xref: /netbsd-src/sys/fs/udf/udf_subr.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /* $NetBSD: udf_subr.c,v 1.43 2007/12/11 12:05:27 lukem Exp $ */
2 
3 /*
4  * Copyright (c) 2006 Reinoud Zandijk
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *          This product includes software developed for the
18  *          NetBSD Project.  See http://www.NetBSD.org/ for
19  *          information about NetBSD.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  */
35 
36 
37 #include <sys/cdefs.h>
38 #ifndef lint
39 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.43 2007/12/11 12:05:27 lukem Exp $");
40 #endif /* not lint */
41 
42 
43 #if defined(_KERNEL_OPT)
44 #include "opt_quota.h"
45 #include "opt_compat_netbsd.h"
46 #endif
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/sysctl.h>
51 #include <sys/namei.h>
52 #include <sys/proc.h>
53 #include <sys/kernel.h>
54 #include <sys/vnode.h>
55 #include <miscfs/genfs/genfs_node.h>
56 #include <sys/mount.h>
57 #include <sys/buf.h>
58 #include <sys/file.h>
59 #include <sys/device.h>
60 #include <sys/disklabel.h>
61 #include <sys/ioctl.h>
62 #include <sys/malloc.h>
63 #include <sys/dirent.h>
64 #include <sys/stat.h>
65 #include <sys/conf.h>
66 #include <sys/kauth.h>
67 #include <dev/clock_subr.h>
68 
69 #include <fs/udf/ecma167-udf.h>
70 #include <fs/udf/udf_mount.h>
71 
72 #include "udf.h"
73 #include "udf_subr.h"
74 #include "udf_bswap.h"
75 
76 
77 #define VTOI(vnode) ((struct udf_node *) vnode->v_data)
78 
79 
80 /* predefines */
81 
82 
83 #if 0
84 {
85 	int i, j, dlen;
86 	uint8_t *blob;
87 
88 	blob = (uint8_t *) fid;
89 	dlen = file_size - (*offset);
90 
91 	printf("blob = %p\n", blob);
92 	printf("dump of %d bytes\n", dlen);
93 
94 	for (i = 0; i < dlen; i+ = 16) {
95 		printf("%04x ", i);
96 		for (j = 0; j < 16; j++) {
97 			if (i+j < dlen) {
98 				printf("%02x ", blob[i+j]);
99 			} else {
100 				printf("   ");
101 			}
102 		}
103 		for (j = 0; j < 16; j++) {
104 			if (i+j < dlen) {
105 				if (blob[i+j]>32 && blob[i+j]! = 127) {
106 					printf("%c", blob[i+j]);
107 				} else {
108 					printf(".");
109 				}
110 			}
111 		}
112 		printf("\n");
113 	}
114 	printf("\n");
115 }
116 Debugger();
117 #endif
118 
119 
120 /* --------------------------------------------------------------------- */
121 
122 /* STUB */
123 
124 static int
125 udf_bread(struct udf_mount *ump, uint32_t sector, struct buf **bpp)
126 {
127 	int sector_size = ump->discinfo.sector_size;
128 	int blks = sector_size / DEV_BSIZE;
129 
130 	/* NOTE bread() checks if block is in cache or not */
131 	return bread(ump->devvp, sector*blks, sector_size, NOCRED, bpp);
132 }
133 
134 
135 /* --------------------------------------------------------------------- */
136 
137 /*
138  * Check if the blob starts with a good UDF tag. Tags are protected by a
139  * checksum over the reader except one byte at position 4 that is the checksum
140  * itself.
141  */
142 
143 int
144 udf_check_tag(void *blob)
145 {
146 	struct desc_tag *tag = blob;
147 	uint8_t *pos, sum, cnt;
148 
149 	/* check TAG header checksum */
150 	pos = (uint8_t *) tag;
151 	sum = 0;
152 
153 	for(cnt = 0; cnt < 16; cnt++) {
154 		if (cnt != 4)
155 			sum += *pos;
156 		pos++;
157 	}
158 	if (sum != tag->cksum) {
159 		/* bad tag header checksum; this is not a valid tag */
160 		return EINVAL;
161 	}
162 
163 	return 0;
164 }
165 
166 /* --------------------------------------------------------------------- */
167 
168 /*
169  * check tag payload will check descriptor CRC as specified.
170  * If the descriptor is too short, it will return EIO otherwise EINVAL.
171  */
172 
173 int
174 udf_check_tag_payload(void *blob, uint32_t max_length)
175 {
176 	struct desc_tag *tag = blob;
177 	uint16_t crc, crc_len;
178 
179 	crc_len = udf_rw16(tag->desc_crc_len);
180 
181 	/* check payload CRC if applicable */
182 	if (crc_len == 0)
183 		return 0;
184 
185 	if (crc_len > max_length)
186 		return EIO;
187 
188 	crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
189 	if (crc != udf_rw16(tag->desc_crc)) {
190 		/* bad payload CRC; this is a broken tag */
191 		return EINVAL;
192 	}
193 
194 	return 0;
195 }
196 
197 /* --------------------------------------------------------------------- */
198 
199 int
200 udf_validate_tag_sum(void *blob)
201 {
202 	struct desc_tag *tag = blob;
203 	uint8_t *pos, sum, cnt;
204 
205 	/* calculate TAG header checksum */
206 	pos = (uint8_t *) tag;
207 	sum = 0;
208 
209 	for(cnt = 0; cnt < 16; cnt++) {
210 		if (cnt != 4) sum += *pos;
211 		pos++;
212 	}
213 	tag->cksum = sum;	/* 8 bit */
214 
215 	return 0;
216 }
217 
218 /* --------------------------------------------------------------------- */
219 
220 /* assumes sector number of descriptor to be saved already present */
221 
222 int
223 udf_validate_tag_and_crc_sums(void *blob)
224 {
225 	struct desc_tag *tag  = blob;
226 	uint8_t         *btag = (uint8_t *) tag;
227 	uint16_t crc, crc_len;
228 
229 	crc_len = udf_rw16(tag->desc_crc_len);
230 
231 	/* check payload CRC if applicable */
232 	if (crc_len > 0) {
233 		crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
234 		tag->desc_crc = udf_rw16(crc);
235 	}
236 
237 	/* calculate TAG header checksum */
238 	return udf_validate_tag_sum(blob);
239 }
240 
241 /* --------------------------------------------------------------------- */
242 
243 /*
244  * XXX note the different semantics from udfclient: for FIDs it still rounds
245  * up to sectors. Use udf_fidsize() for a correct length.
246  */
247 
248 int
249 udf_tagsize(union dscrptr *dscr, uint32_t udf_sector_size)
250 {
251 	uint32_t size, tag_id, num_secs, elmsz;
252 
253 	tag_id = udf_rw16(dscr->tag.id);
254 
255 	switch (tag_id) {
256 	case TAGID_LOGVOL :
257 		size  = sizeof(struct logvol_desc) - 1;
258 		size += udf_rw32(dscr->lvd.mt_l);
259 		break;
260 	case TAGID_UNALLOC_SPACE :
261 		elmsz = sizeof(struct extent_ad);
262 		size  = sizeof(struct unalloc_sp_desc) - elmsz;
263 		size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
264 		break;
265 	case TAGID_FID :
266 		size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
267 		size = (size + 3) & ~3;
268 		break;
269 	case TAGID_LOGVOL_INTEGRITY :
270 		size  = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
271 		size += udf_rw32(dscr->lvid.l_iu);
272 		size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
273 		break;
274 	case TAGID_SPACE_BITMAP :
275 		size  = sizeof(struct space_bitmap_desc) - 1;
276 		size += udf_rw32(dscr->sbd.num_bytes);
277 		break;
278 	case TAGID_SPARING_TABLE :
279 		elmsz = sizeof(struct spare_map_entry);
280 		size  = sizeof(struct udf_sparing_table) - elmsz;
281 		size += udf_rw16(dscr->spt.rt_l) * elmsz;
282 		break;
283 	case TAGID_FENTRY :
284 		size  = sizeof(struct file_entry);
285 		size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
286 		break;
287 	case TAGID_EXTFENTRY :
288 		size  = sizeof(struct extfile_entry);
289 		size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
290 		break;
291 	case TAGID_FSD :
292 		size  = sizeof(struct fileset_desc);
293 		break;
294 	default :
295 		size = sizeof(union dscrptr);
296 		break;
297 	}
298 
299 	if ((size == 0) || (udf_sector_size == 0)) return 0;
300 
301 	/* round up in sectors */
302 	num_secs = (size + udf_sector_size -1) / udf_sector_size;
303 	return num_secs * udf_sector_size;
304 }
305 
306 
307 static int
308 udf_fidsize(struct fileid_desc *fid, uint32_t udf_sector_size)
309 {
310 	uint32_t size;
311 
312 	if (udf_rw16(fid->tag.id) != TAGID_FID)
313 		panic("got udf_fidsize on non FID\n");
314 
315 	size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
316 	size = (size + 3) & ~3;
317 
318 	return size;
319 }
320 
321 /* --------------------------------------------------------------------- */
322 
323 /*
324  * Problem with read_descriptor are long descriptors spanning more than one
325  * sector. Luckily long descriptors can't be in `logical space'.
326  *
327  * Size of allocated piece is returned in multiple of sector size due to
328  * udf_calc_udf_malloc_size().
329  */
330 
331 int
332 udf_read_descriptor(struct udf_mount *ump, uint32_t sector,
333 		    struct malloc_type *mtype, union dscrptr **dstp)
334 {
335 	union dscrptr *src, *dst;
336 	struct buf *bp;
337 	uint8_t *pos;
338 	int blks, blk, dscrlen;
339 	int i, error, sector_size;
340 
341 	sector_size = ump->discinfo.sector_size;
342 
343 	*dstp = dst = NULL;
344 	dscrlen = sector_size;
345 
346 	/* read initial piece */
347 	error = udf_bread(ump, sector, &bp);
348 	DPRINTFIF(DESCRIPTOR, error, ("read error (%d)\n", error));
349 
350 	if (!error) {
351 		/* check if its a valid tag */
352 		error = udf_check_tag(bp->b_data);
353 		if (error) {
354 			/* check if its an empty block */
355 			pos = bp->b_data;
356 			for (i = 0; i < sector_size; i++, pos++) {
357 				if (*pos) break;
358 			}
359 			if (i == sector_size) {
360 				/* return no error but with no dscrptr */
361 				/* dispose first block */
362 				brelse(bp, 0);
363 				return 0;
364 			}
365 		}
366 	}
367 	DPRINTFIF(DESCRIPTOR, error, ("bad tag checksum\n"));
368 	if (!error) {
369 		src = (union dscrptr *) bp->b_data;
370 		dscrlen = udf_tagsize(src, sector_size);
371 		dst = malloc(dscrlen, mtype, M_WAITOK);
372 		memcpy(dst, src, sector_size);
373 	}
374 	/* dispose first block */
375 	brelse(bp, BC_AGE);
376 
377 	if (!error && (dscrlen > sector_size)) {
378 		DPRINTF(DESCRIPTOR, ("multi block descriptor read\n"));
379 		/*
380 		 * Read the rest of descriptor. Since it is only used at mount
381 		 * time its overdone to define and use a specific udf_breadn
382 		 * for this alone.
383 		 */
384 		blks = (dscrlen + sector_size -1) / sector_size;
385 		for (blk = 1; blk < blks; blk++) {
386 			error = udf_bread(ump, sector + blk, &bp);
387 			if (error) {
388 				brelse(bp, 0);
389 				break;
390 			}
391 			pos = (uint8_t *) dst + blk*sector_size;
392 			memcpy(pos, bp->b_data, sector_size);
393 
394 			/* dispose block */
395 			brelse(bp, BC_AGE);
396 		}
397 		DPRINTFIF(DESCRIPTOR, error, ("read error on multi (%d)\n",
398 		    error));
399 	}
400 	if (!error) {
401 		error = udf_check_tag_payload(dst, dscrlen);
402 		DPRINTFIF(DESCRIPTOR, error, ("bad payload check sum\n"));
403 	}
404 	if (error && dst) {
405 		free(dst, mtype);
406 		dst = NULL;
407 	}
408 	*dstp = dst;
409 
410 	return error;
411 }
412 
413 /* --------------------------------------------------------------------- */
414 #ifdef DEBUG
415 static void
416 udf_dump_discinfo(struct udf_mount *ump)
417 {
418 	char   bits[128];
419 	struct mmc_discinfo *di = &ump->discinfo;
420 
421 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
422 		return;
423 
424 	printf("Device/media info  :\n");
425 	printf("\tMMC profile        0x%02x\n", di->mmc_profile);
426 	printf("\tderived class      %d\n", di->mmc_class);
427 	printf("\tsector size        %d\n", di->sector_size);
428 	printf("\tdisc state         %d\n", di->disc_state);
429 	printf("\tlast ses state     %d\n", di->last_session_state);
430 	printf("\tbg format state    %d\n", di->bg_format_state);
431 	printf("\tfrst track         %d\n", di->first_track);
432 	printf("\tfst on last ses    %d\n", di->first_track_last_session);
433 	printf("\tlst on last ses    %d\n", di->last_track_last_session);
434 	printf("\tlink block penalty %d\n", di->link_block_penalty);
435 	bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits,
436 		sizeof(bits));
437 	printf("\tdisc flags         %s\n", bits);
438 	printf("\tdisc id            %x\n", di->disc_id);
439 	printf("\tdisc barcode       %"PRIx64"\n", di->disc_barcode);
440 
441 	printf("\tnum sessions       %d\n", di->num_sessions);
442 	printf("\tnum tracks         %d\n", di->num_tracks);
443 
444 	bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits));
445 	printf("\tcapabilities cur   %s\n", bits);
446 	bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits));
447 	printf("\tcapabilities cap   %s\n", bits);
448 }
449 #else
450 #define udf_dump_discinfo(a);
451 #endif
452 
453 /* not called often */
454 int
455 udf_update_discinfo(struct udf_mount *ump)
456 {
457 	struct vnode *devvp = ump->devvp;
458 	struct partinfo dpart;
459 	struct mmc_discinfo *di;
460 	int error;
461 
462 	DPRINTF(VOLUMES, ("read/update disc info\n"));
463 	di = &ump->discinfo;
464 	memset(di, 0, sizeof(struct mmc_discinfo));
465 
466 	/* check if we're on a MMC capable device, i.e. CD/DVD */
467 	error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
468 	if (error == 0) {
469 		udf_dump_discinfo(ump);
470 		return 0;
471 	}
472 
473 	/* disc partition support */
474 	error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED);
475 	if (error)
476 		return ENODEV;
477 
478 	/* set up a disc info profile for partitions */
479 	di->mmc_profile		= 0x01;	/* disc type */
480 	di->mmc_class		= MMC_CLASS_DISC;
481 	di->disc_state		= MMC_STATE_CLOSED;
482 	di->last_session_state	= MMC_STATE_CLOSED;
483 	di->bg_format_state	= MMC_BGFSTATE_COMPLETED;
484 	di->link_block_penalty	= 0;
485 
486 	di->mmc_cur     = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
487 		MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
488 	di->mmc_cap    = di->mmc_cur;
489 	di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
490 
491 	/* TODO problem with last_possible_lba on resizable VND; request */
492 	di->last_possible_lba = dpart.part->p_size;
493 	di->sector_size       = dpart.disklab->d_secsize;
494 
495 	di->num_sessions = 1;
496 	di->num_tracks   = 1;
497 
498 	di->first_track  = 1;
499 	di->first_track_last_session = di->last_track_last_session = 1;
500 
501 	udf_dump_discinfo(ump);
502 	return 0;
503 }
504 
505 /* --------------------------------------------------------------------- */
506 
507 int
508 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
509 {
510 	struct vnode *devvp = ump->devvp;
511 	struct mmc_discinfo *di = &ump->discinfo;
512 	int error, class;
513 
514 	DPRINTF(VOLUMES, ("read track info\n"));
515 
516 	class = di->mmc_class;
517 	if (class != MMC_CLASS_DISC) {
518 		/* tracknr specified in struct ti */
519 		error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
520 		return error;
521 	}
522 
523 	/* disc partition support */
524 	if (ti->tracknr != 1)
525 		return EIO;
526 
527 	/* create fake ti (TODO check for resized vnds) */
528 	ti->sessionnr  = 1;
529 
530 	ti->track_mode = 0;	/* XXX */
531 	ti->data_mode  = 0;	/* XXX */
532 	ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
533 
534 	ti->track_start    = 0;
535 	ti->packet_size    = 1;
536 
537 	/* TODO support for resizable vnd */
538 	ti->track_size    = di->last_possible_lba;
539 	ti->next_writable = di->last_possible_lba;
540 	ti->last_recorded = ti->next_writable;
541 	ti->free_blocks   = 0;
542 
543 	return 0;
544 }
545 
546 /* --------------------------------------------------------------------- */
547 
548 /* track/session searching for mounting */
549 
550 static int
551 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
552 		  int *first_tracknr, int *last_tracknr)
553 {
554 	struct mmc_trackinfo trackinfo;
555 	uint32_t tracknr, start_track, num_tracks;
556 	int error;
557 
558 	/* if negative, sessionnr is relative to last session */
559 	if (args->sessionnr < 0) {
560 		args->sessionnr += ump->discinfo.num_sessions;
561 		/* sanity */
562 		if (args->sessionnr < 0)
563 			args->sessionnr = 0;
564 	}
565 
566 	/* sanity */
567 	if (args->sessionnr > ump->discinfo.num_sessions)
568 		args->sessionnr = ump->discinfo.num_sessions;
569 
570 	/* search the tracks for this session, zero session nr indicates last */
571 	if (args->sessionnr == 0)
572 		args->sessionnr = ump->discinfo.num_sessions;
573 	if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
574 		args->sessionnr--;
575 
576 	/* sanity */
577 	if (args->sessionnr == 0)
578 		args->sessionnr = 1;
579 
580 	/* search the first and last track of the specified session */
581 	num_tracks  = ump->discinfo.num_tracks;
582 	start_track = ump->discinfo.first_track;
583 
584 	/* search for first track of this session */
585 	for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
586 		/* get track info */
587 		trackinfo.tracknr = tracknr;
588 		error = udf_update_trackinfo(ump, &trackinfo);
589 		if (error)
590 			return error;
591 
592 		if (trackinfo.sessionnr == args->sessionnr)
593 			break;
594 	}
595 	*first_tracknr = tracknr;
596 
597 	/* search for last track of this session */
598 	for (;tracknr <= num_tracks; tracknr++) {
599 		/* get track info */
600 		trackinfo.tracknr = tracknr;
601 		error = udf_update_trackinfo(ump, &trackinfo);
602 		if (error || (trackinfo.sessionnr != args->sessionnr)) {
603 			tracknr--;
604 			break;
605 		}
606 	}
607 	if (tracknr > num_tracks)
608 		tracknr--;
609 
610 	*last_tracknr = tracknr;
611 
612 	assert(*last_tracknr >= *first_tracknr);
613 	return 0;
614 }
615 
616 /* --------------------------------------------------------------------- */
617 
618 static int
619 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
620 {
621 	int error;
622 
623 	error = udf_read_descriptor(ump, sector, M_UDFVOLD,
624 			(union dscrptr **) dst);
625 	if (!error) {
626 		/* blank terminator blocks are not allowed here */
627 		if (*dst == NULL)
628 			return ENOENT;
629 		if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
630 			error = ENOENT;
631 			free(*dst, M_UDFVOLD);
632 			*dst = NULL;
633 			DPRINTF(VOLUMES, ("Not an anchor\n"));
634 		}
635 	}
636 
637 	return error;
638 }
639 
640 
641 int
642 udf_read_anchors(struct udf_mount *ump, struct udf_args *args)
643 {
644 	struct mmc_trackinfo first_track;
645 	struct mmc_trackinfo last_track;
646 	struct anchor_vdp **anchorsp;
647 	uint32_t track_start;
648 	uint32_t track_end;
649 	uint32_t positions[4];
650 	int first_tracknr, last_tracknr;
651 	int error, anch, ok, first_anchor;
652 
653 	/* search the first and last track of the specified session */
654 	error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
655 	if (!error) {
656 		first_track.tracknr = first_tracknr;
657 		error = udf_update_trackinfo(ump, &first_track);
658 	}
659 	if (!error) {
660 		last_track.tracknr = last_tracknr;
661 		error = udf_update_trackinfo(ump, &last_track);
662 	}
663 	if (error) {
664 		printf("UDF mount: reading disc geometry failed\n");
665 		return 0;
666 	}
667 
668 	track_start = first_track.track_start;
669 
670 	/* `end' is not as straitforward as start. */
671 	track_end =   last_track.track_start
672 		    + last_track.track_size - last_track.free_blocks - 1;
673 
674 	if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
675 		/* end of track is not straitforward here */
676 		if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
677 			track_end = last_track.last_recorded;
678 		else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
679 			track_end = last_track.next_writable
680 				    - ump->discinfo.link_block_penalty;
681 	}
682 
683 	/* its no use reading a blank track */
684 	first_anchor = 0;
685 	if (first_track.flags & MMC_TRACKINFO_BLANK)
686 		first_anchor = 1;
687 
688 	/* read anchors start+256, start+512, end-256, end */
689 	positions[0] = track_start+256;
690 	positions[1] =   track_end-256;
691 	positions[2] =   track_end;
692 	positions[3] = track_start+512;	/* [UDF 2.60/6.11.2] */
693 	/* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
694 
695 	ok = 0;
696 	anchorsp = ump->anchors;
697 	for (anch = first_anchor; anch < 4; anch++) {
698 		DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
699 		    positions[anch]));
700 		error = udf_read_anchor(ump, positions[anch], anchorsp);
701 		if (!error) {
702 			anchorsp++;
703 			ok++;
704 		}
705 	}
706 
707 	/* VATs are only recorded on sequential media, but initialise */
708 	ump->first_possible_vat_location = track_start + 2;
709 	ump->last_possible_vat_location  = track_end + last_track.packet_size;
710 
711 	return ok;
712 }
713 
714 /* --------------------------------------------------------------------- */
715 
716 /* we dont try to be smart; we just record the parts */
717 #define UDF_UPDATE_DSCR(name, dscr) \
718 	if (name) \
719 		free(name, M_UDFVOLD); \
720 	name = dscr;
721 
722 static int
723 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
724 {
725 	struct part_desc *part;
726 	uint16_t phys_part, raw_phys_part;
727 
728 	DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
729 	    udf_rw16(dscr->tag.id)));
730 	switch (udf_rw16(dscr->tag.id)) {
731 	case TAGID_PRI_VOL :		/* primary partition		*/
732 		UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
733 		break;
734 	case TAGID_LOGVOL :		/* logical volume		*/
735 		UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
736 		break;
737 	case TAGID_UNALLOC_SPACE :	/* unallocated space		*/
738 		UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
739 		break;
740 	case TAGID_IMP_VOL :		/* implementation		*/
741 		/* XXX do we care about multiple impl. descr ? */
742 		UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
743 		break;
744 	case TAGID_PARTITION :		/* physical partition		*/
745 		/* not much use if its not allocated */
746 		if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
747 			free(dscr, M_UDFVOLD);
748 			break;
749 		}
750 
751 		/*
752 		 * BUGALERT: some rogue implementations use random physical
753 		 * partion numbers to break other implementations so lookup
754 		 * the number.
755 		 */
756 		raw_phys_part = udf_rw16(dscr->pd.part_num);
757 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
758 			part = ump->partitions[phys_part];
759 			if (part == NULL)
760 				break;
761 			if (udf_rw16(part->part_num) == raw_phys_part)
762 				break;
763 		}
764 		if (phys_part == UDF_PARTITIONS) {
765 			free(dscr, M_UDFVOLD);
766 			return EINVAL;
767 		}
768 
769 		UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
770 		break;
771 	case TAGID_VOL :		/* volume space extender; rare	*/
772 		DPRINTF(VOLUMES, ("VDS extender ignored\n"));
773 		free(dscr, M_UDFVOLD);
774 		break;
775 	default :
776 		DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
777 		    udf_rw16(dscr->tag.id)));
778 		free(dscr, M_UDFVOLD);
779 	}
780 
781 	return 0;
782 }
783 #undef UDF_UPDATE_DSCR
784 
785 /* --------------------------------------------------------------------- */
786 
787 static int
788 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
789 {
790 	union dscrptr *dscr;
791 	uint32_t sector_size, dscr_size;
792 	int error;
793 
794 	sector_size = ump->discinfo.sector_size;
795 
796 	/* loc is sectornr, len is in bytes */
797 	error = EIO;
798 	while (len) {
799 		error = udf_read_descriptor(ump, loc, M_UDFVOLD, &dscr);
800 		if (error)
801 			return error;
802 
803 		/* blank block is a terminator */
804 		if (dscr == NULL)
805 			return 0;
806 
807 		/* TERM descriptor is a terminator */
808 		if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
809 			free(dscr, M_UDFVOLD);
810 			return 0;
811 		}
812 
813 		/* process all others */
814 		dscr_size = udf_tagsize(dscr, sector_size);
815 		error = udf_process_vds_descriptor(ump, dscr);
816 		if (error) {
817 			free(dscr, M_UDFVOLD);
818 			break;
819 		}
820 		assert((dscr_size % sector_size) == 0);
821 
822 		len -= dscr_size;
823 		loc += dscr_size / sector_size;
824 	}
825 
826 	return error;
827 }
828 
829 
830 int
831 udf_read_vds_space(struct udf_mount *ump)
832 {
833 	struct anchor_vdp *anchor, *anchor2;
834 	size_t size;
835 	uint32_t main_loc, main_len;
836 	uint32_t reserve_loc, reserve_len;
837 	int error;
838 
839 	/*
840 	 * read in VDS space provided by the anchors; if one descriptor read
841 	 * fails, try the mirror sector.
842 	 *
843 	 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
844 	 * avoids the `compatibility features' of DirectCD that may confuse
845 	 * stuff completely.
846 	 */
847 
848 	anchor  = ump->anchors[0];
849 	anchor2 = ump->anchors[1];
850 	assert(anchor);
851 
852 	if (anchor2) {
853 		size = sizeof(struct extent_ad);
854 		if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
855 			anchor = anchor2;
856 		/* reserve is specified to be a literal copy of main */
857 	}
858 
859 	main_loc    = udf_rw32(anchor->main_vds_ex.loc);
860 	main_len    = udf_rw32(anchor->main_vds_ex.len);
861 
862 	reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
863 	reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
864 
865 	error = udf_read_vds_extent(ump, main_loc, main_len);
866 	if (error) {
867 		printf("UDF mount: reading in reserve VDS extent\n");
868 		error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
869 	}
870 
871 	return error;
872 }
873 
874 /* --------------------------------------------------------------------- */
875 
876 /*
877  * Read in the logical volume integrity sequence pointed to by our logical
878  * volume descriptor. Its a sequence that can be extended using fields in the
879  * integrity descriptor itself. On sequential media only one is found, on
880  * rewritable media a sequence of descriptors can be found as a form of
881  * history keeping and on non sequential write-once media the chain is vital
882  * to allow more and more descriptors to be written. The last descriptor
883  * written in an extent needs to claim space for a new extent.
884  */
885 
886 static int
887 udf_retrieve_lvint(struct udf_mount *ump, struct logvol_int_desc **lvintp)
888 {
889 	union dscrptr *dscr;
890 	struct logvol_int_desc *lvint;
891 	uint32_t sector_size, sector, len;
892 	int dscr_type, error;
893 
894 	sector_size = ump->discinfo.sector_size;
895 	len    = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
896 	sector = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
897 
898 	lvint = NULL;
899 	dscr  = NULL;
900 	error = 0;
901 	while (len) {
902 		/* read in our integrity descriptor */
903 		error = udf_read_descriptor(ump, sector, M_UDFVOLD, &dscr);
904 		if (!error) {
905 			if (dscr == NULL)
906 				break;		/* empty terminates */
907 			dscr_type = udf_rw16(dscr->tag.id);
908 			if (dscr_type == TAGID_TERM) {
909 				break;		/* clean terminator */
910 			}
911 			if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
912 				/* fatal... corrupt disc */
913 				error = ENOENT;
914 				break;
915 			}
916 			if (lvint)
917 				free(lvint, M_UDFVOLD);
918 			lvint = &dscr->lvid;
919 			dscr = NULL;
920 		} /* else hope for the best... maybe the next is ok */
921 
922 		DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
923 		    udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
924 
925 		/* proceed sequential */
926 		sector += 1;
927 		len    -= sector_size;
928 
929 		/* are we linking to a new piece? */
930 		if (lvint->next_extent.len) {
931 			len    = udf_rw32(lvint->next_extent.len);
932 			sector = udf_rw32(lvint->next_extent.loc);
933 		}
934 	}
935 
936 	/* clean up the mess, esp. when there is an error */
937 	if (dscr)
938 		free(dscr, M_UDFVOLD);
939 
940 	if (error && lvint) {
941 		free(lvint, M_UDFVOLD);
942 		lvint = NULL;
943 	}
944 
945 	if (!lvint)
946 		error = ENOENT;
947 
948 	*lvintp = lvint;
949 	return error;
950 }
951 
952 /* --------------------------------------------------------------------- */
953 
954 /*
955  * Checks if ump's vds information is correct and complete
956  */
957 
958 int
959 udf_process_vds(struct udf_mount *ump, struct udf_args *args)
960 {
961 	union udf_pmap *mapping;
962 	struct logvol_int_desc *lvint;
963 	struct udf_logvol_info *lvinfo;
964 	struct part_desc *part;
965 	uint32_t n_pm, mt_l;
966 	uint8_t *pmap_pos;
967 	char *domain_name, *map_name;
968 	const char *check_name;
969 	int pmap_stype, pmap_size;
970 	int pmap_type, log_part, phys_part, raw_phys_part;
971 	int n_phys, n_virt, n_spar, n_meta;
972 	int len, error;
973 
974 	if (ump == NULL)
975 		return ENOENT;
976 
977 	/* we need at least an anchor (trivial, but for safety) */
978 	if (ump->anchors[0] == NULL)
979 		return EINVAL;
980 
981 	/* we need at least one primary and one logical volume descriptor */
982 	if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
983 		return EINVAL;
984 
985 	/* we need at least one partition descriptor */
986 	if (ump->partitions[0] == NULL)
987 		return EINVAL;
988 
989 	/* check logical volume sector size verses device sector size */
990 	if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
991 		printf("UDF mount: format violation, lb_size != sector size\n");
992 		return EINVAL;
993 	}
994 
995 	domain_name = ump->logical_vol->domain_id.id;
996 	if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
997 		printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
998 		return EINVAL;
999 	}
1000 
1001 	/* retrieve logical volume integrity sequence */
1002 	error = udf_retrieve_lvint(ump, &ump->logvol_integrity);
1003 
1004 	/*
1005 	 * We need at least one logvol integrity descriptor recorded.  Note
1006 	 * that its OK to have an open logical volume integrity here. The VAT
1007 	 * will close/update the integrity.
1008 	 */
1009 	if (ump->logvol_integrity == NULL)
1010 		return EINVAL;
1011 
1012 	/* process derived structures */
1013 	n_pm   = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
1014 	lvint  = ump->logvol_integrity;
1015 	lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1016 	ump->logvol_info = lvinfo;
1017 
1018 	/* TODO check udf versions? */
1019 
1020 	/*
1021 	 * check logvol mappings: effective virt->log partmap translation
1022 	 * check and recording of the mapping results. Saves expensive
1023 	 * strncmp() in tight places.
1024 	 */
1025 	DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1026 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
1027 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
1028 	pmap_pos =  ump->logical_vol->maps;
1029 
1030 	if (n_pm > UDF_PMAPS) {
1031 		printf("UDF mount: too many mappings\n");
1032 		return EINVAL;
1033 	}
1034 
1035 	n_phys = n_virt = n_spar = n_meta = 0;
1036 	for (log_part = 0; log_part < n_pm; log_part++) {
1037 		mapping = (union udf_pmap *) pmap_pos;
1038 		pmap_stype = pmap_pos[0];
1039 		pmap_size  = pmap_pos[1];
1040 		switch (pmap_stype) {
1041 		case 1:	/* physical mapping */
1042 			/* volseq    = udf_rw16(mapping->pm1.vol_seq_num); */
1043 			raw_phys_part = udf_rw16(mapping->pm1.part_num);
1044 			pmap_type = UDF_VTOP_TYPE_PHYS;
1045 			n_phys++;
1046 			break;
1047 		case 2: /* virtual/sparable/meta mapping */
1048 			map_name  = mapping->pm2.part_id.id;
1049 			/* volseq  = udf_rw16(mapping->pm2.vol_seq_num); */
1050 			raw_phys_part = udf_rw16(mapping->pm2.part_num);
1051 			pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1052 			len = UDF_REGID_ID_SIZE;
1053 
1054 			check_name = "*UDF Virtual Partition";
1055 			if (strncmp(map_name, check_name, len) == 0) {
1056 				pmap_type = UDF_VTOP_TYPE_VIRT;
1057 				n_virt++;
1058 				break;
1059 			}
1060 			check_name = "*UDF Sparable Partition";
1061 			if (strncmp(map_name, check_name, len) == 0) {
1062 				pmap_type = UDF_VTOP_TYPE_SPARABLE;
1063 				n_spar++;
1064 				break;
1065 			}
1066 			check_name = "*UDF Metadata Partition";
1067 			if (strncmp(map_name, check_name, len) == 0) {
1068 				pmap_type = UDF_VTOP_TYPE_META;
1069 				n_meta++;
1070 				break;
1071 			}
1072 			break;
1073 		default:
1074 			return EINVAL;
1075 		}
1076 
1077 		/*
1078 		 * BUGALERT: some rogue implementations use random physical
1079 		 * partion numbers to break other implementations so lookup
1080 		 * the number.
1081 		 */
1082 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1083 			part = ump->partitions[phys_part];
1084 			if (part == NULL)
1085 				continue;
1086 			if (udf_rw16(part->part_num) == raw_phys_part)
1087 				break;
1088 		}
1089 
1090 		DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
1091 		    raw_phys_part, phys_part, pmap_type));
1092 
1093 		if (phys_part == UDF_PARTITIONS)
1094 			return EINVAL;
1095 		if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1096 			return EINVAL;
1097 
1098 		ump->vtop   [log_part] = phys_part;
1099 		ump->vtop_tp[log_part] = pmap_type;
1100 
1101 		pmap_pos += pmap_size;
1102 	}
1103 	/* not winning the beauty contest */
1104 	ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1105 
1106 	/* test some basic UDF assertions/requirements */
1107 	if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
1108 		return EINVAL;
1109 
1110 	if (n_virt) {
1111 		if ((n_phys == 0) || n_spar || n_meta)
1112 			return EINVAL;
1113 	}
1114 	if (n_spar + n_phys == 0)
1115 		return EINVAL;
1116 
1117 	/* vat's can only be on a sequential media */
1118 	ump->data_alloc = UDF_ALLOC_SPACEMAP;
1119 	if (n_virt)
1120 		ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
1121 
1122 	ump->meta_alloc = UDF_ALLOC_SPACEMAP;
1123 	if (n_virt)
1124 		ump->meta_alloc = UDF_ALLOC_VAT;
1125 	if (n_meta)
1126 		ump->meta_alloc = UDF_ALLOC_METABITMAP;
1127 
1128 	/* special cases for pseudo-overwrite */
1129 	if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
1130 		ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
1131 		if (n_meta) {
1132 			ump->meta_alloc = UDF_ALLOC_METASEQUENTIAL;
1133 		} else {
1134 			ump->meta_alloc = UDF_ALLOC_RELAXEDSEQUENTIAL;
1135 		}
1136 	}
1137 
1138 	DPRINTF(VOLUMES, ("\tdata alloc scheme %d, meta alloc scheme %d\n",
1139 	    ump->data_alloc, ump->meta_alloc));
1140 	/* TODO determine partitions to write data and metadata ? */
1141 
1142 	/* signal its OK for now */
1143 	return 0;
1144 }
1145 
1146 /* --------------------------------------------------------------------- */
1147 
1148 /*
1149  * Read in complete VAT file and check if its indeed a VAT file descriptor
1150  */
1151 
1152 static int
1153 udf_check_for_vat(struct udf_node *vat_node)
1154 {
1155 	struct udf_mount *ump;
1156 	struct icb_tag   *icbtag;
1157 	struct timestamp *mtime;
1158 	struct regid     *regid;
1159 	struct udf_vat   *vat;
1160 	struct udf_logvol_info *lvinfo;
1161 	uint32_t  vat_length, alloc_length;
1162 	uint32_t  vat_offset, vat_entries;
1163 	uint32_t  sector_size;
1164 	uint32_t  sectors;
1165 	uint32_t *raw_vat;
1166 	char     *regid_name;
1167 	int filetype;
1168 	int error;
1169 
1170 	/* vat_length is really 64 bits though impossible */
1171 
1172 	DPRINTF(VOLUMES, ("Checking for VAT\n"));
1173 	if (!vat_node)
1174 		return ENOENT;
1175 
1176 	/* get mount info */
1177 	ump = vat_node->ump;
1178 
1179 	/* check assertions */
1180 	assert(vat_node->fe || vat_node->efe);
1181 	assert(ump->logvol_integrity);
1182 
1183 	/* get information from fe/efe */
1184 	if (vat_node->fe) {
1185 		vat_length = udf_rw64(vat_node->fe->inf_len);
1186 		icbtag = &vat_node->fe->icbtag;
1187 		mtime  = &vat_node->fe->mtime;
1188 	} else {
1189 		vat_length = udf_rw64(vat_node->efe->inf_len);
1190 		icbtag = &vat_node->efe->icbtag;
1191 		mtime  = &vat_node->efe->mtime;
1192 	}
1193 
1194 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
1195 	filetype = icbtag->file_type;
1196 	if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
1197 		return ENOENT;
1198 
1199 	DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
1200 	/* place a sanity check on the length; currently 1Mb in size */
1201 	if (vat_length > 1*1024*1024)
1202 		return ENOENT;
1203 
1204 	/* get sector size */
1205 	sector_size = vat_node->ump->discinfo.sector_size;
1206 
1207 	/* calculate how many sectors to read in and how much to allocate */
1208 	sectors = (vat_length + sector_size -1) / sector_size;
1209 	alloc_length = (sectors + 2) * sector_size;
1210 
1211 	/* try to allocate the space */
1212 	ump->vat_table_alloc_length = alloc_length;
1213 	ump->vat_table = malloc(alloc_length, M_UDFVOLD, M_CANFAIL | M_WAITOK);
1214 	if (!ump->vat_table)
1215 		return ENOMEM;		/* impossible to allocate */
1216 	DPRINTF(VOLUMES, ("\talloced fine\n"));
1217 
1218 	/* read it in! */
1219 	raw_vat = (uint32_t *) ump->vat_table;
1220 	error = udf_read_file_extent(vat_node, 0, sectors, (uint8_t *) raw_vat);
1221 	if (error) {
1222 		DPRINTF(VOLUMES, ("\tread failed : %d\n", error));
1223 		/* not completely readable... :( bomb out */
1224 		free(ump->vat_table, M_UDFVOLD);
1225 		ump->vat_table = NULL;
1226 		return error;
1227 	}
1228 	DPRINTF(VOLUMES, ("VAT read in fine!\n"));
1229 
1230 	/*
1231 	 * check contents of the file if its the old 1.50 VAT table format.
1232 	 * Its notoriously broken and allthough some implementations support an
1233 	 * extention as defined in the UDF 1.50 errata document, its doubtfull
1234 	 * to be useable since a lot of implementations don't maintain it.
1235 	 */
1236 	lvinfo = ump->logvol_info;
1237 
1238 	if (filetype == 0) {
1239 		/* definition */
1240 		vat_offset  = 0;
1241 		vat_entries = (vat_length-36)/4;
1242 
1243 		/* check 1.50 VAT */
1244 		regid = (struct regid *) (raw_vat + vat_entries);
1245 		regid_name = (char *) regid->id;
1246 		error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
1247 		if (error) {
1248 			DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
1249 			free(ump->vat_table, M_UDFVOLD);
1250 			ump->vat_table = NULL;
1251 			return ENOENT;
1252 		}
1253 		/* TODO update LVID from "*UDF VAT LVExtension" ext. attr. */
1254 	} else {
1255 		vat = (struct udf_vat *) raw_vat;
1256 
1257 		/* definition */
1258 		vat_offset  = vat->header_len;
1259 		vat_entries = (vat_length - vat_offset)/4;
1260 
1261 		assert(lvinfo);
1262 		lvinfo->num_files        = vat->num_files;
1263 		lvinfo->num_directories  = vat->num_directories;
1264 		lvinfo->min_udf_readver  = vat->min_udf_readver;
1265 		lvinfo->min_udf_writever = vat->min_udf_writever;
1266 		lvinfo->max_udf_writever = vat->max_udf_writever;
1267 	}
1268 
1269 	ump->vat_offset  = vat_offset;
1270 	ump->vat_entries = vat_entries;
1271 
1272 	DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
1273 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
1274 	ump->logvol_integrity->time           = *mtime;
1275 
1276 	return 0;	/* success! */
1277 }
1278 
1279 /* --------------------------------------------------------------------- */
1280 
1281 static int
1282 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
1283 {
1284 	struct udf_node *vat_node;
1285 	struct long_ad	 icb_loc;
1286 	uint32_t early_vat_loc, late_vat_loc, vat_loc;
1287 	int error;
1288 
1289 	/* mapping info not needed */
1290 	mapping = mapping;
1291 
1292 	vat_loc = ump->last_possible_vat_location;
1293 	early_vat_loc = vat_loc - 256;	/* 8 blocks of 32 sectors */
1294 	early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
1295 	late_vat_loc  = vat_loc + 1024;
1296 
1297 	/* TODO first search last sector? */
1298 	do {
1299 		DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
1300 		icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
1301 		icb_loc.loc.lb_num   = udf_rw32(vat_loc);
1302 
1303 		error = udf_get_node(ump, &icb_loc, &vat_node);
1304 		if (!error) error = udf_check_for_vat(vat_node);
1305 		if (!error) break;
1306 		if (vat_node) {
1307 			vput(vat_node->vnode);
1308 			vat_node = NULL;
1309 		}
1310 		vat_loc--;	/* walk backwards */
1311 	} while (vat_loc >= early_vat_loc);
1312 
1313 	/* we don't need our VAT node anymore */
1314 	if (vat_node) {
1315 		vput(vat_node->vnode);
1316 		udf_dispose_node(vat_node);
1317 	}
1318 
1319 	return error;
1320 }
1321 
1322 /* --------------------------------------------------------------------- */
1323 
1324 static int
1325 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
1326 {
1327 	union dscrptr *dscr;
1328 	struct part_map_spare *pms = &mapping->pms;
1329 	uint32_t lb_num;
1330 	int spar, error;
1331 
1332 	/*
1333 	 * The partition mapping passed on to us specifies the information we
1334 	 * need to locate and initialise the sparable partition mapping
1335 	 * information we need.
1336 	 */
1337 
1338 	DPRINTF(VOLUMES, ("Read sparable table\n"));
1339 	ump->sparable_packet_len = udf_rw16(pms->packet_len);
1340 	for (spar = 0; spar < pms->n_st; spar++) {
1341 		lb_num = pms->st_loc[spar];
1342 		DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
1343 		error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
1344 		if (!error && dscr) {
1345 			if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
1346 				if (ump->sparing_table)
1347 					free(ump->sparing_table, M_UDFVOLD);
1348 				ump->sparing_table = &dscr->spt;
1349 				dscr = NULL;
1350 				DPRINTF(VOLUMES,
1351 				    ("Sparing table accepted (%d entries)\n",
1352 				     udf_rw16(ump->sparing_table->rt_l)));
1353 				break;	/* we're done */
1354 			}
1355 		}
1356 		if (dscr)
1357 			free(dscr, M_UDFVOLD);
1358 	}
1359 
1360 	if (ump->sparing_table)
1361 		return 0;
1362 
1363 	return ENOENT;
1364 }
1365 
1366 /* --------------------------------------------------------------------- */
1367 
1368 #define UDF_SET_SYSTEMFILE(vp) \
1369 	/* XXXAD Is the vnode locked? */	\
1370 	(vp)->v_vflag |= VV_SYSTEM;		\
1371 	vref(vp);			\
1372 	vput(vp);			\
1373 
1374 static int
1375 udf_read_metadata_files(struct udf_mount *ump, union udf_pmap *mapping)
1376 {
1377 	struct part_map_meta *pmm = &mapping->pmm;
1378 	struct long_ad	 icb_loc;
1379 	struct vnode *vp;
1380 	int error;
1381 
1382 	DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
1383 	icb_loc.loc.part_num = pmm->part_num;
1384 	icb_loc.loc.lb_num   = pmm->meta_file_lbn;
1385 	DPRINTF(VOLUMES, ("Metadata file\n"));
1386 	error = udf_get_node(ump, &icb_loc, &ump->metadata_file);
1387 	if (ump->metadata_file) {
1388 		vp = ump->metadata_file->vnode;
1389 		UDF_SET_SYSTEMFILE(vp);
1390 	}
1391 
1392 	icb_loc.loc.lb_num   = pmm->meta_mirror_file_lbn;
1393 	if (icb_loc.loc.lb_num != -1) {
1394 		DPRINTF(VOLUMES, ("Metadata copy file\n"));
1395 		error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_file);
1396 		if (ump->metadatamirror_file) {
1397 			vp = ump->metadatamirror_file->vnode;
1398 			UDF_SET_SYSTEMFILE(vp);
1399 		}
1400 	}
1401 
1402 	icb_loc.loc.lb_num   = pmm->meta_bitmap_file_lbn;
1403 	if (icb_loc.loc.lb_num != -1) {
1404 		DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
1405 		error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_file);
1406 		if (ump->metadatabitmap_file) {
1407 			vp = ump->metadatabitmap_file->vnode;
1408 			UDF_SET_SYSTEMFILE(vp);
1409 		}
1410 	}
1411 
1412 	/* if we're mounting read-only we relax the requirements */
1413 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
1414 		error = EFAULT;
1415 		if (ump->metadata_file)
1416 			error = 0;
1417 		if ((ump->metadata_file == NULL) && (ump->metadatamirror_file)) {
1418 			printf( "udf mount: Metadata file not readable, "
1419 				"substituting Metadata copy file\n");
1420 			ump->metadata_file = ump->metadatamirror_file;
1421 			ump->metadatamirror_file = NULL;
1422 			error = 0;
1423 		}
1424 	} else {
1425 		/* mounting read/write */
1426 		DPRINTF(VOLUMES, ("udf mount: read only file system\n"));
1427 		error = EROFS;
1428 	}
1429 	DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
1430 				   "metadata files\n"));
1431 	return error;
1432 }
1433 #undef UDF_SET_SYSTEMFILE
1434 
1435 /* --------------------------------------------------------------------- */
1436 
1437 int
1438 udf_read_vds_tables(struct udf_mount *ump, struct udf_args *args)
1439 {
1440 	union udf_pmap *mapping;
1441 	uint32_t n_pm, mt_l;
1442 	uint32_t log_part;
1443 	uint8_t *pmap_pos;
1444 	int pmap_size;
1445 	int error;
1446 
1447 	/* We have to iterate again over the part mappings for locations   */
1448 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
1449 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
1450 	pmap_pos =  ump->logical_vol->maps;
1451 
1452 	for (log_part = 0; log_part < n_pm; log_part++) {
1453 		mapping = (union udf_pmap *) pmap_pos;
1454 		switch (ump->vtop_tp[log_part]) {
1455 		case UDF_VTOP_TYPE_PHYS :
1456 			/* nothing */
1457 			break;
1458 		case UDF_VTOP_TYPE_VIRT :
1459 			/* search and load VAT */
1460 			error = udf_search_vat(ump, mapping);
1461 			if (error)
1462 				return ENOENT;
1463 			break;
1464 		case UDF_VTOP_TYPE_SPARABLE :
1465 			/* load one of the sparable tables */
1466 			error = udf_read_sparables(ump, mapping);
1467 			if (error)
1468 				return ENOENT;
1469 			break;
1470 		case UDF_VTOP_TYPE_META :
1471 			/* load the associated file descriptors */
1472 			error = udf_read_metadata_files(ump, mapping);
1473 			if (error)
1474 				return ENOENT;
1475 			break;
1476 		default:
1477 			break;
1478 		}
1479 		pmap_size  = pmap_pos[1];
1480 		pmap_pos  += pmap_size;
1481 	}
1482 
1483 	return 0;
1484 }
1485 
1486 /* --------------------------------------------------------------------- */
1487 
1488 int
1489 udf_read_rootdirs(struct udf_mount *ump, struct udf_args *args)
1490 {
1491 	struct udf_node *rootdir_node, *streamdir_node;
1492 	union dscrptr *dscr;
1493 	struct long_ad  fsd_loc, *dir_loc;
1494 	uint32_t lb_num, dummy;
1495 	uint32_t fsd_len;
1496 	int dscr_type;
1497 	int error;
1498 
1499 	/* TODO implement FSD reading in separate function like integrity? */
1500 	/* get fileset descriptor sequence */
1501 	fsd_loc = ump->logical_vol->lv_fsd_loc;
1502 	fsd_len = udf_rw32(fsd_loc.len);
1503 
1504 	dscr  = NULL;
1505 	error = 0;
1506 	while (fsd_len || error) {
1507 		DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
1508 		/* translate fsd_loc to lb_num */
1509 		error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
1510 		if (error)
1511 			break;
1512 		DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
1513 		error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
1514 		/* end markers */
1515 		if (error || (dscr == NULL))
1516 			break;
1517 
1518 		/* analyse */
1519 		dscr_type = udf_rw16(dscr->tag.id);
1520 		if (dscr_type == TAGID_TERM)
1521 			break;
1522 		if (dscr_type != TAGID_FSD) {
1523 			free(dscr, M_UDFVOLD);
1524 			return ENOENT;
1525 		}
1526 
1527 		/*
1528 		 * TODO check for multiple fileset descriptors; its only
1529 		 * picking the last now. Also check for FSD
1530 		 * correctness/interpretability
1531 		 */
1532 
1533 		/* update */
1534 		if (ump->fileset_desc) {
1535 			free(ump->fileset_desc, M_UDFVOLD);
1536 		}
1537 		ump->fileset_desc = &dscr->fsd;
1538 		dscr = NULL;
1539 
1540 		/* continue to the next fsd */
1541 		fsd_len -= ump->discinfo.sector_size;
1542 		fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
1543 
1544 		/* follow up to fsd->next_ex (long_ad) if its not null */
1545 		if (udf_rw32(ump->fileset_desc->next_ex.len)) {
1546 			DPRINTF(VOLUMES, ("follow up FSD extent\n"));
1547 			fsd_loc = ump->fileset_desc->next_ex;
1548 			fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
1549 		}
1550 	}
1551 	if (dscr)
1552 		free(dscr, M_UDFVOLD);
1553 
1554 	/* there has to be one */
1555 	if (ump->fileset_desc == NULL)
1556 		return ENOENT;
1557 
1558 	DPRINTF(VOLUMES, ("FSD read in fine\n"));
1559 
1560 	/*
1561 	 * Now the FSD is known, read in the rootdirectory and if one exists,
1562 	 * the system stream dir. Some files in the system streamdir are not
1563 	 * wanted in this implementation since they are not maintained. If
1564 	 * writing is enabled we'll delete these files if they exist.
1565 	 */
1566 
1567 	rootdir_node = streamdir_node = NULL;
1568 	dir_loc = NULL;
1569 
1570 	/* try to read in the rootdir */
1571 	dir_loc = &ump->fileset_desc->rootdir_icb;
1572 	error = udf_get_node(ump, dir_loc, &rootdir_node);
1573 	if (error)
1574 		return ENOENT;
1575 
1576 	/* aparently it read in fine */
1577 
1578 	/*
1579 	 * Try the system stream directory; not very likely in the ones we
1580 	 * test, but for completeness.
1581 	 */
1582 	dir_loc = &ump->fileset_desc->streamdir_icb;
1583 	if (udf_rw32(dir_loc->len)) {
1584 		error = udf_get_node(ump, dir_loc, &streamdir_node);
1585 		if (error)
1586 			printf("udf mount: streamdir defined but ignored\n");
1587 		if (!error) {
1588 			/*
1589 			 * TODO process streamdir `baddies' i.e. files we dont
1590 			 * want if R/W
1591 			 */
1592 		}
1593 	}
1594 
1595 	DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
1596 
1597 	/* release the vnodes again; they'll be auto-recycled later */
1598 	if (streamdir_node) {
1599 		vput(streamdir_node->vnode);
1600 	}
1601 	if (rootdir_node) {
1602 		vput(rootdir_node->vnode);
1603 	}
1604 
1605 	return 0;
1606 }
1607 
1608 /* --------------------------------------------------------------------- */
1609 
1610 int
1611 udf_translate_vtop(struct udf_mount *ump, struct long_ad *icb_loc,
1612 		   uint32_t *lb_numres, uint32_t *extres)
1613 {
1614 	struct part_desc       *pdesc;
1615 	struct spare_map_entry *sme;
1616 	struct file_entry      *fe;
1617 	struct extfile_entry   *efe;
1618 	struct short_ad        *s_ad;
1619 	struct long_ad         *l_ad;
1620 	uint64_t  cur_offset;
1621 	uint32_t *trans;
1622 	uint32_t  lb_num, plb_num, lb_rel, lb_packet;
1623 	uint32_t  sector_size, len, alloclen;
1624 	uint8_t *pos;
1625 	int rel, vpart, part, addr_type, icblen, icbflags, flags;
1626 
1627 	assert(ump && icb_loc && lb_numres);
1628 
1629 	vpart  = udf_rw16(icb_loc->loc.part_num);
1630 	lb_num = udf_rw32(icb_loc->loc.lb_num);
1631 	if (vpart < 0 || vpart > UDF_VTOP_RAWPART)
1632 		return EINVAL;
1633 
1634 	part = ump->vtop[vpart];
1635 	pdesc = ump->partitions[part];
1636 
1637 	switch (ump->vtop_tp[vpart]) {
1638 	case UDF_VTOP_TYPE_RAW :
1639 		/* 1:1 to the end of the device */
1640 		*lb_numres = lb_num;
1641 		*extres = INT_MAX;
1642 		return 0;
1643 	case UDF_VTOP_TYPE_PHYS :
1644 		/* transform into its disc logical block */
1645 		if (lb_num > udf_rw32(pdesc->part_len))
1646 			return EINVAL;
1647 		*lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1648 
1649 		/* extent from here to the end of the partition */
1650 		*extres = udf_rw32(pdesc->part_len) - lb_num;
1651 		return 0;
1652 	case UDF_VTOP_TYPE_VIRT :
1653 		/* only maps one sector, lookup in VAT */
1654 		if (lb_num >= ump->vat_entries)		/* XXX > or >= ? */
1655 			return EINVAL;
1656 
1657 		/* lookup in virtual allocation table */
1658 		trans  = (uint32_t *) (ump->vat_table + ump->vat_offset);
1659 		lb_num = udf_rw32(trans[lb_num]);
1660 
1661 		/* transform into its disc logical block */
1662 		if (lb_num > udf_rw32(pdesc->part_len))
1663 			return EINVAL;
1664 		*lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1665 
1666 		/* just one logical block */
1667 		*extres = 1;
1668 		return 0;
1669 	case UDF_VTOP_TYPE_SPARABLE :
1670 		/* check if the packet containing the lb_num is remapped */
1671 		lb_packet = lb_num / ump->sparable_packet_len;
1672 		lb_rel    = lb_num % ump->sparable_packet_len;
1673 
1674 		for (rel = 0; rel < udf_rw16(ump->sparing_table->rt_l); rel++) {
1675 			sme = &ump->sparing_table->entries[rel];
1676 			if (lb_packet == udf_rw32(sme->org)) {
1677 				/* NOTE maps to absolute disc logical block! */
1678 				*lb_numres = udf_rw32(sme->map) + lb_rel;
1679 				*extres    = ump->sparable_packet_len - lb_rel;
1680 				return 0;
1681 			}
1682 		}
1683 
1684 		/* transform into its disc logical block */
1685 		if (lb_num > udf_rw32(pdesc->part_len))
1686 			return EINVAL;
1687 		*lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1688 
1689 		/* rest of block */
1690 		*extres = ump->sparable_packet_len - lb_rel;
1691 		return 0;
1692 	case UDF_VTOP_TYPE_META :
1693 		/* we have to look into the file's allocation descriptors */
1694 		/* free after udf_translate_file_extent() */
1695 		/* XXX sector size or lb_size? */
1696 		sector_size = ump->discinfo.sector_size;
1697 		/* XXX should we claim exclusive access to the metafile ? */
1698 		fe  = ump->metadata_file->fe;
1699 		efe = ump->metadata_file->efe;
1700 		if (fe) {
1701 			alloclen = udf_rw32(fe->l_ad);
1702 			pos      = &fe->data[0] + udf_rw32(fe->l_ea);
1703 			icbflags = udf_rw16(fe->icbtag.flags);
1704 		} else {
1705 			assert(efe);
1706 			alloclen = udf_rw32(efe->l_ad);
1707 			pos      = &efe->data[0] + udf_rw32(efe->l_ea);
1708 			icbflags = udf_rw16(efe->icbtag.flags);
1709 		}
1710 		addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
1711 
1712 		cur_offset = 0;
1713 		while (alloclen) {
1714 			if (addr_type == UDF_ICB_SHORT_ALLOC) {
1715 				icblen = sizeof(struct short_ad);
1716 				s_ad   = (struct short_ad *) pos;
1717 				len        = udf_rw32(s_ad->len);
1718 				plb_num    = udf_rw32(s_ad->lb_num);
1719 			} else {
1720 				/* should not be present, but why not */
1721 				icblen = sizeof(struct long_ad);
1722 				l_ad   = (struct long_ad *) pos;
1723 				len        = udf_rw32(l_ad->len);
1724 				plb_num    = udf_rw32(l_ad->loc.lb_num);
1725 				/* pvpart_num = udf_rw16(l_ad->loc.part_num); */
1726 			}
1727 			/* process extent */
1728 			flags   = UDF_EXT_FLAGS(len);
1729 			len     = UDF_EXT_LEN(len);
1730 
1731 			if (cur_offset + len > lb_num * sector_size) {
1732 				if (flags != UDF_EXT_ALLOCATED)
1733 					return EINVAL;
1734 				lb_rel = lb_num - cur_offset / sector_size;
1735 				/* remainder of this extent */
1736 				*lb_numres = plb_num + lb_rel +
1737 					udf_rw32(pdesc->start_loc);
1738 				*extres = (len / sector_size) - lb_rel;
1739 				return 0;
1740 			}
1741 			cur_offset += len;
1742 			pos        += icblen;
1743 			alloclen   -= icblen;
1744 		}
1745 		/* not found */
1746 		DPRINTF(TRANSLATE, ("Metadata partition translation failed\n"));
1747 		return EINVAL;
1748 	default:
1749 		printf("UDF vtop translation scheme %d unimplemented yet\n",
1750 			ump->vtop_tp[vpart]);
1751 	}
1752 
1753 	return EINVAL;
1754 }
1755 
1756 /* --------------------------------------------------------------------- */
1757 
1758 /* To make absolutely sure we are NOT returning zero, add one :) */
1759 
1760 long
1761 udf_calchash(struct long_ad *icbptr)
1762 {
1763 	/* ought to be enough since each mountpoint has its own chain */
1764 	return udf_rw32(icbptr->loc.lb_num) + 1;
1765 }
1766 
1767 /* --------------------------------------------------------------------- */
1768 
1769 static struct udf_node *
1770 udf_hashget(struct udf_mount *ump, struct long_ad *icbptr)
1771 {
1772 	struct udf_node *unp;
1773 	struct vnode *vp;
1774 	uint32_t hashline;
1775 
1776 loop:
1777 	mutex_enter(&ump->ihash_lock);
1778 
1779 	hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
1780 	LIST_FOREACH(unp, &ump->udf_nodes[hashline], hashchain) {
1781 		assert(unp);
1782 		if (unp->loc.loc.lb_num   == icbptr->loc.lb_num &&
1783 		    unp->loc.loc.part_num == icbptr->loc.part_num) {
1784 			vp = unp->vnode;
1785 			assert(vp);
1786 			simple_lock(&vp->v_interlock);
1787 			mutex_exit(&ump->ihash_lock);
1788 			if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
1789 				goto loop;
1790 			return unp;
1791 		}
1792 	}
1793 	mutex_exit(&ump->ihash_lock);
1794 
1795 	return NULL;
1796 }
1797 
1798 /* --------------------------------------------------------------------- */
1799 
1800 static void
1801 udf_hashins(struct udf_node *unp)
1802 {
1803 	struct udf_mount *ump;
1804 	uint32_t hashline;
1805 
1806 	ump = unp->ump;
1807 	mutex_enter(&ump->ihash_lock);
1808 
1809 	hashline = udf_calchash(&unp->loc) & UDF_INODE_HASHMASK;
1810 	LIST_INSERT_HEAD(&ump->udf_nodes[hashline], unp, hashchain);
1811 
1812 	mutex_exit(&ump->ihash_lock);
1813 }
1814 
1815 /* --------------------------------------------------------------------- */
1816 
1817 static void
1818 udf_hashrem(struct udf_node *unp)
1819 {
1820 	struct udf_mount *ump;
1821 
1822 	ump = unp->ump;
1823 	mutex_enter(&ump->ihash_lock);
1824 
1825 	LIST_REMOVE(unp, hashchain);
1826 
1827 	mutex_exit(&ump->ihash_lock);
1828 }
1829 
1830 /* --------------------------------------------------------------------- */
1831 
1832 int
1833 udf_dispose_locked_node(struct udf_node *node)
1834 {
1835 	if (!node)
1836 		return 0;
1837 	if (node->vnode)
1838 		VOP_UNLOCK(node->vnode, 0);
1839 	return udf_dispose_node(node);
1840 }
1841 
1842 /* --------------------------------------------------------------------- */
1843 
1844 int
1845 udf_dispose_node(struct udf_node *node)
1846 {
1847 	struct vnode *vp;
1848 
1849 	DPRINTF(NODE, ("udf_dispose_node called on node %p\n", node));
1850 	if (!node) {
1851 		DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
1852 		return 0;
1853 	}
1854 
1855 	vp  = node->vnode;
1856 
1857 	/* TODO extended attributes and streamdir */
1858 
1859 	/* remove from our hash lookup table */
1860 	udf_hashrem(node);
1861 
1862 	/* destroy genfs structures */
1863 	genfs_node_destroy(vp);
1864 
1865 	/* dissociate our udf_node from the vnode */
1866 	vp->v_data = NULL;
1867 
1868 	/* free associated memory and the node itself */
1869 	if (node->fe)
1870 		pool_put(node->ump->desc_pool, node->fe);
1871 	if (node->efe)
1872 		pool_put(node->ump->desc_pool, node->efe);
1873 	pool_put(&udf_node_pool, node);
1874 
1875 	return 0;
1876 }
1877 
1878 /* --------------------------------------------------------------------- */
1879 
1880 /*
1881  * Genfs interfacing
1882  *
1883  * static const struct genfs_ops udffs_genfsops = {
1884  * 	.gop_size = genfs_size,
1885  * 		size of transfers
1886  * 	.gop_alloc = udf_gop_alloc,
1887  * 		unknown
1888  * 	.gop_write = genfs_gop_write,
1889  * 		putpages interface code
1890  * 	.gop_markupdate = udf_gop_markupdate,
1891  * 		set update/modify flags etc.
1892  * }
1893  */
1894 
1895 /*
1896  * Genfs interface. These four functions are the only ones defined though not
1897  * documented... great.... why is chosen for the `.' initialisers i dont know
1898  * but other filingsystems seem to use it this way.
1899  */
1900 
1901 static int
1902 udf_gop_alloc(struct vnode *vp, off_t off,
1903     off_t len, int flags, kauth_cred_t cred)
1904 {
1905 	return 0;
1906 }
1907 
1908 
1909 static void
1910 udf_gop_markupdate(struct vnode *vp, int flags)
1911 {
1912 	struct udf_node *udf_node = VTOI(vp);
1913 	u_long mask;
1914 
1915 	udf_node = udf_node;	/* shut up gcc */
1916 
1917 	mask = 0;
1918 #ifdef notyet
1919 	if ((flags & GOP_UPDATE_ACCESSED) != 0) {
1920 		mask = UDF_SET_ACCESS;
1921 	}
1922 	if ((flags & GOP_UPDATE_MODIFIED) != 0) {
1923 		mask |= UDF_SET_UPDATE;
1924 	}
1925 	if (mask) {
1926 		udf_node->update_flag |= mask;
1927 	}
1928 #endif
1929 	/* msdosfs doesn't do it, but shouldn't we update the times here? */
1930 }
1931 
1932 
1933 static const struct genfs_ops udf_genfsops = {
1934 	.gop_size = genfs_size,
1935 	.gop_alloc = udf_gop_alloc,
1936 	.gop_write = genfs_gop_write,
1937 	.gop_markupdate = udf_gop_markupdate,
1938 };
1939 
1940 /* --------------------------------------------------------------------- */
1941 
1942 /*
1943  * Each node can have an attached streamdir node though not
1944  * recursively. These are otherwise known as named substreams/named
1945  * extended attributes that have no size limitations.
1946  *
1947  * `Normal' extended attributes are indicated with a number and are recorded
1948  * in either the fe/efe descriptor itself for small descriptors or recorded in
1949  * the attached extended attribute file. Since this file can get fragmented,
1950  * care ought to be taken.
1951  */
1952 
1953 int
1954 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
1955 	     struct udf_node **noderes)
1956 {
1957 	union dscrptr   *dscr, *tmpdscr;
1958 	struct udf_node *node;
1959 	struct vnode    *nvp;
1960 	struct long_ad   icb_loc;
1961 	extern int (**udf_vnodeop_p)(void *);
1962 	uint64_t file_size;
1963 	uint32_t lb_size, sector, dummy;
1964 	int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
1965 	int error;
1966 
1967 	DPRINTF(NODE, ("udf_get_node called\n"));
1968 	*noderes = node = NULL;
1969 
1970 	/* lock to disallow simultanious creation of same node */
1971 	mutex_enter(&ump->get_node_lock);
1972 
1973 	DPRINTF(NODE, ("\tlookup in hash table\n"));
1974 	/* lookup in hash table */
1975 	assert(ump);
1976 	assert(node_icb_loc);
1977 	node = udf_hashget(ump, node_icb_loc);
1978 	if (node) {
1979 		DPRINTF(NODE, ("\tgot it from the hash!\n"));
1980 		/* vnode is returned locked */
1981 		*noderes = node;
1982 		mutex_exit(&ump->get_node_lock);
1983 		return 0;
1984 	}
1985 
1986 	/* garbage check: translate node_icb_loc to sectornr */
1987 	error = udf_translate_vtop(ump, node_icb_loc, &sector, &dummy);
1988 	if (error) {
1989 		/* no use, this will fail anyway */
1990 		mutex_exit(&ump->get_node_lock);
1991 		return EINVAL;
1992 	}
1993 
1994 	/* build node (do initialise!) */
1995 	node = pool_get(&udf_node_pool, PR_WAITOK);
1996 	memset(node, 0, sizeof(struct udf_node));
1997 
1998 	DPRINTF(NODE, ("\tget new vnode\n"));
1999 	/* give it a vnode */
2000 	error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
2001         if (error) {
2002 		pool_put(&udf_node_pool, node);
2003 		mutex_exit(&ump->get_node_lock);
2004 		return error;
2005 	}
2006 
2007 	/* always return locked vnode */
2008 	if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
2009 		/* recycle vnode and unlock; simultanious will fail too */
2010 		ungetnewvnode(nvp);
2011 		mutex_exit(&ump->get_node_lock);
2012 		return error;
2013 	}
2014 
2015 	/* initialise crosslinks, note location of fe/efe for hashing */
2016 	node->ump    =  ump;
2017 	node->vnode  =  nvp;
2018 	nvp->v_data  =  node;
2019 	node->loc    = *node_icb_loc;
2020 	node->lockf  =  0;
2021 
2022 	/* insert into the hash lookup */
2023 	udf_hashins(node);
2024 
2025 	/* safe to unlock, the entry is in the hash table, vnode is locked */
2026 	mutex_exit(&ump->get_node_lock);
2027 
2028 	icb_loc = *node_icb_loc;
2029 	needs_indirect = 0;
2030 	strat4096 = 0;
2031 	udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
2032 	file_size = 0;
2033 	lb_size = udf_rw32(ump->logical_vol->lb_size);
2034 
2035 	do {
2036 		error = udf_translate_vtop(ump, &icb_loc, &sector, &dummy);
2037 		if (error)
2038 			break;
2039 
2040 		/* try to read in fe/efe */
2041 		error = udf_read_descriptor(ump, sector, M_UDFTEMP, &tmpdscr);
2042 
2043 		/* blank sector marks end of sequence, check this */
2044 		if ((tmpdscr == NULL) &&  (!strat4096))
2045 			error = ENOENT;
2046 
2047 		/* break if read error or blank sector */
2048 		if (error || (tmpdscr == NULL))
2049 			break;
2050 
2051 		/* process descriptor based on the descriptor type */
2052 		dscr_type = udf_rw16(tmpdscr->tag.id);
2053 
2054 		/* if dealing with an indirect entry, follow the link */
2055 		if (dscr_type == TAGID_INDIRECT_ENTRY) {
2056 			needs_indirect = 0;
2057 			icb_loc = tmpdscr->inde.indirect_icb;
2058 			free(tmpdscr, M_UDFTEMP);
2059 			continue;
2060 		}
2061 
2062 		/* only file entries and extended file entries allowed here */
2063 		if ((dscr_type != TAGID_FENTRY) &&
2064 		    (dscr_type != TAGID_EXTFENTRY)) {
2065 			free(tmpdscr, M_UDFTEMP);
2066 			error = ENOENT;
2067 			break;
2068 		}
2069 
2070 		/* get descriptor space from our pool */
2071 		KASSERT(udf_tagsize(tmpdscr, lb_size) == lb_size);
2072 
2073 		dscr = pool_get(ump->desc_pool, PR_WAITOK);
2074 		memcpy(dscr, tmpdscr, lb_size);
2075 		free(tmpdscr, M_UDFTEMP);
2076 
2077 		/* record and process/update (ext)fentry */
2078 		if (dscr_type == TAGID_FENTRY) {
2079 			if (node->fe)
2080 				pool_put(ump->desc_pool, node->fe);
2081 			node->fe  = &dscr->fe;
2082 			strat = udf_rw16(node->fe->icbtag.strat_type);
2083 			udf_file_type = node->fe->icbtag.file_type;
2084 			file_size = udf_rw64(node->fe->inf_len);
2085 		} else {
2086 			if (node->efe)
2087 				pool_put(ump->desc_pool, node->efe);
2088 			node->efe = &dscr->efe;
2089 			strat = udf_rw16(node->efe->icbtag.strat_type);
2090 			udf_file_type = node->efe->icbtag.file_type;
2091 			file_size = udf_rw64(node->efe->inf_len);
2092 		}
2093 
2094 		/* check recording strategy (structure) */
2095 
2096 		/*
2097 		 * Strategy 4096 is a daisy linked chain terminating with an
2098 		 * unrecorded sector or a TERM descriptor. The next
2099 		 * descriptor is to be found in the sector that follows the
2100 		 * current sector.
2101 		 */
2102 		if (strat == 4096) {
2103 			strat4096 = 1;
2104 			needs_indirect = 1;
2105 
2106 			icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
2107 		}
2108 
2109 		/*
2110 		 * Strategy 4 is the normal strategy and terminates, but if
2111 		 * we're in strategy 4096, we can't have strategy 4 mixed in
2112 		 */
2113 
2114 		if (strat == 4) {
2115 			if (strat4096) {
2116 				error = EINVAL;
2117 				break;
2118 			}
2119 			break;		/* done */
2120 		}
2121 	} while (!error);
2122 
2123 	if (error) {
2124 		/* recycle udf_node */
2125 		udf_dispose_node(node);
2126 
2127 		/* recycle vnode */
2128 		nvp->v_data = NULL;
2129 		ungetnewvnode(nvp);
2130 
2131 		return EINVAL;		/* error code ok? */
2132 	}
2133 
2134 	/* post process and initialise node */
2135 
2136 	/* assert no references to dscr anymore beyong this point */
2137 	assert((node->fe) || (node->efe));
2138 	dscr = NULL;
2139 
2140 	/*
2141 	 * Record where to record an updated version of the descriptor. If
2142 	 * there is a sequence of indirect entries, icb_loc will have been
2143 	 * updated. Its the write disipline to allocate new space and to make
2144 	 * sure the chain is maintained.
2145 	 *
2146 	 * `needs_indirect' flags if the next location is to be filled with
2147 	 * with an indirect entry.
2148 	 */
2149 	node->next_loc = icb_loc;
2150 	node->needs_indirect = needs_indirect;
2151 
2152 	/*
2153 	 * Translate UDF filetypes into vnode types.
2154 	 *
2155 	 * Systemfiles like the meta main and mirror files are not treated as
2156 	 * normal files, so we type them as having no type. UDF dictates that
2157 	 * they are not allowed to be visible.
2158 	 */
2159 
2160 	/* TODO specfs, fifofs etc etc. vnops setting */
2161 	switch (udf_file_type) {
2162 	case UDF_ICB_FILETYPE_DIRECTORY :
2163 	case UDF_ICB_FILETYPE_STREAMDIR :
2164 		nvp->v_type = VDIR;
2165 		break;
2166 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
2167 		nvp->v_type = VBLK;
2168 		break;
2169 	case UDF_ICB_FILETYPE_CHARDEVICE :
2170 		nvp->v_type = VCHR;
2171 		break;
2172 	case UDF_ICB_FILETYPE_SYMLINK :
2173 		nvp->v_type = VLNK;
2174 		break;
2175 	case UDF_ICB_FILETYPE_VAT :
2176 	case UDF_ICB_FILETYPE_META_MAIN :
2177 	case UDF_ICB_FILETYPE_META_MIRROR :
2178 		nvp->v_type = VNON;
2179 		break;
2180 	case UDF_ICB_FILETYPE_RANDOMACCESS :
2181 	case UDF_ICB_FILETYPE_REALTIME :
2182 		nvp->v_type = VREG;
2183 		break;
2184 	default:
2185 		/* YIKES, either a block/char device, fifo or something else */
2186 		nvp->v_type = VNON;
2187 	}
2188 
2189 	/* initialise genfs */
2190 	genfs_node_init(nvp, &udf_genfsops);
2191 
2192 	/* don't forget to set vnode's v_size */
2193 	uvm_vnp_setsize(nvp, file_size);
2194 
2195 	/* TODO ext attr and streamdir nodes */
2196 
2197 	*noderes = node;
2198 
2199 	return 0;
2200 }
2201 
2202 /* --------------------------------------------------------------------- */
2203 
2204 /* UDF<->unix converters */
2205 
2206 /* --------------------------------------------------------------------- */
2207 
2208 static mode_t
2209 udf_perm_to_unix_mode(uint32_t perm)
2210 {
2211 	mode_t mode;
2212 
2213 	mode  = ((perm & UDF_FENTRY_PERM_USER_MASK)      );
2214 	mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK  ) >> 2);
2215 	mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
2216 
2217 	return mode;
2218 }
2219 
2220 /* --------------------------------------------------------------------- */
2221 
2222 #ifdef notyet
2223 static uint32_t
2224 unix_mode_to_udf_perm(mode_t mode)
2225 {
2226 	uint32_t perm;
2227 
2228 	perm  = ((mode & S_IRWXO)     );
2229 	perm |= ((mode & S_IRWXG) << 2);
2230 	perm |= ((mode & S_IRWXU) << 4);
2231 	perm |= ((mode & S_IWOTH) << 3);
2232 	perm |= ((mode & S_IWGRP) << 5);
2233 	perm |= ((mode & S_IWUSR) << 7);
2234 
2235 	return perm;
2236 }
2237 #endif
2238 
2239 /* --------------------------------------------------------------------- */
2240 
2241 static uint32_t
2242 udf_icb_to_unix_filetype(uint32_t icbftype)
2243 {
2244 	switch (icbftype) {
2245 	case UDF_ICB_FILETYPE_DIRECTORY :
2246 	case UDF_ICB_FILETYPE_STREAMDIR :
2247 		return S_IFDIR;
2248 	case UDF_ICB_FILETYPE_FIFO :
2249 		return S_IFIFO;
2250 	case UDF_ICB_FILETYPE_CHARDEVICE :
2251 		return S_IFCHR;
2252 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
2253 		return S_IFBLK;
2254 	case UDF_ICB_FILETYPE_RANDOMACCESS :
2255 	case UDF_ICB_FILETYPE_REALTIME :
2256 		return S_IFREG;
2257 	case UDF_ICB_FILETYPE_SYMLINK :
2258 		return S_IFLNK;
2259 	case UDF_ICB_FILETYPE_SOCKET :
2260 		return S_IFSOCK;
2261 	}
2262 	/* no idea what this is */
2263 	return 0;
2264 }
2265 
2266 /* --------------------------------------------------------------------- */
2267 
2268 /* TODO KNF-ify */
2269 
2270 void
2271 udf_to_unix_name(char *result, char *id, int len, struct charspec *chsp)
2272 {
2273 	uint16_t *raw_name, *unix_name;
2274 	uint16_t *inchp, ch;
2275 	uint8_t	 *outchp;
2276 	int       ucode_chars, nice_uchars;
2277 
2278 	raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
2279 	unix_name = raw_name + 1024;			/* split space in half */
2280 	assert(sizeof(char) == sizeof(uint8_t));
2281 	outchp = (uint8_t *) result;
2282 	if ((chsp->type == 0) && (strcmp((char*) chsp->inf, "OSTA Compressed Unicode") == 0)) {
2283 		*raw_name = *unix_name = 0;
2284 		ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
2285 		ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
2286 		nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
2287 		for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
2288 			ch = *inchp;
2289 			/* XXX sloppy unicode -> latin */
2290 			*outchp++ = ch & 255;
2291 			if (!ch) break;
2292 		}
2293 		*outchp++ = 0;
2294 	} else {
2295 		/* assume 8bit char length byte latin-1 */
2296 		assert(*id == 8);
2297 		strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
2298 	}
2299 	free(raw_name, M_UDFTEMP);
2300 }
2301 
2302 /* --------------------------------------------------------------------- */
2303 
2304 /* TODO KNF-ify */
2305 
2306 void
2307 unix_to_udf_name(char *result, char *name,
2308 		 uint8_t *result_len, struct charspec *chsp)
2309 {
2310 	uint16_t *raw_name;
2311 	int       udf_chars, name_len;
2312 	char     *inchp;
2313 	uint16_t *outchp;
2314 
2315 	raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
2316 	/* convert latin-1 or whatever to unicode-16 */
2317 	*raw_name = 0;
2318 	name_len  = 0;
2319 	inchp  = name;
2320 	outchp = raw_name;
2321 	while (*inchp) {
2322 		*outchp++ = (uint16_t) (*inchp++);
2323 		name_len++;
2324 	}
2325 
2326 	if ((chsp->type == 0) && (strcmp((char *) chsp->inf, "OSTA Compressed Unicode") == 0)) {
2327 		udf_chars = udf_CompressUnicode(name_len, 8, (unicode_t *) raw_name, (byte *) result);
2328 	} else {
2329 		/* XXX assume 8bit char length byte latin-1 */
2330 		*result++ = 8; udf_chars = 1;
2331 		strncpy(result, name + 1, strlen(name+1));
2332 		udf_chars += strlen(name);
2333 	}
2334 	*result_len = udf_chars;
2335 	free(raw_name, M_UDFTEMP);
2336 }
2337 
2338 /* --------------------------------------------------------------------- */
2339 
2340 void
2341 udf_timestamp_to_timespec(struct udf_mount *ump,
2342 			  struct timestamp *timestamp,
2343 			  struct timespec  *timespec)
2344 {
2345 	struct clock_ymdhms ymdhms;
2346 	uint32_t usecs, secs, nsecs;
2347 	uint16_t tz;
2348 
2349 	/* fill in ymdhms structure from timestamp */
2350 	memset(&ymdhms, 0, sizeof(ymdhms));
2351 	ymdhms.dt_year = udf_rw16(timestamp->year);
2352 	ymdhms.dt_mon  = timestamp->month;
2353 	ymdhms.dt_day  = timestamp->day;
2354 	ymdhms.dt_wday = 0; /* ? */
2355 	ymdhms.dt_hour = timestamp->hour;
2356 	ymdhms.dt_min  = timestamp->minute;
2357 	ymdhms.dt_sec  = timestamp->second;
2358 
2359 	secs = clock_ymdhms_to_secs(&ymdhms);
2360 	usecs = timestamp->usec +
2361 		100*timestamp->hund_usec + 10000*timestamp->centisec;
2362 	nsecs = usecs * 1000;
2363 
2364 	/*
2365 	 * Calculate the time zone.  The timezone is 12 bit signed 2's
2366 	 * compliment, so we gotta do some extra magic to handle it right.
2367 	 */
2368 	tz  = udf_rw16(timestamp->type_tz);
2369 	tz &= 0x0fff;			/* only lower 12 bits are significant */
2370 	if (tz & 0x0800)		/* sign extention */
2371 		tz |= 0xf000;
2372 
2373 	/* TODO check timezone conversion */
2374 	/* check if we are specified a timezone to convert */
2375 	if (udf_rw16(timestamp->type_tz) & 0x1000) {
2376 		if ((int16_t) tz != -2047)
2377 			secs -= (int16_t) tz * 60;
2378 	} else {
2379 		secs -= ump->mount_args.gmtoff;
2380 	}
2381 
2382 	timespec->tv_sec  = secs;
2383 	timespec->tv_nsec = nsecs;
2384 }
2385 
2386 /* --------------------------------------------------------------------- */
2387 
2388 /*
2389  * Attribute and filetypes converters with get/set pairs
2390  */
2391 
2392 uint32_t
2393 udf_getaccessmode(struct udf_node *udf_node)
2394 {
2395 	struct file_entry *fe;
2396 	struct extfile_entry *efe;
2397 	uint32_t udf_perm, icbftype;
2398 	uint32_t mode, ftype;
2399 	uint16_t icbflags;
2400 
2401 	if (udf_node->fe) {
2402 		fe = udf_node->fe;
2403 		udf_perm = udf_rw32(fe->perm);
2404 		icbftype = fe->icbtag.file_type;
2405 		icbflags = udf_rw16(fe->icbtag.flags);
2406 	} else {
2407 		assert(udf_node->efe);
2408 		efe = udf_node->efe;
2409 		udf_perm = udf_rw32(efe->perm);
2410 		icbftype = efe->icbtag.file_type;
2411 		icbflags = udf_rw16(efe->icbtag.flags);
2412 	}
2413 
2414 	mode  = udf_perm_to_unix_mode(udf_perm);
2415 	ftype = udf_icb_to_unix_filetype(icbftype);
2416 
2417 	/* set suid, sgid, sticky from flags in fe/efe */
2418 	if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
2419 		mode |= S_ISUID;
2420 	if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
2421 		mode |= S_ISGID;
2422 	if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
2423 		mode |= S_ISVTX;
2424 
2425 	return mode | ftype;
2426 }
2427 
2428 /* --------------------------------------------------------------------- */
2429 
2430 /*
2431  * Directory read and manipulation functions
2432  */
2433 
2434 int
2435 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
2436 		       struct long_ad *icb_loc)
2437 {
2438 	struct udf_node  *dir_node = VTOI(vp);
2439 	struct file_entry    *fe;
2440 	struct extfile_entry *efe;
2441 	struct fileid_desc *fid;
2442 	struct dirent *dirent;
2443 	uint64_t file_size, diroffset;
2444 	uint32_t lb_size;
2445 	int found, error;
2446 
2447 	/* get directory filesize */
2448 	if (dir_node->fe) {
2449 		fe = dir_node->fe;
2450 		file_size = udf_rw64(fe->inf_len);
2451 	} else {
2452 		assert(dir_node->efe);
2453 		efe = dir_node->efe;
2454 		file_size = udf_rw64(efe->inf_len);
2455 	}
2456 
2457 	/* allocate temporary space for fid */
2458 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
2459 	fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
2460 
2461 	found = 0;
2462 	diroffset = dir_node->last_diroffset;
2463 
2464 	/*
2465 	 * if the directory is trunced or if we have never visited it yet,
2466 	 * start at the end.
2467 	 */
2468 	if ((diroffset >= file_size) || (diroffset == 0)) {
2469 		diroffset = dir_node->last_diroffset = file_size;
2470 	}
2471 
2472 	dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
2473 
2474 	while (!found) {
2475 		/* if at the end, go trough zero */
2476 		if (diroffset >= file_size)
2477 			diroffset = 0;
2478 
2479 		/* transfer a new fid/dirent */
2480 		error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
2481 		if (error)
2482 			break;
2483 
2484 		/* skip deleted entries */
2485 		if ((fid->file_char & UDF_FILE_CHAR_DEL) == 0) {
2486 			if ((strlen(dirent->d_name) == namelen) &&
2487 			    (strncmp(dirent->d_name, name, namelen) == 0)) {
2488 				found = 1;
2489 				*icb_loc = fid->icb;
2490 			}
2491 		}
2492 
2493 		if (diroffset == dir_node->last_diroffset) {
2494 			/* we have cycled */
2495 			break;
2496 		}
2497 	}
2498 	free(fid, M_UDFTEMP);
2499 	free(dirent, M_UDFTEMP);
2500 	dir_node->last_diroffset = diroffset;
2501 
2502 	return found;
2503 }
2504 
2505 /* --------------------------------------------------------------------- */
2506 
2507 /*
2508  * Read one fid and process it into a dirent and advance to the next (*fid)
2509  * has to be allocated a logical block in size, (*dirent) struct dirent length
2510  */
2511 
2512 int
2513 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
2514 		    struct fileid_desc *fid, struct dirent *dirent)
2515 {
2516 	struct udf_node  *dir_node = VTOI(vp);
2517 	struct udf_mount *ump = dir_node->ump;
2518 	struct file_entry    *fe;
2519 	struct extfile_entry *efe;
2520 	struct uio    dir_uio;
2521 	struct iovec  dir_iovec;
2522 	uint32_t      entry_length, lb_size;
2523 	uint64_t      file_size;
2524 	char         *fid_name;
2525 	int           enough, error;
2526 
2527 	assert(fid);
2528 	assert(dirent);
2529 	assert(dir_node);
2530 	assert(offset);
2531 	assert(*offset != 1);
2532 
2533 	DPRINTF(FIDS, ("read_fid_stream called\n"));
2534 	/* check if we're past the end of the directory */
2535 	if (dir_node->fe) {
2536 		fe = dir_node->fe;
2537 		file_size = udf_rw64(fe->inf_len);
2538 	} else {
2539 		assert(dir_node->efe);
2540 		efe = dir_node->efe;
2541 		file_size = udf_rw64(efe->inf_len);
2542 	}
2543 	if (*offset >= file_size)
2544 		return EINVAL;
2545 
2546 	/* get maximum length of FID descriptor */
2547 	lb_size = udf_rw32(ump->logical_vol->lb_size);
2548 
2549 	/* initialise return values */
2550 	entry_length = 0;
2551 	memset(dirent, 0, sizeof(struct dirent));
2552 	memset(fid, 0, lb_size);
2553 
2554 	/* TODO use vn_rdwr instead of creating our own uio */
2555 	/* read part of the directory */
2556 	memset(&dir_uio, 0, sizeof(struct uio));
2557 	dir_uio.uio_rw     = UIO_READ;	/* read into this space */
2558 	dir_uio.uio_iovcnt = 1;
2559 	dir_uio.uio_iov    = &dir_iovec;
2560 	UIO_SETUP_SYSSPACE(&dir_uio);
2561 	dir_iovec.iov_base = fid;
2562 	dir_iovec.iov_len  = lb_size;
2563 	dir_uio.uio_offset = *offset;
2564 
2565 	/* limit length of read in piece */
2566 	dir_uio.uio_resid  = MIN(file_size - (*offset), lb_size);
2567 
2568 	/* read the part into the fid space */
2569 	error = VOP_READ(vp, &dir_uio, IO_ALTSEMANTICS, NOCRED);
2570 	if (error)
2571 		return error;
2572 
2573 	/*
2574 	 * Check if we got a whole descriptor.
2575 	 * XXX Try to `resync' directory stream when something is very wrong.
2576 	 *
2577 	 */
2578 	enough = (dir_uio.uio_offset - (*offset) >= UDF_FID_SIZE);
2579 	if (!enough) {
2580 		/* short dir ... */
2581 		return EIO;
2582 	}
2583 
2584 	/* check if our FID header is OK */
2585 	error = udf_check_tag(fid);
2586 	DPRINTFIF(FIDS, error, ("read fids: tag check failed\n"));
2587 	if (!error) {
2588 		if (udf_rw16(fid->tag.id) != TAGID_FID)
2589 			error = ENOENT;
2590 	}
2591 	DPRINTFIF(FIDS, !error, ("\ttag checked ok: got TAGID_FID\n"));
2592 
2593 	/* check for length */
2594 	if (!error) {
2595 		entry_length = udf_fidsize(fid, lb_size);
2596 		enough = (dir_uio.uio_offset - (*offset) >= entry_length);
2597 	}
2598 	DPRINTFIF(FIDS, !error, ("\tentry_length = %d, enough = %s\n",
2599 	    entry_length, enough?"yes":"no"));
2600 
2601 	if (!enough) {
2602 		/* short dir ... bomb out */
2603 		return EIO;
2604 	}
2605 
2606 	/* check FID contents */
2607 	if (!error) {
2608 		error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
2609 		DPRINTF(FIDS, ("\tpayload checked ok\n"));
2610 	}
2611 	if (error) {
2612 		/* note that is sometimes a bit quick to report */
2613 		printf("BROKEN DIRECTORY ENTRY\n");
2614 		/* RESYNC? */
2615 		/* TODO: use udf_resync_fid_stream */
2616 		return EIO;
2617 	}
2618 	DPRINTF(FIDS, ("\tinterpret FID\n"));
2619 
2620 	/* we got a whole and valid descriptor! */
2621 
2622 	/* create resulting dirent structure */
2623 	fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
2624 	udf_to_unix_name(dirent->d_name,
2625 		fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
2626 
2627 	/* '..' has no name, so provide one */
2628 	if (fid->file_char & UDF_FILE_CHAR_PAR)
2629 		strcpy(dirent->d_name, "..");
2630 
2631 	dirent->d_fileno = udf_calchash(&fid->icb);	/* inode hash XXX */
2632 	dirent->d_namlen = strlen(dirent->d_name);
2633 	dirent->d_reclen = _DIRENT_SIZE(dirent);
2634 
2635 	/*
2636 	 * Note that its not worth trying to go for the filetypes now... its
2637 	 * too expensive too
2638 	 */
2639 	dirent->d_type = DT_UNKNOWN;
2640 
2641 	/* initial guess for filetype we can make */
2642 	if (fid->file_char & UDF_FILE_CHAR_DIR)
2643 		dirent->d_type = DT_DIR;
2644 
2645 	/* advance */
2646 	*offset += entry_length;
2647 
2648 	return error;
2649 }
2650 
2651 /* --------------------------------------------------------------------- */
2652 
2653 /*
2654  * block based file reading and writing
2655  */
2656 
2657 static int
2658 udf_read_internal(struct udf_node *node, uint8_t *blob)
2659 {
2660 	struct udf_mount *ump;
2661 	struct file_entry *fe;
2662 	struct extfile_entry *efe;
2663 	uint64_t inflen;
2664 	uint32_t sector_size;
2665 	uint8_t  *pos;
2666 	int icbflags, addr_type;
2667 
2668 	/* shut up gcc */
2669 	inflen = addr_type = icbflags = 0;
2670 	pos = NULL;
2671 
2672 	/* get extent and do some paranoia checks */
2673 	ump = node->ump;
2674 	sector_size = ump->discinfo.sector_size;
2675 
2676 	fe  = node->fe;
2677 	efe = node->efe;
2678 	if (fe) {
2679 		inflen   = udf_rw64(fe->inf_len);
2680 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
2681 		icbflags = udf_rw16(fe->icbtag.flags);
2682 	}
2683 	if (efe) {
2684 		inflen   = udf_rw64(efe->inf_len);
2685 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
2686 		icbflags = udf_rw16(efe->icbtag.flags);
2687 	}
2688 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
2689 
2690 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
2691 	assert(inflen < sector_size);
2692 
2693 	/* copy out info */
2694 	memset(blob, 0, sector_size);
2695 	memcpy(blob, pos, inflen);
2696 
2697 	return 0;
2698 }
2699 
2700 /* --------------------------------------------------------------------- */
2701 
2702 /*
2703  * Read file extent reads an extent specified in sectors from the file. It is
2704  * sector based; i.e. no `fancy' offsets.
2705  */
2706 
2707 int
2708 udf_read_file_extent(struct udf_node *node,
2709 		     uint32_t from, uint32_t sectors,
2710 		     uint8_t *blob)
2711 {
2712 	struct buf buf;
2713 	uint32_t sector_size;
2714 
2715 	BUF_INIT(&buf);
2716 
2717 	sector_size = node->ump->discinfo.sector_size;
2718 
2719 	buf.b_bufsize = sectors * sector_size;
2720 	buf.b_data    = blob;
2721 	buf.b_bcount  = buf.b_bufsize;
2722 	buf.b_resid   = buf.b_bcount;
2723 	buf.b_flags   = B_BUSY | B_READ;
2724 	buf.b_vp      = node->vnode;
2725 	buf.b_proc    = NULL;
2726 
2727 	buf.b_blkno  = from;
2728 	buf.b_lblkno = 0;
2729 	BIO_SETPRIO(&buf, BPRIO_TIMELIMITED);
2730 
2731 	udf_read_filebuf(node, &buf);
2732 	return biowait(&buf);
2733 }
2734 
2735 
2736 /* --------------------------------------------------------------------- */
2737 
2738 /*
2739  * Read file extent in the buffer.
2740  *
2741  * The splitup of the extent into separate request-buffers is to minimise
2742  * copying around as much as possible.
2743  */
2744 
2745 
2746 /* maximum of 128 translations (!) (64 kb in 512 byte sectors) */
2747 #define FILEBUFSECT 128
2748 
2749 void
2750 udf_read_filebuf(struct udf_node *node, struct buf *buf)
2751 {
2752 	struct buf *nestbuf;
2753 	uint64_t   *mapping;
2754 	uint64_t    run_start;
2755 	uint32_t    sector_size;
2756 	uint32_t    buf_offset, sector, rbuflen, rblk;
2757 	uint8_t    *buf_pos;
2758 	int error, run_length;
2759 
2760 	uint32_t  from;
2761 	uint32_t  sectors;
2762 
2763 	sector_size = node->ump->discinfo.sector_size;
2764 
2765 	from    = buf->b_blkno;
2766 	sectors = buf->b_bcount / sector_size;
2767 
2768 	/* assure we have enough translation slots */
2769 	KASSERT(buf->b_bcount / sector_size <= FILEBUFSECT);
2770 	KASSERT(MAXPHYS / sector_size <= FILEBUFSECT);
2771 
2772 	if (sectors > FILEBUFSECT) {
2773 		printf("udf_read_filebuf: implementation limit on bufsize\n");
2774 		buf->b_error  = EIO;
2775 		biodone(buf);
2776 		return;
2777 	}
2778 
2779 	mapping = malloc(sizeof(*mapping) * FILEBUFSECT, M_UDFTEMP, M_WAITOK);
2780 
2781 	error = 0;
2782 	DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
2783 	error = udf_translate_file_extent(node, from, sectors, mapping);
2784 	if (error) {
2785 		buf->b_error  = error;
2786 		biodone(buf);
2787 		goto out;
2788 	}
2789 	DPRINTF(READ, ("\ttranslate extent went OK\n"));
2790 
2791 	/* pre-check if internal or parts are zero */
2792 	if (*mapping == UDF_TRANS_INTERN) {
2793 		error = udf_read_internal(node, (uint8_t *) buf->b_data);
2794 		if (error) {
2795 			buf->b_error  = error;
2796 		}
2797 		biodone(buf);
2798 		goto out;
2799 	}
2800 	DPRINTF(READ, ("\tnot intern\n"));
2801 
2802 	/* request read-in of data from disc scheduler */
2803 	buf->b_resid = buf->b_bcount;
2804 	for (sector = 0; sector < sectors; sector++) {
2805 		buf_offset = sector * sector_size;
2806 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
2807 		DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
2808 
2809 		switch (mapping[sector]) {
2810 		case UDF_TRANS_UNMAPPED:
2811 		case UDF_TRANS_ZERO:
2812 			/* copy zero sector */
2813 			memset(buf_pos, 0, sector_size);
2814 			DPRINTF(READ, ("\treturning zero sector\n"));
2815 			nestiobuf_done(buf, sector_size, 0);
2816 			break;
2817 		default :
2818 			DPRINTF(READ, ("\tread sector "
2819 			    "%"PRIu64"\n", mapping[sector]));
2820 
2821 			run_start  = mapping[sector];
2822 			run_length = 1;
2823 			while (sector < sectors-1) {
2824 				if (mapping[sector+1] != mapping[sector]+1)
2825 					break;
2826 				run_length++;
2827 				sector++;
2828 			}
2829 
2830 			/*
2831 			 * nest an iobuf and mark it for async reading. Since
2832 			 * we're using nested buffers, they can't be cached by
2833 			 * design.
2834 			 */
2835 			rbuflen = run_length * sector_size;
2836 			rblk    = run_start  * (sector_size/DEV_BSIZE);
2837 
2838 			nestbuf = getiobuf();
2839 			nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
2840 			/* nestbuf is B_ASYNC */
2841 
2842 			/* CD schedules on raw blkno */
2843 			nestbuf->b_blkno    = rblk;
2844 			nestbuf->b_proc     = NULL;
2845 			nestbuf->b_cylinder = 0;
2846 			nestbuf->b_rawblkno = rblk;
2847 			VOP_STRATEGY(node->ump->devvp, nestbuf);
2848 		}
2849 	}
2850 out:
2851 	DPRINTF(READ, ("\tend of read_filebuf\n"));
2852 	free(mapping, M_UDFTEMP);
2853 	return;
2854 }
2855 #undef FILEBUFSECT
2856 
2857 
2858 /* --------------------------------------------------------------------- */
2859 
2860 /*
2861  * Translate an extent (in sectors) into sector numbers; used for read and
2862  * write operations. DOESNT't check extents.
2863  */
2864 
2865 int
2866 udf_translate_file_extent(struct udf_node *node,
2867 		          uint32_t from, uint32_t pages,
2868 			  uint64_t *map)
2869 {
2870 	struct udf_mount *ump;
2871 	struct file_entry *fe;
2872 	struct extfile_entry *efe;
2873 	struct short_ad *s_ad;
2874 	struct long_ad  *l_ad, t_ad;
2875 	uint64_t transsec;
2876 	uint32_t sector_size, transsec32;
2877 	uint32_t overlap, translen;
2878 	uint32_t vpart_num, lb_num, len, alloclen;
2879 	uint8_t *pos;
2880 	int error, flags, addr_type, icblen, icbflags;
2881 
2882 	if (!node)
2883 		return ENOENT;
2884 
2885 	/* shut up gcc */
2886 	alloclen = addr_type = icbflags = 0;
2887 	pos = NULL;
2888 
2889 	/* do the work */
2890 	ump = node->ump;
2891 	sector_size = ump->discinfo.sector_size;
2892 	fe  = node->fe;
2893 	efe = node->efe;
2894 	if (fe) {
2895 		alloclen = udf_rw32(fe->l_ad);
2896 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
2897 		icbflags = udf_rw16(fe->icbtag.flags);
2898 	}
2899 	if (efe) {
2900 		alloclen = udf_rw32(efe->l_ad);
2901 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
2902 		icbflags = udf_rw16(efe->icbtag.flags);
2903 	}
2904 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
2905 
2906 	DPRINTF(TRANSLATE, ("udf trans: alloc_len = %d, addr_type %d, "
2907 	    "fe %p, efe %p\n", alloclen, addr_type, fe, efe));
2908 
2909 	vpart_num = udf_rw16(node->loc.loc.part_num);
2910 	lb_num = len = icblen = 0;	/* shut up gcc */
2911 	while (pages && alloclen) {
2912 		DPRINTF(TRANSLATE, ("\taddr_type %d\n", addr_type));
2913 		switch (addr_type) {
2914 		case UDF_ICB_INTERN_ALLOC :
2915 			/* TODO check extents? */
2916 			*map = UDF_TRANS_INTERN;
2917 			return 0;
2918 		case UDF_ICB_SHORT_ALLOC :
2919 			icblen = sizeof(struct short_ad);
2920 			s_ad   = (struct short_ad *) pos;
2921 			len       = udf_rw32(s_ad->len);
2922 			lb_num    = udf_rw32(s_ad->lb_num);
2923 			break;
2924 		case UDF_ICB_LONG_ALLOC  :
2925 			icblen = sizeof(struct long_ad);
2926 			l_ad   = (struct long_ad *) pos;
2927 			len       = udf_rw32(l_ad->len);
2928 			lb_num    = udf_rw32(l_ad->loc.lb_num);
2929 			vpart_num = udf_rw16(l_ad->loc.part_num);
2930 			DPRINTFIF(TRANSLATE,
2931 			    (l_ad->impl.im_used.flags &
2932 			     UDF_ADIMP_FLAGS_EXTENT_ERASED),
2933 			    ("UDF: got an `extent erased' flag in long_ad\n"));
2934 			break;
2935 		default:
2936 			/* can't be here */
2937 			return EINVAL;	/* for sure */
2938 		}
2939 
2940 		/* process extent */
2941 		flags   = UDF_EXT_FLAGS(len);
2942 		len     = UDF_EXT_LEN(len);
2943 
2944 		overlap = (len + sector_size -1) / sector_size;
2945 		if (from) {
2946 			if (from > overlap) {
2947 				from -= overlap;
2948 				overlap = 0;
2949 			} else {
2950 				lb_num  += from;	/* advance in extent */
2951 				overlap -= from;
2952 				from = 0;
2953 			}
2954 		}
2955 
2956 		overlap = MIN(overlap, pages);
2957 		while (overlap) {
2958 			switch (flags) {
2959 			case UDF_EXT_REDIRECT :
2960 				/* no support for allocation extentions yet */
2961 				/* TODO support for allocation extention */
2962 				return ENOENT;
2963 			case UDF_EXT_FREED :
2964 			case UDF_EXT_FREE :
2965 				transsec = UDF_TRANS_ZERO;
2966 				translen = overlap;
2967 				while (overlap && pages && translen) {
2968 					*map++ = transsec;
2969 					lb_num++;
2970 					overlap--; pages--; translen--;
2971 				}
2972 				break;
2973 			case UDF_EXT_ALLOCATED :
2974 				t_ad.loc.lb_num   = udf_rw32(lb_num);
2975 				t_ad.loc.part_num = udf_rw16(vpart_num);
2976 				error = udf_translate_vtop(ump,
2977 						&t_ad, &transsec32, &translen);
2978 				transsec = transsec32;
2979 				if (error)
2980 					return error;
2981 				while (overlap && pages && translen) {
2982 					*map++ = transsec;
2983 					lb_num++; transsec++;
2984 					overlap--; pages--; translen--;
2985 				}
2986 				break;
2987 			}
2988 		}
2989 		pos      += icblen;
2990 		alloclen -= icblen;
2991 	}
2992 	return 0;
2993 }
2994 
2995 /* --------------------------------------------------------------------- */
2996 
2997