, sector_size - inflen); 6568 6569 return 0; 6570 } 6571 6572 6573 static int 6574 udf_write_internal(struct udf_node *node, uint8_t *blob) 6575 { 6576 struct udf_mount *ump; 6577 struct file_entry *fe = node->fe; 6578 struct extfile_entry *efe = node->efe; 6579 uint64_t inflen; 6580 uint32_t sector_size; 6581 uint8_t *pos; 6582 int icbflags, addr_type; 6583 6584 /* get extent and do some paranoia checks */ 6585 ump = node->ump; 6586 sector_size = ump->discinfo.sector_size; 6587 6588 if (fe) { 6589 inflen = udf_rw64(fe->inf_len); 6590 pos = &fe->data[0] + udf_rw32(fe->l_ea); 6591 icbflags = udf_rw16(fe->icbtag.flags); 6592 } else { 6593 assert(node->efe); 6594 inflen = udf_rw64(efe->inf_len); 6595 pos = &efe->data[0] + udf_rw32(efe->l_ea); 6596 icbflags = udf_rw16(efe->icbtag.flags); 6597 } 6598 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 6599 6600 assert(addr_type == UDF_ICB_INTERN_ALLOC); 6601 __USE(addr_type); 6602 assert(inflen < sector_size); 6603 __USE(sector_size); 6604 6605 /* copy in blob */ 6606 /* memset(pos, 0, inflen); */ 6607 memcpy(pos, blob, inflen); 6608 6609 return 0; 6610 } 6611 6612 6613 void 6614 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf) 6615 { 6616 struct buf *nestbuf; 6617 struct udf_mount *ump = udf_node->ump; 6618 uint64_t *mapping; 6619 uint64_t run_start; 6620 uint32_t sector_size; 6621 uint32_t buf_offset, sector, rbuflen, rblk; 6622 uint32_t from, lblkno; 6623 uint32_t sectors; 6624 uint8_t *buf_pos; 6625 int error, run_length, what; 6626 6627 sector_size = udf_node->ump->discinfo.sector_size; 6628 6629 from = buf->b_blkno; 6630 sectors = buf->b_bcount / sector_size; 6631 6632 what = udf_get_c_type(udf_node); 6633 6634 /* assure we have enough translation slots */ 6635 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS); 6636 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS); 6637 6638 if (sectors > UDF_MAX_MAPPINGS) { 6639 printf("udf_read_filebuf: implementation limit on bufsize\n"); 6640 buf->b_error = EIO; 6641 biodone(buf); 6642 return; 6643 } 6644 6645 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK); 6646 6647 error = 0; 6648 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors)); 6649 error = udf_translate_file_extent(udf_node, from, sectors, mapping); 6650 if (error) { 6651 buf->b_error = error; 6652 biodone(buf); 6653 goto out; 6654 } 6655 DPRINTF(READ, ("\ttranslate extent went OK\n")); 6656 6657 /* pre-check if its an internal */ 6658 if (*mapping == UDF_TRANS_INTERN) { 6659 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data); 6660 if (error) 6661 buf->b_error = error; 6662 biodone(buf); 6663 goto out; 6664 } 6665 DPRINTF(READ, ("\tnot intern\n")); 6666 6667 #ifdef DEBUG 6668 if (udf_verbose & UDF_DEBUG_TRANSLATE) { 6669 printf("Returned translation table:\n"); 6670 for (sector = 0; sector < sectors; sector++) { 6671 printf("%d : %"PRIu64"\n", sector, mapping[sector]); 6672 } 6673 } 6674 #endif 6675 6676 /* request read-in of data from disc sheduler */ 6677 buf->b_resid = buf->b_bcount; 6678 for (sector = 0; sector < sectors; sector++) { 6679 buf_offset = sector * sector_size; 6680 buf_pos = (uint8_t *) buf->b_data + buf_offset; 6681 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector)); 6682 6683 /* check if its zero or unmapped to stop reading */ 6684 switch (mapping[sector]) { 6685 case UDF_TRANS_UNMAPPED: 6686 case UDF_TRANS_ZERO: 6687 /* copy zero sector TODO runlength like below */ 6688 memset(buf_pos, 0, sector_size); 6689 DPRINTF(READ, ("\treturning zero sector\n")); 6690 nestiobuf_done(buf, sector_size, 0); 6691 break; 6692 default : 6693 DPRINTF(READ, ("\tread sector " 6694 "%"PRIu64"\n", mapping[sector])); 6695 6696 lblkno = from + sector; 6697 run_start = mapping[sector]; 6698 run_length = 1; 6699 while (sector < sectors-1) { 6700 if (mapping[sector+1] != mapping[sector]+1) 6701 break; 6702 run_length++; 6703 sector++; 6704 } 6705 6706 /* 6707 * nest an iobuf and mark it for async reading. Since 6708 * we're using nested buffers, they can't be cached by 6709 * design. 6710 */ 6711 rbuflen = run_length * sector_size; 6712 rblk = run_start * (sector_size/DEV_BSIZE); 6713 6714 nestbuf = getiobuf(NULL, true); 6715 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); 6716 /* nestbuf is B_ASYNC */ 6717 6718 /* identify this nestbuf */ 6719 nestbuf->b_lblkno = lblkno; 6720 assert(nestbuf->b_vp == udf_node->vnode); 6721 6722 /* CD shedules on raw blkno */ 6723 nestbuf->b_blkno = rblk; 6724 nestbuf->b_proc = NULL; 6725 nestbuf->b_rawblkno = rblk; 6726 nestbuf->b_udf_c_type = what; 6727 6728 udf_discstrat_queuebuf(ump, nestbuf); 6729 } 6730 } 6731 out: 6732 /* if we're synchronously reading, wait for the completion */ 6733 if ((buf->b_flags & B_ASYNC) == 0) 6734 biowait(buf); 6735 6736 DPRINTF(READ, ("\tend of read_filebuf\n")); 6737 free(mapping, M_TEMP); 6738 return; 6739 } 6740 6741 6742 void 6743 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf) 6744 { 6745 struct buf *nestbuf; 6746 struct udf_mount *ump = udf_node->ump; 6747 uint64_t *mapping; 6748 uint64_t run_start; 6749 uint32_t lb_size; 6750 uint32_t buf_offset, lb_num, rbuflen, rblk; 6751 uint32_t from, lblkno; 6752 uint32_t num_lb; 6753 int error, run_length, what, s; 6754 6755 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); 6756 6757 from = buf->b_blkno; 6758 num_lb = buf->b_bcount / lb_size; 6759 6760 what = udf_get_c_type(udf_node); 6761 6762 /* assure we have enough translation slots */ 6763 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS); 6764 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS); 6765 6766 if (num_lb > UDF_MAX_MAPPINGS) { 6767 printf("udf_write_filebuf: implementation limit on bufsize\n"); 6768 buf->b_error = EIO; 6769 biodone(buf); 6770 return; 6771 } 6772 6773 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK); 6774 6775 error = 0; 6776 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb)); 6777 error = udf_translate_file_extent(udf_node, from, num_lb, mapping); 6778 if (error) { 6779 buf->b_error = error; 6780 biodone(buf); 6781 goto out; 6782 } 6783 DPRINTF(WRITE, ("\ttranslate extent went OK\n")); 6784 6785 /* if its internally mapped, we can write it in the descriptor itself */ 6786 if (*mapping == UDF_TRANS_INTERN) { 6787 /* TODO paranoia check if we ARE going to have enough space */ 6788 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data); 6789 if (error) 6790 buf->b_error = error; 6791 biodone(buf); 6792 goto out; 6793 } 6794 DPRINTF(WRITE, ("\tnot intern\n")); 6795 6796 /* request write out of data to disc sheduler */ 6797 buf->b_resid = buf->b_bcount; 6798 for (lb_num = 0; lb_num < num_lb; lb_num++) { 6799 buf_offset = lb_num * lb_size; 6800 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num)); 6801 6802 /* 6803 * Mappings are not that important here. Just before we write 6804 * the lb_num we late-allocate them when needed and update the 6805 * mapping in the udf_node. 6806 */ 6807 6808 /* XXX why not ignore the mapping altogether ? */ 6809 DPRINTF(WRITE, ("\twrite lb_num " 6810 "%"PRIu64, mapping[lb_num])); 6811 6812 lblkno = from + lb_num; 6813 run_start = mapping[lb_num]; 6814 run_length = 1; 6815 while (lb_num < num_lb-1) { 6816 if (mapping[lb_num+1] != mapping[lb_num]+1) 6817 if (mapping[lb_num+1] != mapping[lb_num]) 6818 break; 6819 run_length++; 6820 lb_num++; 6821 } 6822 DPRINTF(WRITE, ("+ %d\n", run_length)); 6823 6824 /* nest an iobuf on the master buffer for the extent */ 6825 rbuflen = run_length * lb_size; 6826 rblk = run_start * (lb_size/DEV_BSIZE); 6827 6828 nestbuf = getiobuf(NULL, true); 6829 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); 6830 /* nestbuf is B_ASYNC */ 6831 6832 /* identify this nestbuf */ 6833 nestbuf->b_lblkno = lblkno; 6834 KASSERT(nestbuf->b_vp == udf_node->vnode); 6835 6836 /* CD shedules on raw blkno */ 6837 nestbuf->b_blkno = rblk; 6838 nestbuf->b_proc = NULL; 6839 nestbuf->b_rawblkno = rblk; 6840 nestbuf->b_udf_c_type = what; 6841 6842 /* increment our outstanding bufs counter */ 6843 s = splbio(); 6844 udf_node->outstanding_bufs++; 6845 splx(s); 6846 6847 udf_discstrat_queuebuf(ump, nestbuf); 6848 } 6849 out: 6850 /* if we're synchronously writing, wait for the completion */ 6851 if ((buf->b_flags & B_ASYNC) == 0) 6852 biowait(buf); 6853 6854 DPRINTF(WRITE, ("\tend of write_filebuf\n")); 6855 free(mapping, M_TEMP); 6856 return; 6857 } 6858 6859 /* --------------------------------------------------------------------- */ 6860