1 /* $NetBSD: udf_subr.c,v 1.135 2015/12/19 03:16:09 dholland Exp $ */ 2 3 /* 4 * Copyright (c) 2006, 2008 Reinoud Zandijk 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * 27 */ 28 29 30 #include <sys/cdefs.h> 31 #ifndef lint 32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.135 2015/12/19 03:16:09 dholland Exp $"); 33 #endif /* not lint */ 34 35 36 #if defined(_KERNEL_OPT) 37 #include "opt_compat_netbsd.h" 38 #endif 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/sysctl.h> 43 #include <sys/namei.h> 44 #include <sys/proc.h> 45 #include <sys/kernel.h> 46 #include <sys/vnode.h> 47 #include <miscfs/genfs/genfs_node.h> 48 #include <sys/mount.h> 49 #include <sys/buf.h> 50 #include <sys/file.h> 51 #include <sys/device.h> 52 #include <sys/disklabel.h> 53 #include <sys/ioctl.h> 54 #include <sys/malloc.h> 55 #include <sys/dirent.h> 56 #include <sys/stat.h> 57 #include <sys/conf.h> 58 #include <sys/kauth.h> 59 #include <fs/unicode.h> 60 #include <dev/clock_subr.h> 61 62 #include <fs/udf/ecma167-udf.h> 63 #include <fs/udf/udf_mount.h> 64 #include <sys/dirhash.h> 65 66 #include "udf.h" 67 #include "udf_subr.h" 68 #include "udf_bswap.h" 69 70 71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data) 72 73 #define UDF_SET_SYSTEMFILE(vp) \ 74 /* XXXAD Is the vnode locked? */ \ 75 (vp)->v_vflag |= VV_SYSTEM; \ 76 vref((vp)); \ 77 vput((vp)); \ 78 79 extern int syncer_maxdelay; /* maximum delay time */ 80 extern int (**udf_vnodeop_p)(void *); 81 82 /* --------------------------------------------------------------------- */ 83 84 //#ifdef DEBUG 85 #if 1 86 87 #if 0 88 static void 89 udf_dumpblob(boid *blob, uint32_t dlen) 90 { 91 int i, j; 92 93 printf("blob = %p\n", blob); 94 printf("dump of %d bytes\n", dlen); 95 96 for (i = 0; i < dlen; i+ = 16) { 97 printf("%04x ", i); 98 for (j = 0; j < 16; j++) { 99 if (i+j < dlen) { 100 printf("%02x ", blob[i+j]); 101 } else { 102 printf(" "); 103 } 104 } 105 for (j = 0; j < 16; j++) { 106 if (i+j < dlen) { 107 if (blob[i+j]>32 && blob[i+j]! = 127) { 108 printf("%c", blob[i+j]); 109 } else { 110 printf("."); 111 } 112 } 113 } 114 printf("\n"); 115 } 116 printf("\n"); 117 Debugger(); 118 } 119 #endif 120 121 static void 122 udf_dump_discinfo(struct udf_mount *ump) 123 { 124 char bits[128]; 125 struct mmc_discinfo *di = &ump->discinfo; 126 127 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0) 128 return; 129 130 printf("Device/media info :\n"); 131 printf("\tMMC profile 0x%02x\n", di->mmc_profile); 132 printf("\tderived class %d\n", di->mmc_class); 133 printf("\tsector size %d\n", di->sector_size); 134 printf("\tdisc state %d\n", di->disc_state); 135 printf("\tlast ses state %d\n", di->last_session_state); 136 printf("\tbg format state %d\n", di->bg_format_state); 137 printf("\tfrst track %d\n", di->first_track); 138 printf("\tfst on last ses %d\n", di->first_track_last_session); 139 printf("\tlst on last ses %d\n", di->last_track_last_session); 140 printf("\tlink block penalty %d\n", di->link_block_penalty); 141 snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags); 142 printf("\tdisc flags %s\n", bits); 143 printf("\tdisc id %x\n", di->disc_id); 144 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode); 145 146 printf("\tnum sessions %d\n", di->num_sessions); 147 printf("\tnum tracks %d\n", di->num_tracks); 148 149 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur); 150 printf("\tcapabilities cur %s\n", bits); 151 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap); 152 printf("\tcapabilities cap %s\n", bits); 153 } 154 155 static void 156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo) 157 { 158 char bits[128]; 159 160 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0) 161 return; 162 163 printf("Trackinfo for track %d:\n", trackinfo->tracknr); 164 printf("\tsessionnr %d\n", trackinfo->sessionnr); 165 printf("\ttrack mode %d\n", trackinfo->track_mode); 166 printf("\tdata mode %d\n", trackinfo->data_mode); 167 snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags); 168 printf("\tflags %s\n", bits); 169 170 printf("\ttrack start %d\n", trackinfo->track_start); 171 printf("\tnext_writable %d\n", trackinfo->next_writable); 172 printf("\tfree_blocks %d\n", trackinfo->free_blocks); 173 printf("\tpacket_size %d\n", trackinfo->packet_size); 174 printf("\ttrack size %d\n", trackinfo->track_size); 175 printf("\tlast recorded block %d\n", trackinfo->last_recorded); 176 } 177 178 #else 179 #define udf_dump_discinfo(a); 180 #define udf_dump_trackinfo(a); 181 #endif 182 183 184 /* --------------------------------------------------------------------- */ 185 186 /* not called often */ 187 int 188 udf_update_discinfo(struct udf_mount *ump) 189 { 190 struct vnode *devvp = ump->devvp; 191 uint64_t psize; 192 unsigned secsize; 193 struct mmc_discinfo *di; 194 int error; 195 196 DPRINTF(VOLUMES, ("read/update disc info\n")); 197 di = &ump->discinfo; 198 memset(di, 0, sizeof(struct mmc_discinfo)); 199 200 /* check if we're on a MMC capable device, i.e. CD/DVD */ 201 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED); 202 if (error == 0) { 203 udf_dump_discinfo(ump); 204 return 0; 205 } 206 207 /* disc partition support */ 208 error = getdisksize(devvp, &psize, &secsize); 209 if (error) 210 return error; 211 212 /* set up a disc info profile for partitions */ 213 di->mmc_profile = 0x01; /* disc type */ 214 di->mmc_class = MMC_CLASS_DISC; 215 di->disc_state = MMC_STATE_CLOSED; 216 di->last_session_state = MMC_STATE_CLOSED; 217 di->bg_format_state = MMC_BGFSTATE_COMPLETED; 218 di->link_block_penalty = 0; 219 220 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE | 221 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE; 222 di->mmc_cap = di->mmc_cur; 223 di->disc_flags = MMC_DFLAGS_UNRESTRICTED; 224 225 /* TODO problem with last_possible_lba on resizable VND; request */ 226 di->last_possible_lba = psize; 227 di->sector_size = secsize; 228 229 di->num_sessions = 1; 230 di->num_tracks = 1; 231 232 di->first_track = 1; 233 di->first_track_last_session = di->last_track_last_session = 1; 234 235 udf_dump_discinfo(ump); 236 return 0; 237 } 238 239 240 int 241 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti) 242 { 243 struct vnode *devvp = ump->devvp; 244 struct mmc_discinfo *di = &ump->discinfo; 245 int error, class; 246 247 DPRINTF(VOLUMES, ("read track info\n")); 248 249 class = di->mmc_class; 250 if (class != MMC_CLASS_DISC) { 251 /* tracknr specified in struct ti */ 252 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED); 253 return error; 254 } 255 256 /* disc partition support */ 257 if (ti->tracknr != 1) 258 return EIO; 259 260 /* create fake ti (TODO check for resized vnds) */ 261 ti->sessionnr = 1; 262 263 ti->track_mode = 0; /* XXX */ 264 ti->data_mode = 0; /* XXX */ 265 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID; 266 267 ti->track_start = 0; 268 ti->packet_size = 1; 269 270 /* TODO support for resizable vnd */ 271 ti->track_size = di->last_possible_lba; 272 ti->next_writable = di->last_possible_lba; 273 ti->last_recorded = ti->next_writable; 274 ti->free_blocks = 0; 275 276 return 0; 277 } 278 279 280 int 281 udf_setup_writeparams(struct udf_mount *ump) 282 { 283 struct mmc_writeparams mmc_writeparams; 284 int error; 285 286 if (ump->discinfo.mmc_class == MMC_CLASS_DISC) 287 return 0; 288 289 /* 290 * only CD burning normally needs setting up, but other disc types 291 * might need other settings to be made. The MMC framework will set up 292 * the nessisary recording parameters according to the disc 293 * characteristics read in. Modifications can be made in the discinfo 294 * structure passed to change the nature of the disc. 295 */ 296 297 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams)); 298 mmc_writeparams.mmc_class = ump->discinfo.mmc_class; 299 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur; 300 301 /* 302 * UDF dictates first track to determine track mode for the whole 303 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1] 304 * To prevent problems with a `reserved' track in front we start with 305 * the 2nd track and if that is not valid, go for the 1st. 306 */ 307 mmc_writeparams.tracknr = 2; 308 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */ 309 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */ 310 311 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams, 312 FKIOCTL, NOCRED); 313 if (error) { 314 mmc_writeparams.tracknr = 1; 315 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, 316 &mmc_writeparams, FKIOCTL, NOCRED); 317 } 318 return error; 319 } 320 321 322 int 323 udf_synchronise_caches(struct udf_mount *ump) 324 { 325 struct mmc_op mmc_op; 326 327 DPRINTF(CALL, ("udf_synchronise_caches()\n")); 328 329 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 330 return 0; 331 332 /* discs are done now */ 333 if (ump->discinfo.mmc_class == MMC_CLASS_DISC) 334 return 0; 335 336 memset(&mmc_op, 0, sizeof(struct mmc_op)); 337 mmc_op.operation = MMC_OP_SYNCHRONISECACHE; 338 339 /* ignore return code */ 340 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED); 341 342 return 0; 343 } 344 345 /* --------------------------------------------------------------------- */ 346 347 /* track/session searching for mounting */ 348 int 349 udf_search_tracks(struct udf_mount *ump, struct udf_args *args, 350 int *first_tracknr, int *last_tracknr) 351 { 352 struct mmc_trackinfo trackinfo; 353 uint32_t tracknr, start_track, num_tracks; 354 int error; 355 356 /* if negative, sessionnr is relative to last session */ 357 if (args->sessionnr < 0) { 358 args->sessionnr += ump->discinfo.num_sessions; 359 } 360 361 /* sanity */ 362 if (args->sessionnr < 0) 363 args->sessionnr = 0; 364 if (args->sessionnr > ump->discinfo.num_sessions) 365 args->sessionnr = ump->discinfo.num_sessions; 366 367 /* search the tracks for this session, zero session nr indicates last */ 368 if (args->sessionnr == 0) 369 args->sessionnr = ump->discinfo.num_sessions; 370 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) 371 args->sessionnr--; 372 373 /* sanity again */ 374 if (args->sessionnr < 0) 375 args->sessionnr = 0; 376 377 /* search the first and last track of the specified session */ 378 num_tracks = ump->discinfo.num_tracks; 379 start_track = ump->discinfo.first_track; 380 381 /* search for first track of this session */ 382 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) { 383 /* get track info */ 384 trackinfo.tracknr = tracknr; 385 error = udf_update_trackinfo(ump, &trackinfo); 386 if (error) 387 return error; 388 389 if (trackinfo.sessionnr == args->sessionnr) 390 break; 391 } 392 *first_tracknr = tracknr; 393 394 /* search for last track of this session */ 395 for (;tracknr <= num_tracks; tracknr++) { 396 /* get track info */ 397 trackinfo.tracknr = tracknr; 398 error = udf_update_trackinfo(ump, &trackinfo); 399 if (error || (trackinfo.sessionnr != args->sessionnr)) { 400 tracknr--; 401 break; 402 } 403 } 404 if (tracknr > num_tracks) 405 tracknr--; 406 407 *last_tracknr = tracknr; 408 409 if (*last_tracknr < *first_tracknr) { 410 printf( "udf_search_tracks: sanity check on drive+disc failed, " 411 "drive returned garbage\n"); 412 return EINVAL; 413 } 414 415 assert(*last_tracknr >= *first_tracknr); 416 return 0; 417 } 418 419 420 /* 421 * NOTE: this is the only routine in this file that directly peeks into the 422 * metadata file but since its at a larval state of the mount it can't hurt. 423 * 424 * XXX candidate for udf_allocation.c 425 * XXX clean me up!, change to new node reading code. 426 */ 427 428 static void 429 udf_check_track_metadata_overlap(struct udf_mount *ump, 430 struct mmc_trackinfo *trackinfo) 431 { 432 struct part_desc *part; 433 struct file_entry *fe; 434 struct extfile_entry *efe; 435 struct short_ad *s_ad; 436 struct long_ad *l_ad; 437 uint32_t track_start, track_end; 438 uint32_t phys_part_start, phys_part_end, part_start, part_end; 439 uint32_t sector_size, len, alloclen, plb_num; 440 uint8_t *pos; 441 int addr_type, icblen, icbflags; 442 443 /* get our track extents */ 444 track_start = trackinfo->track_start; 445 track_end = track_start + trackinfo->track_size; 446 447 /* get our base partition extent */ 448 KASSERT(ump->node_part == ump->fids_part); 449 part = ump->partitions[ump->vtop[ump->node_part]]; 450 phys_part_start = udf_rw32(part->start_loc); 451 phys_part_end = phys_part_start + udf_rw32(part->part_len); 452 453 /* no use if its outside the physical partition */ 454 if ((phys_part_start >= track_end) || (phys_part_end < track_start)) 455 return; 456 457 /* 458 * now follow all extents in the fe/efe to see if they refer to this 459 * track 460 */ 461 462 sector_size = ump->discinfo.sector_size; 463 464 /* XXX should we claim exclusive access to the metafile ? */ 465 /* TODO: move to new node read code */ 466 fe = ump->metadata_node->fe; 467 efe = ump->metadata_node->efe; 468 if (fe) { 469 alloclen = udf_rw32(fe->l_ad); 470 pos = &fe->data[0] + udf_rw32(fe->l_ea); 471 icbflags = udf_rw16(fe->icbtag.flags); 472 } else { 473 assert(efe); 474 alloclen = udf_rw32(efe->l_ad); 475 pos = &efe->data[0] + udf_rw32(efe->l_ea); 476 icbflags = udf_rw16(efe->icbtag.flags); 477 } 478 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 479 480 while (alloclen) { 481 if (addr_type == UDF_ICB_SHORT_ALLOC) { 482 icblen = sizeof(struct short_ad); 483 s_ad = (struct short_ad *) pos; 484 len = udf_rw32(s_ad->len); 485 plb_num = udf_rw32(s_ad->lb_num); 486 } else { 487 /* should not be present, but why not */ 488 icblen = sizeof(struct long_ad); 489 l_ad = (struct long_ad *) pos; 490 len = udf_rw32(l_ad->len); 491 plb_num = udf_rw32(l_ad->loc.lb_num); 492 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */ 493 } 494 /* process extent */ 495 len = UDF_EXT_LEN(len); 496 497 part_start = phys_part_start + plb_num; 498 part_end = part_start + (len / sector_size); 499 500 if ((part_start >= track_start) && (part_end <= track_end)) { 501 /* extent is enclosed within this track */ 502 ump->metadata_track = *trackinfo; 503 return; 504 } 505 506 pos += icblen; 507 alloclen -= icblen; 508 } 509 } 510 511 512 int 513 udf_search_writing_tracks(struct udf_mount *ump) 514 { 515 struct vnode *devvp = ump->devvp; 516 struct mmc_trackinfo trackinfo; 517 struct mmc_op mmc_op; 518 struct part_desc *part; 519 uint32_t tracknr, start_track, num_tracks; 520 uint32_t track_start, track_end, part_start, part_end; 521 int node_alloc, error; 522 523 /* 524 * in the CD/(HD)DVD/BD recordable device model a few tracks within 525 * the last session might be open but in the UDF device model at most 526 * three tracks can be open: a reserved track for delayed ISO VRS 527 * writing, a data track and a metadata track. We search here for the 528 * data track and the metadata track. Note that the reserved track is 529 * troublesome but can be detected by its small size of < 512 sectors. 530 */ 531 532 /* update discinfo since it might have changed */ 533 error = udf_update_discinfo(ump); 534 if (error) 535 return error; 536 537 num_tracks = ump->discinfo.num_tracks; 538 start_track = ump->discinfo.first_track; 539 540 /* fetch info on first and possibly only track */ 541 trackinfo.tracknr = start_track; 542 error = udf_update_trackinfo(ump, &trackinfo); 543 if (error) 544 return error; 545 546 /* copy results to our mount point */ 547 ump->data_track = trackinfo; 548 ump->metadata_track = trackinfo; 549 550 /* if not sequential, we're done */ 551 if (num_tracks == 1) 552 return 0; 553 554 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) { 555 /* get track info */ 556 trackinfo.tracknr = tracknr; 557 error = udf_update_trackinfo(ump, &trackinfo); 558 if (error) 559 return error; 560 561 /* 562 * If this track is marked damaged, ask for repair. This is an 563 * optional command, so ignore its error but report warning. 564 */ 565 if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) { 566 memset(&mmc_op, 0, sizeof(mmc_op)); 567 mmc_op.operation = MMC_OP_REPAIRTRACK; 568 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 569 mmc_op.tracknr = tracknr; 570 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED); 571 if (error) 572 (void)printf("Drive can't explicitly repair " 573 "damaged track %d, but it might " 574 "autorepair\n", tracknr); 575 576 /* reget track info */ 577 error = udf_update_trackinfo(ump, &trackinfo); 578 if (error) 579 return error; 580 } 581 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0) 582 continue; 583 584 track_start = trackinfo.track_start; 585 track_end = track_start + trackinfo.track_size; 586 587 /* check for overlap on data partition */ 588 part = ump->partitions[ump->data_part]; 589 part_start = udf_rw32(part->start_loc); 590 part_end = part_start + udf_rw32(part->part_len); 591 if ((part_start < track_end) && (part_end > track_start)) { 592 ump->data_track = trackinfo; 593 /* TODO check if UDF partition data_part is writable */ 594 } 595 596 /* check for overlap on metadata partition */ 597 node_alloc = ump->vtop_alloc[ump->node_part]; 598 if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) || 599 (node_alloc == UDF_ALLOC_METABITMAP)) { 600 udf_check_track_metadata_overlap(ump, &trackinfo); 601 } else { 602 ump->metadata_track = trackinfo; 603 } 604 } 605 606 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0) 607 return EROFS; 608 609 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0) 610 return EROFS; 611 612 return 0; 613 } 614 615 /* --------------------------------------------------------------------- */ 616 617 /* 618 * Check if the blob starts with a good UDF tag. Tags are protected by a 619 * checksum over the reader except one byte at position 4 that is the checksum 620 * itself. 621 */ 622 623 int 624 udf_check_tag(void *blob) 625 { 626 struct desc_tag *tag = blob; 627 uint8_t *pos, sum, cnt; 628 629 /* check TAG header checksum */ 630 pos = (uint8_t *) tag; 631 sum = 0; 632 633 for(cnt = 0; cnt < 16; cnt++) { 634 if (cnt != 4) 635 sum += *pos; 636 pos++; 637 } 638 if (sum != tag->cksum) { 639 /* bad tag header checksum; this is not a valid tag */ 640 return EINVAL; 641 } 642 643 return 0; 644 } 645 646 647 /* 648 * check tag payload will check descriptor CRC as specified. 649 * If the descriptor is too long, it will return EIO otherwise EINVAL. 650 */ 651 652 int 653 udf_check_tag_payload(void *blob, uint32_t max_length) 654 { 655 struct desc_tag *tag = blob; 656 uint16_t crc, crc_len; 657 658 crc_len = udf_rw16(tag->desc_crc_len); 659 660 /* check payload CRC if applicable */ 661 if (crc_len == 0) 662 return 0; 663 664 if (crc_len > max_length) 665 return EIO; 666 667 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len); 668 if (crc != udf_rw16(tag->desc_crc)) { 669 /* bad payload CRC; this is a broken tag */ 670 return EINVAL; 671 } 672 673 return 0; 674 } 675 676 677 void 678 udf_validate_tag_sum(void *blob) 679 { 680 struct desc_tag *tag = blob; 681 uint8_t *pos, sum, cnt; 682 683 /* calculate TAG header checksum */ 684 pos = (uint8_t *) tag; 685 sum = 0; 686 687 for(cnt = 0; cnt < 16; cnt++) { 688 if (cnt != 4) sum += *pos; 689 pos++; 690 } 691 tag->cksum = sum; /* 8 bit */ 692 } 693 694 695 /* assumes sector number of descriptor to be saved already present */ 696 void 697 udf_validate_tag_and_crc_sums(void *blob) 698 { 699 struct desc_tag *tag = blob; 700 uint8_t *btag = (uint8_t *) tag; 701 uint16_t crc, crc_len; 702 703 crc_len = udf_rw16(tag->desc_crc_len); 704 705 /* check payload CRC if applicable */ 706 if (crc_len > 0) { 707 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len); 708 tag->desc_crc = udf_rw16(crc); 709 } 710 711 /* calculate TAG header checksum */ 712 udf_validate_tag_sum(blob); 713 } 714 715 /* --------------------------------------------------------------------- */ 716 717 /* 718 * XXX note the different semantics from udfclient: for FIDs it still rounds 719 * up to sectors. Use udf_fidsize() for a correct length. 720 */ 721 722 int 723 udf_tagsize(union dscrptr *dscr, uint32_t lb_size) 724 { 725 uint32_t size, tag_id, num_lb, elmsz; 726 727 tag_id = udf_rw16(dscr->tag.id); 728 729 switch (tag_id) { 730 case TAGID_LOGVOL : 731 size = sizeof(struct logvol_desc) - 1; 732 size += udf_rw32(dscr->lvd.mt_l); 733 break; 734 case TAGID_UNALLOC_SPACE : 735 elmsz = sizeof(struct extent_ad); 736 size = sizeof(struct unalloc_sp_desc) - elmsz; 737 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz; 738 break; 739 case TAGID_FID : 740 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu); 741 size = (size + 3) & ~3; 742 break; 743 case TAGID_LOGVOL_INTEGRITY : 744 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t); 745 size += udf_rw32(dscr->lvid.l_iu); 746 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t)); 747 break; 748 case TAGID_SPACE_BITMAP : 749 size = sizeof(struct space_bitmap_desc) - 1; 750 size += udf_rw32(dscr->sbd.num_bytes); 751 break; 752 case TAGID_SPARING_TABLE : 753 elmsz = sizeof(struct spare_map_entry); 754 size = sizeof(struct udf_sparing_table) - elmsz; 755 size += udf_rw16(dscr->spt.rt_l) * elmsz; 756 break; 757 case TAGID_FENTRY : 758 size = sizeof(struct file_entry); 759 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1; 760 break; 761 case TAGID_EXTFENTRY : 762 size = sizeof(struct extfile_entry); 763 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1; 764 break; 765 case TAGID_FSD : 766 size = sizeof(struct fileset_desc); 767 break; 768 default : 769 size = sizeof(union dscrptr); 770 break; 771 } 772 773 if ((size == 0) || (lb_size == 0)) 774 return 0; 775 776 if (lb_size == 1) 777 return size; 778 779 /* round up in sectors */ 780 num_lb = (size + lb_size -1) / lb_size; 781 return num_lb * lb_size; 782 } 783 784 785 int 786 udf_fidsize(struct fileid_desc *fid) 787 { 788 uint32_t size; 789 790 if (udf_rw16(fid->tag.id) != TAGID_FID) 791 panic("got udf_fidsize on non FID\n"); 792 793 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu); 794 size = (size + 3) & ~3; 795 796 return size; 797 } 798 799 /* --------------------------------------------------------------------- */ 800 801 void 802 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno) 803 { 804 int ret; 805 806 mutex_enter(&udf_node->node_mutex); 807 /* wait until free */ 808 while (udf_node->i_flags & IN_LOCKED) { 809 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8); 810 /* TODO check if we should return error; abort */ 811 if (ret == EWOULDBLOCK) { 812 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block " 813 "wanted at %s:%d, previously locked at %s:%d\n", 814 udf_node, fname, lineno, 815 udf_node->lock_fname, udf_node->lock_lineno)); 816 } 817 } 818 /* grab */ 819 udf_node->i_flags |= IN_LOCKED | flag; 820 /* debug */ 821 udf_node->lock_fname = fname; 822 udf_node->lock_lineno = lineno; 823 824 mutex_exit(&udf_node->node_mutex); 825 } 826 827 828 void 829 udf_unlock_node(struct udf_node *udf_node, int flag) 830 { 831 mutex_enter(&udf_node->node_mutex); 832 udf_node->i_flags &= ~(IN_LOCKED | flag); 833 cv_broadcast(&udf_node->node_lock); 834 mutex_exit(&udf_node->node_mutex); 835 } 836 837 838 /* --------------------------------------------------------------------- */ 839 840 static int 841 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst) 842 { 843 int error; 844 845 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD, 846 (union dscrptr **) dst); 847 if (!error) { 848 /* blank terminator blocks are not allowed here */ 849 if (*dst == NULL) 850 return ENOENT; 851 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) { 852 error = ENOENT; 853 free(*dst, M_UDFVOLD); 854 *dst = NULL; 855 DPRINTF(VOLUMES, ("Not an anchor\n")); 856 } 857 } 858 859 return error; 860 } 861 862 863 int 864 udf_read_anchors(struct udf_mount *ump) 865 { 866 struct udf_args *args = &ump->mount_args; 867 struct mmc_trackinfo first_track; 868 struct mmc_trackinfo second_track; 869 struct mmc_trackinfo last_track; 870 struct anchor_vdp **anchorsp; 871 uint32_t track_start; 872 uint32_t track_end; 873 uint32_t positions[4]; 874 int first_tracknr, last_tracknr; 875 int error, anch, ok, first_anchor; 876 877 /* search the first and last track of the specified session */ 878 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr); 879 if (!error) { 880 first_track.tracknr = first_tracknr; 881 error = udf_update_trackinfo(ump, &first_track); 882 } 883 if (!error) { 884 last_track.tracknr = last_tracknr; 885 error = udf_update_trackinfo(ump, &last_track); 886 } 887 if ((!error) && (first_tracknr != last_tracknr)) { 888 second_track.tracknr = first_tracknr+1; 889 error = udf_update_trackinfo(ump, &second_track); 890 } 891 if (error) { 892 printf("UDF mount: reading disc geometry failed\n"); 893 return 0; 894 } 895 896 track_start = first_track.track_start; 897 898 /* `end' is not as straitforward as start. */ 899 track_end = last_track.track_start 900 + last_track.track_size - last_track.free_blocks - 1; 901 902 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) { 903 /* end of track is not straitforward here */ 904 if (last_track.flags & MMC_TRACKINFO_LRA_VALID) 905 track_end = last_track.last_recorded; 906 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID) 907 track_end = last_track.next_writable 908 - ump->discinfo.link_block_penalty; 909 } 910 911 /* its no use reading a blank track */ 912 first_anchor = 0; 913 if (first_track.flags & MMC_TRACKINFO_BLANK) 914 first_anchor = 1; 915 916 /* get our packet size */ 917 ump->packet_size = first_track.packet_size; 918 if (first_track.flags & MMC_TRACKINFO_BLANK) 919 ump->packet_size = second_track.packet_size; 920 921 if (ump->packet_size <= 1) { 922 /* take max, but not bigger than 64 */ 923 ump->packet_size = MAXPHYS / ump->discinfo.sector_size; 924 ump->packet_size = MIN(ump->packet_size, 64); 925 } 926 KASSERT(ump->packet_size >= 1); 927 928 /* read anchors start+256, start+512, end-256, end */ 929 positions[0] = track_start+256; 930 positions[1] = track_end-256; 931 positions[2] = track_end; 932 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */ 933 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */ 934 935 ok = 0; 936 anchorsp = ump->anchors; 937 for (anch = first_anchor; anch < 4; anch++) { 938 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch, 939 positions[anch])); 940 error = udf_read_anchor(ump, positions[anch], anchorsp); 941 if (!error) { 942 anchorsp++; 943 ok++; 944 } 945 } 946 947 /* VATs are only recorded on sequential media, but initialise */ 948 ump->first_possible_vat_location = track_start + 2; 949 ump->last_possible_vat_location = track_end + last_track.packet_size; 950 951 return ok; 952 } 953 954 /* --------------------------------------------------------------------- */ 955 956 int 957 udf_get_c_type(struct udf_node *udf_node) 958 { 959 int isdir, what; 960 961 isdir = (udf_node->vnode->v_type == VDIR); 962 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA; 963 964 if (udf_node->ump) 965 if (udf_node == udf_node->ump->metadatabitmap_node) 966 what = UDF_C_METADATA_SBM; 967 968 return what; 969 } 970 971 972 int 973 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type) 974 { 975 int vpart_num; 976 977 vpart_num = ump->data_part; 978 if (udf_c_type == UDF_C_NODE) 979 vpart_num = ump->node_part; 980 if (udf_c_type == UDF_C_FIDS) 981 vpart_num = ump->fids_part; 982 983 return vpart_num; 984 } 985 986 987 /* 988 * BUGALERT: some rogue implementations use random physical partition 989 * numbers to break other implementations so lookup the number. 990 */ 991 992 static uint16_t 993 udf_find_raw_phys(struct udf_mount *ump, uint16_t raw_phys_part) 994 { 995 struct part_desc *part; 996 uint16_t phys_part; 997 998 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 999 part = ump->partitions[phys_part]; 1000 if (part == NULL) 1001 break; 1002 if (udf_rw16(part->part_num) == raw_phys_part) 1003 break; 1004 } 1005 return phys_part; 1006 } 1007 1008 /* --------------------------------------------------------------------- */ 1009 1010 /* we dont try to be smart; we just record the parts */ 1011 #define UDF_UPDATE_DSCR(name, dscr) \ 1012 if (name) \ 1013 free(name, M_UDFVOLD); \ 1014 name = dscr; 1015 1016 static int 1017 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr) 1018 { 1019 uint16_t phys_part, raw_phys_part; 1020 1021 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n", 1022 udf_rw16(dscr->tag.id))); 1023 switch (udf_rw16(dscr->tag.id)) { 1024 case TAGID_PRI_VOL : /* primary partition */ 1025 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd); 1026 break; 1027 case TAGID_LOGVOL : /* logical volume */ 1028 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd); 1029 break; 1030 case TAGID_UNALLOC_SPACE : /* unallocated space */ 1031 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd); 1032 break; 1033 case TAGID_IMP_VOL : /* implementation */ 1034 /* XXX do we care about multiple impl. descr ? */ 1035 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd); 1036 break; 1037 case TAGID_PARTITION : /* physical partition */ 1038 /* not much use if its not allocated */ 1039 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) { 1040 free(dscr, M_UDFVOLD); 1041 break; 1042 } 1043 1044 /* 1045 * BUGALERT: some rogue implementations use random physical 1046 * partition numbers to break other implementations so lookup 1047 * the number. 1048 */ 1049 raw_phys_part = udf_rw16(dscr->pd.part_num); 1050 phys_part = udf_find_raw_phys(ump, raw_phys_part); 1051 1052 if (phys_part == UDF_PARTITIONS) { 1053 free(dscr, M_UDFVOLD); 1054 return EINVAL; 1055 } 1056 1057 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd); 1058 break; 1059 case TAGID_VOL : /* volume space extender; rare */ 1060 DPRINTF(VOLUMES, ("VDS extender ignored\n")); 1061 free(dscr, M_UDFVOLD); 1062 break; 1063 default : 1064 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n", 1065 udf_rw16(dscr->tag.id))); 1066 free(dscr, M_UDFVOLD); 1067 } 1068 1069 return 0; 1070 } 1071 #undef UDF_UPDATE_DSCR 1072 1073 /* --------------------------------------------------------------------- */ 1074 1075 static int 1076 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len) 1077 { 1078 union dscrptr *dscr; 1079 uint32_t sector_size, dscr_size; 1080 int error; 1081 1082 sector_size = ump->discinfo.sector_size; 1083 1084 /* loc is sectornr, len is in bytes */ 1085 error = EIO; 1086 while (len) { 1087 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr); 1088 if (error) 1089 return error; 1090 1091 /* blank block is a terminator */ 1092 if (dscr == NULL) 1093 return 0; 1094 1095 /* TERM descriptor is a terminator */ 1096 if (udf_rw16(dscr->tag.id) == TAGID_TERM) { 1097 free(dscr, M_UDFVOLD); 1098 return 0; 1099 } 1100 1101 /* process all others */ 1102 dscr_size = udf_tagsize(dscr, sector_size); 1103 error = udf_process_vds_descriptor(ump, dscr); 1104 if (error) { 1105 free(dscr, M_UDFVOLD); 1106 break; 1107 } 1108 assert((dscr_size % sector_size) == 0); 1109 1110 len -= dscr_size; 1111 loc += dscr_size / sector_size; 1112 } 1113 1114 return error; 1115 } 1116 1117 1118 int 1119 udf_read_vds_space(struct udf_mount *ump) 1120 { 1121 /* struct udf_args *args = &ump->mount_args; */ 1122 struct anchor_vdp *anchor, *anchor2; 1123 size_t size; 1124 uint32_t main_loc, main_len; 1125 uint32_t reserve_loc, reserve_len; 1126 int error; 1127 1128 /* 1129 * read in VDS space provided by the anchors; if one descriptor read 1130 * fails, try the mirror sector. 1131 * 1132 * check if 2nd anchor is different from 1st; if so, go for 2nd. This 1133 * avoids the `compatibility features' of DirectCD that may confuse 1134 * stuff completely. 1135 */ 1136 1137 anchor = ump->anchors[0]; 1138 anchor2 = ump->anchors[1]; 1139 assert(anchor); 1140 1141 if (anchor2) { 1142 size = sizeof(struct extent_ad); 1143 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size)) 1144 anchor = anchor2; 1145 /* reserve is specified to be a literal copy of main */ 1146 } 1147 1148 main_loc = udf_rw32(anchor->main_vds_ex.loc); 1149 main_len = udf_rw32(anchor->main_vds_ex.len); 1150 1151 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc); 1152 reserve_len = udf_rw32(anchor->reserve_vds_ex.len); 1153 1154 error = udf_read_vds_extent(ump, main_loc, main_len); 1155 if (error) { 1156 printf("UDF mount: reading in reserve VDS extent\n"); 1157 error = udf_read_vds_extent(ump, reserve_loc, reserve_len); 1158 } 1159 1160 return error; 1161 } 1162 1163 /* --------------------------------------------------------------------- */ 1164 1165 /* 1166 * Read in the logical volume integrity sequence pointed to by our logical 1167 * volume descriptor. Its a sequence that can be extended using fields in the 1168 * integrity descriptor itself. On sequential media only one is found, on 1169 * rewritable media a sequence of descriptors can be found as a form of 1170 * history keeping and on non sequential write-once media the chain is vital 1171 * to allow more and more descriptors to be written. The last descriptor 1172 * written in an extent needs to claim space for a new extent. 1173 */ 1174 1175 static int 1176 udf_retrieve_lvint(struct udf_mount *ump) 1177 { 1178 union dscrptr *dscr; 1179 struct logvol_int_desc *lvint; 1180 struct udf_lvintq *trace; 1181 uint32_t lb_size, lbnum, len; 1182 int dscr_type, error, trace_len; 1183 1184 lb_size = udf_rw32(ump->logical_vol->lb_size); 1185 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len); 1186 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc); 1187 1188 /* clean trace */ 1189 memset(ump->lvint_trace, 0, 1190 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq)); 1191 1192 trace_len = 0; 1193 trace = ump->lvint_trace; 1194 trace->start = lbnum; 1195 trace->end = lbnum + len/lb_size; 1196 trace->pos = 0; 1197 trace->wpos = 0; 1198 1199 lvint = NULL; 1200 dscr = NULL; 1201 error = 0; 1202 while (len) { 1203 trace->pos = lbnum - trace->start; 1204 trace->wpos = trace->pos + 1; 1205 1206 /* read in our integrity descriptor */ 1207 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr); 1208 if (!error) { 1209 if (dscr == NULL) { 1210 trace->wpos = trace->pos; 1211 break; /* empty terminates */ 1212 } 1213 dscr_type = udf_rw16(dscr->tag.id); 1214 if (dscr_type == TAGID_TERM) { 1215 trace->wpos = trace->pos; 1216 break; /* clean terminator */ 1217 } 1218 if (dscr_type != TAGID_LOGVOL_INTEGRITY) { 1219 /* fatal... corrupt disc */ 1220 error = ENOENT; 1221 break; 1222 } 1223 if (lvint) 1224 free(lvint, M_UDFVOLD); 1225 lvint = &dscr->lvid; 1226 dscr = NULL; 1227 } /* else hope for the best... maybe the next is ok */ 1228 1229 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n", 1230 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN")); 1231 1232 /* proceed sequential */ 1233 lbnum += 1; 1234 len -= lb_size; 1235 1236 /* are we linking to a new piece? */ 1237 if (dscr && lvint->next_extent.len) { 1238 len = udf_rw32(lvint->next_extent.len); 1239 lbnum = udf_rw32(lvint->next_extent.loc); 1240 1241 if (trace_len >= UDF_LVDINT_SEGMENTS-1) { 1242 /* IEK! segment link full... */ 1243 DPRINTF(VOLUMES, ("lvdint segments full\n")); 1244 error = EINVAL; 1245 } else { 1246 trace++; 1247 trace_len++; 1248 1249 trace->start = lbnum; 1250 trace->end = lbnum + len/lb_size; 1251 trace->pos = 0; 1252 trace->wpos = 0; 1253 } 1254 } 1255 } 1256 1257 /* clean up the mess, esp. when there is an error */ 1258 if (dscr) 1259 free(dscr, M_UDFVOLD); 1260 1261 if (error && lvint) { 1262 free(lvint, M_UDFVOLD); 1263 lvint = NULL; 1264 } 1265 1266 if (!lvint) 1267 error = ENOENT; 1268 1269 ump->logvol_integrity = lvint; 1270 return error; 1271 } 1272 1273 1274 static int 1275 udf_loose_lvint_history(struct udf_mount *ump) 1276 { 1277 union dscrptr **bufs, *dscr, *last_dscr; 1278 struct udf_lvintq *trace, *in_trace, *out_trace; 1279 struct logvol_int_desc *lvint; 1280 uint32_t in_ext, in_pos, in_len; 1281 uint32_t out_ext, out_wpos, out_len; 1282 uint32_t lb_num; 1283 uint32_t len, start; 1284 int ext, minext, extlen, cnt, cpy_len, dscr_type; 1285 int losing; 1286 int error; 1287 1288 DPRINTF(VOLUMES, ("need to lose some lvint history\n")); 1289 1290 /* search smallest extent */ 1291 trace = &ump->lvint_trace[0]; 1292 minext = trace->end - trace->start; 1293 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) { 1294 trace = &ump->lvint_trace[ext]; 1295 extlen = trace->end - trace->start; 1296 if (extlen == 0) 1297 break; 1298 minext = MIN(minext, extlen); 1299 } 1300 losing = MIN(minext, UDF_LVINT_LOSSAGE); 1301 /* no sense wiping all */ 1302 if (losing == minext) 1303 losing--; 1304 1305 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing)); 1306 1307 /* get buffer for pieces */ 1308 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK); 1309 1310 in_ext = 0; 1311 in_pos = losing; 1312 in_trace = &ump->lvint_trace[in_ext]; 1313 in_len = in_trace->end - in_trace->start; 1314 out_ext = 0; 1315 out_wpos = 0; 1316 out_trace = &ump->lvint_trace[out_ext]; 1317 out_len = out_trace->end - out_trace->start; 1318 1319 last_dscr = NULL; 1320 for(;;) { 1321 out_trace->pos = out_wpos; 1322 out_trace->wpos = out_trace->pos; 1323 if (in_pos >= in_len) { 1324 in_ext++; 1325 in_pos = 0; 1326 in_trace = &ump->lvint_trace[in_ext]; 1327 in_len = in_trace->end - in_trace->start; 1328 } 1329 if (out_wpos >= out_len) { 1330 out_ext++; 1331 out_wpos = 0; 1332 out_trace = &ump->lvint_trace[out_ext]; 1333 out_len = out_trace->end - out_trace->start; 1334 } 1335 /* copy overlap contents */ 1336 cpy_len = MIN(in_len - in_pos, out_len - out_wpos); 1337 cpy_len = MIN(cpy_len, in_len - in_trace->pos); 1338 if (cpy_len == 0) 1339 break; 1340 1341 /* copy */ 1342 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len)); 1343 for (cnt = 0; cnt < cpy_len; cnt++) { 1344 /* read in our integrity descriptor */ 1345 lb_num = in_trace->start + in_pos + cnt; 1346 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, 1347 &dscr); 1348 if (error) { 1349 /* copy last one */ 1350 dscr = last_dscr; 1351 } 1352 bufs[cnt] = dscr; 1353 if (!error) { 1354 if (dscr == NULL) { 1355 out_trace->pos = out_wpos + cnt; 1356 out_trace->wpos = out_trace->pos; 1357 break; /* empty terminates */ 1358 } 1359 dscr_type = udf_rw16(dscr->tag.id); 1360 if (dscr_type == TAGID_TERM) { 1361 out_trace->pos = out_wpos + cnt; 1362 out_trace->wpos = out_trace->pos; 1363 break; /* clean terminator */ 1364 } 1365 if (dscr_type != TAGID_LOGVOL_INTEGRITY) { 1366 panic( "UDF integrity sequence " 1367 "corrupted while mounted!\n"); 1368 } 1369 last_dscr = dscr; 1370 } 1371 } 1372 1373 /* patch up if first entry was on error */ 1374 if (bufs[0] == NULL) { 1375 for (cnt = 0; cnt < cpy_len; cnt++) 1376 if (bufs[cnt] != NULL) 1377 break; 1378 last_dscr = bufs[cnt]; 1379 for (; cnt > 0; cnt--) { 1380 bufs[cnt] = last_dscr; 1381 } 1382 } 1383 1384 /* glue + write out */ 1385 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len)); 1386 for (cnt = 0; cnt < cpy_len; cnt++) { 1387 lb_num = out_trace->start + out_wpos + cnt; 1388 lvint = &bufs[cnt]->lvid; 1389 1390 /* set continuation */ 1391 len = 0; 1392 start = 0; 1393 if (out_wpos + cnt == out_len) { 1394 /* get continuation */ 1395 trace = &ump->lvint_trace[out_ext+1]; 1396 len = trace->end - trace->start; 1397 start = trace->start; 1398 } 1399 lvint->next_extent.len = udf_rw32(len); 1400 lvint->next_extent.loc = udf_rw32(start); 1401 1402 lb_num = trace->start + trace->wpos; 1403 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1404 bufs[cnt], lb_num, lb_num); 1405 DPRINTFIF(VOLUMES, error, 1406 ("error writing lvint lb_num\n")); 1407 } 1408 1409 /* free non repeating descriptors */ 1410 last_dscr = NULL; 1411 for (cnt = 0; cnt < cpy_len; cnt++) { 1412 if (bufs[cnt] != last_dscr) 1413 free(bufs[cnt], M_UDFVOLD); 1414 last_dscr = bufs[cnt]; 1415 } 1416 1417 /* advance */ 1418 in_pos += cpy_len; 1419 out_wpos += cpy_len; 1420 } 1421 1422 free(bufs, M_TEMP); 1423 1424 return 0; 1425 } 1426 1427 1428 static int 1429 udf_writeout_lvint(struct udf_mount *ump, int lvflag) 1430 { 1431 struct udf_lvintq *trace; 1432 struct timeval now_v; 1433 struct timespec now_s; 1434 uint32_t sector; 1435 int logvol_integrity; 1436 int space, error; 1437 1438 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n")); 1439 1440 again: 1441 /* get free space in last chunk */ 1442 trace = ump->lvint_trace; 1443 while (trace->wpos > (trace->end - trace->start)) { 1444 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, " 1445 "wpos = %d\n", trace->start, trace->end, 1446 trace->pos, trace->wpos)); 1447 trace++; 1448 } 1449 1450 /* check if there is space to append */ 1451 space = (trace->end - trace->start) - trace->wpos; 1452 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, " 1453 "space = %d\n", trace->start, trace->end, trace->pos, 1454 trace->wpos, space)); 1455 1456 /* get state */ 1457 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 1458 if (logvol_integrity == UDF_INTEGRITY_CLOSED) { 1459 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) { 1460 /* TODO extent LVINT space if possible */ 1461 return EROFS; 1462 } 1463 } 1464 1465 if (space < 1) { 1466 if (lvflag & UDF_APPENDONLY_LVINT) 1467 return EROFS; 1468 /* loose history by re-writing extents */ 1469 error = udf_loose_lvint_history(ump); 1470 if (error) 1471 return error; 1472 goto again; 1473 } 1474 1475 /* update our integrity descriptor to identify us and timestamp it */ 1476 DPRINTF(VOLUMES, ("updating integrity descriptor\n")); 1477 microtime(&now_v); 1478 TIMEVAL_TO_TIMESPEC(&now_v, &now_s); 1479 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time); 1480 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME); 1481 udf_add_impl_regid(ump, &ump->logvol_info->impl_id); 1482 1483 /* writeout integrity descriptor */ 1484 sector = trace->start + trace->wpos; 1485 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1486 (union dscrptr *) ump->logvol_integrity, 1487 sector, sector); 1488 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error)); 1489 if (error) 1490 return error; 1491 1492 /* advance write position */ 1493 trace->wpos++; space--; 1494 if (space >= 1) { 1495 /* append terminator */ 1496 sector = trace->start + trace->wpos; 1497 error = udf_write_terminator(ump, sector); 1498 1499 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error)); 1500 } 1501 1502 space = (trace->end - trace->start) - trace->wpos; 1503 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, " 1504 "space = %d\n", trace->start, trace->end, trace->pos, 1505 trace->wpos, space)); 1506 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor " 1507 "successfull\n")); 1508 1509 return error; 1510 } 1511 1512 /* --------------------------------------------------------------------- */ 1513 1514 static int 1515 udf_read_physical_partition_spacetables(struct udf_mount *ump) 1516 { 1517 union dscrptr *dscr; 1518 /* struct udf_args *args = &ump->mount_args; */ 1519 struct part_desc *partd; 1520 struct part_hdr_desc *parthdr; 1521 struct udf_bitmap *bitmap; 1522 uint32_t phys_part; 1523 uint32_t lb_num, len; 1524 int error, dscr_type; 1525 1526 /* unallocated space map */ 1527 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1528 partd = ump->partitions[phys_part]; 1529 if (partd == NULL) 1530 continue; 1531 parthdr = &partd->_impl_use.part_hdr; 1532 1533 lb_num = udf_rw32(partd->start_loc); 1534 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num); 1535 len = udf_rw32(parthdr->unalloc_space_bitmap.len); 1536 if (len == 0) 1537 continue; 1538 1539 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num)); 1540 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 1541 if (!error && dscr) { 1542 /* analyse */ 1543 dscr_type = udf_rw16(dscr->tag.id); 1544 if (dscr_type == TAGID_SPACE_BITMAP) { 1545 DPRINTF(VOLUMES, ("Accepting space bitmap\n")); 1546 ump->part_unalloc_dscr[phys_part] = &dscr->sbd; 1547 1548 /* fill in ump->part_unalloc_bits */ 1549 bitmap = &ump->part_unalloc_bits[phys_part]; 1550 bitmap->blob = (uint8_t *) dscr; 1551 bitmap->bits = dscr->sbd.data; 1552 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1553 bitmap->pages = NULL; /* TODO */ 1554 bitmap->data_pos = 0; 1555 bitmap->metadata_pos = 0; 1556 } else { 1557 free(dscr, M_UDFVOLD); 1558 1559 printf( "UDF mount: error reading unallocated " 1560 "space bitmap\n"); 1561 return EROFS; 1562 } 1563 } else { 1564 /* blank not allowed */ 1565 printf("UDF mount: blank unallocated space bitmap\n"); 1566 return EROFS; 1567 } 1568 } 1569 1570 /* unallocated space table (not supported) */ 1571 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1572 partd = ump->partitions[phys_part]; 1573 if (partd == NULL) 1574 continue; 1575 parthdr = &partd->_impl_use.part_hdr; 1576 1577 len = udf_rw32(parthdr->unalloc_space_table.len); 1578 if (len) { 1579 printf("UDF mount: space tables not supported\n"); 1580 return EROFS; 1581 } 1582 } 1583 1584 /* freed space map */ 1585 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1586 partd = ump->partitions[phys_part]; 1587 if (partd == NULL) 1588 continue; 1589 parthdr = &partd->_impl_use.part_hdr; 1590 1591 /* freed space map */ 1592 lb_num = udf_rw32(partd->start_loc); 1593 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num); 1594 len = udf_rw32(parthdr->freed_space_bitmap.len); 1595 if (len == 0) 1596 continue; 1597 1598 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num)); 1599 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 1600 if (!error && dscr) { 1601 /* analyse */ 1602 dscr_type = udf_rw16(dscr->tag.id); 1603 if (dscr_type == TAGID_SPACE_BITMAP) { 1604 DPRINTF(VOLUMES, ("Accepting space bitmap\n")); 1605 ump->part_freed_dscr[phys_part] = &dscr->sbd; 1606 1607 /* fill in ump->part_freed_bits */ 1608 bitmap = &ump->part_unalloc_bits[phys_part]; 1609 bitmap->blob = (uint8_t *) dscr; 1610 bitmap->bits = dscr->sbd.data; 1611 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1612 bitmap->pages = NULL; /* TODO */ 1613 bitmap->data_pos = 0; 1614 bitmap->metadata_pos = 0; 1615 } else { 1616 free(dscr, M_UDFVOLD); 1617 1618 printf( "UDF mount: error reading freed " 1619 "space bitmap\n"); 1620 return EROFS; 1621 } 1622 } else { 1623 /* blank not allowed */ 1624 printf("UDF mount: blank freed space bitmap\n"); 1625 return EROFS; 1626 } 1627 } 1628 1629 /* freed space table (not supported) */ 1630 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1631 partd = ump->partitions[phys_part]; 1632 if (partd == NULL) 1633 continue; 1634 parthdr = &partd->_impl_use.part_hdr; 1635 1636 len = udf_rw32(parthdr->freed_space_table.len); 1637 if (len) { 1638 printf("UDF mount: space tables not supported\n"); 1639 return EROFS; 1640 } 1641 } 1642 1643 return 0; 1644 } 1645 1646 1647 /* TODO implement async writeout */ 1648 int 1649 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor) 1650 { 1651 union dscrptr *dscr; 1652 /* struct udf_args *args = &ump->mount_args; */ 1653 struct part_desc *partd; 1654 struct part_hdr_desc *parthdr; 1655 uint32_t phys_part; 1656 uint32_t lb_num, len, ptov; 1657 int error_all, error; 1658 1659 error_all = 0; 1660 /* unallocated space map */ 1661 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1662 partd = ump->partitions[phys_part]; 1663 if (partd == NULL) 1664 continue; 1665 parthdr = &partd->_impl_use.part_hdr; 1666 1667 ptov = udf_rw32(partd->start_loc); 1668 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num); 1669 len = udf_rw32(parthdr->unalloc_space_bitmap.len); 1670 if (len == 0) 1671 continue; 1672 1673 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n", 1674 lb_num + ptov)); 1675 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part]; 1676 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1677 (union dscrptr *) dscr, 1678 ptov + lb_num, lb_num); 1679 if (error) { 1680 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error)); 1681 error_all = error; 1682 } 1683 } 1684 1685 /* freed space map */ 1686 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1687 partd = ump->partitions[phys_part]; 1688 if (partd == NULL) 1689 continue; 1690 parthdr = &partd->_impl_use.part_hdr; 1691 1692 /* freed space map */ 1693 ptov = udf_rw32(partd->start_loc); 1694 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num); 1695 len = udf_rw32(parthdr->freed_space_bitmap.len); 1696 if (len == 0) 1697 continue; 1698 1699 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n", 1700 lb_num + ptov)); 1701 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part]; 1702 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1703 (union dscrptr *) dscr, 1704 ptov + lb_num, lb_num); 1705 if (error) { 1706 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error)); 1707 error_all = error; 1708 } 1709 } 1710 1711 return error_all; 1712 } 1713 1714 1715 static int 1716 udf_read_metadata_partition_spacetable(struct udf_mount *ump) 1717 { 1718 struct udf_node *bitmap_node; 1719 union dscrptr *dscr; 1720 struct udf_bitmap *bitmap; 1721 uint64_t inflen; 1722 int error, dscr_type; 1723 1724 bitmap_node = ump->metadatabitmap_node; 1725 1726 /* only read in when metadata bitmap node is read in */ 1727 if (bitmap_node == NULL) 1728 return 0; 1729 1730 if (bitmap_node->fe) { 1731 inflen = udf_rw64(bitmap_node->fe->inf_len); 1732 } else { 1733 KASSERT(bitmap_node->efe); 1734 inflen = udf_rw64(bitmap_node->efe->inf_len); 1735 } 1736 1737 DPRINTF(VOLUMES, ("Reading metadata space bitmap for " 1738 "%"PRIu64" bytes\n", inflen)); 1739 1740 /* allocate space for bitmap */ 1741 dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK); 1742 if (!dscr) 1743 return ENOMEM; 1744 1745 /* set vnode type to regular file or we can't read from it! */ 1746 bitmap_node->vnode->v_type = VREG; 1747 1748 /* read in complete metadata bitmap file */ 1749 error = vn_rdwr(UIO_READ, bitmap_node->vnode, 1750 dscr, 1751 inflen, 0, 1752 UIO_SYSSPACE, 1753 IO_SYNC | IO_ALTSEMANTICS, FSCRED, 1754 NULL, NULL); 1755 if (error) { 1756 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n")); 1757 goto errorout; 1758 } 1759 1760 /* analyse */ 1761 dscr_type = udf_rw16(dscr->tag.id); 1762 if (dscr_type == TAGID_SPACE_BITMAP) { 1763 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n")); 1764 ump->metadata_unalloc_dscr = &dscr->sbd; 1765 1766 /* fill in bitmap bits */ 1767 bitmap = &ump->metadata_unalloc_bits; 1768 bitmap->blob = (uint8_t *) dscr; 1769 bitmap->bits = dscr->sbd.data; 1770 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1771 bitmap->pages = NULL; /* TODO */ 1772 bitmap->data_pos = 0; 1773 bitmap->metadata_pos = 0; 1774 } else { 1775 DPRINTF(VOLUMES, ("No valid bitmap found!\n")); 1776 goto errorout; 1777 } 1778 1779 return 0; 1780 1781 errorout: 1782 free(dscr, M_UDFVOLD); 1783 printf( "UDF mount: error reading unallocated " 1784 "space bitmap for metadata partition\n"); 1785 return EROFS; 1786 } 1787 1788 1789 int 1790 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor) 1791 { 1792 struct udf_node *bitmap_node; 1793 union dscrptr *dscr; 1794 uint64_t new_inflen; 1795 int dummy, error; 1796 1797 bitmap_node = ump->metadatabitmap_node; 1798 1799 /* only write out when metadata bitmap node is known */ 1800 if (bitmap_node == NULL) 1801 return 0; 1802 1803 if (!bitmap_node->fe) { 1804 KASSERT(bitmap_node->efe); 1805 } 1806 1807 /* reduce length to zero */ 1808 dscr = (union dscrptr *) ump->metadata_unalloc_dscr; 1809 new_inflen = udf_tagsize(dscr, 1); 1810 1811 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap " 1812 " for %"PRIu64" bytes\n", new_inflen)); 1813 1814 error = udf_resize_node(bitmap_node, new_inflen, &dummy); 1815 if (error) 1816 printf("Error resizing metadata space bitmap\n"); 1817 1818 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode, 1819 dscr, 1820 new_inflen, 0, 1821 UIO_SYSSPACE, 1822 IO_ALTSEMANTICS, FSCRED, 1823 NULL, NULL); 1824 1825 bitmap_node->i_flags |= IN_MODIFIED; 1826 error = vflushbuf(bitmap_node->vnode, FSYNC_WAIT); 1827 if (error == 0) 1828 error = VOP_FSYNC(bitmap_node->vnode, 1829 FSCRED, FSYNC_WAIT, 0, 0); 1830 1831 if (error) 1832 printf( "Error writing out metadata partition unalloced " 1833 "space bitmap!\n"); 1834 1835 return error; 1836 } 1837 1838 1839 /* --------------------------------------------------------------------- */ 1840 1841 /* 1842 * Checks if ump's vds information is correct and complete 1843 */ 1844 1845 int 1846 udf_process_vds(struct udf_mount *ump) { 1847 union udf_pmap *mapping; 1848 /* struct udf_args *args = &ump->mount_args; */ 1849 struct logvol_int_desc *lvint; 1850 struct udf_logvol_info *lvinfo; 1851 uint32_t n_pm; 1852 uint8_t *pmap_pos; 1853 char *domain_name, *map_name; 1854 const char *check_name; 1855 char bits[128]; 1856 int pmap_stype, pmap_size; 1857 int pmap_type, log_part, phys_part, raw_phys_part, maps_on; 1858 int n_phys, n_virt, n_spar, n_meta; 1859 int len; 1860 1861 if (ump == NULL) 1862 return ENOENT; 1863 1864 /* we need at least an anchor (trivial, but for safety) */ 1865 if (ump->anchors[0] == NULL) 1866 return EINVAL; 1867 1868 /* we need at least one primary and one logical volume descriptor */ 1869 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL) 1870 return EINVAL; 1871 1872 /* we need at least one partition descriptor */ 1873 if (ump->partitions[0] == NULL) 1874 return EINVAL; 1875 1876 /* check logical volume sector size verses device sector size */ 1877 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) { 1878 printf("UDF mount: format violation, lb_size != sector size\n"); 1879 return EINVAL; 1880 } 1881 1882 /* check domain name */ 1883 domain_name = ump->logical_vol->domain_id.id; 1884 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) { 1885 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n"); 1886 return EINVAL; 1887 } 1888 1889 /* retrieve logical volume integrity sequence */ 1890 (void)udf_retrieve_lvint(ump); 1891 1892 /* 1893 * We need at least one logvol integrity descriptor recorded. Note 1894 * that its OK to have an open logical volume integrity here. The VAT 1895 * will close/update the integrity. 1896 */ 1897 if (ump->logvol_integrity == NULL) 1898 return EINVAL; 1899 1900 /* process derived structures */ 1901 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 1902 lvint = ump->logvol_integrity; 1903 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]); 1904 ump->logvol_info = lvinfo; 1905 1906 /* TODO check udf versions? */ 1907 1908 /* 1909 * check logvol mappings: effective virt->log partmap translation 1910 * check and recording of the mapping results. Saves expensive 1911 * strncmp() in tight places. 1912 */ 1913 DPRINTF(VOLUMES, ("checking logvol mappings\n")); 1914 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 1915 pmap_pos = ump->logical_vol->maps; 1916 1917 if (n_pm > UDF_PMAPS) { 1918 printf("UDF mount: too many mappings\n"); 1919 return EINVAL; 1920 } 1921 1922 /* count types and set partition numbers */ 1923 ump->data_part = ump->node_part = ump->fids_part = 0; 1924 n_phys = n_virt = n_spar = n_meta = 0; 1925 for (log_part = 0; log_part < n_pm; log_part++) { 1926 mapping = (union udf_pmap *) pmap_pos; 1927 pmap_stype = pmap_pos[0]; 1928 pmap_size = pmap_pos[1]; 1929 switch (pmap_stype) { 1930 case 1: /* physical mapping */ 1931 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */ 1932 raw_phys_part = udf_rw16(mapping->pm1.part_num); 1933 pmap_type = UDF_VTOP_TYPE_PHYS; 1934 n_phys++; 1935 ump->data_part = log_part; 1936 ump->node_part = log_part; 1937 ump->fids_part = log_part; 1938 break; 1939 case 2: /* virtual/sparable/meta mapping */ 1940 map_name = mapping->pm2.part_id.id; 1941 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */ 1942 raw_phys_part = udf_rw16(mapping->pm2.part_num); 1943 pmap_type = UDF_VTOP_TYPE_UNKNOWN; 1944 len = UDF_REGID_ID_SIZE; 1945 1946 check_name = "*UDF Virtual Partition"; 1947 if (strncmp(map_name, check_name, len) == 0) { 1948 pmap_type = UDF_VTOP_TYPE_VIRT; 1949 n_virt++; 1950 ump->node_part = log_part; 1951 break; 1952 } 1953 check_name = "*UDF Sparable Partition"; 1954 if (strncmp(map_name, check_name, len) == 0) { 1955 pmap_type = UDF_VTOP_TYPE_SPARABLE; 1956 n_spar++; 1957 ump->data_part = log_part; 1958 ump->node_part = log_part; 1959 ump->fids_part = log_part; 1960 break; 1961 } 1962 check_name = "*UDF Metadata Partition"; 1963 if (strncmp(map_name, check_name, len) == 0) { 1964 pmap_type = UDF_VTOP_TYPE_META; 1965 n_meta++; 1966 ump->node_part = log_part; 1967 ump->fids_part = log_part; 1968 break; 1969 } 1970 break; 1971 default: 1972 return EINVAL; 1973 } 1974 1975 /* 1976 * BUGALERT: some rogue implementations use random physical 1977 * partition numbers to break other implementations so lookup 1978 * the number. 1979 */ 1980 phys_part = udf_find_raw_phys(ump, raw_phys_part); 1981 1982 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part, 1983 raw_phys_part, phys_part, pmap_type)); 1984 1985 if (phys_part == UDF_PARTITIONS) 1986 return EINVAL; 1987 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN) 1988 return EINVAL; 1989 1990 ump->vtop [log_part] = phys_part; 1991 ump->vtop_tp[log_part] = pmap_type; 1992 1993 pmap_pos += pmap_size; 1994 } 1995 /* not winning the beauty contest */ 1996 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW; 1997 1998 /* test some basic UDF assertions/requirements */ 1999 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1)) 2000 return EINVAL; 2001 2002 if (n_virt) { 2003 if ((n_phys == 0) || n_spar || n_meta) 2004 return EINVAL; 2005 } 2006 if (n_spar + n_phys == 0) 2007 return EINVAL; 2008 2009 /* select allocation type for each logical partition */ 2010 for (log_part = 0; log_part < n_pm; log_part++) { 2011 maps_on = ump->vtop[log_part]; 2012 switch (ump->vtop_tp[log_part]) { 2013 case UDF_VTOP_TYPE_PHYS : 2014 assert(maps_on == log_part); 2015 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP; 2016 break; 2017 case UDF_VTOP_TYPE_VIRT : 2018 ump->vtop_alloc[log_part] = UDF_ALLOC_VAT; 2019 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL; 2020 break; 2021 case UDF_VTOP_TYPE_SPARABLE : 2022 assert(maps_on == log_part); 2023 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP; 2024 break; 2025 case UDF_VTOP_TYPE_META : 2026 ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP; 2027 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) { 2028 /* special case for UDF 2.60 */ 2029 ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL; 2030 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL; 2031 } 2032 break; 2033 default: 2034 panic("bad alloction type in udf's ump->vtop\n"); 2035 } 2036 } 2037 2038 /* determine logical volume open/closure actions */ 2039 if (n_virt) { 2040 ump->lvopen = 0; 2041 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) 2042 ump->lvopen |= UDF_OPEN_SESSION ; 2043 ump->lvclose = UDF_WRITE_VAT; 2044 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION) 2045 ump->lvclose |= UDF_CLOSE_SESSION; 2046 } else { 2047 /* `normal' rewritable or non sequential media */ 2048 ump->lvopen = UDF_WRITE_LVINT; 2049 ump->lvclose = UDF_WRITE_LVINT; 2050 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0) 2051 ump->lvopen |= UDF_APPENDONLY_LVINT; 2052 if ((ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE)) 2053 ump->lvopen &= ~UDF_APPENDONLY_LVINT; 2054 } 2055 2056 /* 2057 * Determine sheduler error behaviour. For virtual partitions, update 2058 * the trackinfo; for sparable partitions replace a whole block on the 2059 * sparable table. Allways requeue. 2060 */ 2061 ump->lvreadwrite = 0; 2062 if (n_virt) 2063 ump->lvreadwrite = UDF_UPDATE_TRACKINFO; 2064 if (n_spar) 2065 ump->lvreadwrite = UDF_REMAP_BLOCK; 2066 2067 /* 2068 * Select our sheduler 2069 */ 2070 ump->strategy = &udf_strat_rmw; 2071 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE)) 2072 ump->strategy = &udf_strat_sequential; 2073 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) || 2074 (ump->discinfo.mmc_class == MMC_CLASS_UNKN)) 2075 ump->strategy = &udf_strat_direct; 2076 if (n_spar) 2077 ump->strategy = &udf_strat_rmw; 2078 2079 #if 0 2080 /* read-only access won't benefit from the other shedulers */ 2081 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 2082 ump->strategy = &udf_strat_direct; 2083 #endif 2084 2085 /* print results */ 2086 DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part)); 2087 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part])); 2088 DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part)); 2089 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part])); 2090 DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part)); 2091 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part])); 2092 2093 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen); 2094 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits)); 2095 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose); 2096 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits)); 2097 snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite); 2098 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits)); 2099 2100 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n", 2101 (ump->strategy == &udf_strat_direct) ? "Direct" : 2102 (ump->strategy == &udf_strat_sequential) ? "Sequential" : 2103 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!")); 2104 2105 /* signal its OK for now */ 2106 return 0; 2107 } 2108 2109 /* --------------------------------------------------------------------- */ 2110 2111 /* 2112 * Update logical volume name in all structures that keep a record of it. We 2113 * use memmove since each of them might be specified as a source. 2114 * 2115 * Note that it doesn't update the VAT structure! 2116 */ 2117 2118 static void 2119 udf_update_logvolname(struct udf_mount *ump, char *logvol_id) 2120 { 2121 struct logvol_desc *lvd = NULL; 2122 struct fileset_desc *fsd = NULL; 2123 struct udf_lv_info *lvi = NULL; 2124 2125 DPRINTF(VOLUMES, ("Updating logical volume name\n")); 2126 lvd = ump->logical_vol; 2127 fsd = ump->fileset_desc; 2128 if (ump->implementation) 2129 lvi = &ump->implementation->_impl_use.lv_info; 2130 2131 /* logvol's id might be specified as origional so use memmove here */ 2132 memmove(lvd->logvol_id, logvol_id, 128); 2133 if (fsd) 2134 memmove(fsd->logvol_id, logvol_id, 128); 2135 if (lvi) 2136 memmove(lvi->logvol_id, logvol_id, 128); 2137 } 2138 2139 /* --------------------------------------------------------------------- */ 2140 2141 void 2142 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid, 2143 uint32_t sector) 2144 { 2145 assert(ump->logical_vol); 2146 2147 tag->id = udf_rw16(tagid); 2148 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver; 2149 tag->cksum = 0; 2150 tag->reserved = 0; 2151 tag->serial_num = ump->logical_vol->tag.serial_num; 2152 tag->tag_loc = udf_rw32(sector); 2153 } 2154 2155 2156 uint64_t 2157 udf_advance_uniqueid(struct udf_mount *ump) 2158 { 2159 uint64_t unique_id; 2160 2161 mutex_enter(&ump->logvol_mutex); 2162 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id); 2163 if (unique_id < 0x10) 2164 unique_id = 0x10; 2165 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1); 2166 mutex_exit(&ump->logvol_mutex); 2167 2168 return unique_id; 2169 } 2170 2171 2172 static void 2173 udf_adjust_filecount(struct udf_node *udf_node, int sign) 2174 { 2175 struct udf_mount *ump = udf_node->ump; 2176 uint32_t num_dirs, num_files; 2177 int udf_file_type; 2178 2179 /* get file type */ 2180 if (udf_node->fe) { 2181 udf_file_type = udf_node->fe->icbtag.file_type; 2182 } else { 2183 udf_file_type = udf_node->efe->icbtag.file_type; 2184 } 2185 2186 /* adjust file count */ 2187 mutex_enter(&ump->allocate_mutex); 2188 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) { 2189 num_dirs = udf_rw32(ump->logvol_info->num_directories); 2190 ump->logvol_info->num_directories = 2191 udf_rw32((num_dirs + sign)); 2192 } else { 2193 num_files = udf_rw32(ump->logvol_info->num_files); 2194 ump->logvol_info->num_files = 2195 udf_rw32((num_files + sign)); 2196 } 2197 mutex_exit(&ump->allocate_mutex); 2198 } 2199 2200 2201 void 2202 udf_osta_charset(struct charspec *charspec) 2203 { 2204 memset(charspec, 0, sizeof(struct charspec)); 2205 charspec->type = 0; 2206 strcpy((char *) charspec->inf, "OSTA Compressed Unicode"); 2207 } 2208 2209 2210 /* first call udf_set_regid and then the suffix */ 2211 void 2212 udf_set_regid(struct regid *regid, char const *name) 2213 { 2214 memset(regid, 0, sizeof(struct regid)); 2215 regid->flags = 0; /* not dirty and not protected */ 2216 strcpy((char *) regid->id, name); 2217 } 2218 2219 2220 void 2221 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid) 2222 { 2223 uint16_t *ver; 2224 2225 ver = (uint16_t *) regid->id_suffix; 2226 *ver = ump->logvol_info->min_udf_readver; 2227 } 2228 2229 2230 void 2231 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid) 2232 { 2233 uint16_t *ver; 2234 2235 ver = (uint16_t *) regid->id_suffix; 2236 *ver = ump->logvol_info->min_udf_readver; 2237 2238 regid->id_suffix[2] = 4; /* unix */ 2239 regid->id_suffix[3] = 8; /* NetBSD */ 2240 } 2241 2242 2243 void 2244 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid) 2245 { 2246 regid->id_suffix[0] = 4; /* unix */ 2247 regid->id_suffix[1] = 8; /* NetBSD */ 2248 } 2249 2250 2251 void 2252 udf_add_app_regid(struct udf_mount *ump, struct regid *regid) 2253 { 2254 regid->id_suffix[0] = APP_VERSION_MAIN; 2255 regid->id_suffix[1] = APP_VERSION_SUB; 2256 } 2257 2258 static int 2259 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid, 2260 struct long_ad *parent, uint64_t unique_id) 2261 { 2262 /* the size of an empty FID is 38 but needs to be a multiple of 4 */ 2263 int fidsize = 40; 2264 2265 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num)); 2266 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */ 2267 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR; 2268 fid->icb = *parent; 2269 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id); 2270 fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH); 2271 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 2272 2273 return fidsize; 2274 } 2275 2276 /* --------------------------------------------------------------------- */ 2277 2278 /* 2279 * Extended attribute support. UDF knows of 3 places for extended attributes: 2280 * 2281 * (a) inside the file's (e)fe in the length of the extended attribute area 2282 * before the allocation descriptors/filedata 2283 * 2284 * (b) in a file referenced by (e)fe->ext_attr_icb and 2285 * 2286 * (c) in the e(fe)'s associated stream directory that can hold various 2287 * sub-files. In the stream directory a few fixed named subfiles are reserved 2288 * for NT/Unix ACL's and OS/2 attributes. 2289 * 2290 * NOTE: Extended attributes are read randomly but allways written 2291 * *atomicaly*. For ACL's this interface is propably different but not known 2292 * to me yet. 2293 * 2294 * Order of extended attributes in a space : 2295 * ECMA 167 EAs 2296 * Non block aligned Implementation Use EAs 2297 * Block aligned Implementation Use EAs 2298 * Application Use EAs 2299 */ 2300 2301 static int 2302 udf_impl_extattr_check(struct impl_extattr_entry *implext) 2303 { 2304 uint16_t *spos; 2305 2306 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) { 2307 /* checksum valid? */ 2308 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n")); 2309 spos = (uint16_t *) implext->data; 2310 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext)) 2311 return EINVAL; 2312 } 2313 return 0; 2314 } 2315 2316 static void 2317 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext) 2318 { 2319 uint16_t *spos; 2320 2321 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) { 2322 /* set checksum */ 2323 spos = (uint16_t *) implext->data; 2324 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext)); 2325 } 2326 } 2327 2328 2329 int 2330 udf_extattr_search_intern(struct udf_node *node, 2331 uint32_t sattr, char const *sattrname, 2332 uint32_t *offsetp, uint32_t *lengthp) 2333 { 2334 struct extattrhdr_desc *eahdr; 2335 struct extattr_entry *attrhdr; 2336 struct impl_extattr_entry *implext; 2337 uint32_t offset, a_l, sector_size; 2338 int32_t l_ea; 2339 uint8_t *pos; 2340 int error; 2341 2342 /* get mountpoint */ 2343 sector_size = node->ump->discinfo.sector_size; 2344 2345 /* get information from fe/efe */ 2346 if (node->fe) { 2347 l_ea = udf_rw32(node->fe->l_ea); 2348 eahdr = (struct extattrhdr_desc *) node->fe->data; 2349 } else { 2350 assert(node->efe); 2351 l_ea = udf_rw32(node->efe->l_ea); 2352 eahdr = (struct extattrhdr_desc *) node->efe->data; 2353 } 2354 2355 /* something recorded here? */ 2356 if (l_ea == 0) 2357 return ENOENT; 2358 2359 /* check extended attribute tag; what to do if it fails? */ 2360 error = udf_check_tag(eahdr); 2361 if (error) 2362 return EINVAL; 2363 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR) 2364 return EINVAL; 2365 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc)); 2366 if (error) 2367 return EINVAL; 2368 2369 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea)); 2370 2371 /* looking for Ecma-167 attributes? */ 2372 offset = sizeof(struct extattrhdr_desc); 2373 2374 /* looking for either implemenation use or application use */ 2375 if (sattr == 2048) { /* [4/48.10.8] */ 2376 offset = udf_rw32(eahdr->impl_attr_loc); 2377 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2378 return ENOENT; 2379 } 2380 if (sattr == 65536) { /* [4/48.10.9] */ 2381 offset = udf_rw32(eahdr->appl_attr_loc); 2382 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT) 2383 return ENOENT; 2384 } 2385 2386 /* paranoia check offset and l_ea */ 2387 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry)) 2388 return EINVAL; 2389 2390 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset)); 2391 2392 /* find our extended attribute */ 2393 l_ea -= offset; 2394 pos = (uint8_t *) eahdr + offset; 2395 2396 while (l_ea >= sizeof(struct extattr_entry)) { 2397 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea)); 2398 attrhdr = (struct extattr_entry *) pos; 2399 implext = (struct impl_extattr_entry *) pos; 2400 2401 /* get complete attribute length and check for roque values */ 2402 a_l = udf_rw32(attrhdr->a_l); 2403 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n", 2404 udf_rw32(attrhdr->type), 2405 attrhdr->subtype, a_l, l_ea)); 2406 if ((a_l == 0) || (a_l > l_ea)) 2407 return EINVAL; 2408 2409 if (attrhdr->type != sattr) 2410 goto next_attribute; 2411 2412 /* we might have found it! */ 2413 if (attrhdr->type < 2048) { /* Ecma-167 attribute */ 2414 *offsetp = offset; 2415 *lengthp = a_l; 2416 return 0; /* success */ 2417 } 2418 2419 /* 2420 * Implementation use and application use extended attributes 2421 * have a name to identify. They share the same structure only 2422 * UDF implementation use extended attributes have a checksum 2423 * we need to check 2424 */ 2425 2426 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id)); 2427 if (strcmp(implext->imp_id.id, sattrname) == 0) { 2428 /* we have found our appl/implementation attribute */ 2429 *offsetp = offset; 2430 *lengthp = a_l; 2431 return 0; /* success */ 2432 } 2433 2434 next_attribute: 2435 /* next attribute */ 2436 pos += a_l; 2437 l_ea -= a_l; 2438 offset += a_l; 2439 } 2440 /* not found */ 2441 return ENOENT; 2442 } 2443 2444 2445 static void 2446 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr, 2447 struct extattr_entry *extattr) 2448 { 2449 struct file_entry *fe; 2450 struct extfile_entry *efe; 2451 struct extattrhdr_desc *extattrhdr; 2452 struct impl_extattr_entry *implext; 2453 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len; 2454 uint32_t *l_eap, l_ad; 2455 uint16_t *spos; 2456 uint8_t *bpos, *data; 2457 2458 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) { 2459 fe = &dscr->fe; 2460 data = fe->data; 2461 l_eap = &fe->l_ea; 2462 l_ad = udf_rw32(fe->l_ad); 2463 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) { 2464 efe = &dscr->efe; 2465 data = efe->data; 2466 l_eap = &efe->l_ea; 2467 l_ad = udf_rw32(efe->l_ad); 2468 } else { 2469 panic("Bad tag passed to udf_extattr_insert_internal"); 2470 } 2471 2472 /* can't append already written to file descriptors yet */ 2473 assert(l_ad == 0); 2474 __USE(l_ad); 2475 2476 /* should have a header! */ 2477 extattrhdr = (struct extattrhdr_desc *) data; 2478 l_ea = udf_rw32(*l_eap); 2479 if (l_ea == 0) { 2480 /* create empty extended attribute header */ 2481 exthdr_len = sizeof(struct extattrhdr_desc); 2482 2483 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR, 2484 /* loc */ 0); 2485 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len); 2486 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len); 2487 extattrhdr->tag.desc_crc_len = udf_rw16(8); 2488 2489 /* record extended attribute header length */ 2490 l_ea = exthdr_len; 2491 *l_eap = udf_rw32(l_ea); 2492 } 2493 2494 /* extract locations */ 2495 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc); 2496 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc); 2497 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2498 impl_attr_loc = l_ea; 2499 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2500 appl_attr_loc = l_ea; 2501 2502 /* Ecma 167 EAs */ 2503 if (udf_rw32(extattr->type) < 2048) { 2504 assert(impl_attr_loc == l_ea); 2505 assert(appl_attr_loc == l_ea); 2506 } 2507 2508 /* implementation use extended attributes */ 2509 if (udf_rw32(extattr->type) == 2048) { 2510 assert(appl_attr_loc == l_ea); 2511 2512 /* calculate and write extended attribute header checksum */ 2513 implext = (struct impl_extattr_entry *) extattr; 2514 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */ 2515 spos = (uint16_t *) implext->data; 2516 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext)); 2517 } 2518 2519 /* application use extended attributes */ 2520 assert(udf_rw32(extattr->type) != 65536); 2521 assert(appl_attr_loc == l_ea); 2522 2523 /* append the attribute at the end of the current space */ 2524 bpos = data + udf_rw32(*l_eap); 2525 a_l = udf_rw32(extattr->a_l); 2526 2527 /* update impl. attribute locations */ 2528 if (udf_rw32(extattr->type) < 2048) { 2529 impl_attr_loc = l_ea + a_l; 2530 appl_attr_loc = l_ea + a_l; 2531 } 2532 if (udf_rw32(extattr->type) == 2048) { 2533 appl_attr_loc = l_ea + a_l; 2534 } 2535 2536 /* copy and advance */ 2537 memcpy(bpos, extattr, a_l); 2538 l_ea += a_l; 2539 *l_eap = udf_rw32(l_ea); 2540 2541 /* do the `dance` again backwards */ 2542 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) { 2543 if (impl_attr_loc == l_ea) 2544 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT; 2545 if (appl_attr_loc == l_ea) 2546 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT; 2547 } 2548 2549 /* store offsets */ 2550 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc); 2551 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc); 2552 } 2553 2554 2555 /* --------------------------------------------------------------------- */ 2556 2557 static int 2558 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node) 2559 { 2560 struct udf_mount *ump; 2561 struct udf_logvol_info *lvinfo; 2562 struct impl_extattr_entry *implext; 2563 struct vatlvext_extattr_entry lvext; 2564 const char *extstr = "*UDF VAT LVExtension"; 2565 uint64_t vat_uniqueid; 2566 uint32_t offset, a_l; 2567 uint8_t *ea_start, *lvextpos; 2568 int error; 2569 2570 /* get mountpoint and lvinfo */ 2571 ump = vat_node->ump; 2572 lvinfo = ump->logvol_info; 2573 2574 /* get information from fe/efe */ 2575 if (vat_node->fe) { 2576 vat_uniqueid = udf_rw64(vat_node->fe->unique_id); 2577 ea_start = vat_node->fe->data; 2578 } else { 2579 vat_uniqueid = udf_rw64(vat_node->efe->unique_id); 2580 ea_start = vat_node->efe->data; 2581 } 2582 2583 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l); 2584 if (error) 2585 return error; 2586 2587 implext = (struct impl_extattr_entry *) (ea_start + offset); 2588 error = udf_impl_extattr_check(implext); 2589 if (error) 2590 return error; 2591 2592 /* paranoia */ 2593 if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) { 2594 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n")); 2595 return EINVAL; 2596 } 2597 2598 /* 2599 * we have found our "VAT LVExtension attribute. BUT due to a 2600 * bug in the specification it might not be word aligned so 2601 * copy first to avoid panics on some machines (!!) 2602 */ 2603 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n")); 2604 lvextpos = implext->data + udf_rw32(implext->iu_l); 2605 memcpy(&lvext, lvextpos, sizeof(lvext)); 2606 2607 /* check if it was updated the last time */ 2608 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) { 2609 lvinfo->num_files = lvext.num_files; 2610 lvinfo->num_directories = lvext.num_directories; 2611 udf_update_logvolname(ump, lvext.logvol_id); 2612 } else { 2613 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n")); 2614 /* replace VAT LVExt by free space EA */ 2615 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE); 2616 strcpy(implext->imp_id.id, "*UDF FreeEASpace"); 2617 udf_calc_impl_extattr_checksum(implext); 2618 } 2619 2620 return 0; 2621 } 2622 2623 2624 static int 2625 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node) 2626 { 2627 struct udf_mount *ump; 2628 struct udf_logvol_info *lvinfo; 2629 struct impl_extattr_entry *implext; 2630 struct vatlvext_extattr_entry lvext; 2631 const char *extstr = "*UDF VAT LVExtension"; 2632 uint64_t vat_uniqueid; 2633 uint32_t offset, a_l; 2634 uint8_t *ea_start, *lvextpos; 2635 int error; 2636 2637 /* get mountpoint and lvinfo */ 2638 ump = vat_node->ump; 2639 lvinfo = ump->logvol_info; 2640 2641 /* get information from fe/efe */ 2642 if (vat_node->fe) { 2643 vat_uniqueid = udf_rw64(vat_node->fe->unique_id); 2644 ea_start = vat_node->fe->data; 2645 } else { 2646 vat_uniqueid = udf_rw64(vat_node->efe->unique_id); 2647 ea_start = vat_node->efe->data; 2648 } 2649 2650 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l); 2651 if (error) 2652 return error; 2653 /* found, it existed */ 2654 2655 /* paranoia */ 2656 implext = (struct impl_extattr_entry *) (ea_start + offset); 2657 error = udf_impl_extattr_check(implext); 2658 if (error) { 2659 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n")); 2660 return error; 2661 } 2662 /* it is correct */ 2663 2664 /* 2665 * we have found our "VAT LVExtension attribute. BUT due to a 2666 * bug in the specification it might not be word aligned so 2667 * copy first to avoid panics on some machines (!!) 2668 */ 2669 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n")); 2670 lvextpos = implext->data + udf_rw32(implext->iu_l); 2671 2672 lvext.unique_id_chk = vat_uniqueid; 2673 lvext.num_files = lvinfo->num_files; 2674 lvext.num_directories = lvinfo->num_directories; 2675 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128); 2676 2677 memcpy(lvextpos, &lvext, sizeof(lvext)); 2678 2679 return 0; 2680 } 2681 2682 /* --------------------------------------------------------------------- */ 2683 2684 int 2685 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset) 2686 { 2687 struct udf_mount *ump = vat_node->ump; 2688 2689 if (offset + size > ump->vat_offset + ump->vat_entries * 4) 2690 return EINVAL; 2691 2692 memcpy(blob, ump->vat_table + offset, size); 2693 return 0; 2694 } 2695 2696 int 2697 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset) 2698 { 2699 struct udf_mount *ump = vat_node->ump; 2700 uint32_t offset_high; 2701 uint8_t *new_vat_table; 2702 2703 /* extent VAT allocation if needed */ 2704 offset_high = offset + size; 2705 if (offset_high >= ump->vat_table_alloc_len) { 2706 /* realloc */ 2707 new_vat_table = realloc(ump->vat_table, 2708 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE, 2709 M_UDFVOLD, M_WAITOK | M_CANFAIL); 2710 if (!new_vat_table) { 2711 printf("udf_vat_write: can't extent VAT, out of mem\n"); 2712 return ENOMEM; 2713 } 2714 ump->vat_table = new_vat_table; 2715 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE; 2716 } 2717 ump->vat_table_len = MAX(ump->vat_table_len, offset_high); 2718 2719 memcpy(ump->vat_table + offset, blob, size); 2720 return 0; 2721 } 2722 2723 /* --------------------------------------------------------------------- */ 2724 2725 /* TODO support previous VAT location writeout */ 2726 static int 2727 udf_update_vat_descriptor(struct udf_mount *ump) 2728 { 2729 struct udf_node *vat_node = ump->vat_node; 2730 struct udf_logvol_info *lvinfo = ump->logvol_info; 2731 struct icb_tag *icbtag; 2732 struct udf_oldvat_tail *oldvat_tl; 2733 struct udf_vat *vat; 2734 uint64_t unique_id; 2735 uint32_t lb_size; 2736 uint8_t *raw_vat; 2737 int filetype, error; 2738 2739 KASSERT(vat_node); 2740 KASSERT(lvinfo); 2741 lb_size = udf_rw32(ump->logical_vol->lb_size); 2742 2743 /* get our new unique_id */ 2744 unique_id = udf_advance_uniqueid(ump); 2745 2746 /* get information from fe/efe */ 2747 if (vat_node->fe) { 2748 icbtag = &vat_node->fe->icbtag; 2749 vat_node->fe->unique_id = udf_rw64(unique_id); 2750 } else { 2751 icbtag = &vat_node->efe->icbtag; 2752 vat_node->efe->unique_id = udf_rw64(unique_id); 2753 } 2754 2755 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ 2756 filetype = icbtag->file_type; 2757 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT)); 2758 2759 /* allocate piece to process head or tail of VAT file */ 2760 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK); 2761 2762 if (filetype == 0) { 2763 /* 2764 * Update "*UDF VAT LVExtension" extended attribute from the 2765 * lvint if present. 2766 */ 2767 udf_update_vat_extattr_from_lvid(vat_node); 2768 2769 /* setup identifying regid */ 2770 oldvat_tl = (struct udf_oldvat_tail *) raw_vat; 2771 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail)); 2772 2773 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl"); 2774 udf_add_udf_regid(ump, &oldvat_tl->id); 2775 oldvat_tl->prev_vat = udf_rw32(0xffffffff); 2776 2777 /* write out new tail of virtual allocation table file */ 2778 error = udf_vat_write(vat_node, raw_vat, 2779 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4); 2780 } else { 2781 /* compose the VAT2 header */ 2782 vat = (struct udf_vat *) raw_vat; 2783 memset(vat, 0, sizeof(struct udf_vat)); 2784 2785 vat->header_len = udf_rw16(152); /* as per spec */ 2786 vat->impl_use_len = udf_rw16(0); 2787 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128); 2788 vat->prev_vat = udf_rw32(0xffffffff); 2789 vat->num_files = lvinfo->num_files; 2790 vat->num_directories = lvinfo->num_directories; 2791 vat->min_udf_readver = lvinfo->min_udf_readver; 2792 vat->min_udf_writever = lvinfo->min_udf_writever; 2793 vat->max_udf_writever = lvinfo->max_udf_writever; 2794 2795 error = udf_vat_write(vat_node, raw_vat, 2796 sizeof(struct udf_vat), 0); 2797 } 2798 free(raw_vat, M_TEMP); 2799 2800 return error; /* success! */ 2801 } 2802 2803 2804 int 2805 udf_writeout_vat(struct udf_mount *ump) 2806 { 2807 struct udf_node *vat_node = ump->vat_node; 2808 int error; 2809 2810 KASSERT(vat_node); 2811 2812 DPRINTF(CALL, ("udf_writeout_vat\n")); 2813 2814 // mutex_enter(&ump->allocate_mutex); 2815 udf_update_vat_descriptor(ump); 2816 2817 /* write out the VAT contents ; TODO intelligent writing */ 2818 error = vn_rdwr(UIO_WRITE, vat_node->vnode, 2819 ump->vat_table, ump->vat_table_len, 0, 2820 UIO_SYSSPACE, 0, FSCRED, NULL, NULL); 2821 if (error) { 2822 printf("udf_writeout_vat: failed to write out VAT contents\n"); 2823 goto out; 2824 } 2825 2826 // mutex_exit(&ump->allocate_mutex); 2827 2828 error = vflushbuf(ump->vat_node->vnode, FSYNC_WAIT); 2829 if (error) 2830 goto out; 2831 error = VOP_FSYNC(ump->vat_node->vnode, 2832 FSCRED, FSYNC_WAIT, 0, 0); 2833 if (error) 2834 printf("udf_writeout_vat: error writing VAT node!\n"); 2835 out: 2836 2837 return error; 2838 } 2839 2840 /* --------------------------------------------------------------------- */ 2841 2842 /* 2843 * Read in relevant pieces of VAT file and check if its indeed a VAT file 2844 * descriptor. If OK, read in complete VAT file. 2845 */ 2846 2847 static int 2848 udf_check_for_vat(struct udf_node *vat_node) 2849 { 2850 struct udf_mount *ump; 2851 struct icb_tag *icbtag; 2852 struct timestamp *mtime; 2853 struct udf_vat *vat; 2854 struct udf_oldvat_tail *oldvat_tl; 2855 struct udf_logvol_info *lvinfo; 2856 uint64_t unique_id; 2857 uint32_t vat_length; 2858 uint32_t vat_offset, vat_entries, vat_table_alloc_len; 2859 uint32_t sector_size; 2860 uint32_t *raw_vat; 2861 uint8_t *vat_table; 2862 char *regid_name; 2863 int filetype; 2864 int error; 2865 2866 /* vat_length is really 64 bits though impossible */ 2867 2868 DPRINTF(VOLUMES, ("Checking for VAT\n")); 2869 if (!vat_node) 2870 return ENOENT; 2871 2872 /* get mount info */ 2873 ump = vat_node->ump; 2874 sector_size = udf_rw32(ump->logical_vol->lb_size); 2875 2876 /* check assertions */ 2877 assert(vat_node->fe || vat_node->efe); 2878 assert(ump->logvol_integrity); 2879 2880 /* set vnode type to regular file or we can't read from it! */ 2881 vat_node->vnode->v_type = VREG; 2882 2883 /* get information from fe/efe */ 2884 if (vat_node->fe) { 2885 vat_length = udf_rw64(vat_node->fe->inf_len); 2886 icbtag = &vat_node->fe->icbtag; 2887 mtime = &vat_node->fe->mtime; 2888 unique_id = udf_rw64(vat_node->fe->unique_id); 2889 } else { 2890 vat_length = udf_rw64(vat_node->efe->inf_len); 2891 icbtag = &vat_node->efe->icbtag; 2892 mtime = &vat_node->efe->mtime; 2893 unique_id = udf_rw64(vat_node->efe->unique_id); 2894 } 2895 2896 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ 2897 filetype = icbtag->file_type; 2898 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT)) 2899 return ENOENT; 2900 2901 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length)); 2902 2903 vat_table_alloc_len = 2904 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE) 2905 * UDF_VAT_CHUNKSIZE; 2906 2907 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD, 2908 M_CANFAIL | M_WAITOK); 2909 if (vat_table == NULL) { 2910 printf("allocation of %d bytes failed for VAT\n", 2911 vat_table_alloc_len); 2912 return ENOMEM; 2913 } 2914 2915 /* allocate piece to read in head or tail of VAT file */ 2916 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK); 2917 2918 /* 2919 * check contents of the file if its the old 1.50 VAT table format. 2920 * Its notoriously broken and allthough some implementations support an 2921 * extention as defined in the UDF 1.50 errata document, its doubtfull 2922 * to be useable since a lot of implementations don't maintain it. 2923 */ 2924 lvinfo = ump->logvol_info; 2925 2926 if (filetype == 0) { 2927 /* definition */ 2928 vat_offset = 0; 2929 vat_entries = (vat_length-36)/4; 2930 2931 /* read in tail of virtual allocation table file */ 2932 error = vn_rdwr(UIO_READ, vat_node->vnode, 2933 (uint8_t *) raw_vat, 2934 sizeof(struct udf_oldvat_tail), 2935 vat_entries * 4, 2936 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2937 NULL, NULL); 2938 if (error) 2939 goto out; 2940 2941 /* check 1.50 VAT */ 2942 oldvat_tl = (struct udf_oldvat_tail *) raw_vat; 2943 regid_name = (char *) oldvat_tl->id.id; 2944 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22); 2945 if (error) { 2946 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n")); 2947 error = ENOENT; 2948 goto out; 2949 } 2950 2951 /* 2952 * update LVID from "*UDF VAT LVExtension" extended attribute 2953 * if present. 2954 */ 2955 udf_update_lvid_from_vat_extattr(vat_node); 2956 } else { 2957 /* read in head of virtual allocation table file */ 2958 error = vn_rdwr(UIO_READ, vat_node->vnode, 2959 (uint8_t *) raw_vat, 2960 sizeof(struct udf_vat), 0, 2961 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2962 NULL, NULL); 2963 if (error) 2964 goto out; 2965 2966 /* definition */ 2967 vat = (struct udf_vat *) raw_vat; 2968 vat_offset = vat->header_len; 2969 vat_entries = (vat_length - vat_offset)/4; 2970 2971 assert(lvinfo); 2972 lvinfo->num_files = vat->num_files; 2973 lvinfo->num_directories = vat->num_directories; 2974 lvinfo->min_udf_readver = vat->min_udf_readver; 2975 lvinfo->min_udf_writever = vat->min_udf_writever; 2976 lvinfo->max_udf_writever = vat->max_udf_writever; 2977 2978 udf_update_logvolname(ump, vat->logvol_id); 2979 } 2980 2981 /* read in complete VAT file */ 2982 error = vn_rdwr(UIO_READ, vat_node->vnode, 2983 vat_table, 2984 vat_length, 0, 2985 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2986 NULL, NULL); 2987 if (error) 2988 printf("read in of complete VAT file failed (error %d)\n", 2989 error); 2990 if (error) 2991 goto out; 2992 2993 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n")); 2994 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id); 2995 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); 2996 ump->logvol_integrity->time = *mtime; 2997 2998 ump->vat_table_len = vat_length; 2999 ump->vat_table_alloc_len = vat_table_alloc_len; 3000 ump->vat_table = vat_table; 3001 ump->vat_offset = vat_offset; 3002 ump->vat_entries = vat_entries; 3003 ump->vat_last_free_lb = 0; /* start at beginning */ 3004 3005 out: 3006 if (error) { 3007 if (vat_table) 3008 free(vat_table, M_UDFVOLD); 3009 } 3010 free(raw_vat, M_TEMP); 3011 3012 return error; 3013 } 3014 3015 /* --------------------------------------------------------------------- */ 3016 3017 static int 3018 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping) 3019 { 3020 struct udf_node *vat_node; 3021 struct long_ad icb_loc; 3022 uint32_t early_vat_loc, vat_loc; 3023 int error; 3024 3025 /* mapping info not needed */ 3026 mapping = mapping; 3027 3028 vat_loc = ump->last_possible_vat_location; 3029 early_vat_loc = vat_loc - 256; /* 8 blocks of 32 sectors */ 3030 3031 DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n", 3032 vat_loc, early_vat_loc)); 3033 early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location); 3034 3035 DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n", 3036 vat_loc, early_vat_loc)); 3037 3038 /* start looking from the end of the range */ 3039 do { 3040 DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc)); 3041 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART); 3042 icb_loc.loc.lb_num = udf_rw32(vat_loc); 3043 3044 error = udf_get_node(ump, &icb_loc, &vat_node); 3045 if (!error) { 3046 error = udf_check_for_vat(vat_node); 3047 DPRINTFIF(VOLUMES, !error, 3048 ("VAT accepted at %d\n", vat_loc)); 3049 if (!error) 3050 break; 3051 } 3052 if (vat_node) { 3053 vput(vat_node->vnode); 3054 vat_node = NULL; 3055 } 3056 vat_loc--; /* walk backwards */ 3057 } while (vat_loc >= early_vat_loc); 3058 3059 /* keep our VAT node around */ 3060 if (vat_node) { 3061 UDF_SET_SYSTEMFILE(vat_node->vnode); 3062 ump->vat_node = vat_node; 3063 } 3064 3065 return error; 3066 } 3067 3068 /* --------------------------------------------------------------------- */ 3069 3070 static int 3071 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping) 3072 { 3073 union dscrptr *dscr; 3074 struct part_map_spare *pms = &mapping->pms; 3075 uint32_t lb_num; 3076 int spar, error; 3077 3078 /* 3079 * The partition mapping passed on to us specifies the information we 3080 * need to locate and initialise the sparable partition mapping 3081 * information we need. 3082 */ 3083 3084 DPRINTF(VOLUMES, ("Read sparable table\n")); 3085 ump->sparable_packet_size = udf_rw16(pms->packet_len); 3086 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */ 3087 3088 for (spar = 0; spar < pms->n_st; spar++) { 3089 lb_num = pms->st_loc[spar]; 3090 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num)); 3091 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 3092 if (!error && dscr) { 3093 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) { 3094 if (ump->sparing_table) 3095 free(ump->sparing_table, M_UDFVOLD); 3096 ump->sparing_table = &dscr->spt; 3097 dscr = NULL; 3098 DPRINTF(VOLUMES, 3099 ("Sparing table accepted (%d entries)\n", 3100 udf_rw16(ump->sparing_table->rt_l))); 3101 break; /* we're done */ 3102 } 3103 } 3104 if (dscr) 3105 free(dscr, M_UDFVOLD); 3106 } 3107 3108 if (ump->sparing_table) 3109 return 0; 3110 3111 return ENOENT; 3112 } 3113 3114 /* --------------------------------------------------------------------- */ 3115 3116 static int 3117 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping) 3118 { 3119 struct part_map_meta *pmm = &mapping->pmm; 3120 struct long_ad icb_loc; 3121 struct vnode *vp; 3122 uint16_t raw_phys_part, phys_part; 3123 int error; 3124 3125 /* 3126 * BUGALERT: some rogue implementations use random physical 3127 * partition numbers to break other implementations so lookup 3128 * the number. 3129 */ 3130 3131 /* extract our allocation parameters set up on format */ 3132 ump->metadata_alloc_unit_size = udf_rw32(mapping->pmm.alloc_unit_size); 3133 ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size); 3134 ump->metadata_flags = mapping->pmm.flags; 3135 3136 DPRINTF(VOLUMES, ("Reading in Metadata files\n")); 3137 raw_phys_part = udf_rw16(pmm->part_num); 3138 phys_part = udf_find_raw_phys(ump, raw_phys_part); 3139 3140 icb_loc.loc.part_num = udf_rw16(phys_part); 3141 3142 DPRINTF(VOLUMES, ("Metadata file\n")); 3143 icb_loc.loc.lb_num = pmm->meta_file_lbn; 3144 error = udf_get_node(ump, &icb_loc, &ump->metadata_node); 3145 if (ump->metadata_node) { 3146 vp = ump->metadata_node->vnode; 3147 UDF_SET_SYSTEMFILE(vp); 3148 } 3149 3150 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn; 3151 if (icb_loc.loc.lb_num != -1) { 3152 DPRINTF(VOLUMES, ("Metadata copy file\n")); 3153 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node); 3154 if (ump->metadatamirror_node) { 3155 vp = ump->metadatamirror_node->vnode; 3156 UDF_SET_SYSTEMFILE(vp); 3157 } 3158 } 3159 3160 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn; 3161 if (icb_loc.loc.lb_num != -1) { 3162 DPRINTF(VOLUMES, ("Metadata bitmap file\n")); 3163 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node); 3164 if (ump->metadatabitmap_node) { 3165 vp = ump->metadatabitmap_node->vnode; 3166 UDF_SET_SYSTEMFILE(vp); 3167 } 3168 } 3169 3170 /* if we're mounting read-only we relax the requirements */ 3171 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) { 3172 error = EFAULT; 3173 if (ump->metadata_node) 3174 error = 0; 3175 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) { 3176 printf( "udf mount: Metadata file not readable, " 3177 "substituting Metadata copy file\n"); 3178 ump->metadata_node = ump->metadatamirror_node; 3179 ump->metadatamirror_node = NULL; 3180 error = 0; 3181 } 3182 } else { 3183 /* mounting read/write */ 3184 /* XXX DISABLED! metadata writing is not working yet XXX */ 3185 if (error) 3186 error = EROFS; 3187 } 3188 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read " 3189 "metadata files\n")); 3190 return error; 3191 } 3192 3193 /* --------------------------------------------------------------------- */ 3194 3195 int 3196 udf_read_vds_tables(struct udf_mount *ump) 3197 { 3198 union udf_pmap *mapping; 3199 /* struct udf_args *args = &ump->mount_args; */ 3200 uint32_t n_pm; 3201 uint32_t log_part; 3202 uint8_t *pmap_pos; 3203 int pmap_size; 3204 int error; 3205 3206 /* Iterate (again) over the part mappings for locations */ 3207 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 3208 pmap_pos = ump->logical_vol->maps; 3209 3210 for (log_part = 0; log_part < n_pm; log_part++) { 3211 mapping = (union udf_pmap *) pmap_pos; 3212 switch (ump->vtop_tp[log_part]) { 3213 case UDF_VTOP_TYPE_PHYS : 3214 /* nothing */ 3215 break; 3216 case UDF_VTOP_TYPE_VIRT : 3217 /* search and load VAT */ 3218 error = udf_search_vat(ump, mapping); 3219 if (error) 3220 return ENOENT; 3221 break; 3222 case UDF_VTOP_TYPE_SPARABLE : 3223 /* load one of the sparable tables */ 3224 error = udf_read_sparables(ump, mapping); 3225 if (error) 3226 return ENOENT; 3227 break; 3228 case UDF_VTOP_TYPE_META : 3229 /* load the associated file descriptors */ 3230 error = udf_read_metadata_nodes(ump, mapping); 3231 if (error) 3232 return ENOENT; 3233 break; 3234 default: 3235 break; 3236 } 3237 pmap_size = pmap_pos[1]; 3238 pmap_pos += pmap_size; 3239 } 3240 3241 /* read in and check unallocated and free space info if writing */ 3242 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) { 3243 error = udf_read_physical_partition_spacetables(ump); 3244 if (error) 3245 return error; 3246 3247 /* also read in metadata partition spacebitmap if defined */ 3248 error = udf_read_metadata_partition_spacetable(ump); 3249 return error; 3250 } 3251 3252 return 0; 3253 } 3254 3255 /* --------------------------------------------------------------------- */ 3256 3257 int 3258 udf_read_rootdirs(struct udf_mount *ump) 3259 { 3260 union dscrptr *dscr; 3261 /* struct udf_args *args = &ump->mount_args; */ 3262 struct udf_node *rootdir_node, *streamdir_node; 3263 struct long_ad fsd_loc, *dir_loc; 3264 uint32_t lb_num, dummy; 3265 uint32_t fsd_len; 3266 int dscr_type; 3267 int error; 3268 3269 /* TODO implement FSD reading in separate function like integrity? */ 3270 /* get fileset descriptor sequence */ 3271 fsd_loc = ump->logical_vol->lv_fsd_loc; 3272 fsd_len = udf_rw32(fsd_loc.len); 3273 3274 dscr = NULL; 3275 error = 0; 3276 while (fsd_len || error) { 3277 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len)); 3278 /* translate fsd_loc to lb_num */ 3279 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy); 3280 if (error) 3281 break; 3282 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num)); 3283 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 3284 /* end markers */ 3285 if (error || (dscr == NULL)) 3286 break; 3287 3288 /* analyse */ 3289 dscr_type = udf_rw16(dscr->tag.id); 3290 if (dscr_type == TAGID_TERM) 3291 break; 3292 if (dscr_type != TAGID_FSD) { 3293 free(dscr, M_UDFVOLD); 3294 return ENOENT; 3295 } 3296 3297 /* 3298 * TODO check for multiple fileset descriptors; its only 3299 * picking the last now. Also check for FSD 3300 * correctness/interpretability 3301 */ 3302 3303 /* update */ 3304 if (ump->fileset_desc) { 3305 free(ump->fileset_desc, M_UDFVOLD); 3306 } 3307 ump->fileset_desc = &dscr->fsd; 3308 dscr = NULL; 3309 3310 /* continue to the next fsd */ 3311 fsd_len -= ump->discinfo.sector_size; 3312 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1); 3313 3314 /* follow up to fsd->next_ex (long_ad) if its not null */ 3315 if (udf_rw32(ump->fileset_desc->next_ex.len)) { 3316 DPRINTF(VOLUMES, ("follow up FSD extent\n")); 3317 fsd_loc = ump->fileset_desc->next_ex; 3318 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len); 3319 } 3320 } 3321 if (dscr) 3322 free(dscr, M_UDFVOLD); 3323 3324 /* there has to be one */ 3325 if (ump->fileset_desc == NULL) 3326 return ENOENT; 3327 3328 DPRINTF(VOLUMES, ("FSD read in fine\n")); 3329 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n")); 3330 udf_update_logvolname(ump, ump->logical_vol->logvol_id); 3331 3332 /* 3333 * Now the FSD is known, read in the rootdirectory and if one exists, 3334 * the system stream dir. Some files in the system streamdir are not 3335 * wanted in this implementation since they are not maintained. If 3336 * writing is enabled we'll delete these files if they exist. 3337 */ 3338 3339 rootdir_node = streamdir_node = NULL; 3340 dir_loc = NULL; 3341 3342 /* try to read in the rootdir */ 3343 dir_loc = &ump->fileset_desc->rootdir_icb; 3344 error = udf_get_node(ump, dir_loc, &rootdir_node); 3345 if (error) 3346 return ENOENT; 3347 3348 /* aparently it read in fine */ 3349 3350 /* 3351 * Try the system stream directory; not very likely in the ones we 3352 * test, but for completeness. 3353 */ 3354 dir_loc = &ump->fileset_desc->streamdir_icb; 3355 if (udf_rw32(dir_loc->len)) { 3356 printf("udf_read_rootdirs: streamdir defined "); 3357 error = udf_get_node(ump, dir_loc, &streamdir_node); 3358 if (error) { 3359 printf("but error in streamdir reading\n"); 3360 } else { 3361 printf("but ignored\n"); 3362 /* 3363 * TODO process streamdir `baddies' i.e. files we dont 3364 * want if R/W 3365 */ 3366 } 3367 } 3368 3369 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n")); 3370 3371 /* release the vnodes again; they'll be auto-recycled later */ 3372 if (streamdir_node) { 3373 vput(streamdir_node->vnode); 3374 } 3375 if (rootdir_node) { 3376 vput(rootdir_node->vnode); 3377 } 3378 3379 return 0; 3380 } 3381 3382 /* --------------------------------------------------------------------- */ 3383 3384 /* To make absolutely sure we are NOT returning zero, add one :) */ 3385 3386 long 3387 udf_get_node_id(const struct long_ad *icbptr) 3388 { 3389 /* ought to be enough since each mountpoint has its own chain */ 3390 return udf_rw32(icbptr->loc.lb_num) + 1; 3391 } 3392 3393 3394 int 3395 udf_compare_icb(const struct long_ad *a, const struct long_ad *b) 3396 { 3397 if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num)) 3398 return -1; 3399 if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num)) 3400 return 1; 3401 3402 if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num)) 3403 return -1; 3404 if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num)) 3405 return 1; 3406 3407 return 0; 3408 } 3409 3410 3411 static int 3412 udf_compare_rbnodes(void *ctx, const void *a, const void *b) 3413 { 3414 const struct udf_node *a_node = a; 3415 const struct udf_node *b_node = b; 3416 3417 return udf_compare_icb(&a_node->loc, &b_node->loc); 3418 } 3419 3420 3421 static int 3422 udf_compare_rbnode_icb(void *ctx, const void *a, const void *key) 3423 { 3424 const struct udf_node *a_node = a; 3425 const struct long_ad * const icb = key; 3426 3427 return udf_compare_icb(&a_node->loc, icb); 3428 } 3429 3430 3431 static const rb_tree_ops_t udf_node_rbtree_ops = { 3432 .rbto_compare_nodes = udf_compare_rbnodes, 3433 .rbto_compare_key = udf_compare_rbnode_icb, 3434 .rbto_node_offset = offsetof(struct udf_node, rbnode), 3435 .rbto_context = NULL 3436 }; 3437 3438 3439 void 3440 udf_init_nodes_tree(struct udf_mount *ump) 3441 { 3442 3443 rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops); 3444 } 3445 3446 3447 /* --------------------------------------------------------------------- */ 3448 3449 static int 3450 udf_validate_session_start(struct udf_mount *ump) 3451 { 3452 struct mmc_trackinfo trackinfo; 3453 struct vrs_desc *vrs; 3454 uint32_t tracknr, sessionnr, sector, sector_size; 3455 uint32_t iso9660_vrs, write_track_start; 3456 uint8_t *buffer, *blank, *pos; 3457 int blks, max_sectors, vrs_len; 3458 int error; 3459 3460 /* disc appendable? */ 3461 if (ump->discinfo.disc_state == MMC_STATE_FULL) 3462 return EROFS; 3463 3464 /* already written here? if so, there should be an ISO VDS */ 3465 if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE) 3466 return 0; 3467 3468 /* 3469 * Check if the first track of the session is blank and if so, copy or 3470 * create a dummy ISO descriptor so the disc is valid again. 3471 */ 3472 3473 tracknr = ump->discinfo.first_track_last_session; 3474 memset(&trackinfo, 0, sizeof(struct mmc_trackinfo)); 3475 trackinfo.tracknr = tracknr; 3476 error = udf_update_trackinfo(ump, &trackinfo); 3477 if (error) 3478 return error; 3479 3480 udf_dump_trackinfo(&trackinfo); 3481 KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED)); 3482 KASSERT(trackinfo.sessionnr > 1); 3483 3484 KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID); 3485 write_track_start = trackinfo.next_writable; 3486 3487 /* we have to copy the ISO VRS from a former session */ 3488 DPRINTF(VOLUMES, ("validate_session_start: " 3489 "blank or reserved track, copying VRS\n")); 3490 3491 /* sessionnr should be the session we're mounting */ 3492 sessionnr = ump->mount_args.sessionnr; 3493 3494 /* start at the first track */ 3495 tracknr = ump->discinfo.first_track; 3496 while (tracknr <= ump->discinfo.num_tracks) { 3497 trackinfo.tracknr = tracknr; 3498 error = udf_update_trackinfo(ump, &trackinfo); 3499 if (error) { 3500 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n")); 3501 return error; 3502 } 3503 if (trackinfo.sessionnr == sessionnr) 3504 break; 3505 tracknr++; 3506 } 3507 if (trackinfo.sessionnr != sessionnr) { 3508 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n")); 3509 return ENOENT; 3510 } 3511 3512 DPRINTF(VOLUMES, ("found possible former ISO VRS at\n")); 3513 udf_dump_trackinfo(&trackinfo); 3514 3515 /* 3516 * location of iso9660 vrs is defined as first sector AFTER 32kb, 3517 * minimum ISO `sector size' 2048 3518 */ 3519 sector_size = ump->discinfo.sector_size; 3520 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size) 3521 + trackinfo.track_start; 3522 3523 buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK); 3524 max_sectors = UDF_ISO_VRS_SIZE / sector_size; 3525 blks = MAX(1, 2048 / sector_size); 3526 3527 error = 0; 3528 for (sector = 0; sector < max_sectors; sector += blks) { 3529 pos = buffer + sector * sector_size; 3530 error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos, 3531 iso9660_vrs + sector, blks); 3532 if (error) 3533 break; 3534 /* check this ISO descriptor */ 3535 vrs = (struct vrs_desc *) pos; 3536 DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier)); 3537 if (strncmp(vrs->identifier, VRS_CD001, 5) == 0) 3538 continue; 3539 if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0) 3540 continue; 3541 if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0) 3542 continue; 3543 if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0) 3544 continue; 3545 if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0) 3546 continue; 3547 if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0) 3548 break; 3549 /* now what? for now, end of sequence */ 3550 break; 3551 } 3552 vrs_len = sector + blks; 3553 if (error) { 3554 DPRINTF(VOLUMES, ("error reading old ISO VRS\n")); 3555 DPRINTF(VOLUMES, ("creating minimal ISO VRS\n")); 3556 3557 memset(buffer, 0, UDF_ISO_VRS_SIZE); 3558 3559 vrs = (struct vrs_desc *) (buffer); 3560 vrs->struct_type = 0; 3561 vrs->version = 1; 3562 memcpy(vrs->identifier,VRS_BEA01, 5); 3563 3564 vrs = (struct vrs_desc *) (buffer + 2048); 3565 vrs->struct_type = 0; 3566 vrs->version = 1; 3567 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) { 3568 memcpy(vrs->identifier,VRS_NSR02, 5); 3569 } else { 3570 memcpy(vrs->identifier,VRS_NSR03, 5); 3571 } 3572 3573 vrs = (struct vrs_desc *) (buffer + 4096); 3574 vrs->struct_type = 0; 3575 vrs->version = 1; 3576 memcpy(vrs->identifier, VRS_TEA01, 5); 3577 3578 vrs_len = 3*blks; 3579 } 3580 3581 DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len)); 3582 3583 /* 3584 * location of iso9660 vrs is defined as first sector AFTER 32kb, 3585 * minimum ISO `sector size' 2048 3586 */ 3587 sector_size = ump->discinfo.sector_size; 3588 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size) 3589 + write_track_start; 3590 3591 /* write out 32 kb */ 3592 blank = malloc(sector_size, M_TEMP, M_WAITOK); 3593 memset(blank, 0, sector_size); 3594 error = 0; 3595 for (sector = write_track_start; sector < iso9660_vrs; sector ++) { 3596 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, 3597 blank, sector, 1); 3598 if (error) 3599 break; 3600 } 3601 if (!error) { 3602 /* write out our ISO VRS */ 3603 KASSERT(sector == iso9660_vrs); 3604 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer, 3605 sector, vrs_len); 3606 sector += vrs_len; 3607 } 3608 if (!error) { 3609 /* fill upto the first anchor at S+256 */ 3610 for (; sector < write_track_start+256; sector++) { 3611 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, 3612 blank, sector, 1); 3613 if (error) 3614 break; 3615 } 3616 } 3617 if (!error) { 3618 /* write out anchor; write at ABSOLUTE place! */ 3619 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE, 3620 (union dscrptr *) ump->anchors[0], sector, sector); 3621 if (error) 3622 printf("writeout of anchor failed!\n"); 3623 } 3624 3625 free(blank, M_TEMP); 3626 free(buffer, M_TEMP); 3627 3628 if (error) 3629 printf("udf_open_session: error writing iso vrs! : " 3630 "leaving disc in compromised state!\n"); 3631 3632 /* synchronise device caches */ 3633 (void) udf_synchronise_caches(ump); 3634 3635 return error; 3636 } 3637 3638 3639 int 3640 udf_open_logvol(struct udf_mount *ump) 3641 { 3642 int logvol_integrity; 3643 int error; 3644 3645 /* already/still open? */ 3646 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 3647 if (logvol_integrity == UDF_INTEGRITY_OPEN) 3648 return 0; 3649 3650 /* can we open it ? */ 3651 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 3652 return EROFS; 3653 3654 /* setup write parameters */ 3655 DPRINTF(VOLUMES, ("Setting up write parameters\n")); 3656 if ((error = udf_setup_writeparams(ump)) != 0) 3657 return error; 3658 3659 /* determine data and metadata tracks (most likely same) */ 3660 error = udf_search_writing_tracks(ump); 3661 if (error) { 3662 /* most likely lack of space */ 3663 printf("udf_open_logvol: error searching writing tracks\n"); 3664 return EROFS; 3665 } 3666 3667 /* writeout/update lvint on disc or only in memory */ 3668 DPRINTF(VOLUMES, ("Opening logical volume\n")); 3669 if (ump->lvopen & UDF_OPEN_SESSION) { 3670 /* TODO optional track reservation opening */ 3671 error = udf_validate_session_start(ump); 3672 if (error) 3673 return error; 3674 3675 /* determine data and metadata tracks again */ 3676 error = udf_search_writing_tracks(ump); 3677 } 3678 3679 /* mark it open */ 3680 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN); 3681 3682 /* do we need to write it out? */ 3683 if (ump->lvopen & UDF_WRITE_LVINT) { 3684 error = udf_writeout_lvint(ump, ump->lvopen); 3685 /* if we couldn't write it mark it closed again */ 3686 if (error) { 3687 ump->logvol_integrity->integrity_type = 3688 udf_rw32(UDF_INTEGRITY_CLOSED); 3689 return error; 3690 } 3691 } 3692 3693 return 0; 3694 } 3695 3696 3697 int 3698 udf_close_logvol(struct udf_mount *ump, int mntflags) 3699 { 3700 struct vnode *devvp = ump->devvp; 3701 struct mmc_op mmc_op; 3702 int logvol_integrity; 3703 int error = 0, error1 = 0, error2 = 0; 3704 int tracknr; 3705 int nvats, n, nok; 3706 3707 /* already/still closed? */ 3708 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 3709 if (logvol_integrity == UDF_INTEGRITY_CLOSED) 3710 return 0; 3711 3712 /* writeout/update lvint or write out VAT */ 3713 DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n")); 3714 #ifdef DIAGNOSTIC 3715 if (ump->lvclose & UDF_CLOSE_SESSION) 3716 KASSERT(ump->lvclose & UDF_WRITE_VAT); 3717 #endif 3718 3719 if (ump->lvclose & UDF_WRITE_VAT) { 3720 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n")); 3721 3722 /* write out the VAT data and all its descriptors */ 3723 DPRINTF(VOLUMES, ("writeout vat_node\n")); 3724 udf_writeout_vat(ump); 3725 (void) vflushbuf(ump->vat_node->vnode, FSYNC_WAIT); 3726 3727 (void) VOP_FSYNC(ump->vat_node->vnode, 3728 FSCRED, FSYNC_WAIT, 0, 0); 3729 3730 if (ump->lvclose & UDF_CLOSE_SESSION) { 3731 DPRINTF(VOLUMES, ("udf_close_logvol: closing session " 3732 "as requested\n")); 3733 } 3734 3735 /* at least two DVD packets and 3 CD-R packets */ 3736 nvats = 32; 3737 3738 #if notyet 3739 /* 3740 * TODO calculate the available space and if the disc is 3741 * allmost full, write out till end-256-1 with banks, write 3742 * AVDP and fill up with VATs, then close session and close 3743 * disc. 3744 */ 3745 if (ump->lvclose & UDF_FINALISE_DISC) { 3746 error = udf_write_phys_dscr_sync(ump, NULL, 3747 UDF_C_FLOAT_DSCR, 3748 (union dscrptr *) ump->anchors[0], 3749 0, 0); 3750 if (error) 3751 printf("writeout of anchor failed!\n"); 3752 3753 /* pad space with VAT ICBs */ 3754 nvats = 256; 3755 } 3756 #endif 3757 3758 /* write out a number of VAT nodes */ 3759 nok = 0; 3760 for (n = 0; n < nvats; n++) { 3761 /* will now only write last FE/EFE */ 3762 ump->vat_node->i_flags |= IN_MODIFIED; 3763 error = VOP_FSYNC(ump->vat_node->vnode, 3764 FSCRED, FSYNC_WAIT, 0, 0); 3765 if (!error) 3766 nok++; 3767 } 3768 if (nok < 14) { 3769 /* arbitrary; but at least one or two CD frames */ 3770 printf("writeout of at least 14 VATs failed\n"); 3771 return error; 3772 } 3773 } 3774 3775 /* NOTE the disc is in a (minimal) valid state now; no erroring out */ 3776 3777 /* finish closing of session */ 3778 if (ump->lvclose & UDF_CLOSE_SESSION) { 3779 error = udf_validate_session_start(ump); 3780 if (error) 3781 return error; 3782 3783 (void) udf_synchronise_caches(ump); 3784 3785 /* close all associated tracks */ 3786 tracknr = ump->discinfo.first_track_last_session; 3787 error = 0; 3788 while (tracknr <= ump->discinfo.last_track_last_session) { 3789 DPRINTF(VOLUMES, ("\tclosing possible open " 3790 "track %d\n", tracknr)); 3791 memset(&mmc_op, 0, sizeof(mmc_op)); 3792 mmc_op.operation = MMC_OP_CLOSETRACK; 3793 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 3794 mmc_op.tracknr = tracknr; 3795 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, 3796 FKIOCTL, NOCRED); 3797 if (error) 3798 printf("udf_close_logvol: closing of " 3799 "track %d failed\n", tracknr); 3800 tracknr ++; 3801 } 3802 if (!error) { 3803 DPRINTF(VOLUMES, ("closing session\n")); 3804 memset(&mmc_op, 0, sizeof(mmc_op)); 3805 mmc_op.operation = MMC_OP_CLOSESESSION; 3806 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 3807 mmc_op.sessionnr = ump->discinfo.num_sessions; 3808 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, 3809 FKIOCTL, NOCRED); 3810 if (error) 3811 printf("udf_close_logvol: closing of session" 3812 "failed\n"); 3813 } 3814 if (!error) 3815 ump->lvopen |= UDF_OPEN_SESSION; 3816 if (error) { 3817 printf("udf_close_logvol: leaving disc as it is\n"); 3818 ump->lvclose &= ~UDF_FINALISE_DISC; 3819 } 3820 } 3821 3822 if (ump->lvclose & UDF_FINALISE_DISC) { 3823 memset(&mmc_op, 0, sizeof(mmc_op)); 3824 mmc_op.operation = MMC_OP_FINALISEDISC; 3825 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 3826 mmc_op.sessionnr = ump->discinfo.num_sessions; 3827 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, 3828 FKIOCTL, NOCRED); 3829 if (error) 3830 printf("udf_close_logvol: finalising disc" 3831 "failed\n"); 3832 } 3833 3834 /* write out partition bitmaps if requested */ 3835 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) { 3836 /* sync writeout metadata spacetable if existing */ 3837 error1 = udf_write_metadata_partition_spacetable(ump, true); 3838 if (error1) 3839 printf( "udf_close_logvol: writeout of metadata space " 3840 "bitmap failed\n"); 3841 3842 /* sync writeout partition spacetables */ 3843 error2 = udf_write_physical_partition_spacetables(ump, true); 3844 if (error2) 3845 printf( "udf_close_logvol: writeout of space tables " 3846 "failed\n"); 3847 3848 if (error1 || error2) 3849 return (error1 | error2); 3850 3851 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS; 3852 } 3853 3854 /* write out metadata partition nodes if requested */ 3855 if (ump->lvclose & UDF_WRITE_METAPART_NODES) { 3856 /* sync writeout metadata descriptor node */ 3857 error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT); 3858 if (error1) 3859 printf( "udf_close_logvol: writeout of metadata partition " 3860 "node failed\n"); 3861 3862 /* duplicate metadata partition descriptor if needed */ 3863 udf_synchronise_metadatamirror_node(ump); 3864 3865 /* sync writeout metadatamirror descriptor node */ 3866 error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT); 3867 if (error2) 3868 printf( "udf_close_logvol: writeout of metadata partition " 3869 "mirror node failed\n"); 3870 3871 if (error1 || error2) 3872 return (error1 | error2); 3873 3874 ump->lvclose &= ~UDF_WRITE_METAPART_NODES; 3875 } 3876 3877 /* mark it closed */ 3878 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); 3879 3880 /* do we need to write out the logical volume integrity? */ 3881 if (ump->lvclose & UDF_WRITE_LVINT) 3882 error = udf_writeout_lvint(ump, ump->lvopen); 3883 if (error) { 3884 /* HELP now what? mark it open again for now */ 3885 ump->logvol_integrity->integrity_type = 3886 udf_rw32(UDF_INTEGRITY_OPEN); 3887 return error; 3888 } 3889 3890 (void) udf_synchronise_caches(ump); 3891 3892 return 0; 3893 } 3894 3895 /* --------------------------------------------------------------------- */ 3896 3897 /* 3898 * Genfs interfacing 3899 * 3900 * static const struct genfs_ops udf_genfsops = { 3901 * .gop_size = genfs_size, 3902 * size of transfers 3903 * .gop_alloc = udf_gop_alloc, 3904 * allocate len bytes at offset 3905 * .gop_write = genfs_gop_write, 3906 * putpages interface code 3907 * .gop_markupdate = udf_gop_markupdate, 3908 * set update/modify flags etc. 3909 * } 3910 */ 3911 3912 /* 3913 * Genfs interface. These four functions are the only ones defined though not 3914 * documented... great.... 3915 */ 3916 3917 /* 3918 * Called for allocating an extent of the file either by VOP_WRITE() or by 3919 * genfs filling up gaps. 3920 */ 3921 static int 3922 udf_gop_alloc(struct vnode *vp, off_t off, 3923 off_t len, int flags, kauth_cred_t cred) 3924 { 3925 struct udf_node *udf_node = VTOI(vp); 3926 struct udf_mount *ump = udf_node->ump; 3927 uint64_t lb_start, lb_end; 3928 uint32_t lb_size, num_lb; 3929 int udf_c_type, vpart_num, can_fail; 3930 int error; 3931 3932 DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n", 3933 off, len, flags? "SYNC":"NONE")); 3934 3935 /* 3936 * request the pages of our vnode and see how many pages will need to 3937 * be allocated and reserve that space 3938 */ 3939 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); 3940 lb_start = off / lb_size; 3941 lb_end = (off + len + lb_size -1) / lb_size; 3942 num_lb = lb_end - lb_start; 3943 3944 udf_c_type = udf_get_c_type(udf_node); 3945 vpart_num = udf_get_record_vpart(ump, udf_c_type); 3946 3947 /* all requests can fail */ 3948 can_fail = true; 3949 3950 /* fid's (directories) can't fail */ 3951 if (udf_c_type == UDF_C_FIDS) 3952 can_fail = false; 3953 3954 /* system files can't fail */ 3955 if (vp->v_vflag & VV_SYSTEM) 3956 can_fail = false; 3957 3958 error = udf_reserve_space(ump, udf_node, udf_c_type, 3959 vpart_num, num_lb, can_fail); 3960 3961 DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n", 3962 lb_start, lb_end, num_lb)); 3963 3964 return error; 3965 } 3966 3967 3968 /* 3969 * callback from genfs to update our flags 3970 */ 3971 static void 3972 udf_gop_markupdate(struct vnode *vp, int flags) 3973 { 3974 struct udf_node *udf_node = VTOI(vp); 3975 u_long mask = 0; 3976 3977 if ((flags & GOP_UPDATE_ACCESSED) != 0) { 3978 mask = IN_ACCESS; 3979 } 3980 if ((flags & GOP_UPDATE_MODIFIED) != 0) { 3981 if (vp->v_type == VREG) { 3982 mask |= IN_CHANGE | IN_UPDATE; 3983 } else { 3984 mask |= IN_MODIFY; 3985 } 3986 } 3987 if (mask) { 3988 udf_node->i_flags |= mask; 3989 } 3990 } 3991 3992 3993 static const struct genfs_ops udf_genfsops = { 3994 .gop_size = genfs_size, 3995 .gop_alloc = udf_gop_alloc, 3996 .gop_write = genfs_gop_write_rwmap, 3997 .gop_markupdate = udf_gop_markupdate, 3998 }; 3999 4000 4001 /* --------------------------------------------------------------------- */ 4002 4003 int 4004 udf_write_terminator(struct udf_mount *ump, uint32_t sector) 4005 { 4006 union dscrptr *dscr; 4007 int error; 4008 4009 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO); 4010 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector); 4011 4012 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */ 4013 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH); 4014 (void) udf_validate_tag_and_crc_sums(dscr); 4015 4016 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 4017 dscr, sector, sector); 4018 4019 free(dscr, M_TEMP); 4020 4021 return error; 4022 } 4023 4024 4025 /* --------------------------------------------------------------------- */ 4026 4027 /* UDF<->unix converters */ 4028 4029 /* --------------------------------------------------------------------- */ 4030 4031 static mode_t 4032 udf_perm_to_unix_mode(uint32_t perm) 4033 { 4034 mode_t mode; 4035 4036 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) ); 4037 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2); 4038 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4); 4039 4040 return mode; 4041 } 4042 4043 /* --------------------------------------------------------------------- */ 4044 4045 static uint32_t 4046 unix_mode_to_udf_perm(mode_t mode) 4047 { 4048 uint32_t perm; 4049 4050 perm = ((mode & S_IRWXO) ); 4051 perm |= ((mode & S_IRWXG) << 2); 4052 perm |= ((mode & S_IRWXU) << 4); 4053 perm |= ((mode & S_IWOTH) << 3); 4054 perm |= ((mode & S_IWGRP) << 5); 4055 perm |= ((mode & S_IWUSR) << 7); 4056 4057 return perm; 4058 } 4059 4060 /* --------------------------------------------------------------------- */ 4061 4062 static uint32_t 4063 udf_icb_to_unix_filetype(uint32_t icbftype) 4064 { 4065 switch (icbftype) { 4066 case UDF_ICB_FILETYPE_DIRECTORY : 4067 case UDF_ICB_FILETYPE_STREAMDIR : 4068 return S_IFDIR; 4069 case UDF_ICB_FILETYPE_FIFO : 4070 return S_IFIFO; 4071 case UDF_ICB_FILETYPE_CHARDEVICE : 4072 return S_IFCHR; 4073 case UDF_ICB_FILETYPE_BLOCKDEVICE : 4074 return S_IFBLK; 4075 case UDF_ICB_FILETYPE_RANDOMACCESS : 4076 case UDF_ICB_FILETYPE_REALTIME : 4077 return S_IFREG; 4078 case UDF_ICB_FILETYPE_SYMLINK : 4079 return S_IFLNK; 4080 case UDF_ICB_FILETYPE_SOCKET : 4081 return S_IFSOCK; 4082 } 4083 /* no idea what this is */ 4084 return 0; 4085 } 4086 4087 /* --------------------------------------------------------------------- */ 4088 4089 void 4090 udf_to_unix_name(char *result, int result_len, char *id, int len, 4091 struct charspec *chsp) 4092 { 4093 uint16_t *raw_name, *unix_name; 4094 uint16_t *inchp, ch; 4095 uint8_t *outchp; 4096 const char *osta_id = "OSTA Compressed Unicode"; 4097 int ucode_chars, nice_uchars, is_osta_typ0, nout; 4098 4099 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK); 4100 unix_name = raw_name + 1024; /* split space in half */ 4101 assert(sizeof(char) == sizeof(uint8_t)); 4102 outchp = (uint8_t *) result; 4103 4104 is_osta_typ0 = (chsp->type == 0); 4105 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0); 4106 if (is_osta_typ0) { 4107 /* TODO clean up */ 4108 *raw_name = *unix_name = 0; 4109 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name); 4110 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name)); 4111 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars); 4112 /* output UTF8 */ 4113 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) { 4114 ch = *inchp; 4115 nout = wput_utf8(outchp, result_len, ch); 4116 outchp += nout; result_len -= nout; 4117 if (!ch) break; 4118 } 4119 *outchp++ = 0; 4120 } else { 4121 /* assume 8bit char length byte latin-1 */ 4122 assert(*id == 8); 4123 assert(strlen((char *) (id+1)) <= NAME_MAX); 4124 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1))); 4125 } 4126 free(raw_name, M_UDFTEMP); 4127 } 4128 4129 /* --------------------------------------------------------------------- */ 4130 4131 void 4132 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len, 4133 struct charspec *chsp) 4134 { 4135 uint16_t *raw_name; 4136 uint16_t *outchp; 4137 const char *inchp; 4138 const char *osta_id = "OSTA Compressed Unicode"; 4139 int udf_chars, is_osta_typ0, bits; 4140 size_t cnt; 4141 4142 /* allocate temporary unicode-16 buffer */ 4143 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK); 4144 4145 /* convert utf8 to unicode-16 */ 4146 *raw_name = 0; 4147 inchp = name; 4148 outchp = raw_name; 4149 bits = 8; 4150 for (cnt = name_len, udf_chars = 0; cnt;) { 4151 *outchp = wget_utf8(&inchp, &cnt); 4152 if (*outchp > 0xff) 4153 bits=16; 4154 outchp++; 4155 udf_chars++; 4156 } 4157 /* null terminate just in case */ 4158 *outchp++ = 0; 4159 4160 is_osta_typ0 = (chsp->type == 0); 4161 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0); 4162 if (is_osta_typ0) { 4163 udf_chars = udf_CompressUnicode(udf_chars, bits, 4164 (unicode_t *) raw_name, 4165 (byte *) result); 4166 } else { 4167 printf("unix to udf name: no CHSP0 ?\n"); 4168 /* XXX assume 8bit char length byte latin-1 */ 4169 *result++ = 8; udf_chars = 1; 4170 strncpy(result, name + 1, name_len); 4171 udf_chars += name_len; 4172 } 4173 *result_len = udf_chars; 4174 free(raw_name, M_UDFTEMP); 4175 } 4176 4177 /* --------------------------------------------------------------------- */ 4178 4179 void 4180 udf_timestamp_to_timespec(struct udf_mount *ump, 4181 struct timestamp *timestamp, 4182 struct timespec *timespec) 4183 { 4184 struct clock_ymdhms ymdhms; 4185 uint32_t usecs, secs, nsecs; 4186 uint16_t tz; 4187 4188 /* fill in ymdhms structure from timestamp */ 4189 memset(&ymdhms, 0, sizeof(ymdhms)); 4190 ymdhms.dt_year = udf_rw16(timestamp->year); 4191 ymdhms.dt_mon = timestamp->month; 4192 ymdhms.dt_day = timestamp->day; 4193 ymdhms.dt_wday = 0; /* ? */ 4194 ymdhms.dt_hour = timestamp->hour; 4195 ymdhms.dt_min = timestamp->minute; 4196 ymdhms.dt_sec = timestamp->second; 4197 4198 secs = clock_ymdhms_to_secs(&ymdhms); 4199 usecs = timestamp->usec + 4200 100*timestamp->hund_usec + 10000*timestamp->centisec; 4201 nsecs = usecs * 1000; 4202 4203 /* 4204 * Calculate the time zone. The timezone is 12 bit signed 2's 4205 * compliment, so we gotta do some extra magic to handle it right. 4206 */ 4207 tz = udf_rw16(timestamp->type_tz); 4208 tz &= 0x0fff; /* only lower 12 bits are significant */ 4209 if (tz & 0x0800) /* sign extention */ 4210 tz |= 0xf000; 4211 4212 /* TODO check timezone conversion */ 4213 /* check if we are specified a timezone to convert */ 4214 if (udf_rw16(timestamp->type_tz) & 0x1000) { 4215 if ((int16_t) tz != -2047) 4216 secs -= (int16_t) tz * 60; 4217 } else { 4218 secs -= ump->mount_args.gmtoff; 4219 } 4220 4221 timespec->tv_sec = secs; 4222 timespec->tv_nsec = nsecs; 4223 } 4224 4225 4226 void 4227 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp) 4228 { 4229 struct clock_ymdhms ymdhms; 4230 uint32_t husec, usec, csec; 4231 4232 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms); 4233 4234 usec = timespec->tv_nsec / 1000; 4235 husec = usec / 100; 4236 usec -= husec * 100; /* only 0-99 in usec */ 4237 csec = husec / 100; /* only 0-99 in csec */ 4238 husec -= csec * 100; /* only 0-99 in husec */ 4239 4240 /* set method 1 for CUT/GMT */ 4241 timestamp->type_tz = udf_rw16((1<<12) + 0); 4242 timestamp->year = udf_rw16(ymdhms.dt_year); 4243 timestamp->month = ymdhms.dt_mon; 4244 timestamp->day = ymdhms.dt_day; 4245 timestamp->hour = ymdhms.dt_hour; 4246 timestamp->minute = ymdhms.dt_min; 4247 timestamp->second = ymdhms.dt_sec; 4248 timestamp->centisec = csec; 4249 timestamp->hund_usec = husec; 4250 timestamp->usec = usec; 4251 } 4252 4253 /* --------------------------------------------------------------------- */ 4254 4255 /* 4256 * Attribute and filetypes converters with get/set pairs 4257 */ 4258 4259 uint32_t 4260 udf_getaccessmode(struct udf_node *udf_node) 4261 { 4262 struct file_entry *fe = udf_node->fe; 4263 struct extfile_entry *efe = udf_node->efe; 4264 uint32_t udf_perm, icbftype; 4265 uint32_t mode, ftype; 4266 uint16_t icbflags; 4267 4268 UDF_LOCK_NODE(udf_node, 0); 4269 if (fe) { 4270 udf_perm = udf_rw32(fe->perm); 4271 icbftype = fe->icbtag.file_type; 4272 icbflags = udf_rw16(fe->icbtag.flags); 4273 } else { 4274 assert(udf_node->efe); 4275 udf_perm = udf_rw32(efe->perm); 4276 icbftype = efe->icbtag.file_type; 4277 icbflags = udf_rw16(efe->icbtag.flags); 4278 } 4279 4280 mode = udf_perm_to_unix_mode(udf_perm); 4281 ftype = udf_icb_to_unix_filetype(icbftype); 4282 4283 /* set suid, sgid, sticky from flags in fe/efe */ 4284 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID) 4285 mode |= S_ISUID; 4286 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID) 4287 mode |= S_ISGID; 4288 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY) 4289 mode |= S_ISVTX; 4290 4291 UDF_UNLOCK_NODE(udf_node, 0); 4292 4293 return mode | ftype; 4294 } 4295 4296 4297 void 4298 udf_setaccessmode(struct udf_node *udf_node, mode_t mode) 4299 { 4300 struct file_entry *fe = udf_node->fe; 4301 struct extfile_entry *efe = udf_node->efe; 4302 uint32_t udf_perm; 4303 uint16_t icbflags; 4304 4305 UDF_LOCK_NODE(udf_node, 0); 4306 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS); 4307 if (fe) { 4308 icbflags = udf_rw16(fe->icbtag.flags); 4309 } else { 4310 icbflags = udf_rw16(efe->icbtag.flags); 4311 } 4312 4313 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID; 4314 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID; 4315 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY; 4316 if (mode & S_ISUID) 4317 icbflags |= UDF_ICB_TAG_FLAGS_SETUID; 4318 if (mode & S_ISGID) 4319 icbflags |= UDF_ICB_TAG_FLAGS_SETGID; 4320 if (mode & S_ISVTX) 4321 icbflags |= UDF_ICB_TAG_FLAGS_STICKY; 4322 4323 if (fe) { 4324 fe->perm = udf_rw32(udf_perm); 4325 fe->icbtag.flags = udf_rw16(icbflags); 4326 } else { 4327 efe->perm = udf_rw32(udf_perm); 4328 efe->icbtag.flags = udf_rw16(icbflags); 4329 } 4330 4331 UDF_UNLOCK_NODE(udf_node, 0); 4332 } 4333 4334 4335 void 4336 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp) 4337 { 4338 struct udf_mount *ump = udf_node->ump; 4339 struct file_entry *fe = udf_node->fe; 4340 struct extfile_entry *efe = udf_node->efe; 4341 uid_t uid; 4342 gid_t gid; 4343 4344 UDF_LOCK_NODE(udf_node, 0); 4345 if (fe) { 4346 uid = (uid_t)udf_rw32(fe->uid); 4347 gid = (gid_t)udf_rw32(fe->gid); 4348 } else { 4349 assert(udf_node->efe); 4350 uid = (uid_t)udf_rw32(efe->uid); 4351 gid = (gid_t)udf_rw32(efe->gid); 4352 } 4353 4354 /* do the uid/gid translation game */ 4355 if (uid == (uid_t) -1) 4356 uid = ump->mount_args.anon_uid; 4357 if (gid == (gid_t) -1) 4358 gid = ump->mount_args.anon_gid; 4359 4360 *uidp = uid; 4361 *gidp = gid; 4362 4363 UDF_UNLOCK_NODE(udf_node, 0); 4364 } 4365 4366 4367 void 4368 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid) 4369 { 4370 struct udf_mount *ump = udf_node->ump; 4371 struct file_entry *fe = udf_node->fe; 4372 struct extfile_entry *efe = udf_node->efe; 4373 uid_t nobody_uid; 4374 gid_t nobody_gid; 4375 4376 UDF_LOCK_NODE(udf_node, 0); 4377 4378 /* do the uid/gid translation game */ 4379 nobody_uid = ump->mount_args.nobody_uid; 4380 nobody_gid = ump->mount_args.nobody_gid; 4381 if (uid == nobody_uid) 4382 uid = (uid_t) -1; 4383 if (gid == nobody_gid) 4384 gid = (gid_t) -1; 4385 4386 if (fe) { 4387 fe->uid = udf_rw32((uint32_t) uid); 4388 fe->gid = udf_rw32((uint32_t) gid); 4389 } else { 4390 efe->uid = udf_rw32((uint32_t) uid); 4391 efe->gid = udf_rw32((uint32_t) gid); 4392 } 4393 4394 UDF_UNLOCK_NODE(udf_node, 0); 4395 } 4396 4397 4398 /* --------------------------------------------------------------------- */ 4399 4400 4401 int 4402 udf_dirhash_fill(struct udf_node *dir_node) 4403 { 4404 struct vnode *dvp = dir_node->vnode; 4405 struct dirhash *dirh; 4406 struct file_entry *fe = dir_node->fe; 4407 struct extfile_entry *efe = dir_node->efe; 4408 struct fileid_desc *fid; 4409 struct dirent *dirent; 4410 uint64_t file_size, pre_diroffset, diroffset; 4411 uint32_t lb_size; 4412 int error; 4413 4414 /* make sure we have a dirhash to work on */ 4415 dirh = dir_node->dir_hash; 4416 KASSERT(dirh); 4417 KASSERT(dirh->refcnt > 0); 4418 4419 if (dirh->flags & DIRH_BROKEN) 4420 return EIO; 4421 if (dirh->flags & DIRH_COMPLETE) 4422 return 0; 4423 4424 /* make sure we have a clean dirhash to add to */ 4425 dirhash_purge_entries(dirh); 4426 4427 /* get directory filesize */ 4428 if (fe) { 4429 file_size = udf_rw64(fe->inf_len); 4430 } else { 4431 assert(efe); 4432 file_size = udf_rw64(efe->inf_len); 4433 } 4434 4435 /* allocate temporary space for fid */ 4436 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4437 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4438 4439 /* allocate temporary space for dirent */ 4440 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4441 4442 error = 0; 4443 diroffset = 0; 4444 while (diroffset < file_size) { 4445 /* transfer a new fid/dirent */ 4446 pre_diroffset = diroffset; 4447 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4448 if (error) { 4449 /* TODO what to do? continue but not add? */ 4450 dirh->flags |= DIRH_BROKEN; 4451 dirhash_purge_entries(dirh); 4452 break; 4453 } 4454 4455 if ((fid->file_char & UDF_FILE_CHAR_DEL)) { 4456 /* register deleted extent for reuse */ 4457 dirhash_enter_freed(dirh, pre_diroffset, 4458 udf_fidsize(fid)); 4459 } else { 4460 /* append to the dirhash */ 4461 dirhash_enter(dirh, dirent, pre_diroffset, 4462 udf_fidsize(fid), 0); 4463 } 4464 } 4465 dirh->flags |= DIRH_COMPLETE; 4466 4467 free(fid, M_UDFTEMP); 4468 free(dirent, M_UDFTEMP); 4469 4470 return error; 4471 } 4472 4473 4474 /* --------------------------------------------------------------------- */ 4475 4476 /* 4477 * Directory read and manipulation functions. 4478 * 4479 */ 4480 4481 int 4482 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen, 4483 struct long_ad *icb_loc, int *found) 4484 { 4485 struct udf_node *dir_node = VTOI(vp); 4486 struct dirhash *dirh; 4487 struct dirhash_entry *dirh_ep; 4488 struct fileid_desc *fid; 4489 struct dirent *dirent; 4490 uint64_t diroffset; 4491 uint32_t lb_size; 4492 int hit, error; 4493 4494 /* set default return */ 4495 *found = 0; 4496 4497 /* get our dirhash and make sure its read in */ 4498 dirhash_get(&dir_node->dir_hash); 4499 error = udf_dirhash_fill(dir_node); 4500 if (error) { 4501 dirhash_put(dir_node->dir_hash); 4502 return error; 4503 } 4504 dirh = dir_node->dir_hash; 4505 4506 /* allocate temporary space for fid */ 4507 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4508 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4509 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4510 4511 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n", 4512 namelen, namelen, name)); 4513 4514 /* search our dirhash hits */ 4515 memset(icb_loc, 0, sizeof(*icb_loc)); 4516 dirh_ep = NULL; 4517 for (;;) { 4518 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep); 4519 /* if no hit, abort the search */ 4520 if (!hit) 4521 break; 4522 4523 /* check this hit */ 4524 diroffset = dirh_ep->offset; 4525 4526 /* transfer a new fid/dirent */ 4527 error = udf_read_fid_stream(vp, &diroffset, fid, dirent); 4528 if (error) 4529 break; 4530 4531 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n", 4532 dirent->d_namlen, dirent->d_namlen, dirent->d_name)); 4533 4534 /* see if its our entry */ 4535 #ifdef DIAGNOSTIC 4536 if (dirent->d_namlen != namelen) { 4537 printf("WARNING: dirhash_lookup() returned wrong " 4538 "d_namelen: %d and ought to be %d\n", 4539 dirent->d_namlen, namelen); 4540 printf("\tlooked for `%s' and got `%s'\n", 4541 name, dirent->d_name); 4542 } 4543 #endif 4544 if (strncmp(dirent->d_name, name, namelen) == 0) { 4545 *found = 1; 4546 *icb_loc = fid->icb; 4547 break; 4548 } 4549 } 4550 free(fid, M_UDFTEMP); 4551 free(dirent, M_UDFTEMP); 4552 4553 dirhash_put(dir_node->dir_hash); 4554 4555 return error; 4556 } 4557 4558 /* --------------------------------------------------------------------- */ 4559 4560 static int 4561 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type, 4562 struct long_ad *node_icb, struct long_ad *parent_icb, 4563 uint64_t parent_unique_id) 4564 { 4565 struct timespec now; 4566 struct icb_tag *icb; 4567 struct filetimes_extattr_entry *ft_extattr; 4568 uint64_t unique_id; 4569 uint32_t fidsize, lb_num; 4570 uint8_t *bpos; 4571 int crclen, attrlen; 4572 4573 lb_num = udf_rw32(node_icb->loc.lb_num); 4574 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num); 4575 icb = &fe->icbtag; 4576 4577 /* 4578 * Always use strategy type 4 unless on WORM wich we don't support 4579 * (yet). Fill in defaults and set for internal allocation of data. 4580 */ 4581 icb->strat_type = udf_rw16(4); 4582 icb->max_num_entries = udf_rw16(1); 4583 icb->file_type = file_type; /* 8 bit */ 4584 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC); 4585 4586 fe->perm = udf_rw32(0x7fff); /* all is allowed */ 4587 fe->link_cnt = udf_rw16(0); /* explicit setting */ 4588 4589 fe->ckpoint = udf_rw32(1); /* user supplied file version */ 4590 4591 vfs_timestamp(&now); 4592 udf_timespec_to_timestamp(&now, &fe->atime); 4593 udf_timespec_to_timestamp(&now, &fe->attrtime); 4594 udf_timespec_to_timestamp(&now, &fe->mtime); 4595 4596 udf_set_regid(&fe->imp_id, IMPL_NAME); 4597 udf_add_impl_regid(ump, &fe->imp_id); 4598 4599 unique_id = udf_advance_uniqueid(ump); 4600 fe->unique_id = udf_rw64(unique_id); 4601 fe->l_ea = udf_rw32(0); 4602 4603 /* create extended attribute to record our creation time */ 4604 attrlen = UDF_FILETIMES_ATTR_SIZE(1); 4605 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK); 4606 memset(ft_extattr, 0, attrlen); 4607 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO); 4608 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */ 4609 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1)); 4610 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */ 4611 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION; 4612 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]); 4613 4614 udf_extattr_insert_internal(ump, (union dscrptr *) fe, 4615 (struct extattr_entry *) ft_extattr); 4616 free(ft_extattr, M_UDFTEMP); 4617 4618 /* if its a directory, create '..' */ 4619 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea); 4620 fidsize = 0; 4621 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) { 4622 fidsize = udf_create_parentfid(ump, 4623 (struct fileid_desc *) bpos, parent_icb, 4624 parent_unique_id); 4625 } 4626 4627 /* record fidlength information */ 4628 fe->inf_len = udf_rw64(fidsize); 4629 fe->l_ad = udf_rw32(fidsize); 4630 fe->logblks_rec = udf_rw64(0); /* intern */ 4631 4632 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH; 4633 crclen += udf_rw32(fe->l_ea) + fidsize; 4634 fe->tag.desc_crc_len = udf_rw16(crclen); 4635 4636 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe); 4637 4638 return fidsize; 4639 } 4640 4641 /* --------------------------------------------------------------------- */ 4642 4643 static int 4644 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe, 4645 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb, 4646 uint64_t parent_unique_id) 4647 { 4648 struct timespec now; 4649 struct icb_tag *icb; 4650 uint64_t unique_id; 4651 uint32_t fidsize, lb_num; 4652 uint8_t *bpos; 4653 int crclen; 4654 4655 lb_num = udf_rw32(node_icb->loc.lb_num); 4656 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num); 4657 icb = &efe->icbtag; 4658 4659 /* 4660 * Always use strategy type 4 unless on WORM wich we don't support 4661 * (yet). Fill in defaults and set for internal allocation of data. 4662 */ 4663 icb->strat_type = udf_rw16(4); 4664 icb->max_num_entries = udf_rw16(1); 4665 icb->file_type = file_type; /* 8 bit */ 4666 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC); 4667 4668 efe->perm = udf_rw32(0x7fff); /* all is allowed */ 4669 efe->link_cnt = udf_rw16(0); /* explicit setting */ 4670 4671 efe->ckpoint = udf_rw32(1); /* user supplied file version */ 4672 4673 vfs_timestamp(&now); 4674 udf_timespec_to_timestamp(&now, &efe->ctime); 4675 udf_timespec_to_timestamp(&now, &efe->atime); 4676 udf_timespec_to_timestamp(&now, &efe->attrtime); 4677 udf_timespec_to_timestamp(&now, &efe->mtime); 4678 4679 udf_set_regid(&efe->imp_id, IMPL_NAME); 4680 udf_add_impl_regid(ump, &efe->imp_id); 4681 4682 unique_id = udf_advance_uniqueid(ump); 4683 efe->unique_id = udf_rw64(unique_id); 4684 efe->l_ea = udf_rw32(0); 4685 4686 /* if its a directory, create '..' */ 4687 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea); 4688 fidsize = 0; 4689 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) { 4690 fidsize = udf_create_parentfid(ump, 4691 (struct fileid_desc *) bpos, parent_icb, 4692 parent_unique_id); 4693 } 4694 4695 /* record fidlength information */ 4696 efe->obj_size = udf_rw64(fidsize); 4697 efe->inf_len = udf_rw64(fidsize); 4698 efe->l_ad = udf_rw32(fidsize); 4699 efe->logblks_rec = udf_rw64(0); /* intern */ 4700 4701 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH; 4702 crclen += udf_rw32(efe->l_ea) + fidsize; 4703 efe->tag.desc_crc_len = udf_rw16(crclen); 4704 4705 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe); 4706 4707 return fidsize; 4708 } 4709 4710 /* --------------------------------------------------------------------- */ 4711 4712 int 4713 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node, 4714 struct udf_node *udf_node, struct componentname *cnp) 4715 { 4716 struct vnode *dvp = dir_node->vnode; 4717 struct dirhash *dirh; 4718 struct dirhash_entry *dirh_ep; 4719 struct file_entry *fe = dir_node->fe; 4720 struct fileid_desc *fid; 4721 struct dirent *dirent; 4722 uint64_t diroffset; 4723 uint32_t lb_size, fidsize; 4724 int found, error; 4725 char const *name = cnp->cn_nameptr; 4726 int namelen = cnp->cn_namelen; 4727 int hit, refcnt; 4728 4729 /* get our dirhash and make sure its read in */ 4730 dirhash_get(&dir_node->dir_hash); 4731 error = udf_dirhash_fill(dir_node); 4732 if (error) { 4733 dirhash_put(dir_node->dir_hash); 4734 return error; 4735 } 4736 dirh = dir_node->dir_hash; 4737 4738 /* get directory filesize */ 4739 if (!fe) { 4740 assert(dir_node->efe); 4741 } 4742 4743 /* allocate temporary space for fid */ 4744 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4745 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4746 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4747 4748 /* search our dirhash hits */ 4749 found = 0; 4750 dirh_ep = NULL; 4751 for (;;) { 4752 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep); 4753 /* if no hit, abort the search */ 4754 if (!hit) 4755 break; 4756 4757 /* check this hit */ 4758 diroffset = dirh_ep->offset; 4759 4760 /* transfer a new fid/dirent */ 4761 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4762 if (error) 4763 break; 4764 4765 /* see if its our entry */ 4766 KASSERT(dirent->d_namlen == namelen); 4767 if (strncmp(dirent->d_name, name, namelen) == 0) { 4768 found = 1; 4769 break; 4770 } 4771 } 4772 4773 if (!found) 4774 error = ENOENT; 4775 if (error) 4776 goto error_out; 4777 4778 /* mark deleted */ 4779 fid->file_char |= UDF_FILE_CHAR_DEL; 4780 #ifdef UDF_COMPLETE_DELETE 4781 memset(&fid->icb, 0, sizeof(fid->icb)); 4782 #endif 4783 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 4784 4785 /* get size of fid and compensate for the read_fid_stream advance */ 4786 fidsize = udf_fidsize(fid); 4787 diroffset -= fidsize; 4788 4789 /* write out */ 4790 error = vn_rdwr(UIO_WRITE, dir_node->vnode, 4791 fid, fidsize, diroffset, 4792 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 4793 FSCRED, NULL, NULL); 4794 if (error) 4795 goto error_out; 4796 4797 /* get reference count of attached node */ 4798 if (udf_node->fe) { 4799 refcnt = udf_rw16(udf_node->fe->link_cnt); 4800 } else { 4801 KASSERT(udf_node->efe); 4802 refcnt = udf_rw16(udf_node->efe->link_cnt); 4803 } 4804 #ifdef UDF_COMPLETE_DELETE 4805 /* substract reference counter in attached node */ 4806 refcnt -= 1; 4807 if (udf_node->fe) { 4808 udf_node->fe->link_cnt = udf_rw16(refcnt); 4809 } else { 4810 udf_node->efe->link_cnt = udf_rw16(refcnt); 4811 } 4812 4813 /* prevent writeout when refcnt == 0 */ 4814 if (refcnt == 0) 4815 udf_node->i_flags |= IN_DELETED; 4816 4817 if (fid->file_char & UDF_FILE_CHAR_DIR) { 4818 int drefcnt; 4819 4820 /* substract reference counter in directory node */ 4821 /* note subtract 2 (?) for its was also backreferenced */ 4822 if (dir_node->fe) { 4823 drefcnt = udf_rw16(dir_node->fe->link_cnt); 4824 drefcnt -= 1; 4825 dir_node->fe->link_cnt = udf_rw16(drefcnt); 4826 } else { 4827 KASSERT(dir_node->efe); 4828 drefcnt = udf_rw16(dir_node->efe->link_cnt); 4829 drefcnt -= 1; 4830 dir_node->efe->link_cnt = udf_rw16(drefcnt); 4831 } 4832 } 4833 4834 udf_node->i_flags |= IN_MODIFIED; 4835 dir_node->i_flags |= IN_MODIFIED; 4836 #endif 4837 /* if it is/was a hardlink adjust the file count */ 4838 if (refcnt > 0) 4839 udf_adjust_filecount(udf_node, -1); 4840 4841 /* remove from the dirhash */ 4842 dirhash_remove(dirh, dirent, diroffset, 4843 udf_fidsize(fid)); 4844 4845 error_out: 4846 free(fid, M_UDFTEMP); 4847 free(dirent, M_UDFTEMP); 4848 4849 dirhash_put(dir_node->dir_hash); 4850 4851 return error; 4852 } 4853 4854 /* --------------------------------------------------------------------- */ 4855 4856 int 4857 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node, 4858 struct udf_node *new_parent_node) 4859 { 4860 struct vnode *dvp = dir_node->vnode; 4861 struct dirhash *dirh; 4862 struct dirhash_entry *dirh_ep; 4863 struct file_entry *fe; 4864 struct extfile_entry *efe; 4865 struct fileid_desc *fid; 4866 struct dirent *dirent; 4867 uint64_t diroffset; 4868 uint64_t new_parent_unique_id; 4869 uint32_t lb_size, fidsize; 4870 int found, error; 4871 char const *name = ".."; 4872 int namelen = 2; 4873 int hit; 4874 4875 /* get our dirhash and make sure its read in */ 4876 dirhash_get(&dir_node->dir_hash); 4877 error = udf_dirhash_fill(dir_node); 4878 if (error) { 4879 dirhash_put(dir_node->dir_hash); 4880 return error; 4881 } 4882 dirh = dir_node->dir_hash; 4883 4884 /* get new parent's unique ID */ 4885 fe = new_parent_node->fe; 4886 efe = new_parent_node->efe; 4887 if (fe) { 4888 new_parent_unique_id = udf_rw64(fe->unique_id); 4889 } else { 4890 assert(efe); 4891 new_parent_unique_id = udf_rw64(efe->unique_id); 4892 } 4893 4894 /* get directory filesize */ 4895 fe = dir_node->fe; 4896 efe = dir_node->efe; 4897 if (!fe) { 4898 assert(efe); 4899 } 4900 4901 /* allocate temporary space for fid */ 4902 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4903 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4904 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4905 4906 /* 4907 * NOTE the standard does not dictate the FID entry '..' should be 4908 * first, though in practice it will most likely be. 4909 */ 4910 4911 /* search our dirhash hits */ 4912 found = 0; 4913 dirh_ep = NULL; 4914 for (;;) { 4915 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep); 4916 /* if no hit, abort the search */ 4917 if (!hit) 4918 break; 4919 4920 /* check this hit */ 4921 diroffset = dirh_ep->offset; 4922 4923 /* transfer a new fid/dirent */ 4924 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4925 if (error) 4926 break; 4927 4928 /* see if its our entry */ 4929 KASSERT(dirent->d_namlen == namelen); 4930 if (strncmp(dirent->d_name, name, namelen) == 0) { 4931 found = 1; 4932 break; 4933 } 4934 } 4935 4936 if (!found) 4937 error = ENOENT; 4938 if (error) 4939 goto error_out; 4940 4941 /* update our ICB to the new parent, hit of lower 32 bits of uniqueid */ 4942 fid->icb = new_parent_node->write_loc; 4943 fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id); 4944 4945 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 4946 4947 /* get size of fid and compensate for the read_fid_stream advance */ 4948 fidsize = udf_fidsize(fid); 4949 diroffset -= fidsize; 4950 4951 /* write out */ 4952 error = vn_rdwr(UIO_WRITE, dir_node->vnode, 4953 fid, fidsize, diroffset, 4954 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 4955 FSCRED, NULL, NULL); 4956 4957 /* nothing to be done in the dirhash */ 4958 4959 error_out: 4960 free(fid, M_UDFTEMP); 4961 free(dirent, M_UDFTEMP); 4962 4963 dirhash_put(dir_node->dir_hash); 4964 4965 return error; 4966 } 4967 4968 /* --------------------------------------------------------------------- */ 4969 4970 /* 4971 * We are not allowed to split the fid tag itself over an logical block so 4972 * check the space remaining in the logical block. 4973 * 4974 * We try to select the smallest candidate for recycling or when none is 4975 * found, append a new one at the end of the directory. 4976 */ 4977 4978 int 4979 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node, 4980 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp) 4981 { 4982 struct vnode *dvp = dir_node->vnode; 4983 struct dirhash *dirh; 4984 struct dirhash_entry *dirh_ep; 4985 struct fileid_desc *fid; 4986 struct icb_tag *icbtag; 4987 struct charspec osta_charspec; 4988 struct dirent dirent; 4989 uint64_t unique_id, dir_size; 4990 uint64_t fid_pos, end_fid_pos, chosen_fid_pos; 4991 uint32_t chosen_size, chosen_size_diff; 4992 int lb_size, lb_rest, fidsize, this_fidsize, size_diff; 4993 int file_char, refcnt, icbflags, addr_type, hit, error; 4994 4995 /* get our dirhash and make sure its read in */ 4996 dirhash_get(&dir_node->dir_hash); 4997 error = udf_dirhash_fill(dir_node); 4998 if (error) { 4999 dirhash_put(dir_node->dir_hash); 5000 return error; 5001 } 5002 dirh = dir_node->dir_hash; 5003 5004 /* get info */ 5005 lb_size = udf_rw32(ump->logical_vol->lb_size); 5006 udf_osta_charset(&osta_charspec); 5007 5008 if (dir_node->fe) { 5009 dir_size = udf_rw64(dir_node->fe->inf_len); 5010 icbtag = &dir_node->fe->icbtag; 5011 } else { 5012 dir_size = udf_rw64(dir_node->efe->inf_len); 5013 icbtag = &dir_node->efe->icbtag; 5014 } 5015 5016 icbflags = udf_rw16(icbtag->flags); 5017 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 5018 5019 if (udf_node->fe) { 5020 unique_id = udf_rw64(udf_node->fe->unique_id); 5021 refcnt = udf_rw16(udf_node->fe->link_cnt); 5022 } else { 5023 unique_id = udf_rw64(udf_node->efe->unique_id); 5024 refcnt = udf_rw16(udf_node->efe->link_cnt); 5025 } 5026 5027 if (refcnt > 0) { 5028 unique_id = udf_advance_uniqueid(ump); 5029 udf_adjust_filecount(udf_node, 1); 5030 } 5031 5032 /* determine file characteristics */ 5033 file_char = 0; /* visible non deleted file and not stream metadata */ 5034 if (vap->va_type == VDIR) 5035 file_char = UDF_FILE_CHAR_DIR; 5036 5037 /* malloc scrap buffer */ 5038 fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO); 5039 5040 /* calculate _minimum_ fid size */ 5041 unix_to_udf_name((char *) fid->data, &fid->l_fi, 5042 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); 5043 fidsize = UDF_FID_SIZE + fid->l_fi; 5044 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */ 5045 5046 /* find position that will fit the FID */ 5047 chosen_fid_pos = dir_size; 5048 chosen_size = 0; 5049 chosen_size_diff = UINT_MAX; 5050 5051 /* shut up gcc */ 5052 dirent.d_namlen = 0; 5053 5054 /* search our dirhash hits */ 5055 error = 0; 5056 dirh_ep = NULL; 5057 for (;;) { 5058 hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep); 5059 /* if no hit, abort the search */ 5060 if (!hit) 5061 break; 5062 5063 /* check this hit for size */ 5064 this_fidsize = dirh_ep->entry_size; 5065 5066 /* check this hit */ 5067 fid_pos = dirh_ep->offset; 5068 end_fid_pos = fid_pos + this_fidsize; 5069 size_diff = this_fidsize - fidsize; 5070 lb_rest = lb_size - (end_fid_pos % lb_size); 5071 5072 #ifndef UDF_COMPLETE_DELETE 5073 /* transfer a new fid/dirent */ 5074 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent); 5075 if (error) 5076 goto error_out; 5077 5078 /* only reuse entries that are wiped */ 5079 /* check if the len + loc are marked zero */ 5080 if (udf_rw32(fid->icb.len) != 0) 5081 continue; 5082 if (udf_rw32(fid->icb.loc.lb_num) != 0) 5083 continue; 5084 if (udf_rw16(fid->icb.loc.part_num) != 0) 5085 continue; 5086 #endif /* UDF_COMPLETE_DELETE */ 5087 5088 /* select if not splitting the tag and its smaller */ 5089 if ((size_diff >= 0) && 5090 (size_diff < chosen_size_diff) && 5091 (lb_rest >= sizeof(struct desc_tag))) 5092 { 5093 /* UDF 2.3.4.2+3 specifies rules for iu size */ 5094 if ((size_diff == 0) || (size_diff >= 32)) { 5095 chosen_fid_pos = fid_pos; 5096 chosen_size = this_fidsize; 5097 chosen_size_diff = size_diff; 5098 } 5099 } 5100 } 5101 5102 5103 /* extend directory if no other candidate found */ 5104 if (chosen_size == 0) { 5105 chosen_fid_pos = dir_size; 5106 chosen_size = fidsize; 5107 chosen_size_diff = 0; 5108 5109 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */ 5110 if (addr_type == UDF_ICB_INTERN_ALLOC) { 5111 /* pre-grow directory to see if we're to switch */ 5112 udf_grow_node(dir_node, dir_size + chosen_size); 5113 5114 icbflags = udf_rw16(icbtag->flags); 5115 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 5116 } 5117 5118 /* make sure the next fid desc_tag won't be splitted */ 5119 if (addr_type != UDF_ICB_INTERN_ALLOC) { 5120 end_fid_pos = chosen_fid_pos + chosen_size; 5121 lb_rest = lb_size - (end_fid_pos % lb_size); 5122 5123 /* pad with implementation use regid if needed */ 5124 if (lb_rest < sizeof(struct desc_tag)) 5125 chosen_size += 32; 5126 } 5127 } 5128 chosen_size_diff = chosen_size - fidsize; 5129 5130 /* populate the FID */ 5131 memset(fid, 0, lb_size); 5132 udf_inittag(ump, &fid->tag, TAGID_FID, 0); 5133 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */ 5134 fid->file_char = file_char; 5135 fid->icb = udf_node->loc; 5136 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id); 5137 fid->l_iu = udf_rw16(0); 5138 5139 if (chosen_size > fidsize) { 5140 /* insert implementation-use regid to space it correctly */ 5141 fid->l_iu = udf_rw16(chosen_size_diff); 5142 5143 /* set implementation use */ 5144 udf_set_regid((struct regid *) fid->data, IMPL_NAME); 5145 udf_add_impl_regid(ump, (struct regid *) fid->data); 5146 } 5147 5148 /* fill in name */ 5149 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu), 5150 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); 5151 5152 fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH); 5153 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 5154 5155 /* writeout FID/update parent directory */ 5156 error = vn_rdwr(UIO_WRITE, dvp, 5157 fid, chosen_size, chosen_fid_pos, 5158 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 5159 FSCRED, NULL, NULL); 5160 5161 if (error) 5162 goto error_out; 5163 5164 /* add reference counter in attached node */ 5165 if (udf_node->fe) { 5166 refcnt = udf_rw16(udf_node->fe->link_cnt); 5167 udf_node->fe->link_cnt = udf_rw16(refcnt+1); 5168 } else { 5169 KASSERT(udf_node->efe); 5170 refcnt = udf_rw16(udf_node->efe->link_cnt); 5171 udf_node->efe->link_cnt = udf_rw16(refcnt+1); 5172 } 5173 5174 /* mark not deleted if it was... just in case, but do warn */ 5175 if (udf_node->i_flags & IN_DELETED) { 5176 printf("udf: warning, marking a file undeleted\n"); 5177 udf_node->i_flags &= ~IN_DELETED; 5178 } 5179 5180 if (file_char & UDF_FILE_CHAR_DIR) { 5181 /* add reference counter in directory node for '..' */ 5182 if (dir_node->fe) { 5183 refcnt = udf_rw16(dir_node->fe->link_cnt); 5184 refcnt++; 5185 dir_node->fe->link_cnt = udf_rw16(refcnt); 5186 } else { 5187 KASSERT(dir_node->efe); 5188 refcnt = udf_rw16(dir_node->efe->link_cnt); 5189 refcnt++; 5190 dir_node->efe->link_cnt = udf_rw16(refcnt); 5191 } 5192 } 5193 5194 /* append to the dirhash */ 5195 /* NOTE do not use dirent anymore or it won't match later! */ 5196 udf_to_unix_name(dirent.d_name, NAME_MAX, 5197 (char *) fid->data + udf_rw16(fid->l_iu), fid->l_fi, &osta_charspec); 5198 dirent.d_namlen = strlen(dirent.d_name); 5199 dirhash_enter(dirh, &dirent, chosen_fid_pos, 5200 udf_fidsize(fid), 1); 5201 5202 /* note updates */ 5203 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */ 5204 /* VN_KNOTE(udf_node, ...) */ 5205 udf_update(udf_node->vnode, NULL, NULL, NULL, 0); 5206 5207 error_out: 5208 free(fid, M_TEMP); 5209 5210 dirhash_put(dir_node->dir_hash); 5211 5212 return error; 5213 } 5214 5215 /* --------------------------------------------------------------------- */ 5216 5217 /* 5218 * Each node can have an attached streamdir node though not recursively. These 5219 * are otherwise known as named substreams/named extended attributes that have 5220 * no size limitations. 5221 * 5222 * `Normal' extended attributes are indicated with a number and are recorded 5223 * in either the fe/efe descriptor itself for small descriptors or recorded in 5224 * the attached extended attribute file. Since these spaces can get 5225 * fragmented, care ought to be taken. 5226 * 5227 * Since the size of the space reserved for allocation descriptors is limited, 5228 * there is a mechanim provided for extending this space; this is done by a 5229 * special extent to allow schrinking of the allocations without breaking the 5230 * linkage to the allocation extent descriptor. 5231 */ 5232 5233 int 5234 udf_loadvnode(struct mount *mp, struct vnode *vp, 5235 const void *key, size_t key_len, const void **new_key) 5236 { 5237 union dscrptr *dscr; 5238 struct udf_mount *ump; 5239 struct udf_node *udf_node; 5240 struct long_ad node_icb_loc, icb_loc, next_icb_loc, last_fe_icb_loc; 5241 uint64_t file_size; 5242 uint32_t lb_size, sector, dummy; 5243 int udf_file_type, dscr_type, strat, strat4096, needs_indirect; 5244 int slot, eof, error; 5245 int num_indir_followed = 0; 5246 5247 DPRINTF(NODE, ("udf_loadvnode called\n")); 5248 udf_node = NULL; 5249 ump = VFSTOUDF(mp); 5250 5251 KASSERT(key_len == sizeof(node_icb_loc.loc)); 5252 memset(&node_icb_loc, 0, sizeof(node_icb_loc)); 5253 node_icb_loc.len = ump->logical_vol->lb_size; 5254 memcpy(&node_icb_loc.loc, key, key_len); 5255 5256 /* garbage check: translate udf_node_icb_loc to sectornr */ 5257 error = udf_translate_vtop(ump, &node_icb_loc, §or, &dummy); 5258 if (error) { 5259 DPRINTF(NODE, ("\tcan't translate icb address!\n")); 5260 /* no use, this will fail anyway */ 5261 return EINVAL; 5262 } 5263 5264 /* build udf_node (do initialise!) */ 5265 udf_node = pool_get(&udf_node_pool, PR_WAITOK); 5266 memset(udf_node, 0, sizeof(struct udf_node)); 5267 5268 vp->v_tag = VT_UDF; 5269 vp->v_op = udf_vnodeop_p; 5270 vp->v_data = udf_node; 5271 5272 /* initialise crosslinks, note location of fe/efe for hashing */ 5273 udf_node->ump = ump; 5274 udf_node->vnode = vp; 5275 udf_node->loc = node_icb_loc; 5276 udf_node->lockf = 0; 5277 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE); 5278 cv_init(&udf_node->node_lock, "udf_nlk"); 5279 genfs_node_init(vp, &udf_genfsops); /* inititise genfs */ 5280 udf_node->outstanding_bufs = 0; 5281 udf_node->outstanding_nodedscr = 0; 5282 udf_node->uncommitted_lbs = 0; 5283 5284 /* check if we're fetching the root */ 5285 if (ump->fileset_desc) 5286 if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb, 5287 sizeof(struct long_ad)) == 0) 5288 vp->v_vflag |= VV_ROOT; 5289 5290 icb_loc = node_icb_loc; 5291 needs_indirect = 0; 5292 strat4096 = 0; 5293 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN; 5294 file_size = 0; 5295 lb_size = udf_rw32(ump->logical_vol->lb_size); 5296 5297 DPRINTF(NODE, ("\tstart reading descriptors\n")); 5298 do { 5299 /* try to read in fe/efe */ 5300 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr); 5301 5302 /* blank sector marks end of sequence, check this */ 5303 if ((dscr == NULL) && (!strat4096)) 5304 error = ENOENT; 5305 5306 /* break if read error or blank sector */ 5307 if (error || (dscr == NULL)) 5308 break; 5309 5310 /* process descriptor based on the descriptor type */ 5311 dscr_type = udf_rw16(dscr->tag.id); 5312 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type)); 5313 5314 /* if dealing with an indirect entry, follow the link */ 5315 if (dscr_type == TAGID_INDIRECTENTRY) { 5316 needs_indirect = 0; 5317 next_icb_loc = dscr->inde.indirect_icb; 5318 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5319 icb_loc = next_icb_loc; 5320 if (++num_indir_followed > UDF_MAX_INDIRS_FOLLOW) { 5321 error = EMLINK; 5322 break; 5323 } 5324 continue; 5325 } 5326 5327 /* only file entries and extended file entries allowed here */ 5328 if ((dscr_type != TAGID_FENTRY) && 5329 (dscr_type != TAGID_EXTFENTRY)) { 5330 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5331 error = ENOENT; 5332 break; 5333 } 5334 5335 KASSERT(udf_tagsize(dscr, lb_size) == lb_size); 5336 5337 /* choose this one */ 5338 last_fe_icb_loc = icb_loc; 5339 5340 /* record and process/update (ext)fentry */ 5341 if (dscr_type == TAGID_FENTRY) { 5342 if (udf_node->fe) 5343 udf_free_logvol_dscr(ump, &last_fe_icb_loc, 5344 udf_node->fe); 5345 udf_node->fe = &dscr->fe; 5346 strat = udf_rw16(udf_node->fe->icbtag.strat_type); 5347 udf_file_type = udf_node->fe->icbtag.file_type; 5348 file_size = udf_rw64(udf_node->fe->inf_len); 5349 } else { 5350 if (udf_node->efe) 5351 udf_free_logvol_dscr(ump, &last_fe_icb_loc, 5352 udf_node->efe); 5353 udf_node->efe = &dscr->efe; 5354 strat = udf_rw16(udf_node->efe->icbtag.strat_type); 5355 udf_file_type = udf_node->efe->icbtag.file_type; 5356 file_size = udf_rw64(udf_node->efe->inf_len); 5357 } 5358 5359 /* check recording strategy (structure) */ 5360 5361 /* 5362 * Strategy 4096 is a daisy linked chain terminating with an 5363 * unrecorded sector or a TERM descriptor. The next 5364 * descriptor is to be found in the sector that follows the 5365 * current sector. 5366 */ 5367 if (strat == 4096) { 5368 strat4096 = 1; 5369 needs_indirect = 1; 5370 5371 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1; 5372 } 5373 5374 /* 5375 * Strategy 4 is the normal strategy and terminates, but if 5376 * we're in strategy 4096, we can't have strategy 4 mixed in 5377 */ 5378 5379 if (strat == 4) { 5380 if (strat4096) { 5381 error = EINVAL; 5382 break; 5383 } 5384 break; /* done */ 5385 } 5386 } while (!error); 5387 5388 /* first round of cleanup code */ 5389 if (error) { 5390 DPRINTF(NODE, ("\tnode fe/efe failed!\n")); 5391 /* recycle udf_node */ 5392 udf_dispose_node(udf_node); 5393 5394 return EINVAL; /* error code ok? */ 5395 } 5396 DPRINTF(NODE, ("\tnode fe/efe read in fine\n")); 5397 5398 /* assert no references to dscr anymore beyong this point */ 5399 assert((udf_node->fe) || (udf_node->efe)); 5400 dscr = NULL; 5401 5402 /* 5403 * Remember where to record an updated version of the descriptor. If 5404 * there is a sequence of indirect entries, icb_loc will have been 5405 * updated. Its the write disipline to allocate new space and to make 5406 * sure the chain is maintained. 5407 * 5408 * `needs_indirect' flags if the next location is to be filled with 5409 * with an indirect entry. 5410 */ 5411 udf_node->write_loc = icb_loc; 5412 udf_node->needs_indirect = needs_indirect; 5413 5414 /* 5415 * Go trough all allocations extents of this descriptor and when 5416 * encountering a redirect read in the allocation extension. These are 5417 * daisy-chained. 5418 */ 5419 UDF_LOCK_NODE(udf_node, 0); 5420 udf_node->num_extensions = 0; 5421 5422 error = 0; 5423 slot = 0; 5424 for (;;) { 5425 udf_get_adslot(udf_node, slot, &icb_loc, &eof); 5426 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, " 5427 "lb_num = %d, part = %d\n", slot, eof, 5428 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)), 5429 UDF_EXT_LEN(udf_rw32(icb_loc.len)), 5430 udf_rw32(icb_loc.loc.lb_num), 5431 udf_rw16(icb_loc.loc.part_num))); 5432 if (eof) 5433 break; 5434 slot++; 5435 5436 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT) 5437 continue; 5438 5439 DPRINTF(NODE, ("\tgot redirect extent\n")); 5440 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) { 5441 DPRINTF(ALLOC, ("udf_get_node: implementation limit, " 5442 "too many allocation extensions on " 5443 "udf_node\n")); 5444 error = EINVAL; 5445 break; 5446 } 5447 5448 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */ 5449 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) { 5450 DPRINTF(ALLOC, ("udf_get_node: bad allocation " 5451 "extension size in udf_node\n")); 5452 error = EINVAL; 5453 break; 5454 } 5455 5456 DPRINTF(NODE, ("read allocation extent at lb_num %d\n", 5457 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num)))); 5458 /* load in allocation extent */ 5459 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr); 5460 if (error || (dscr == NULL)) 5461 break; 5462 5463 /* process read-in descriptor */ 5464 dscr_type = udf_rw16(dscr->tag.id); 5465 5466 if (dscr_type != TAGID_ALLOCEXTENT) { 5467 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5468 error = ENOENT; 5469 break; 5470 } 5471 5472 DPRINTF(NODE, ("\trecording redirect extent\n")); 5473 udf_node->ext[udf_node->num_extensions] = &dscr->aee; 5474 udf_node->ext_loc[udf_node->num_extensions] = icb_loc; 5475 5476 udf_node->num_extensions++; 5477 5478 } /* while */ 5479 UDF_UNLOCK_NODE(udf_node, 0); 5480 5481 /* second round of cleanup code */ 5482 if (error) { 5483 /* recycle udf_node */ 5484 udf_dispose_node(udf_node); 5485 5486 return EINVAL; /* error code ok? */ 5487 } 5488 5489 DPRINTF(NODE, ("\tnode read in fine\n")); 5490 5491 /* 5492 * Translate UDF filetypes into vnode types. 5493 * 5494 * Systemfiles like the meta main and mirror files are not treated as 5495 * normal files, so we type them as having no type. UDF dictates that 5496 * they are not allowed to be visible. 5497 */ 5498 5499 switch (udf_file_type) { 5500 case UDF_ICB_FILETYPE_DIRECTORY : 5501 case UDF_ICB_FILETYPE_STREAMDIR : 5502 vp->v_type = VDIR; 5503 break; 5504 case UDF_ICB_FILETYPE_BLOCKDEVICE : 5505 vp->v_type = VBLK; 5506 break; 5507 case UDF_ICB_FILETYPE_CHARDEVICE : 5508 vp->v_type = VCHR; 5509 break; 5510 case UDF_ICB_FILETYPE_SOCKET : 5511 vp->v_type = VSOCK; 5512 break; 5513 case UDF_ICB_FILETYPE_FIFO : 5514 vp->v_type = VFIFO; 5515 break; 5516 case UDF_ICB_FILETYPE_SYMLINK : 5517 vp->v_type = VLNK; 5518 break; 5519 case UDF_ICB_FILETYPE_VAT : 5520 case UDF_ICB_FILETYPE_META_MAIN : 5521 case UDF_ICB_FILETYPE_META_MIRROR : 5522 vp->v_type = VNON; 5523 break; 5524 case UDF_ICB_FILETYPE_RANDOMACCESS : 5525 case UDF_ICB_FILETYPE_REALTIME : 5526 vp->v_type = VREG; 5527 break; 5528 default: 5529 /* YIKES, something else */ 5530 vp->v_type = VNON; 5531 } 5532 5533 /* TODO specfs, fifofs etc etc. vnops setting */ 5534 5535 /* don't forget to set vnode's v_size */ 5536 uvm_vnp_setsize(vp, file_size); 5537 5538 /* TODO ext attr and streamdir udf_nodes */ 5539 5540 *new_key = &udf_node->loc.loc; 5541 5542 return 0; 5543 } 5544 5545 int 5546 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc, 5547 struct udf_node **udf_noderes) 5548 { 5549 int error; 5550 struct vnode *vp; 5551 5552 error = vcache_get(ump->vfs_mountp, &node_icb_loc->loc, 5553 sizeof(node_icb_loc->loc), &vp); 5554 if (error) 5555 return error; 5556 error = vn_lock(vp, LK_EXCLUSIVE); 5557 if (error) { 5558 vrele(vp); 5559 return error; 5560 } 5561 *udf_noderes = VTOI(vp); 5562 return 0; 5563 } 5564 5565 /* --------------------------------------------------------------------- */ 5566 5567 int 5568 udf_writeout_node(struct udf_node *udf_node, int waitfor) 5569 { 5570 union dscrptr *dscr; 5571 struct long_ad *loc; 5572 int extnr, error; 5573 5574 DPRINTF(NODE, ("udf_writeout_node called\n")); 5575 5576 KASSERT(udf_node->outstanding_bufs == 0); 5577 KASSERT(udf_node->outstanding_nodedscr == 0); 5578 5579 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd)); 5580 5581 if (udf_node->i_flags & IN_DELETED) { 5582 DPRINTF(NODE, ("\tnode deleted; not writing out\n")); 5583 udf_cleanup_reservation(udf_node); 5584 return 0; 5585 } 5586 5587 /* lock node; unlocked in callback */ 5588 UDF_LOCK_NODE(udf_node, 0); 5589 5590 /* remove pending reservations, we're written out */ 5591 udf_cleanup_reservation(udf_node); 5592 5593 /* at least one descriptor writeout */ 5594 udf_node->outstanding_nodedscr = 1; 5595 5596 /* we're going to write out the descriptor so clear the flags */ 5597 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED); 5598 5599 /* if we were rebuild, write out the allocation extents */ 5600 if (udf_node->i_flags & IN_NODE_REBUILD) { 5601 /* mark outstanding node descriptors and issue them */ 5602 udf_node->outstanding_nodedscr += udf_node->num_extensions; 5603 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) { 5604 loc = &udf_node->ext_loc[extnr]; 5605 dscr = (union dscrptr *) udf_node->ext[extnr]; 5606 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0); 5607 if (error) 5608 return error; 5609 } 5610 /* mark allocation extents written out */ 5611 udf_node->i_flags &= ~(IN_NODE_REBUILD); 5612 } 5613 5614 if (udf_node->fe) { 5615 KASSERT(udf_node->efe == NULL); 5616 dscr = (union dscrptr *) udf_node->fe; 5617 } else { 5618 KASSERT(udf_node->efe); 5619 KASSERT(udf_node->fe == NULL); 5620 dscr = (union dscrptr *) udf_node->efe; 5621 } 5622 KASSERT(dscr); 5623 5624 loc = &udf_node->write_loc; 5625 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor); 5626 5627 return error; 5628 } 5629 5630 /* --------------------------------------------------------------------- */ 5631 5632 int 5633 udf_dispose_node(struct udf_node *udf_node) 5634 { 5635 struct vnode *vp; 5636 int extnr; 5637 5638 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node)); 5639 if (!udf_node) { 5640 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n")); 5641 return 0; 5642 } 5643 5644 vp = udf_node->vnode; 5645 #ifdef DIAGNOSTIC 5646 if (vp->v_numoutput) 5647 panic("disposing UDF node with pending I/O's, udf_node = %p, " 5648 "v_numoutput = %d", udf_node, vp->v_numoutput); 5649 #endif 5650 5651 udf_cleanup_reservation(udf_node); 5652 5653 /* TODO extended attributes and streamdir */ 5654 5655 /* remove dirhash if present */ 5656 dirhash_purge(&udf_node->dir_hash); 5657 5658 /* destroy our lock */ 5659 mutex_destroy(&udf_node->node_mutex); 5660 cv_destroy(&udf_node->node_lock); 5661 5662 /* dissociate our udf_node from the vnode */ 5663 genfs_node_destroy(udf_node->vnode); 5664 mutex_enter(vp->v_interlock); 5665 vp->v_data = NULL; 5666 mutex_exit(vp->v_interlock); 5667 5668 /* free associated memory and the node itself */ 5669 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) { 5670 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr], 5671 udf_node->ext[extnr]); 5672 udf_node->ext[extnr] = (void *) 0xdeadcccc; 5673 } 5674 5675 if (udf_node->fe) 5676 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc, 5677 udf_node->fe); 5678 if (udf_node->efe) 5679 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc, 5680 udf_node->efe); 5681 5682 udf_node->fe = (void *) 0xdeadaaaa; 5683 udf_node->efe = (void *) 0xdeadbbbb; 5684 udf_node->ump = (void *) 0xdeadbeef; 5685 pool_put(&udf_node_pool, udf_node); 5686 5687 return 0; 5688 } 5689 5690 5691 5692 /* 5693 * create a new node using the specified dvp, vap and cnp. 5694 * This allows special files to be created. Use with care. 5695 */ 5696 5697 int 5698 udf_newvnode(struct mount *mp, struct vnode *dvp, struct vnode *vp, 5699 struct vattr *vap, kauth_cred_t cred, 5700 size_t *key_len, const void **new_key) 5701 { 5702 union dscrptr *dscr; 5703 struct udf_node *dir_node = VTOI(dvp); 5704 struct udf_node *udf_node; 5705 struct udf_mount *ump = dir_node->ump; 5706 struct long_ad node_icb_loc; 5707 uint64_t parent_unique_id; 5708 uint64_t lmapping; 5709 uint32_t lb_size, lb_num; 5710 uint16_t vpart_num; 5711 uid_t uid; 5712 gid_t gid, parent_gid; 5713 int (**vnodeops)(void *); 5714 int udf_file_type, fid_size, error; 5715 5716 vnodeops = udf_vnodeop_p; 5717 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS; 5718 5719 switch (vap->va_type) { 5720 case VREG : 5721 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS; 5722 break; 5723 case VDIR : 5724 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY; 5725 break; 5726 case VLNK : 5727 udf_file_type = UDF_ICB_FILETYPE_SYMLINK; 5728 break; 5729 case VBLK : 5730 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE; 5731 /* specfs */ 5732 return ENOTSUP; 5733 break; 5734 case VCHR : 5735 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE; 5736 /* specfs */ 5737 return ENOTSUP; 5738 break; 5739 case VFIFO : 5740 udf_file_type = UDF_ICB_FILETYPE_FIFO; 5741 /* fifofs */ 5742 return ENOTSUP; 5743 break; 5744 case VSOCK : 5745 udf_file_type = UDF_ICB_FILETYPE_SOCKET; 5746 return ENOTSUP; 5747 break; 5748 case VNON : 5749 case VBAD : 5750 default : 5751 /* nothing; can we even create these? */ 5752 return EINVAL; 5753 } 5754 5755 lb_size = udf_rw32(ump->logical_vol->lb_size); 5756 5757 /* reserve space for one logical block */ 5758 vpart_num = ump->node_part; 5759 error = udf_reserve_space(ump, NULL, UDF_C_NODE, 5760 vpart_num, 1, /* can_fail */ true); 5761 if (error) 5762 return error; 5763 5764 /* allocate node */ 5765 error = udf_allocate_space(ump, NULL, UDF_C_NODE, 5766 vpart_num, 1, &lmapping); 5767 if (error) { 5768 udf_do_unreserve_space(ump, NULL, vpart_num, 1); 5769 return error; 5770 } 5771 5772 lb_num = lmapping; 5773 5774 /* initialise pointer to location */ 5775 memset(&node_icb_loc, 0, sizeof(struct long_ad)); 5776 node_icb_loc.len = udf_rw32(lb_size); 5777 node_icb_loc.loc.lb_num = udf_rw32(lb_num); 5778 node_icb_loc.loc.part_num = udf_rw16(vpart_num); 5779 5780 /* build udf_node (do initialise!) */ 5781 udf_node = pool_get(&udf_node_pool, PR_WAITOK); 5782 memset(udf_node, 0, sizeof(struct udf_node)); 5783 5784 /* initialise crosslinks, note location of fe/efe for hashing */ 5785 /* bugalert: synchronise with udf_get_node() */ 5786 udf_node->ump = ump; 5787 udf_node->vnode = vp; 5788 vp->v_data = udf_node; 5789 udf_node->loc = node_icb_loc; 5790 udf_node->write_loc = node_icb_loc; 5791 udf_node->lockf = 0; 5792 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE); 5793 cv_init(&udf_node->node_lock, "udf_nlk"); 5794 udf_node->outstanding_bufs = 0; 5795 udf_node->outstanding_nodedscr = 0; 5796 udf_node->uncommitted_lbs = 0; 5797 5798 vp->v_tag = VT_UDF; 5799 vp->v_op = vnodeops; 5800 5801 /* initialise genfs */ 5802 genfs_node_init(vp, &udf_genfsops); 5803 5804 /* get parent's unique ID for refering '..' if its a directory */ 5805 if (dir_node->fe) { 5806 parent_unique_id = udf_rw64(dir_node->fe->unique_id); 5807 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid); 5808 } else { 5809 parent_unique_id = udf_rw64(dir_node->efe->unique_id); 5810 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid); 5811 } 5812 5813 /* get descriptor */ 5814 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr); 5815 5816 /* choose a fe or an efe for it */ 5817 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) { 5818 udf_node->fe = &dscr->fe; 5819 fid_size = udf_create_new_fe(ump, udf_node->fe, 5820 udf_file_type, &udf_node->loc, 5821 &dir_node->loc, parent_unique_id); 5822 /* TODO add extended attribute for creation time */ 5823 } else { 5824 udf_node->efe = &dscr->efe; 5825 fid_size = udf_create_new_efe(ump, udf_node->efe, 5826 udf_file_type, &udf_node->loc, 5827 &dir_node->loc, parent_unique_id); 5828 } 5829 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num); 5830 5831 /* update vnode's size and type */ 5832 vp->v_type = vap->va_type; 5833 uvm_vnp_setsize(vp, fid_size); 5834 5835 /* set access mode */ 5836 udf_setaccessmode(udf_node, vap->va_mode); 5837 5838 /* set ownership */ 5839 uid = kauth_cred_geteuid(cred); 5840 gid = parent_gid; 5841 udf_setownership(udf_node, uid, gid); 5842 5843 *key_len = sizeof(udf_node->loc.loc);; 5844 *new_key = &udf_node->loc.loc; 5845 5846 return 0; 5847 } 5848 5849 5850 int 5851 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap, 5852 struct componentname *cnp) 5853 { 5854 struct udf_node *udf_node, *dir_node = VTOI(dvp); 5855 struct udf_mount *ump = dir_node->ump; 5856 int error; 5857 5858 error = vcache_new(dvp->v_mount, dvp, vap, cnp->cn_cred, vpp); 5859 if (error) 5860 return error; 5861 5862 udf_node = VTOI(*vpp); 5863 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp); 5864 if (error) { 5865 struct long_ad *node_icb_loc = &udf_node->loc; 5866 uint32_t lb_num = udf_rw32(node_icb_loc->loc.lb_num); 5867 uint16_t vpart_num = udf_rw16(node_icb_loc->loc.part_num); 5868 5869 /* free disc allocation for node */ 5870 udf_free_allocated_space(ump, lb_num, vpart_num, 1); 5871 5872 /* recycle udf_node */ 5873 udf_dispose_node(udf_node); 5874 vrele(*vpp); 5875 5876 *vpp = NULL; 5877 return error; 5878 } 5879 5880 /* adjust file count */ 5881 udf_adjust_filecount(udf_node, 1); 5882 5883 return 0; 5884 } 5885 5886 /* --------------------------------------------------------------------- */ 5887 5888 static void 5889 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem) 5890 { 5891 struct udf_mount *ump = udf_node->ump; 5892 uint32_t lb_size, lb_num, len, num_lb; 5893 uint16_t vpart_num; 5894 5895 /* is there really one? */ 5896 if (mem == NULL) 5897 return; 5898 5899 /* got a descriptor here */ 5900 len = UDF_EXT_LEN(udf_rw32(loc->len)); 5901 lb_num = udf_rw32(loc->loc.lb_num); 5902 vpart_num = udf_rw16(loc->loc.part_num); 5903 5904 lb_size = udf_rw32(ump->logical_vol->lb_size); 5905 num_lb = (len + lb_size -1) / lb_size; 5906 5907 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb); 5908 } 5909 5910 void 5911 udf_delete_node(struct udf_node *udf_node) 5912 { 5913 void *dscr; 5914 struct long_ad *loc; 5915 int extnr, lvint, dummy; 5916 5917 /* paranoia check on integrity; should be open!; we could panic */ 5918 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type); 5919 if (lvint == UDF_INTEGRITY_CLOSED) 5920 printf("\tIntegrity was CLOSED!\n"); 5921 5922 /* whatever the node type, change its size to zero */ 5923 (void) udf_resize_node(udf_node, 0, &dummy); 5924 5925 /* force it to be `clean'; no use writing it out */ 5926 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS | 5927 IN_CHANGE | IN_UPDATE | IN_MODIFY); 5928 5929 /* adjust file count */ 5930 udf_adjust_filecount(udf_node, -1); 5931 5932 /* 5933 * Free its allocated descriptors; memory will be released when 5934 * vop_reclaim() is called. 5935 */ 5936 loc = &udf_node->loc; 5937 5938 dscr = udf_node->fe; 5939 udf_free_descriptor_space(udf_node, loc, dscr); 5940 dscr = udf_node->efe; 5941 udf_free_descriptor_space(udf_node, loc, dscr); 5942 5943 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) { 5944 dscr = udf_node->ext[extnr]; 5945 loc = &udf_node->ext_loc[extnr]; 5946 udf_free_descriptor_space(udf_node, loc, dscr); 5947 } 5948 } 5949 5950 /* --------------------------------------------------------------------- */ 5951 5952 /* set new filesize; node but be LOCKED on entry and is locked on exit */ 5953 int 5954 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended) 5955 { 5956 struct file_entry *fe = udf_node->fe; 5957 struct extfile_entry *efe = udf_node->efe; 5958 uint64_t file_size; 5959 int error; 5960 5961 if (fe) { 5962 file_size = udf_rw64(fe->inf_len); 5963 } else { 5964 assert(udf_node->efe); 5965 file_size = udf_rw64(efe->inf_len); 5966 } 5967 5968 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n", 5969 file_size, new_size)); 5970 5971 /* if not changing, we're done */ 5972 if (file_size == new_size) 5973 return 0; 5974 5975 *extended = (new_size > file_size); 5976 if (*extended) { 5977 error = udf_grow_node(udf_node, new_size); 5978 } else { 5979 error = udf_shrink_node(udf_node, new_size); 5980 } 5981 5982 return error; 5983 } 5984 5985 5986 /* --------------------------------------------------------------------- */ 5987 5988 void 5989 udf_itimes(struct udf_node *udf_node, struct timespec *acc, 5990 struct timespec *mod, struct timespec *birth) 5991 { 5992 struct timespec now; 5993 struct file_entry *fe; 5994 struct extfile_entry *efe; 5995 struct filetimes_extattr_entry *ft_extattr; 5996 struct timestamp *atime, *mtime, *attrtime, *ctime; 5997 struct timestamp fe_ctime; 5998 struct timespec cur_birth; 5999 uint32_t offset, a_l; 6000 uint8_t *filedata; 6001 int error; 6002 6003 /* protect against rogue values */ 6004 if (!udf_node) 6005 return; 6006 6007 fe = udf_node->fe; 6008 efe = udf_node->efe; 6009 6010 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY))) 6011 return; 6012 6013 /* get descriptor information */ 6014 if (fe) { 6015 atime = &fe->atime; 6016 mtime = &fe->mtime; 6017 attrtime = &fe->attrtime; 6018 filedata = fe->data; 6019 6020 /* initial save dummy setting */ 6021 ctime = &fe_ctime; 6022 6023 /* check our extended attribute if present */ 6024 error = udf_extattr_search_intern(udf_node, 6025 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l); 6026 if (!error) { 6027 ft_extattr = (struct filetimes_extattr_entry *) 6028 (filedata + offset); 6029 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION) 6030 ctime = &ft_extattr->times[0]; 6031 } 6032 /* TODO create the extended attribute if not found ? */ 6033 } else { 6034 assert(udf_node->efe); 6035 atime = &efe->atime; 6036 mtime = &efe->mtime; 6037 attrtime = &efe->attrtime; 6038 ctime = &efe->ctime; 6039 } 6040 6041 vfs_timestamp(&now); 6042 6043 /* set access time */ 6044 if (udf_node->i_flags & IN_ACCESS) { 6045 if (acc == NULL) 6046 acc = &now; 6047 udf_timespec_to_timestamp(acc, atime); 6048 } 6049 6050 /* set modification time */ 6051 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) { 6052 if (mod == NULL) 6053 mod = &now; 6054 udf_timespec_to_timestamp(mod, mtime); 6055 6056 /* ensure birthtime is older than set modification! */ 6057 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth); 6058 if ((cur_birth.tv_sec > mod->tv_sec) || 6059 ((cur_birth.tv_sec == mod->tv_sec) && 6060 (cur_birth.tv_nsec > mod->tv_nsec))) { 6061 udf_timespec_to_timestamp(mod, ctime); 6062 } 6063 } 6064 6065 /* update birthtime if specified */ 6066 /* XXX we assume here that given birthtime is older than mod */ 6067 if (birth && (birth->tv_sec != VNOVAL)) { 6068 udf_timespec_to_timestamp(birth, ctime); 6069 } 6070 6071 /* set change time */ 6072 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY)) 6073 udf_timespec_to_timestamp(&now, attrtime); 6074 6075 /* notify updates to the node itself */ 6076 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY)) 6077 udf_node->i_flags |= IN_ACCESSED; 6078 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE)) 6079 udf_node->i_flags |= IN_MODIFIED; 6080 6081 /* clear modification flags */ 6082 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY); 6083 } 6084 6085 /* --------------------------------------------------------------------- */ 6086 6087 int 6088 udf_update(struct vnode *vp, struct timespec *acc, 6089 struct timespec *mod, struct timespec *birth, int updflags) 6090 { 6091 union dscrptr *dscrptr; 6092 struct udf_node *udf_node = VTOI(vp); 6093 struct udf_mount *ump = udf_node->ump; 6094 struct regid *impl_id; 6095 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC); 6096 int waitfor, flags; 6097 6098 #ifdef DEBUG 6099 char bits[128]; 6100 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth, 6101 updflags)); 6102 snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags); 6103 DPRINTF(CALL, ("\tnode flags %s\n", bits)); 6104 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async)); 6105 #endif 6106 6107 /* set our times */ 6108 udf_itimes(udf_node, acc, mod, birth); 6109 6110 /* set our implementation id */ 6111 if (udf_node->fe) { 6112 dscrptr = (union dscrptr *) udf_node->fe; 6113 impl_id = &udf_node->fe->imp_id; 6114 } else { 6115 dscrptr = (union dscrptr *) udf_node->efe; 6116 impl_id = &udf_node->efe->imp_id; 6117 } 6118 6119 /* set our ID */ 6120 udf_set_regid(impl_id, IMPL_NAME); 6121 udf_add_impl_regid(ump, impl_id); 6122 6123 /* update our crc! on RMW we are not allowed to change a thing */ 6124 udf_validate_tag_and_crc_sums(dscrptr); 6125 6126 /* if called when mounted readonly, never write back */ 6127 if (vp->v_mount->mnt_flag & MNT_RDONLY) 6128 return 0; 6129 6130 /* check if the node is dirty 'enough'*/ 6131 if (updflags & UPDATE_CLOSE) { 6132 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED); 6133 } else { 6134 flags = udf_node->i_flags & IN_MODIFIED; 6135 } 6136 if (flags == 0) 6137 return 0; 6138 6139 /* determine if we need to write sync or async */ 6140 waitfor = 0; 6141 if ((flags & IN_MODIFIED) && (mnt_async == 0)) { 6142 /* sync mounted */ 6143 waitfor = updflags & UPDATE_WAIT; 6144 if (updflags & UPDATE_DIROP) 6145 waitfor |= UPDATE_WAIT; 6146 } 6147 if (waitfor) 6148 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0); 6149 6150 return 0; 6151 } 6152 6153 6154 /* --------------------------------------------------------------------- */ 6155 6156 6157 /* 6158 * Read one fid and process it into a dirent and advance to the next (*fid) 6159 * has to be allocated a logical block in size, (*dirent) struct dirent length 6160 */ 6161 6162 int 6163 udf_read_fid_stream(struct vnode *vp, uint64_t *offset, 6164 struct fileid_desc *fid, struct dirent *dirent) 6165 { 6166 struct udf_node *dir_node = VTOI(vp); 6167 struct udf_mount *ump = dir_node->ump; 6168 struct file_entry *fe = dir_node->fe; 6169 struct extfile_entry *efe = dir_node->efe; 6170 uint32_t fid_size, lb_size; 6171 uint64_t file_size; 6172 char *fid_name; 6173 int enough, error; 6174 6175 assert(fid); 6176 assert(dirent); 6177 assert(dir_node); 6178 assert(offset); 6179 assert(*offset != 1); 6180 6181 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset)); 6182 /* check if we're past the end of the directory */ 6183 if (fe) { 6184 file_size = udf_rw64(fe->inf_len); 6185 } else { 6186 assert(dir_node->efe); 6187 file_size = udf_rw64(efe->inf_len); 6188 } 6189 if (*offset >= file_size) 6190 return EINVAL; 6191 6192 /* get maximum length of FID descriptor */ 6193 lb_size = udf_rw32(ump->logical_vol->lb_size); 6194 6195 /* initialise return values */ 6196 fid_size = 0; 6197 memset(dirent, 0, sizeof(struct dirent)); 6198 memset(fid, 0, lb_size); 6199 6200 enough = (file_size - (*offset) >= UDF_FID_SIZE); 6201 if (!enough) { 6202 /* short dir ... */ 6203 return EIO; 6204 } 6205 6206 error = vn_rdwr(UIO_READ, vp, 6207 fid, MIN(file_size - (*offset), lb_size), *offset, 6208 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED, 6209 NULL, NULL); 6210 if (error) 6211 return error; 6212 6213 DPRINTF(FIDS, ("\tfid piece read in fine\n")); 6214 /* 6215 * Check if we got a whole descriptor. 6216 * TODO Try to `resync' directory stream when something is very wrong. 6217 */ 6218 6219 /* check if our FID header is OK */ 6220 error = udf_check_tag(fid); 6221 if (error) { 6222 goto brokendir; 6223 } 6224 DPRINTF(FIDS, ("\ttag check ok\n")); 6225 6226 if (udf_rw16(fid->tag.id) != TAGID_FID) { 6227 error = EIO; 6228 goto brokendir; 6229 } 6230 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n")); 6231 6232 /* check for length */ 6233 fid_size = udf_fidsize(fid); 6234 enough = (file_size - (*offset) >= fid_size); 6235 if (!enough) { 6236 error = EIO; 6237 goto brokendir; 6238 } 6239 DPRINTF(FIDS, ("\tthe complete fid is read in\n")); 6240 6241 /* check FID contents */ 6242 error = udf_check_tag_payload((union dscrptr *) fid, lb_size); 6243 brokendir: 6244 if (error) { 6245 /* note that is sometimes a bit quick to report */ 6246 printf("UDF: BROKEN DIRECTORY ENTRY\n"); 6247 /* RESYNC? */ 6248 /* TODO: use udf_resync_fid_stream */ 6249 return EIO; 6250 } 6251 DPRINTF(FIDS, ("\tpayload checked ok\n")); 6252 6253 /* we got a whole and valid descriptor! */ 6254 DPRINTF(FIDS, ("\tinterpret FID\n")); 6255 6256 /* create resulting dirent structure */ 6257 fid_name = (char *) fid->data + udf_rw16(fid->l_iu); 6258 udf_to_unix_name(dirent->d_name, NAME_MAX, 6259 fid_name, fid->l_fi, &ump->logical_vol->desc_charset); 6260 6261 /* '..' has no name, so provide one */ 6262 if (fid->file_char & UDF_FILE_CHAR_PAR) 6263 strcpy(dirent->d_name, ".."); 6264 6265 dirent->d_fileno = udf_get_node_id(&fid->icb); /* inode hash XXX */ 6266 dirent->d_namlen = strlen(dirent->d_name); 6267 dirent->d_reclen = _DIRENT_SIZE(dirent); 6268 6269 /* 6270 * Note that its not worth trying to go for the filetypes now... its 6271 * too expensive too 6272 */ 6273 dirent->d_type = DT_UNKNOWN; 6274 6275 /* initial guess for filetype we can make */ 6276 if (fid->file_char & UDF_FILE_CHAR_DIR) 6277 dirent->d_type = DT_DIR; 6278 6279 /* advance */ 6280 *offset += fid_size; 6281 6282 return error; 6283 } 6284 6285 6286 /* --------------------------------------------------------------------- */ 6287 6288 static void 6289 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int pass, int *ndirty) 6290 { 6291 struct udf_node *udf_node, *n_udf_node; 6292 struct vnode *vp; 6293 int vdirty, error; 6294 6295 KASSERT(mutex_owned(&ump->sync_lock)); 6296 6297 DPRINTF(SYNC, ("sync_pass %d\n", pass)); 6298 udf_node = RB_TREE_MIN(&ump->udf_node_tree); 6299 for (;udf_node; udf_node = n_udf_node) { 6300 DPRINTF(SYNC, (".")); 6301 6302 vp = udf_node->vnode; 6303 6304 n_udf_node = rb_tree_iterate(&ump->udf_node_tree, 6305 udf_node, RB_DIR_RIGHT); 6306 6307 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT); 6308 if (error) { 6309 KASSERT(error == EBUSY); 6310 *ndirty += 1; 6311 continue; 6312 } 6313 6314 switch (pass) { 6315 case 1: 6316 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0); 6317 break; 6318 case 2: 6319 vdirty = vp->v_numoutput; 6320 if (vp->v_tag == VT_UDF) 6321 vdirty += udf_node->outstanding_bufs + 6322 udf_node->outstanding_nodedscr; 6323 if (vdirty == 0) 6324 VOP_FSYNC(vp, cred, 0,0,0); 6325 *ndirty += vdirty; 6326 break; 6327 case 3: 6328 vdirty = vp->v_numoutput; 6329 if (vp->v_tag == VT_UDF) 6330 vdirty += udf_node->outstanding_bufs + 6331 udf_node->outstanding_nodedscr; 6332 *ndirty += vdirty; 6333 break; 6334 } 6335 6336 VOP_UNLOCK(vp); 6337 } 6338 DPRINTF(SYNC, ("END sync_pass %d\n", pass)); 6339 } 6340 6341 6342 static bool 6343 udf_sync_selector(void *cl, struct vnode *vp) 6344 { 6345 struct udf_node *udf_node = VTOI(vp); 6346 6347 if (vp->v_vflag & VV_SYSTEM) 6348 return false; 6349 if (vp->v_type == VNON) 6350 return false; 6351 if (udf_node == NULL) 6352 return false; 6353 if ((udf_node->i_flags & (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0) 6354 return false; 6355 if (LIST_EMPTY(&vp->v_dirtyblkhd) && UVM_OBJ_IS_CLEAN(&vp->v_uobj)) 6356 return false; 6357 6358 return true; 6359 } 6360 6361 void 6362 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor) 6363 { 6364 struct vnode_iterator *marker; 6365 struct vnode *vp; 6366 struct udf_node *udf_node, *udf_next_node; 6367 int dummy, ndirty; 6368 6369 if (waitfor == MNT_LAZY) 6370 return; 6371 6372 mutex_enter(&ump->sync_lock); 6373 6374 /* Fill the rbtree with nodes to sync. */ 6375 vfs_vnode_iterator_init(ump->vfs_mountp, &marker); 6376 while ((vp = vfs_vnode_iterator_next(marker, 6377 udf_sync_selector, NULL)) != NULL) { 6378 udf_node = VTOI(vp); 6379 udf_node->i_flags |= IN_SYNCED; 6380 rb_tree_insert_node(&ump->udf_node_tree, udf_node); 6381 } 6382 vfs_vnode_iterator_destroy(marker); 6383 6384 dummy = 0; 6385 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n")); 6386 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n")); 6387 udf_sync_pass(ump, cred, 1, &dummy); 6388 6389 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n")); 6390 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n")); 6391 udf_sync_pass(ump, cred, 2, &dummy); 6392 6393 if (waitfor == MNT_WAIT) { 6394 recount: 6395 ndirty = ump->devvp->v_numoutput; 6396 DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n", 6397 ndirty)); 6398 udf_sync_pass(ump, cred, 3, &ndirty); 6399 DPRINTF(SYNC, ("counted num dirty pending blocks %d\n", 6400 ndirty)); 6401 6402 if (ndirty) { 6403 /* 1/4 second wait */ 6404 kpause("udfsync2", false, hz/4, NULL); 6405 goto recount; 6406 } 6407 } 6408 6409 /* Clean the rbtree. */ 6410 for (udf_node = RB_TREE_MIN(&ump->udf_node_tree); 6411 udf_node; udf_node = udf_next_node) { 6412 udf_next_node = rb_tree_iterate(&ump->udf_node_tree, 6413 udf_node, RB_DIR_RIGHT); 6414 rb_tree_remove_node(&ump->udf_node_tree, udf_node); 6415 udf_node->i_flags &= ~IN_SYNCED; 6416 vrele(udf_node->vnode); 6417 } 6418 6419 mutex_exit(&ump->sync_lock); 6420 } 6421 6422 /* --------------------------------------------------------------------- */ 6423 6424 /* 6425 * Read and write file extent in/from the buffer. 6426 * 6427 * The splitup of the extent into seperate request-buffers is to minimise 6428 * copying around as much as possible. 6429 * 6430 * block based file reading and writing 6431 */ 6432 6433 static int 6434 udf_read_internal(struct udf_node *node, uint8_t *blob) 6435 { 6436 struct udf_mount *ump; 6437 struct file_entry *fe = node->fe; 6438 struct extfile_entry *efe = node->efe; 6439 uint64_t inflen; 6440 uint32_t sector_size; 6441 uint8_t *srcpos; 6442 int icbflags, addr_type; 6443 6444 /* get extent and do some paranoia checks */ 6445 ump = node->ump; 6446 sector_size = ump->discinfo.sector_size; 6447 6448 /* 6449 * XXX there should be real bounds-checking logic here, 6450 * in case ->l_ea or ->inf_len contains nonsense. 6451 */ 6452 6453 if (fe) { 6454 inflen = udf_rw64(fe->inf_len); 6455 srcpos = &fe->data[0] + udf_rw32(fe->l_ea); 6456 icbflags = udf_rw16(fe->icbtag.flags); 6457 } else { 6458 assert(node->efe); 6459 inflen = udf_rw64(efe->inf_len); 6460 srcpos = &efe->data[0] + udf_rw32(efe->l_ea); 6461 icbflags = udf_rw16(efe->icbtag.flags); 6462 } 6463 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 6464 6465 assert(addr_type == UDF_ICB_INTERN_ALLOC); 6466 __USE(addr_type); 6467 assert(inflen < sector_size); 6468 6469 /* copy out info */ 6470 memcpy(blob, srcpos, inflen); 6471 memset(&blob[inflen], 0, sector_size - inflen); 6472 6473 return 0; 6474 } 6475 6476 6477 static int 6478 udf_write_internal(struct udf_node *node, uint8_t *blob) 6479 { 6480 struct udf_mount *ump; 6481 struct file_entry *fe = node->fe; 6482 struct extfile_entry *efe = node->efe; 6483 uint64_t inflen; 6484 uint32_t sector_size; 6485 uint8_t *pos; 6486 int icbflags, addr_type; 6487 6488 /* get extent and do some paranoia checks */ 6489 ump = node->ump; 6490 sector_size = ump->discinfo.sector_size; 6491 6492 if (fe) { 6493 inflen = udf_rw64(fe->inf_len); 6494 pos = &fe->data[0] + udf_rw32(fe->l_ea); 6495 icbflags = udf_rw16(fe->icbtag.flags); 6496 } else { 6497 assert(node->efe); 6498 inflen = udf_rw64(efe->inf_len); 6499 pos = &efe->data[0] + udf_rw32(efe->l_ea); 6500 icbflags = udf_rw16(efe->icbtag.flags); 6501 } 6502 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 6503 6504 assert(addr_type == UDF_ICB_INTERN_ALLOC); 6505 __USE(addr_type); 6506 assert(inflen < sector_size); 6507 __USE(sector_size); 6508 6509 /* copy in blob */ 6510 /* memset(pos, 0, inflen); */ 6511 memcpy(pos, blob, inflen); 6512 6513 return 0; 6514 } 6515 6516 6517 void 6518 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf) 6519 { 6520 struct buf *nestbuf; 6521 struct udf_mount *ump = udf_node->ump; 6522 uint64_t *mapping; 6523 uint64_t run_start; 6524 uint32_t sector_size; 6525 uint32_t buf_offset, sector, rbuflen, rblk; 6526 uint32_t from, lblkno; 6527 uint32_t sectors; 6528 uint8_t *buf_pos; 6529 int error, run_length, what; 6530 6531 sector_size = udf_node->ump->discinfo.sector_size; 6532 6533 from = buf->b_blkno; 6534 sectors = buf->b_bcount / sector_size; 6535 6536 what = udf_get_c_type(udf_node); 6537 6538 /* assure we have enough translation slots */ 6539 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS); 6540 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS); 6541 6542 if (sectors > UDF_MAX_MAPPINGS) { 6543 printf("udf_read_filebuf: implementation limit on bufsize\n"); 6544 buf->b_error = EIO; 6545 biodone(buf); 6546 return; 6547 } 6548 6549 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK); 6550 6551 error = 0; 6552 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors)); 6553 error = udf_translate_file_extent(udf_node, from, sectors, mapping); 6554 if (error) { 6555 buf->b_error = error; 6556 biodone(buf); 6557 goto out; 6558 } 6559 DPRINTF(READ, ("\ttranslate extent went OK\n")); 6560 6561 /* pre-check if its an internal */ 6562 if (*mapping == UDF_TRANS_INTERN) { 6563 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data); 6564 if (error) 6565 buf->b_error = error; 6566 biodone(buf); 6567 goto out; 6568 } 6569 DPRINTF(READ, ("\tnot intern\n")); 6570 6571 #ifdef DEBUG 6572 if (udf_verbose & UDF_DEBUG_TRANSLATE) { 6573 printf("Returned translation table:\n"); 6574 for (sector = 0; sector < sectors; sector++) { 6575 printf("%d : %"PRIu64"\n", sector, mapping[sector]); 6576 } 6577 } 6578 #endif 6579 6580 /* request read-in of data from disc sheduler */ 6581 buf->b_resid = buf->b_bcount; 6582 for (sector = 0; sector < sectors; sector++) { 6583 buf_offset = sector * sector_size; 6584 buf_pos = (uint8_t *) buf->b_data + buf_offset; 6585 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector)); 6586 6587 /* check if its zero or unmapped to stop reading */ 6588 switch (mapping[sector]) { 6589 case UDF_TRANS_UNMAPPED: 6590 case UDF_TRANS_ZERO: 6591 /* copy zero sector TODO runlength like below */ 6592 memset(buf_pos, 0, sector_size); 6593 DPRINTF(READ, ("\treturning zero sector\n")); 6594 nestiobuf_done(buf, sector_size, 0); 6595 break; 6596 default : 6597 DPRINTF(READ, ("\tread sector " 6598 "%"PRIu64"\n", mapping[sector])); 6599 6600 lblkno = from + sector; 6601 run_start = mapping[sector]; 6602 run_length = 1; 6603 while (sector < sectors-1) { 6604 if (mapping[sector+1] != mapping[sector]+1) 6605 break; 6606 run_length++; 6607 sector++; 6608 } 6609 6610 /* 6611 * nest an iobuf and mark it for async reading. Since 6612 * we're using nested buffers, they can't be cached by 6613 * design. 6614 */ 6615 rbuflen = run_length * sector_size; 6616 rblk = run_start * (sector_size/DEV_BSIZE); 6617 6618 nestbuf = getiobuf(NULL, true); 6619 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); 6620 /* nestbuf is B_ASYNC */ 6621 6622 /* identify this nestbuf */ 6623 nestbuf->b_lblkno = lblkno; 6624 assert(nestbuf->b_vp == udf_node->vnode); 6625 6626 /* CD shedules on raw blkno */ 6627 nestbuf->b_blkno = rblk; 6628 nestbuf->b_proc = NULL; 6629 nestbuf->b_rawblkno = rblk; 6630 nestbuf->b_udf_c_type = what; 6631 6632 udf_discstrat_queuebuf(ump, nestbuf); 6633 } 6634 } 6635 out: 6636 /* if we're synchronously reading, wait for the completion */ 6637 if ((buf->b_flags & B_ASYNC) == 0) 6638 biowait(buf); 6639 6640 DPRINTF(READ, ("\tend of read_filebuf\n")); 6641 free(mapping, M_TEMP); 6642 return; 6643 } 6644 6645 6646 void 6647 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf) 6648 { 6649 struct buf *nestbuf; 6650 struct udf_mount *ump = udf_node->ump; 6651 uint64_t *mapping; 6652 uint64_t run_start; 6653 uint32_t lb_size; 6654 uint32_t buf_offset, lb_num, rbuflen, rblk; 6655 uint32_t from, lblkno; 6656 uint32_t num_lb; 6657 int error, run_length, what, s; 6658 6659 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); 6660 6661 from = buf->b_blkno; 6662 num_lb = buf->b_bcount / lb_size; 6663 6664 what = udf_get_c_type(udf_node); 6665 6666 /* assure we have enough translation slots */ 6667 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS); 6668 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS); 6669 6670 if (num_lb > UDF_MAX_MAPPINGS) { 6671 printf("udf_write_filebuf: implementation limit on bufsize\n"); 6672 buf->b_error = EIO; 6673 biodone(buf); 6674 return; 6675 } 6676 6677 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK); 6678 6679 error = 0; 6680 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb)); 6681 error = udf_translate_file_extent(udf_node, from, num_lb, mapping); 6682 if (error) { 6683 buf->b_error = error; 6684 biodone(buf); 6685 goto out; 6686 } 6687 DPRINTF(WRITE, ("\ttranslate extent went OK\n")); 6688 6689 /* if its internally mapped, we can write it in the descriptor itself */ 6690 if (*mapping == UDF_TRANS_INTERN) { 6691 /* TODO paranoia check if we ARE going to have enough space */ 6692 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data); 6693 if (error) 6694 buf->b_error = error; 6695 biodone(buf); 6696 goto out; 6697 } 6698 DPRINTF(WRITE, ("\tnot intern\n")); 6699 6700 /* request write out of data to disc sheduler */ 6701 buf->b_resid = buf->b_bcount; 6702 for (lb_num = 0; lb_num < num_lb; lb_num++) { 6703 buf_offset = lb_num * lb_size; 6704 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num)); 6705 6706 /* 6707 * Mappings are not that important here. Just before we write 6708 * the lb_num we late-allocate them when needed and update the 6709 * mapping in the udf_node. 6710 */ 6711 6712 /* XXX why not ignore the mapping altogether ? */ 6713 DPRINTF(WRITE, ("\twrite lb_num " 6714 "%"PRIu64, mapping[lb_num])); 6715 6716 lblkno = from + lb_num; 6717 run_start = mapping[lb_num]; 6718 run_length = 1; 6719 while (lb_num < num_lb-1) { 6720 if (mapping[lb_num+1] != mapping[lb_num]+1) 6721 if (mapping[lb_num+1] != mapping[lb_num]) 6722 break; 6723 run_length++; 6724 lb_num++; 6725 } 6726 DPRINTF(WRITE, ("+ %d\n", run_length)); 6727 6728 /* nest an iobuf on the master buffer for the extent */ 6729 rbuflen = run_length * lb_size; 6730 rblk = run_start * (lb_size/DEV_BSIZE); 6731 6732 nestbuf = getiobuf(NULL, true); 6733 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); 6734 /* nestbuf is B_ASYNC */ 6735 6736 /* identify this nestbuf */ 6737 nestbuf->b_lblkno = lblkno; 6738 KASSERT(nestbuf->b_vp == udf_node->vnode); 6739 6740 /* CD shedules on raw blkno */ 6741 nestbuf->b_blkno = rblk; 6742 nestbuf->b_proc = NULL; 6743 nestbuf->b_rawblkno = rblk; 6744 nestbuf->b_udf_c_type = what; 6745 6746 /* increment our outstanding bufs counter */ 6747 s = splbio(); 6748 udf_node->outstanding_bufs++; 6749 splx(s); 6750 6751 udf_discstrat_queuebuf(ump, nestbuf); 6752 } 6753 out: 6754 /* if we're synchronously writing, wait for the completion */ 6755 if ((buf->b_flags & B_ASYNC) == 0) 6756 biowait(buf); 6757 6758 DPRINTF(WRITE, ("\tend of write_filebuf\n")); 6759 free(mapping, M_TEMP); 6760 return; 6761 } 6762 6763 /* --------------------------------------------------------------------- */ 6764