xref: /netbsd-src/sys/fs/udf/udf_subr.c (revision 313c6c94c424eed90c7b7e494aa83308a0a5d0ce)
1 /* $NetBSD: udf_subr.c,v 1.91 2009/05/20 15:30:26 reinoud Exp $ */
2 
3 /*
4  * Copyright (c) 2006, 2008 Reinoud Zandijk
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  */
28 
29 
30 #include <sys/cdefs.h>
31 #ifndef lint
32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.91 2009/05/20 15:30:26 reinoud Exp $");
33 #endif /* not lint */
34 
35 
36 #if defined(_KERNEL_OPT)
37 #include "opt_compat_netbsd.h"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysctl.h>
43 #include <sys/namei.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/vnode.h>
47 #include <miscfs/genfs/genfs_node.h>
48 #include <sys/mount.h>
49 #include <sys/buf.h>
50 #include <sys/file.h>
51 #include <sys/device.h>
52 #include <sys/disklabel.h>
53 #include <sys/ioctl.h>
54 #include <sys/malloc.h>
55 #include <sys/dirent.h>
56 #include <sys/stat.h>
57 #include <sys/conf.h>
58 #include <sys/kauth.h>
59 #include <fs/unicode.h>
60 #include <dev/clock_subr.h>
61 
62 #include <fs/udf/ecma167-udf.h>
63 #include <fs/udf/udf_mount.h>
64 #include <sys/dirhash.h>
65 
66 #include "udf.h"
67 #include "udf_subr.h"
68 #include "udf_bswap.h"
69 
70 
71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
72 
73 #define UDF_SET_SYSTEMFILE(vp) \
74 	/* XXXAD Is the vnode locked? */	\
75 	(vp)->v_vflag |= VV_SYSTEM;		\
76 	vref(vp);			\
77 	vput(vp);			\
78 
79 extern int syncer_maxdelay;     /* maximum delay time */
80 extern int (**udf_vnodeop_p)(void *);
81 
82 /* --------------------------------------------------------------------- */
83 
84 //#ifdef DEBUG
85 #if 1
86 
87 #if 0
88 static void
89 udf_dumpblob(boid *blob, uint32_t dlen)
90 {
91 	int i, j;
92 
93 	printf("blob = %p\n", blob);
94 	printf("dump of %d bytes\n", dlen);
95 
96 	for (i = 0; i < dlen; i+ = 16) {
97 		printf("%04x ", i);
98 		for (j = 0; j < 16; j++) {
99 			if (i+j < dlen) {
100 				printf("%02x ", blob[i+j]);
101 			} else {
102 				printf("   ");
103 			}
104 		}
105 		for (j = 0; j < 16; j++) {
106 			if (i+j < dlen) {
107 				if (blob[i+j]>32 && blob[i+j]! = 127) {
108 					printf("%c", blob[i+j]);
109 				} else {
110 					printf(".");
111 				}
112 			}
113 		}
114 		printf("\n");
115 	}
116 	printf("\n");
117 	Debugger();
118 }
119 #endif
120 
121 static void
122 udf_dump_discinfo(struct udf_mount *ump)
123 {
124 	char   bits[128];
125 	struct mmc_discinfo *di = &ump->discinfo;
126 
127 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
128 		return;
129 
130 	printf("Device/media info  :\n");
131 	printf("\tMMC profile        0x%02x\n", di->mmc_profile);
132 	printf("\tderived class      %d\n", di->mmc_class);
133 	printf("\tsector size        %d\n", di->sector_size);
134 	printf("\tdisc state         %d\n", di->disc_state);
135 	printf("\tlast ses state     %d\n", di->last_session_state);
136 	printf("\tbg format state    %d\n", di->bg_format_state);
137 	printf("\tfrst track         %d\n", di->first_track);
138 	printf("\tfst on last ses    %d\n", di->first_track_last_session);
139 	printf("\tlst on last ses    %d\n", di->last_track_last_session);
140 	printf("\tlink block penalty %d\n", di->link_block_penalty);
141 	snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags);
142 	printf("\tdisc flags         %s\n", bits);
143 	printf("\tdisc id            %x\n", di->disc_id);
144 	printf("\tdisc barcode       %"PRIx64"\n", di->disc_barcode);
145 
146 	printf("\tnum sessions       %d\n", di->num_sessions);
147 	printf("\tnum tracks         %d\n", di->num_tracks);
148 
149 	snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur);
150 	printf("\tcapabilities cur   %s\n", bits);
151 	snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap);
152 	printf("\tcapabilities cap   %s\n", bits);
153 }
154 
155 static void
156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo)
157 {
158 	char   bits[128];
159 
160 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
161 		return;
162 
163 	printf("Trackinfo for track %d:\n", trackinfo->tracknr);
164 	printf("\tsessionnr           %d\n", trackinfo->sessionnr);
165 	printf("\ttrack mode          %d\n", trackinfo->track_mode);
166 	printf("\tdata mode           %d\n", trackinfo->data_mode);
167 	snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags);
168 	printf("\tflags               %s\n", bits);
169 
170 	printf("\ttrack start         %d\n", trackinfo->track_start);
171 	printf("\tnext_writable       %d\n", trackinfo->next_writable);
172 	printf("\tfree_blocks         %d\n", trackinfo->free_blocks);
173 	printf("\tpacket_size         %d\n", trackinfo->packet_size);
174 	printf("\ttrack size          %d\n", trackinfo->track_size);
175 	printf("\tlast recorded block %d\n", trackinfo->last_recorded);
176 }
177 
178 #else
179 #define udf_dump_discinfo(a);
180 #define udf_dump_trackinfo(a);
181 #endif
182 
183 
184 /* --------------------------------------------------------------------- */
185 
186 /* not called often */
187 int
188 udf_update_discinfo(struct udf_mount *ump)
189 {
190 	struct vnode *devvp = ump->devvp;
191 	struct partinfo dpart;
192 	struct mmc_discinfo *di;
193 	int error;
194 
195 	DPRINTF(VOLUMES, ("read/update disc info\n"));
196 	di = &ump->discinfo;
197 	memset(di, 0, sizeof(struct mmc_discinfo));
198 
199 	/* check if we're on a MMC capable device, i.e. CD/DVD */
200 	error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
201 	if (error == 0) {
202 		udf_dump_discinfo(ump);
203 		return 0;
204 	}
205 
206 	/* disc partition support */
207 	error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED);
208 	if (error)
209 		return ENODEV;
210 
211 	/* set up a disc info profile for partitions */
212 	di->mmc_profile		= 0x01;	/* disc type */
213 	di->mmc_class		= MMC_CLASS_DISC;
214 	di->disc_state		= MMC_STATE_CLOSED;
215 	di->last_session_state	= MMC_STATE_CLOSED;
216 	di->bg_format_state	= MMC_BGFSTATE_COMPLETED;
217 	di->link_block_penalty	= 0;
218 
219 	di->mmc_cur     = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
220 		MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
221 	di->mmc_cap    = di->mmc_cur;
222 	di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
223 
224 	/* TODO problem with last_possible_lba on resizable VND; request */
225 	di->last_possible_lba = dpart.part->p_size;
226 	di->sector_size       = dpart.disklab->d_secsize;
227 
228 	di->num_sessions = 1;
229 	di->num_tracks   = 1;
230 
231 	di->first_track  = 1;
232 	di->first_track_last_session = di->last_track_last_session = 1;
233 
234 	udf_dump_discinfo(ump);
235 	return 0;
236 }
237 
238 
239 int
240 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
241 {
242 	struct vnode *devvp = ump->devvp;
243 	struct mmc_discinfo *di = &ump->discinfo;
244 	int error, class;
245 
246 	DPRINTF(VOLUMES, ("read track info\n"));
247 
248 	class = di->mmc_class;
249 	if (class != MMC_CLASS_DISC) {
250 		/* tracknr specified in struct ti */
251 		error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
252 		return error;
253 	}
254 
255 	/* disc partition support */
256 	if (ti->tracknr != 1)
257 		return EIO;
258 
259 	/* create fake ti (TODO check for resized vnds) */
260 	ti->sessionnr  = 1;
261 
262 	ti->track_mode = 0;	/* XXX */
263 	ti->data_mode  = 0;	/* XXX */
264 	ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
265 
266 	ti->track_start    = 0;
267 	ti->packet_size    = 1;
268 
269 	/* TODO support for resizable vnd */
270 	ti->track_size    = di->last_possible_lba;
271 	ti->next_writable = di->last_possible_lba;
272 	ti->last_recorded = ti->next_writable;
273 	ti->free_blocks   = 0;
274 
275 	return 0;
276 }
277 
278 
279 int
280 udf_setup_writeparams(struct udf_mount *ump)
281 {
282 	struct mmc_writeparams mmc_writeparams;
283 	int error;
284 
285 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
286 		return 0;
287 
288 	/*
289 	 * only CD burning normally needs setting up, but other disc types
290 	 * might need other settings to be made. The MMC framework will set up
291 	 * the nessisary recording parameters according to the disc
292 	 * characteristics read in. Modifications can be made in the discinfo
293 	 * structure passed to change the nature of the disc.
294 	 */
295 
296 	memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
297 	mmc_writeparams.mmc_class  = ump->discinfo.mmc_class;
298 	mmc_writeparams.mmc_cur    = ump->discinfo.mmc_cur;
299 
300 	/*
301 	 * UDF dictates first track to determine track mode for the whole
302 	 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
303 	 * To prevent problems with a `reserved' track in front we start with
304 	 * the 2nd track and if that is not valid, go for the 1st.
305 	 */
306 	mmc_writeparams.tracknr = 2;
307 	mmc_writeparams.data_mode  = MMC_DATAMODE_DEFAULT;	/* XA disc */
308 	mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT;	/* data */
309 
310 	error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
311 			FKIOCTL, NOCRED);
312 	if (error) {
313 		mmc_writeparams.tracknr = 1;
314 		error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
315 				&mmc_writeparams, FKIOCTL, NOCRED);
316 	}
317 	return error;
318 }
319 
320 
321 int
322 udf_synchronise_caches(struct udf_mount *ump)
323 {
324 	struct mmc_op mmc_op;
325 
326 	DPRINTF(CALL, ("udf_synchronise_caches()\n"));
327 
328 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
329 		return 0;
330 
331 	/* discs are done now */
332 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
333 		return 0;
334 
335 	memset(&mmc_op, 0, sizeof(struct mmc_op));
336 	mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
337 
338 	/* ignore return code */
339 	(void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
340 
341 	return 0;
342 }
343 
344 /* --------------------------------------------------------------------- */
345 
346 /* track/session searching for mounting */
347 int
348 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
349 		  int *first_tracknr, int *last_tracknr)
350 {
351 	struct mmc_trackinfo trackinfo;
352 	uint32_t tracknr, start_track, num_tracks;
353 	int error;
354 
355 	/* if negative, sessionnr is relative to last session */
356 	if (args->sessionnr < 0) {
357 		args->sessionnr += ump->discinfo.num_sessions;
358 	}
359 
360 	/* sanity */
361 	if (args->sessionnr < 0)
362 		args->sessionnr = 0;
363 	if (args->sessionnr > ump->discinfo.num_sessions)
364 		args->sessionnr = ump->discinfo.num_sessions;
365 
366 	/* search the tracks for this session, zero session nr indicates last */
367 	if (args->sessionnr == 0)
368 		args->sessionnr = ump->discinfo.num_sessions;
369 	if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
370 		args->sessionnr--;
371 
372 	/* sanity again */
373 	if (args->sessionnr < 0)
374 		args->sessionnr = 0;
375 
376 	/* search the first and last track of the specified session */
377 	num_tracks  = ump->discinfo.num_tracks;
378 	start_track = ump->discinfo.first_track;
379 
380 	/* search for first track of this session */
381 	for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
382 		/* get track info */
383 		trackinfo.tracknr = tracknr;
384 		error = udf_update_trackinfo(ump, &trackinfo);
385 		if (error)
386 			return error;
387 
388 		if (trackinfo.sessionnr == args->sessionnr)
389 			break;
390 	}
391 	*first_tracknr = tracknr;
392 
393 	/* search for last track of this session */
394 	for (;tracknr <= num_tracks; tracknr++) {
395 		/* get track info */
396 		trackinfo.tracknr = tracknr;
397 		error = udf_update_trackinfo(ump, &trackinfo);
398 		if (error || (trackinfo.sessionnr != args->sessionnr)) {
399 			tracknr--;
400 			break;
401 		}
402 	}
403 	if (tracknr > num_tracks)
404 		tracknr--;
405 
406 	*last_tracknr = tracknr;
407 
408 	if (*last_tracknr < *first_tracknr) {
409 		printf( "udf_search_tracks: sanity check on drive+disc failed, "
410 			"drive returned garbage\n");
411 		return EINVAL;
412 	}
413 
414 	assert(*last_tracknr >= *first_tracknr);
415 	return 0;
416 }
417 
418 
419 /*
420  * NOTE: this is the only routine in this file that directly peeks into the
421  * metadata file but since its at a larval state of the mount it can't hurt.
422  *
423  * XXX candidate for udf_allocation.c
424  * XXX clean me up!, change to new node reading code.
425  */
426 
427 static void
428 udf_check_track_metadata_overlap(struct udf_mount *ump,
429 	struct mmc_trackinfo *trackinfo)
430 {
431 	struct part_desc *part;
432 	struct file_entry      *fe;
433 	struct extfile_entry   *efe;
434 	struct short_ad        *s_ad;
435 	struct long_ad         *l_ad;
436 	uint32_t track_start, track_end;
437 	uint32_t phys_part_start, phys_part_end, part_start, part_end;
438 	uint32_t sector_size, len, alloclen, plb_num;
439 	uint8_t *pos;
440 	int addr_type, icblen, icbflags, flags;
441 
442 	/* get our track extents */
443 	track_start = trackinfo->track_start;
444 	track_end   = track_start + trackinfo->track_size;
445 
446 	/* get our base partition extent */
447 	KASSERT(ump->node_part == ump->fids_part);
448 	part = ump->partitions[ump->node_part];
449 	phys_part_start = udf_rw32(part->start_loc);
450 	phys_part_end   = phys_part_start + udf_rw32(part->part_len);
451 
452 	/* no use if its outside the physical partition */
453 	if ((phys_part_start >= track_end) || (phys_part_end < track_start))
454 		return;
455 
456 	/*
457 	 * now follow all extents in the fe/efe to see if they refer to this
458 	 * track
459 	 */
460 
461 	sector_size = ump->discinfo.sector_size;
462 
463 	/* XXX should we claim exclusive access to the metafile ? */
464 	/* TODO: move to new node read code */
465 	fe  = ump->metadata_node->fe;
466 	efe = ump->metadata_node->efe;
467 	if (fe) {
468 		alloclen = udf_rw32(fe->l_ad);
469 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
470 		icbflags = udf_rw16(fe->icbtag.flags);
471 	} else {
472 		assert(efe);
473 		alloclen = udf_rw32(efe->l_ad);
474 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
475 		icbflags = udf_rw16(efe->icbtag.flags);
476 	}
477 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
478 
479 	while (alloclen) {
480 		if (addr_type == UDF_ICB_SHORT_ALLOC) {
481 			icblen = sizeof(struct short_ad);
482 			s_ad   = (struct short_ad *) pos;
483 			len        = udf_rw32(s_ad->len);
484 			plb_num    = udf_rw32(s_ad->lb_num);
485 		} else {
486 			/* should not be present, but why not */
487 			icblen = sizeof(struct long_ad);
488 			l_ad   = (struct long_ad *) pos;
489 			len        = udf_rw32(l_ad->len);
490 			plb_num    = udf_rw32(l_ad->loc.lb_num);
491 			/* pvpart_num = udf_rw16(l_ad->loc.part_num); */
492 		}
493 		/* process extent */
494 		flags   = UDF_EXT_FLAGS(len);
495 		len     = UDF_EXT_LEN(len);
496 
497 		part_start = phys_part_start + plb_num;
498 		part_end   = part_start + (len / sector_size);
499 
500 		if ((part_start >= track_start) && (part_end <= track_end)) {
501 			/* extent is enclosed within this track */
502 			ump->metadata_track = *trackinfo;
503 			return;
504 		}
505 
506 		pos        += icblen;
507 		alloclen   -= icblen;
508 	}
509 }
510 
511 
512 int
513 udf_search_writing_tracks(struct udf_mount *ump)
514 {
515 	struct vnode *devvp = ump->devvp;
516 	struct mmc_trackinfo trackinfo;
517 	struct mmc_op        mmc_op;
518 	struct part_desc *part;
519 	uint32_t tracknr, start_track, num_tracks;
520 	uint32_t track_start, track_end, part_start, part_end;
521 	int node_alloc, error;
522 
523 	/*
524 	 * in the CD/(HD)DVD/BD recordable device model a few tracks within
525 	 * the last session might be open but in the UDF device model at most
526 	 * three tracks can be open: a reserved track for delayed ISO VRS
527 	 * writing, a data track and a metadata track. We search here for the
528 	 * data track and the metadata track. Note that the reserved track is
529 	 * troublesome but can be detected by its small size of < 512 sectors.
530 	 */
531 
532 	/* update discinfo since it might have changed */
533 	error = udf_update_discinfo(ump);
534 	if (error)
535 		return error;
536 
537 	num_tracks  = ump->discinfo.num_tracks;
538 	start_track = ump->discinfo.first_track;
539 
540 	/* fetch info on first and possibly only track */
541 	trackinfo.tracknr = start_track;
542 	error = udf_update_trackinfo(ump, &trackinfo);
543 	if (error)
544 		return error;
545 
546 	/* copy results to our mount point */
547 	ump->data_track     = trackinfo;
548 	ump->metadata_track = trackinfo;
549 
550 	/* if not sequential, we're done */
551 	if (num_tracks == 1)
552 		return 0;
553 
554 	for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
555 		/* get track info */
556 		trackinfo.tracknr = tracknr;
557 		error = udf_update_trackinfo(ump, &trackinfo);
558 		if (error)
559 			return error;
560 
561 		/*
562 		 * If this track is marked damaged, ask for repair. This is an
563 		 * optional command, so ignore its error but report warning.
564 		 */
565 		if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) {
566 			memset(&mmc_op, 0, sizeof(mmc_op));
567 			mmc_op.operation   = MMC_OP_REPAIRTRACK;
568 			mmc_op.mmc_profile = ump->discinfo.mmc_profile;
569 			mmc_op.tracknr     = tracknr;
570 			error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
571 			if (error)
572 				(void)printf("Drive can't explicitly repair "
573 					"damaged track %d, but it might "
574 					"autorepair\n", tracknr);
575 
576 			/* reget track info */
577 			error = udf_update_trackinfo(ump, &trackinfo);
578 			if (error)
579 				return error;
580 		}
581 		if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
582 			continue;
583 
584 		track_start = trackinfo.track_start;
585 		track_end   = track_start + trackinfo.track_size;
586 
587 		/* check for overlap on data partition */
588 		part = ump->partitions[ump->data_part];
589 		part_start = udf_rw32(part->start_loc);
590 		part_end   = part_start + udf_rw32(part->part_len);
591 		if ((part_start < track_end) && (part_end > track_start)) {
592 			ump->data_track = trackinfo;
593 			/* TODO check if UDF partition data_part is writable */
594 		}
595 
596 		/* check for overlap on metadata partition */
597 		node_alloc = ump->vtop_alloc[ump->node_part];
598 		if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
599 		    (node_alloc == UDF_ALLOC_METABITMAP)) {
600 			udf_check_track_metadata_overlap(ump, &trackinfo);
601 		} else {
602 			ump->metadata_track = trackinfo;
603 		}
604 	}
605 
606 	if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
607 		return EROFS;
608 
609 	if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
610 		return EROFS;
611 
612 	return 0;
613 }
614 
615 /* --------------------------------------------------------------------- */
616 
617 /*
618  * Check if the blob starts with a good UDF tag. Tags are protected by a
619  * checksum over the reader except one byte at position 4 that is the checksum
620  * itself.
621  */
622 
623 int
624 udf_check_tag(void *blob)
625 {
626 	struct desc_tag *tag = blob;
627 	uint8_t *pos, sum, cnt;
628 
629 	/* check TAG header checksum */
630 	pos = (uint8_t *) tag;
631 	sum = 0;
632 
633 	for(cnt = 0; cnt < 16; cnt++) {
634 		if (cnt != 4)
635 			sum += *pos;
636 		pos++;
637 	}
638 	if (sum != tag->cksum) {
639 		/* bad tag header checksum; this is not a valid tag */
640 		return EINVAL;
641 	}
642 
643 	return 0;
644 }
645 
646 
647 /*
648  * check tag payload will check descriptor CRC as specified.
649  * If the descriptor is too long, it will return EIO otherwise EINVAL.
650  */
651 
652 int
653 udf_check_tag_payload(void *blob, uint32_t max_length)
654 {
655 	struct desc_tag *tag = blob;
656 	uint16_t crc, crc_len;
657 
658 	crc_len = udf_rw16(tag->desc_crc_len);
659 
660 	/* check payload CRC if applicable */
661 	if (crc_len == 0)
662 		return 0;
663 
664 	if (crc_len > max_length)
665 		return EIO;
666 
667 	crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
668 	if (crc != udf_rw16(tag->desc_crc)) {
669 		/* bad payload CRC; this is a broken tag */
670 		return EINVAL;
671 	}
672 
673 	return 0;
674 }
675 
676 
677 void
678 udf_validate_tag_sum(void *blob)
679 {
680 	struct desc_tag *tag = blob;
681 	uint8_t *pos, sum, cnt;
682 
683 	/* calculate TAG header checksum */
684 	pos = (uint8_t *) tag;
685 	sum = 0;
686 
687 	for(cnt = 0; cnt < 16; cnt++) {
688 		if (cnt != 4) sum += *pos;
689 		pos++;
690 	}
691 	tag->cksum = sum;	/* 8 bit */
692 }
693 
694 
695 /* assumes sector number of descriptor to be saved already present */
696 void
697 udf_validate_tag_and_crc_sums(void *blob)
698 {
699 	struct desc_tag *tag  = blob;
700 	uint8_t         *btag = (uint8_t *) tag;
701 	uint16_t crc, crc_len;
702 
703 	crc_len = udf_rw16(tag->desc_crc_len);
704 
705 	/* check payload CRC if applicable */
706 	if (crc_len > 0) {
707 		crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
708 		tag->desc_crc = udf_rw16(crc);
709 	}
710 
711 	/* calculate TAG header checksum */
712 	udf_validate_tag_sum(blob);
713 }
714 
715 /* --------------------------------------------------------------------- */
716 
717 /*
718  * XXX note the different semantics from udfclient: for FIDs it still rounds
719  * up to sectors. Use udf_fidsize() for a correct length.
720  */
721 
722 int
723 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
724 {
725 	uint32_t size, tag_id, num_lb, elmsz;
726 
727 	tag_id = udf_rw16(dscr->tag.id);
728 
729 	switch (tag_id) {
730 	case TAGID_LOGVOL :
731 		size  = sizeof(struct logvol_desc) - 1;
732 		size += udf_rw32(dscr->lvd.mt_l);
733 		break;
734 	case TAGID_UNALLOC_SPACE :
735 		elmsz = sizeof(struct extent_ad);
736 		size  = sizeof(struct unalloc_sp_desc) - elmsz;
737 		size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
738 		break;
739 	case TAGID_FID :
740 		size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
741 		size = (size + 3) & ~3;
742 		break;
743 	case TAGID_LOGVOL_INTEGRITY :
744 		size  = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
745 		size += udf_rw32(dscr->lvid.l_iu);
746 		size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
747 		break;
748 	case TAGID_SPACE_BITMAP :
749 		size  = sizeof(struct space_bitmap_desc) - 1;
750 		size += udf_rw32(dscr->sbd.num_bytes);
751 		break;
752 	case TAGID_SPARING_TABLE :
753 		elmsz = sizeof(struct spare_map_entry);
754 		size  = sizeof(struct udf_sparing_table) - elmsz;
755 		size += udf_rw16(dscr->spt.rt_l) * elmsz;
756 		break;
757 	case TAGID_FENTRY :
758 		size  = sizeof(struct file_entry);
759 		size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
760 		break;
761 	case TAGID_EXTFENTRY :
762 		size  = sizeof(struct extfile_entry);
763 		size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
764 		break;
765 	case TAGID_FSD :
766 		size  = sizeof(struct fileset_desc);
767 		break;
768 	default :
769 		size = sizeof(union dscrptr);
770 		break;
771 	}
772 
773 	if ((size == 0) || (lb_size == 0))
774 		return 0;
775 
776 	if (lb_size == 1)
777 		return size;
778 
779 	/* round up in sectors */
780 	num_lb = (size + lb_size -1) / lb_size;
781 	return num_lb * lb_size;
782 }
783 
784 
785 int
786 udf_fidsize(struct fileid_desc *fid)
787 {
788 	uint32_t size;
789 
790 	if (udf_rw16(fid->tag.id) != TAGID_FID)
791 		panic("got udf_fidsize on non FID\n");
792 
793 	size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
794 	size = (size + 3) & ~3;
795 
796 	return size;
797 }
798 
799 /* --------------------------------------------------------------------- */
800 
801 void
802 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
803 {
804 	int ret;
805 
806 	mutex_enter(&udf_node->node_mutex);
807 	/* wait until free */
808 	while (udf_node->i_flags & IN_LOCKED) {
809 		ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
810 		/* TODO check if we should return error; abort */
811 		if (ret == EWOULDBLOCK) {
812 			DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
813 				"wanted at %s:%d, previously locked at %s:%d\n",
814 				udf_node, fname, lineno,
815 				udf_node->lock_fname, udf_node->lock_lineno));
816 		}
817 	}
818 	/* grab */
819 	udf_node->i_flags |= IN_LOCKED | flag;
820 	/* debug */
821 	udf_node->lock_fname  = fname;
822 	udf_node->lock_lineno = lineno;
823 
824 	mutex_exit(&udf_node->node_mutex);
825 }
826 
827 
828 void
829 udf_unlock_node(struct udf_node *udf_node, int flag)
830 {
831 	mutex_enter(&udf_node->node_mutex);
832 	udf_node->i_flags &= ~(IN_LOCKED | flag);
833 	cv_broadcast(&udf_node->node_lock);
834 	mutex_exit(&udf_node->node_mutex);
835 }
836 
837 
838 /* --------------------------------------------------------------------- */
839 
840 static int
841 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
842 {
843 	int error;
844 
845 	error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
846 			(union dscrptr **) dst);
847 	if (!error) {
848 		/* blank terminator blocks are not allowed here */
849 		if (*dst == NULL)
850 			return ENOENT;
851 		if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
852 			error = ENOENT;
853 			free(*dst, M_UDFVOLD);
854 			*dst = NULL;
855 			DPRINTF(VOLUMES, ("Not an anchor\n"));
856 		}
857 	}
858 
859 	return error;
860 }
861 
862 
863 int
864 udf_read_anchors(struct udf_mount *ump)
865 {
866 	struct udf_args *args = &ump->mount_args;
867 	struct mmc_trackinfo first_track;
868 	struct mmc_trackinfo second_track;
869 	struct mmc_trackinfo last_track;
870 	struct anchor_vdp **anchorsp;
871 	uint32_t track_start;
872 	uint32_t track_end;
873 	uint32_t positions[4];
874 	int first_tracknr, last_tracknr;
875 	int error, anch, ok, first_anchor;
876 
877 	/* search the first and last track of the specified session */
878 	error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
879 	if (!error) {
880 		first_track.tracknr = first_tracknr;
881 		error = udf_update_trackinfo(ump, &first_track);
882 	}
883 	if (!error) {
884 		last_track.tracknr = last_tracknr;
885 		error = udf_update_trackinfo(ump, &last_track);
886 	}
887 	if ((!error) && (first_tracknr != last_tracknr)) {
888 		second_track.tracknr = first_tracknr+1;
889 		error = udf_update_trackinfo(ump, &second_track);
890 	}
891 	if (error) {
892 		printf("UDF mount: reading disc geometry failed\n");
893 		return 0;
894 	}
895 
896 	track_start = first_track.track_start;
897 
898 	/* `end' is not as straitforward as start. */
899 	track_end =   last_track.track_start
900 		    + last_track.track_size - last_track.free_blocks - 1;
901 
902 	if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
903 		/* end of track is not straitforward here */
904 		if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
905 			track_end = last_track.last_recorded;
906 		else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
907 			track_end = last_track.next_writable
908 				    - ump->discinfo.link_block_penalty;
909 	}
910 
911 	/* its no use reading a blank track */
912 	first_anchor = 0;
913 	if (first_track.flags & MMC_TRACKINFO_BLANK)
914 		first_anchor = 1;
915 
916 	/* get our packet size */
917 	ump->packet_size = first_track.packet_size;
918 	if (first_track.flags & MMC_TRACKINFO_BLANK)
919 		ump->packet_size = second_track.packet_size;
920 
921 	if (ump->packet_size <= 1) {
922 		/* take max, but not bigger than 64 */
923 		ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
924 		ump->packet_size = MIN(ump->packet_size, 64);
925 	}
926 	KASSERT(ump->packet_size >= 1);
927 
928 	/* read anchors start+256, start+512, end-256, end */
929 	positions[0] = track_start+256;
930 	positions[1] =   track_end-256;
931 	positions[2] =   track_end;
932 	positions[3] = track_start+512;	/* [UDF 2.60/6.11.2] */
933 	/* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
934 
935 	ok = 0;
936 	anchorsp = ump->anchors;
937 	for (anch = first_anchor; anch < 4; anch++) {
938 		DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
939 		    positions[anch]));
940 		error = udf_read_anchor(ump, positions[anch], anchorsp);
941 		if (!error) {
942 			anchorsp++;
943 			ok++;
944 		}
945 	}
946 
947 	/* VATs are only recorded on sequential media, but initialise */
948 	ump->first_possible_vat_location = track_start + 2;
949 	ump->last_possible_vat_location  = track_end + last_track.packet_size;
950 
951 	return ok;
952 }
953 
954 /* --------------------------------------------------------------------- */
955 
956 /* we dont try to be smart; we just record the parts */
957 #define UDF_UPDATE_DSCR(name, dscr) \
958 	if (name) \
959 		free(name, M_UDFVOLD); \
960 	name = dscr;
961 
962 static int
963 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
964 {
965 	struct part_desc *part;
966 	uint16_t phys_part, raw_phys_part;
967 
968 	DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
969 	    udf_rw16(dscr->tag.id)));
970 	switch (udf_rw16(dscr->tag.id)) {
971 	case TAGID_PRI_VOL :		/* primary partition		*/
972 		UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
973 		break;
974 	case TAGID_LOGVOL :		/* logical volume		*/
975 		UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
976 		break;
977 	case TAGID_UNALLOC_SPACE :	/* unallocated space		*/
978 		UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
979 		break;
980 	case TAGID_IMP_VOL :		/* implementation		*/
981 		/* XXX do we care about multiple impl. descr ? */
982 		UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
983 		break;
984 	case TAGID_PARTITION :		/* physical partition		*/
985 		/* not much use if its not allocated */
986 		if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
987 			free(dscr, M_UDFVOLD);
988 			break;
989 		}
990 
991 		/*
992 		 * BUGALERT: some rogue implementations use random physical
993 		 * partion numbers to break other implementations so lookup
994 		 * the number.
995 		 */
996 		raw_phys_part = udf_rw16(dscr->pd.part_num);
997 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
998 			part = ump->partitions[phys_part];
999 			if (part == NULL)
1000 				break;
1001 			if (udf_rw16(part->part_num) == raw_phys_part)
1002 				break;
1003 		}
1004 		if (phys_part == UDF_PARTITIONS) {
1005 			free(dscr, M_UDFVOLD);
1006 			return EINVAL;
1007 		}
1008 
1009 		UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
1010 		break;
1011 	case TAGID_VOL :		/* volume space extender; rare	*/
1012 		DPRINTF(VOLUMES, ("VDS extender ignored\n"));
1013 		free(dscr, M_UDFVOLD);
1014 		break;
1015 	default :
1016 		DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
1017 		    udf_rw16(dscr->tag.id)));
1018 		free(dscr, M_UDFVOLD);
1019 	}
1020 
1021 	return 0;
1022 }
1023 #undef UDF_UPDATE_DSCR
1024 
1025 /* --------------------------------------------------------------------- */
1026 
1027 static int
1028 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
1029 {
1030 	union dscrptr *dscr;
1031 	uint32_t sector_size, dscr_size;
1032 	int error;
1033 
1034 	sector_size = ump->discinfo.sector_size;
1035 
1036 	/* loc is sectornr, len is in bytes */
1037 	error = EIO;
1038 	while (len) {
1039 		error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
1040 		if (error)
1041 			return error;
1042 
1043 		/* blank block is a terminator */
1044 		if (dscr == NULL)
1045 			return 0;
1046 
1047 		/* TERM descriptor is a terminator */
1048 		if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
1049 			free(dscr, M_UDFVOLD);
1050 			return 0;
1051 		}
1052 
1053 		/* process all others */
1054 		dscr_size = udf_tagsize(dscr, sector_size);
1055 		error = udf_process_vds_descriptor(ump, dscr);
1056 		if (error) {
1057 			free(dscr, M_UDFVOLD);
1058 			break;
1059 		}
1060 		assert((dscr_size % sector_size) == 0);
1061 
1062 		len -= dscr_size;
1063 		loc += dscr_size / sector_size;
1064 	}
1065 
1066 	return error;
1067 }
1068 
1069 
1070 int
1071 udf_read_vds_space(struct udf_mount *ump)
1072 {
1073 	/* struct udf_args *args = &ump->mount_args; */
1074 	struct anchor_vdp *anchor, *anchor2;
1075 	size_t size;
1076 	uint32_t main_loc, main_len;
1077 	uint32_t reserve_loc, reserve_len;
1078 	int error;
1079 
1080 	/*
1081 	 * read in VDS space provided by the anchors; if one descriptor read
1082 	 * fails, try the mirror sector.
1083 	 *
1084 	 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
1085 	 * avoids the `compatibility features' of DirectCD that may confuse
1086 	 * stuff completely.
1087 	 */
1088 
1089 	anchor  = ump->anchors[0];
1090 	anchor2 = ump->anchors[1];
1091 	assert(anchor);
1092 
1093 	if (anchor2) {
1094 		size = sizeof(struct extent_ad);
1095 		if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
1096 			anchor = anchor2;
1097 		/* reserve is specified to be a literal copy of main */
1098 	}
1099 
1100 	main_loc    = udf_rw32(anchor->main_vds_ex.loc);
1101 	main_len    = udf_rw32(anchor->main_vds_ex.len);
1102 
1103 	reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
1104 	reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
1105 
1106 	error = udf_read_vds_extent(ump, main_loc, main_len);
1107 	if (error) {
1108 		printf("UDF mount: reading in reserve VDS extent\n");
1109 		error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
1110 	}
1111 
1112 	return error;
1113 }
1114 
1115 /* --------------------------------------------------------------------- */
1116 
1117 /*
1118  * Read in the logical volume integrity sequence pointed to by our logical
1119  * volume descriptor. Its a sequence that can be extended using fields in the
1120  * integrity descriptor itself. On sequential media only one is found, on
1121  * rewritable media a sequence of descriptors can be found as a form of
1122  * history keeping and on non sequential write-once media the chain is vital
1123  * to allow more and more descriptors to be written. The last descriptor
1124  * written in an extent needs to claim space for a new extent.
1125  */
1126 
1127 static int
1128 udf_retrieve_lvint(struct udf_mount *ump)
1129 {
1130 	union dscrptr *dscr;
1131 	struct logvol_int_desc *lvint;
1132 	struct udf_lvintq *trace;
1133 	uint32_t lb_size, lbnum, len;
1134 	int dscr_type, error, trace_len;
1135 
1136 	lb_size = udf_rw32(ump->logical_vol->lb_size);
1137 	len     = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
1138 	lbnum   = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
1139 
1140 	/* clean trace */
1141 	memset(ump->lvint_trace, 0,
1142 	    UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
1143 
1144 	trace_len    = 0;
1145 	trace        = ump->lvint_trace;
1146 	trace->start = lbnum;
1147 	trace->end   = lbnum + len/lb_size;
1148 	trace->pos   = 0;
1149 	trace->wpos  = 0;
1150 
1151 	lvint = NULL;
1152 	dscr  = NULL;
1153 	error = 0;
1154 	while (len) {
1155 		trace->pos  = lbnum - trace->start;
1156 		trace->wpos = trace->pos + 1;
1157 
1158 		/* read in our integrity descriptor */
1159 		error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
1160 		if (!error) {
1161 			if (dscr == NULL) {
1162 				trace->wpos = trace->pos;
1163 				break;		/* empty terminates */
1164 			}
1165 			dscr_type = udf_rw16(dscr->tag.id);
1166 			if (dscr_type == TAGID_TERM) {
1167 				trace->wpos = trace->pos;
1168 				break;		/* clean terminator */
1169 			}
1170 			if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1171 				/* fatal... corrupt disc */
1172 				error = ENOENT;
1173 				break;
1174 			}
1175 			if (lvint)
1176 				free(lvint, M_UDFVOLD);
1177 			lvint = &dscr->lvid;
1178 			dscr = NULL;
1179 		} /* else hope for the best... maybe the next is ok */
1180 
1181 		DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
1182 		    udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
1183 
1184 		/* proceed sequential */
1185 		lbnum += 1;
1186 		len    -= lb_size;
1187 
1188 		/* are we linking to a new piece? */
1189 		if (dscr && lvint->next_extent.len) {
1190 			len    = udf_rw32(lvint->next_extent.len);
1191 			lbnum = udf_rw32(lvint->next_extent.loc);
1192 
1193 			if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
1194 				/* IEK! segment link full... */
1195 				DPRINTF(VOLUMES, ("lvdint segments full\n"));
1196 				error = EINVAL;
1197 			} else {
1198 				trace++;
1199 				trace_len++;
1200 
1201 				trace->start = lbnum;
1202 				trace->end   = lbnum + len/lb_size;
1203 				trace->pos   = 0;
1204 				trace->wpos  = 0;
1205 			}
1206 		}
1207 	}
1208 
1209 	/* clean up the mess, esp. when there is an error */
1210 	if (dscr)
1211 		free(dscr, M_UDFVOLD);
1212 
1213 	if (error && lvint) {
1214 		free(lvint, M_UDFVOLD);
1215 		lvint = NULL;
1216 	}
1217 
1218 	if (!lvint)
1219 		error = ENOENT;
1220 
1221 	ump->logvol_integrity = lvint;
1222 	return error;
1223 }
1224 
1225 
1226 static int
1227 udf_loose_lvint_history(struct udf_mount *ump)
1228 {
1229 	union dscrptr **bufs, *dscr, *last_dscr;
1230 	struct udf_lvintq *trace, *in_trace, *out_trace;
1231 	struct logvol_int_desc *lvint;
1232 	uint32_t in_ext, in_pos, in_len;
1233 	uint32_t out_ext, out_wpos, out_len;
1234 	uint32_t lb_size, packet_size, lb_num;
1235 	uint32_t len, start;
1236 	int ext, minext, extlen, cnt, cpy_len, dscr_type;
1237 	int losing;
1238 	int error;
1239 
1240 	DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
1241 
1242 	lb_size = udf_rw32(ump->logical_vol->lb_size);
1243 	packet_size = ump->data_track.packet_size;	/* XXX data track */
1244 
1245 	/* search smallest extent */
1246 	trace = &ump->lvint_trace[0];
1247 	minext = trace->end - trace->start;
1248 	for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
1249 		trace = &ump->lvint_trace[ext];
1250 		extlen = trace->end - trace->start;
1251 		if (extlen == 0)
1252 			break;
1253 		minext = MIN(minext, extlen);
1254 	}
1255 	losing = MIN(minext, UDF_LVINT_LOSSAGE);
1256 	/* no sense wiping all */
1257 	if (losing == minext)
1258 		losing--;
1259 
1260 	DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
1261 
1262 	/* get buffer for pieces */
1263 	bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
1264 
1265 	in_ext    = 0;
1266 	in_pos    = losing;
1267 	in_trace  = &ump->lvint_trace[in_ext];
1268 	in_len    = in_trace->end - in_trace->start;
1269 	out_ext   = 0;
1270 	out_wpos  = 0;
1271 	out_trace = &ump->lvint_trace[out_ext];
1272 	out_len   = out_trace->end - out_trace->start;
1273 
1274 	last_dscr = NULL;
1275 	for(;;) {
1276 		out_trace->pos  = out_wpos;
1277 		out_trace->wpos = out_trace->pos;
1278 		if (in_pos >= in_len) {
1279 			in_ext++;
1280 			in_pos = 0;
1281 			in_trace = &ump->lvint_trace[in_ext];
1282 			in_len   = in_trace->end - in_trace->start;
1283 		}
1284 		if (out_wpos >= out_len) {
1285 			out_ext++;
1286 			out_wpos = 0;
1287 			out_trace = &ump->lvint_trace[out_ext];
1288 			out_len   = out_trace->end - out_trace->start;
1289 		}
1290 		/* copy overlap contents */
1291 		cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
1292 		cpy_len = MIN(cpy_len, in_len - in_trace->pos);
1293 		if (cpy_len == 0)
1294 			break;
1295 
1296 		/* copy */
1297 		DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
1298 		for (cnt = 0; cnt < cpy_len; cnt++) {
1299 			/* read in our integrity descriptor */
1300 			lb_num = in_trace->start + in_pos + cnt;
1301 			error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
1302 				&dscr);
1303 			if (error) {
1304 				/* copy last one */
1305 				dscr = last_dscr;
1306 			}
1307 			bufs[cnt] = dscr;
1308 			if (!error) {
1309 				if (dscr == NULL) {
1310 					out_trace->pos  = out_wpos + cnt;
1311 					out_trace->wpos = out_trace->pos;
1312 					break;		/* empty terminates */
1313 				}
1314 				dscr_type = udf_rw16(dscr->tag.id);
1315 				if (dscr_type == TAGID_TERM) {
1316 					out_trace->pos  = out_wpos + cnt;
1317 					out_trace->wpos = out_trace->pos;
1318 					break;		/* clean terminator */
1319 				}
1320 				if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1321 					panic(  "UDF integrity sequence "
1322 						"corrupted while mounted!\n");
1323 				}
1324 				last_dscr = dscr;
1325 			}
1326 		}
1327 
1328 		/* patch up if first entry was on error */
1329 		if (bufs[0] == NULL) {
1330 			for (cnt = 0; cnt < cpy_len; cnt++)
1331 				if (bufs[cnt] != NULL)
1332 					break;
1333 			last_dscr = bufs[cnt];
1334 			for (; cnt > 0; cnt--) {
1335 				bufs[cnt] = last_dscr;
1336 			}
1337 		}
1338 
1339 		/* glue + write out */
1340 		DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
1341 		for (cnt = 0; cnt < cpy_len; cnt++) {
1342 			lb_num = out_trace->start + out_wpos + cnt;
1343 			lvint  = &bufs[cnt]->lvid;
1344 
1345 			/* set continuation */
1346 			len = 0;
1347 			start = 0;
1348 			if (out_wpos + cnt == out_len) {
1349 				/* get continuation */
1350 				trace = &ump->lvint_trace[out_ext+1];
1351 				len   = trace->end - trace->start;
1352 				start = trace->start;
1353 			}
1354 			lvint->next_extent.len = udf_rw32(len);
1355 			lvint->next_extent.loc = udf_rw32(start);
1356 
1357 			lb_num = trace->start + trace->wpos;
1358 			error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1359 				bufs[cnt], lb_num, lb_num);
1360 			DPRINTFIF(VOLUMES, error,
1361 				("error writing lvint lb_num\n"));
1362 		}
1363 
1364 		/* free non repeating descriptors */
1365 		last_dscr = NULL;
1366 		for (cnt = 0; cnt < cpy_len; cnt++) {
1367 			if (bufs[cnt] != last_dscr)
1368 				free(bufs[cnt], M_UDFVOLD);
1369 			last_dscr = bufs[cnt];
1370 		}
1371 
1372 		/* advance */
1373 		in_pos   += cpy_len;
1374 		out_wpos += cpy_len;
1375 	}
1376 
1377 	free(bufs, M_TEMP);
1378 
1379 	return 0;
1380 }
1381 
1382 
1383 static int
1384 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
1385 {
1386 	struct udf_lvintq *trace;
1387 	struct timeval  now_v;
1388 	struct timespec now_s;
1389 	uint32_t sector;
1390 	int logvol_integrity;
1391 	int space, error;
1392 
1393 	DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
1394 
1395 again:
1396 	/* get free space in last chunk */
1397 	trace = ump->lvint_trace;
1398 	while (trace->wpos > (trace->end - trace->start)) {
1399 		DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
1400 				  "wpos = %d\n", trace->start, trace->end,
1401 				  trace->pos, trace->wpos));
1402 		trace++;
1403 	}
1404 
1405 	/* check if there is space to append */
1406 	space = (trace->end - trace->start) - trace->wpos;
1407 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1408 			  "space = %d\n", trace->start, trace->end, trace->pos,
1409 			  trace->wpos, space));
1410 
1411 	/* get state */
1412 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
1413 	if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
1414 		if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
1415 			/* don't allow this logvol to be opened */
1416 			/* TODO extent LVINT space if possible */
1417 			return EROFS;
1418 		}
1419 	}
1420 
1421 	if (space < 1) {
1422 		if (lvflag & UDF_APPENDONLY_LVINT)
1423 			return EROFS;
1424 		/* loose history by re-writing extents */
1425 		error = udf_loose_lvint_history(ump);
1426 		if (error)
1427 			return error;
1428 		goto again;
1429 	}
1430 
1431 	/* update our integrity descriptor to identify us and timestamp it */
1432 	DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
1433 	microtime(&now_v);
1434 	TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
1435 	udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
1436 	udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
1437 	udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
1438 
1439 	/* writeout integrity descriptor */
1440 	sector = trace->start + trace->wpos;
1441 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1442 			(union dscrptr *) ump->logvol_integrity,
1443 			sector, sector);
1444 	DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
1445 	if (error)
1446 		return error;
1447 
1448 	/* advance write position */
1449 	trace->wpos++; space--;
1450 	if (space >= 1) {
1451 		/* append terminator */
1452 		sector = trace->start + trace->wpos;
1453 		error = udf_write_terminator(ump, sector);
1454 
1455 		DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
1456 	}
1457 
1458 	space = (trace->end - trace->start) - trace->wpos;
1459 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1460 		"space = %d\n", trace->start, trace->end, trace->pos,
1461 		trace->wpos, space));
1462 	DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
1463 		"successfull\n"));
1464 
1465 	return error;
1466 }
1467 
1468 /* --------------------------------------------------------------------- */
1469 
1470 static int
1471 udf_read_physical_partition_spacetables(struct udf_mount *ump)
1472 {
1473 	union dscrptr        *dscr;
1474 	/* struct udf_args *args = &ump->mount_args; */
1475 	struct part_desc     *partd;
1476 	struct part_hdr_desc *parthdr;
1477 	struct udf_bitmap    *bitmap;
1478 	uint32_t phys_part;
1479 	uint32_t lb_num, len;
1480 	int error, dscr_type;
1481 
1482 	/* unallocated space map */
1483 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1484 		partd = ump->partitions[phys_part];
1485 		if (partd == NULL)
1486 			continue;
1487 		parthdr = &partd->_impl_use.part_hdr;
1488 
1489 		lb_num  = udf_rw32(partd->start_loc);
1490 		lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1491 		len     = udf_rw32(parthdr->unalloc_space_bitmap.len);
1492 		if (len == 0)
1493 			continue;
1494 
1495 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1496 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1497 		if (!error && dscr) {
1498 			/* analyse */
1499 			dscr_type = udf_rw16(dscr->tag.id);
1500 			if (dscr_type == TAGID_SPACE_BITMAP) {
1501 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1502 				ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
1503 
1504 				/* fill in ump->part_unalloc_bits */
1505 				bitmap = &ump->part_unalloc_bits[phys_part];
1506 				bitmap->blob  = (uint8_t *) dscr;
1507 				bitmap->bits  = dscr->sbd.data;
1508 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1509 				bitmap->pages = NULL;	/* TODO */
1510 				bitmap->data_pos     = 0;
1511 				bitmap->metadata_pos = 0;
1512 			} else {
1513 				free(dscr, M_UDFVOLD);
1514 
1515 				printf( "UDF mount: error reading unallocated "
1516 					"space bitmap\n");
1517 				return EROFS;
1518 			}
1519 		} else {
1520 			/* blank not allowed */
1521 			printf("UDF mount: blank unallocated space bitmap\n");
1522 			return EROFS;
1523 		}
1524 	}
1525 
1526 	/* unallocated space table (not supported) */
1527 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1528 		partd = ump->partitions[phys_part];
1529 		if (partd == NULL)
1530 			continue;
1531 		parthdr = &partd->_impl_use.part_hdr;
1532 
1533 		len     = udf_rw32(parthdr->unalloc_space_table.len);
1534 		if (len) {
1535 			printf("UDF mount: space tables not supported\n");
1536 			return EROFS;
1537 		}
1538 	}
1539 
1540 	/* freed space map */
1541 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1542 		partd = ump->partitions[phys_part];
1543 		if (partd == NULL)
1544 			continue;
1545 		parthdr = &partd->_impl_use.part_hdr;
1546 
1547 		/* freed space map */
1548 		lb_num  = udf_rw32(partd->start_loc);
1549 		lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
1550 		len     = udf_rw32(parthdr->freed_space_bitmap.len);
1551 		if (len == 0)
1552 			continue;
1553 
1554 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1555 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1556 		if (!error && dscr) {
1557 			/* analyse */
1558 			dscr_type = udf_rw16(dscr->tag.id);
1559 			if (dscr_type == TAGID_SPACE_BITMAP) {
1560 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1561 				ump->part_freed_dscr[phys_part] = &dscr->sbd;
1562 
1563 				/* fill in ump->part_freed_bits */
1564 				bitmap = &ump->part_unalloc_bits[phys_part];
1565 				bitmap->blob  = (uint8_t *) dscr;
1566 				bitmap->bits  = dscr->sbd.data;
1567 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1568 				bitmap->pages = NULL;	/* TODO */
1569 				bitmap->data_pos     = 0;
1570 				bitmap->metadata_pos = 0;
1571 			} else {
1572 				free(dscr, M_UDFVOLD);
1573 
1574 				printf( "UDF mount: error reading freed  "
1575 					"space bitmap\n");
1576 				return EROFS;
1577 			}
1578 		} else {
1579 			/* blank not allowed */
1580 			printf("UDF mount: blank freed space bitmap\n");
1581 			return EROFS;
1582 		}
1583 	}
1584 
1585 	/* freed space table (not supported) */
1586 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1587 		partd = ump->partitions[phys_part];
1588 		if (partd == NULL)
1589 			continue;
1590 		parthdr = &partd->_impl_use.part_hdr;
1591 
1592 		len     = udf_rw32(parthdr->freed_space_table.len);
1593 		if (len) {
1594 			printf("UDF mount: space tables not supported\n");
1595 			return EROFS;
1596 		}
1597 	}
1598 
1599 	return 0;
1600 }
1601 
1602 
1603 /* TODO implement async writeout */
1604 int
1605 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
1606 {
1607 	union dscrptr        *dscr;
1608 	/* struct udf_args *args = &ump->mount_args; */
1609 	struct part_desc     *partd;
1610 	struct part_hdr_desc *parthdr;
1611 	uint32_t phys_part;
1612 	uint32_t lb_num, len, ptov;
1613 	int error_all, error;
1614 
1615 	error_all = 0;
1616 	/* unallocated space map */
1617 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1618 		partd = ump->partitions[phys_part];
1619 		if (partd == NULL)
1620 			continue;
1621 		parthdr = &partd->_impl_use.part_hdr;
1622 
1623 		ptov   = udf_rw32(partd->start_loc);
1624 		lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1625 		len    = udf_rw32(parthdr->unalloc_space_bitmap.len);
1626 		if (len == 0)
1627 			continue;
1628 
1629 		DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
1630 			lb_num + ptov));
1631 		dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
1632 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1633 				(union dscrptr *) dscr,
1634 				ptov + lb_num, lb_num);
1635 		if (error) {
1636 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1637 			error_all = error;
1638 		}
1639 	}
1640 
1641 	/* freed space map */
1642 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1643 		partd = ump->partitions[phys_part];
1644 		if (partd == NULL)
1645 			continue;
1646 		parthdr = &partd->_impl_use.part_hdr;
1647 
1648 		/* freed space map */
1649 		ptov   = udf_rw32(partd->start_loc);
1650 		lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
1651 		len    = udf_rw32(parthdr->freed_space_bitmap.len);
1652 		if (len == 0)
1653 			continue;
1654 
1655 		DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
1656 			lb_num + ptov));
1657 		dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
1658 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1659 				(union dscrptr *) dscr,
1660 				ptov + lb_num, lb_num);
1661 		if (error) {
1662 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1663 			error_all = error;
1664 		}
1665 	}
1666 
1667 	return error_all;
1668 }
1669 
1670 
1671 static int
1672 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
1673 {
1674 	struct udf_node	     *bitmap_node;
1675 	union dscrptr        *dscr;
1676 	struct udf_bitmap    *bitmap;
1677 	uint64_t inflen;
1678 	int error, dscr_type;
1679 
1680 	bitmap_node = ump->metadatabitmap_node;
1681 
1682 	/* only read in when metadata bitmap node is read in */
1683 	if (bitmap_node == NULL)
1684 		return 0;
1685 
1686 	if (bitmap_node->fe) {
1687 		inflen = udf_rw64(bitmap_node->fe->inf_len);
1688 	} else {
1689 		KASSERT(bitmap_node->efe);
1690 		inflen = udf_rw64(bitmap_node->efe->inf_len);
1691 	}
1692 
1693 	DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
1694 		"%"PRIu64" bytes\n", inflen));
1695 
1696 	/* allocate space for bitmap */
1697 	dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
1698 	if (!dscr)
1699 		return ENOMEM;
1700 
1701 	/* set vnode type to regular file or we can't read from it! */
1702 	bitmap_node->vnode->v_type = VREG;
1703 
1704 	/* read in complete metadata bitmap file */
1705 	error = vn_rdwr(UIO_READ, bitmap_node->vnode,
1706 			dscr,
1707 			inflen, 0,
1708 			UIO_SYSSPACE,
1709 			IO_SYNC | IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
1710 			NULL, NULL);
1711 	if (error) {
1712 		DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
1713 		goto errorout;
1714 	}
1715 
1716 	/* analyse */
1717 	dscr_type = udf_rw16(dscr->tag.id);
1718 	if (dscr_type == TAGID_SPACE_BITMAP) {
1719 		DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
1720 		ump->metadata_unalloc_dscr = &dscr->sbd;
1721 
1722 		/* fill in bitmap bits */
1723 		bitmap = &ump->metadata_unalloc_bits;
1724 		bitmap->blob  = (uint8_t *) dscr;
1725 		bitmap->bits  = dscr->sbd.data;
1726 		bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1727 		bitmap->pages = NULL;	/* TODO */
1728 		bitmap->data_pos     = 0;
1729 		bitmap->metadata_pos = 0;
1730 	} else {
1731 		DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
1732 		goto errorout;
1733 	}
1734 
1735 	return 0;
1736 
1737 errorout:
1738 	free(dscr, M_UDFVOLD);
1739 	printf( "UDF mount: error reading unallocated "
1740 		"space bitmap for metadata partition\n");
1741 	return EROFS;
1742 }
1743 
1744 
1745 int
1746 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
1747 {
1748 	struct udf_node	     *bitmap_node;
1749 	union dscrptr        *dscr;
1750 	uint64_t inflen, new_inflen;
1751 	int dummy, error;
1752 
1753 	bitmap_node = ump->metadatabitmap_node;
1754 
1755 	/* only write out when metadata bitmap node is known */
1756 	if (bitmap_node == NULL)
1757 		return 0;
1758 
1759 	if (bitmap_node->fe) {
1760 		inflen = udf_rw64(bitmap_node->fe->inf_len);
1761 	} else {
1762 		KASSERT(bitmap_node->efe);
1763 		inflen = udf_rw64(bitmap_node->efe->inf_len);
1764 	}
1765 
1766 	/* reduce length to zero */
1767 	dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
1768 	new_inflen = udf_tagsize(dscr, 1);
1769 
1770 	DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from "
1771 		"%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen));
1772 
1773 	error = udf_resize_node(bitmap_node, new_inflen, &dummy);
1774 	if (error)
1775 		printf("Error resizing metadata space bitmap\n");
1776 
1777 	error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
1778 			dscr,
1779 			new_inflen, 0,
1780 			UIO_SYSSPACE,
1781 			IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
1782 			NULL, NULL);
1783 
1784 	bitmap_node->i_flags |= IN_MODIFIED;
1785 	vflushbuf(bitmap_node->vnode, 1 /* sync */);
1786 
1787 	error = VOP_FSYNC(bitmap_node->vnode,
1788 			FSCRED, FSYNC_WAIT, 0, 0);
1789 
1790 	if (error)
1791 		printf( "Error writing out metadata partition unalloced "
1792 			"space bitmap!\n");
1793 
1794 	return error;
1795 }
1796 
1797 
1798 /* --------------------------------------------------------------------- */
1799 
1800 /*
1801  * Checks if ump's vds information is correct and complete
1802  */
1803 
1804 int
1805 udf_process_vds(struct udf_mount *ump) {
1806 	union udf_pmap *mapping;
1807 	/* struct udf_args *args = &ump->mount_args; */
1808 	struct logvol_int_desc *lvint;
1809 	struct udf_logvol_info *lvinfo;
1810 	struct part_desc *part;
1811 	uint32_t n_pm, mt_l;
1812 	uint8_t *pmap_pos;
1813 	char *domain_name, *map_name;
1814 	const char *check_name;
1815 	char bits[128];
1816 	int pmap_stype, pmap_size;
1817 	int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
1818 	int n_phys, n_virt, n_spar, n_meta;
1819 	int len, error;
1820 
1821 	if (ump == NULL)
1822 		return ENOENT;
1823 
1824 	/* we need at least an anchor (trivial, but for safety) */
1825 	if (ump->anchors[0] == NULL)
1826 		return EINVAL;
1827 
1828 	/* we need at least one primary and one logical volume descriptor */
1829 	if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
1830 		return EINVAL;
1831 
1832 	/* we need at least one partition descriptor */
1833 	if (ump->partitions[0] == NULL)
1834 		return EINVAL;
1835 
1836 	/* check logical volume sector size verses device sector size */
1837 	if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
1838 		printf("UDF mount: format violation, lb_size != sector size\n");
1839 		return EINVAL;
1840 	}
1841 
1842 	/* check domain name */
1843 	domain_name = ump->logical_vol->domain_id.id;
1844 	if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
1845 		printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
1846 		return EINVAL;
1847 	}
1848 
1849 	/* retrieve logical volume integrity sequence */
1850 	error = udf_retrieve_lvint(ump);
1851 
1852 	/*
1853 	 * We need at least one logvol integrity descriptor recorded.  Note
1854 	 * that its OK to have an open logical volume integrity here. The VAT
1855 	 * will close/update the integrity.
1856 	 */
1857 	if (ump->logvol_integrity == NULL)
1858 		return EINVAL;
1859 
1860 	/* process derived structures */
1861 	n_pm   = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
1862 	lvint  = ump->logvol_integrity;
1863 	lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1864 	ump->logvol_info = lvinfo;
1865 
1866 	/* TODO check udf versions? */
1867 
1868 	/*
1869 	 * check logvol mappings: effective virt->log partmap translation
1870 	 * check and recording of the mapping results. Saves expensive
1871 	 * strncmp() in tight places.
1872 	 */
1873 	DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1874 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
1875 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
1876 	pmap_pos =  ump->logical_vol->maps;
1877 
1878 	if (n_pm > UDF_PMAPS) {
1879 		printf("UDF mount: too many mappings\n");
1880 		return EINVAL;
1881 	}
1882 
1883 	/* count types and set partition numbers */
1884 	ump->data_part = ump->node_part = ump->fids_part = 0;
1885 	n_phys = n_virt = n_spar = n_meta = 0;
1886 	for (log_part = 0; log_part < n_pm; log_part++) {
1887 		mapping = (union udf_pmap *) pmap_pos;
1888 		pmap_stype = pmap_pos[0];
1889 		pmap_size  = pmap_pos[1];
1890 		switch (pmap_stype) {
1891 		case 1:	/* physical mapping */
1892 			/* volseq    = udf_rw16(mapping->pm1.vol_seq_num); */
1893 			raw_phys_part = udf_rw16(mapping->pm1.part_num);
1894 			pmap_type = UDF_VTOP_TYPE_PHYS;
1895 			n_phys++;
1896 			ump->data_part = log_part;
1897 			ump->node_part = log_part;
1898 			ump->fids_part = log_part;
1899 			break;
1900 		case 2: /* virtual/sparable/meta mapping */
1901 			map_name  = mapping->pm2.part_id.id;
1902 			/* volseq  = udf_rw16(mapping->pm2.vol_seq_num); */
1903 			raw_phys_part = udf_rw16(mapping->pm2.part_num);
1904 			pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1905 			len = UDF_REGID_ID_SIZE;
1906 
1907 			check_name = "*UDF Virtual Partition";
1908 			if (strncmp(map_name, check_name, len) == 0) {
1909 				pmap_type = UDF_VTOP_TYPE_VIRT;
1910 				n_virt++;
1911 				ump->node_part = log_part;
1912 				break;
1913 			}
1914 			check_name = "*UDF Sparable Partition";
1915 			if (strncmp(map_name, check_name, len) == 0) {
1916 				pmap_type = UDF_VTOP_TYPE_SPARABLE;
1917 				n_spar++;
1918 				ump->data_part = log_part;
1919 				ump->node_part = log_part;
1920 				ump->fids_part = log_part;
1921 				break;
1922 			}
1923 			check_name = "*UDF Metadata Partition";
1924 			if (strncmp(map_name, check_name, len) == 0) {
1925 				pmap_type = UDF_VTOP_TYPE_META;
1926 				n_meta++;
1927 				ump->node_part = log_part;
1928 				ump->fids_part = log_part;
1929 				break;
1930 			}
1931 			break;
1932 		default:
1933 			return EINVAL;
1934 		}
1935 
1936 		/*
1937 		 * BUGALERT: some rogue implementations use random physical
1938 		 * partion numbers to break other implementations so lookup
1939 		 * the number.
1940 		 */
1941 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1942 			part = ump->partitions[phys_part];
1943 			if (part == NULL)
1944 				continue;
1945 			if (udf_rw16(part->part_num) == raw_phys_part)
1946 				break;
1947 		}
1948 
1949 		DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
1950 		    raw_phys_part, phys_part, pmap_type));
1951 
1952 		if (phys_part == UDF_PARTITIONS)
1953 			return EINVAL;
1954 		if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1955 			return EINVAL;
1956 
1957 		ump->vtop   [log_part] = phys_part;
1958 		ump->vtop_tp[log_part] = pmap_type;
1959 
1960 		pmap_pos += pmap_size;
1961 	}
1962 	/* not winning the beauty contest */
1963 	ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1964 
1965 	/* test some basic UDF assertions/requirements */
1966 	if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
1967 		return EINVAL;
1968 
1969 	if (n_virt) {
1970 		if ((n_phys == 0) || n_spar || n_meta)
1971 			return EINVAL;
1972 	}
1973 	if (n_spar + n_phys == 0)
1974 		return EINVAL;
1975 
1976 	/* select allocation type for each logical partition */
1977 	for (log_part = 0; log_part < n_pm; log_part++) {
1978 		maps_on = ump->vtop[log_part];
1979 		switch (ump->vtop_tp[log_part]) {
1980 		case UDF_VTOP_TYPE_PHYS :
1981 			assert(maps_on == log_part);
1982 			ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
1983 			break;
1984 		case UDF_VTOP_TYPE_VIRT :
1985 			ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
1986 			ump->vtop_alloc[maps_on]  = UDF_ALLOC_SEQUENTIAL;
1987 			break;
1988 		case UDF_VTOP_TYPE_SPARABLE :
1989 			assert(maps_on == log_part);
1990 			ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
1991 			break;
1992 		case UDF_VTOP_TYPE_META :
1993 			ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
1994 			if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
1995 				/* special case for UDF 2.60 */
1996 				ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
1997 				ump->vtop_alloc[maps_on]  = UDF_ALLOC_SEQUENTIAL;
1998 			}
1999 			break;
2000 		default:
2001 			panic("bad alloction type in udf's ump->vtop\n");
2002 		}
2003 	}
2004 
2005 	/* determine logical volume open/closure actions */
2006 	if (n_virt) {
2007 		ump->lvopen  = 0;
2008 		if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
2009 			ump->lvopen |= UDF_OPEN_SESSION ;
2010 		ump->lvclose = UDF_WRITE_VAT;
2011 		if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
2012 			ump->lvclose |= UDF_CLOSE_SESSION;
2013 	} else {
2014 		/* `normal' rewritable or non sequential media */
2015 		ump->lvopen  = UDF_WRITE_LVINT;
2016 		ump->lvclose = UDF_WRITE_LVINT;
2017 		if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
2018 			ump->lvopen  |= UDF_APPENDONLY_LVINT;
2019 	}
2020 
2021 	/*
2022 	 * Determine sheduler error behaviour. For virtual partions, update
2023 	 * the trackinfo; for sparable partitions replace a whole block on the
2024 	 * sparable table. Allways requeue.
2025 	 */
2026 	ump->lvreadwrite = 0;
2027 	if (n_virt)
2028 		ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
2029 	if (n_spar)
2030 		ump->lvreadwrite = UDF_REMAP_BLOCK;
2031 
2032 	/*
2033 	 * Select our sheduler
2034 	 */
2035 	ump->strategy = &udf_strat_rmw;
2036 	if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2037 		ump->strategy = &udf_strat_sequential;
2038 	if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
2039 		(ump->discinfo.mmc_class == MMC_CLASS_UNKN))
2040 			ump->strategy = &udf_strat_direct;
2041 	if (n_spar)
2042 		ump->strategy = &udf_strat_rmw;
2043 
2044 #if 0
2045 	/* read-only access won't benefit from the other shedulers */
2046 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
2047 		ump->strategy = &udf_strat_direct;
2048 #endif
2049 
2050 	/* print results */
2051 	DPRINTF(VOLUMES, ("\tdata partition    %d\n", ump->data_part));
2052 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
2053 	DPRINTF(VOLUMES, ("\tnode partition    %d\n", ump->node_part));
2054 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
2055 	DPRINTF(VOLUMES, ("\tfids partition    %d\n", ump->fids_part));
2056 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
2057 
2058 	snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen);
2059 	DPRINTF(VOLUMES, ("\tactions on logvol open  %s\n", bits));
2060 	snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose);
2061 	DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
2062 	snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite);
2063 	DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
2064 
2065 	DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
2066 		(ump->strategy == &udf_strat_direct) ? "Direct" :
2067 		(ump->strategy == &udf_strat_sequential) ? "Sequential" :
2068 		(ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
2069 
2070 	/* signal its OK for now */
2071 	return 0;
2072 }
2073 
2074 /* --------------------------------------------------------------------- */
2075 
2076 /*
2077  * Update logical volume name in all structures that keep a record of it. We
2078  * use memmove since each of them might be specified as a source.
2079  *
2080  * Note that it doesn't update the VAT structure!
2081  */
2082 
2083 static void
2084 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
2085 {
2086 	struct logvol_desc     *lvd = NULL;
2087 	struct fileset_desc    *fsd = NULL;
2088 	struct udf_lv_info     *lvi = NULL;
2089 
2090 	DPRINTF(VOLUMES, ("Updating logical volume name\n"));
2091 	lvd = ump->logical_vol;
2092 	fsd = ump->fileset_desc;
2093 	if (ump->implementation)
2094 		lvi = &ump->implementation->_impl_use.lv_info;
2095 
2096 	/* logvol's id might be specified as origional so use memmove here */
2097 	memmove(lvd->logvol_id, logvol_id, 128);
2098 	if (fsd)
2099 		memmove(fsd->logvol_id, logvol_id, 128);
2100 	if (lvi)
2101 		memmove(lvi->logvol_id, logvol_id, 128);
2102 }
2103 
2104 /* --------------------------------------------------------------------- */
2105 
2106 void
2107 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
2108 	uint32_t sector)
2109 {
2110 	assert(ump->logical_vol);
2111 
2112 	tag->id 		= udf_rw16(tagid);
2113 	tag->descriptor_ver	= ump->logical_vol->tag.descriptor_ver;
2114 	tag->cksum		= 0;
2115 	tag->reserved		= 0;
2116 	tag->serial_num		= ump->logical_vol->tag.serial_num;
2117 	tag->tag_loc            = udf_rw32(sector);
2118 }
2119 
2120 
2121 uint64_t
2122 udf_advance_uniqueid(struct udf_mount *ump)
2123 {
2124 	uint64_t unique_id;
2125 
2126 	mutex_enter(&ump->logvol_mutex);
2127 	unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
2128 	if (unique_id < 0x10)
2129 		unique_id = 0x10;
2130 	ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
2131 	mutex_exit(&ump->logvol_mutex);
2132 
2133 	return unique_id;
2134 }
2135 
2136 
2137 static void
2138 udf_adjust_filecount(struct udf_node *udf_node, int sign)
2139 {
2140 	struct udf_mount *ump = udf_node->ump;
2141 	uint32_t num_dirs, num_files;
2142 	int udf_file_type;
2143 
2144 	/* get file type */
2145 	if (udf_node->fe) {
2146 		udf_file_type = udf_node->fe->icbtag.file_type;
2147 	} else {
2148 		udf_file_type = udf_node->efe->icbtag.file_type;
2149 	}
2150 
2151 	/* adjust file count */
2152 	mutex_enter(&ump->allocate_mutex);
2153 	if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
2154 		num_dirs = udf_rw32(ump->logvol_info->num_directories);
2155 		ump->logvol_info->num_directories =
2156 			udf_rw32((num_dirs + sign));
2157 	} else {
2158 		num_files = udf_rw32(ump->logvol_info->num_files);
2159 		ump->logvol_info->num_files =
2160 			udf_rw32((num_files + sign));
2161 	}
2162 	mutex_exit(&ump->allocate_mutex);
2163 }
2164 
2165 
2166 void
2167 udf_osta_charset(struct charspec *charspec)
2168 {
2169 	memset(charspec, 0, sizeof(struct charspec));
2170 	charspec->type = 0;
2171 	strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
2172 }
2173 
2174 
2175 /* first call udf_set_regid and then the suffix */
2176 void
2177 udf_set_regid(struct regid *regid, char const *name)
2178 {
2179 	memset(regid, 0, sizeof(struct regid));
2180 	regid->flags    = 0;		/* not dirty and not protected */
2181 	strcpy((char *) regid->id, name);
2182 }
2183 
2184 
2185 void
2186 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
2187 {
2188 	uint16_t *ver;
2189 
2190 	ver  = (uint16_t *) regid->id_suffix;
2191 	*ver = ump->logvol_info->min_udf_readver;
2192 }
2193 
2194 
2195 void
2196 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
2197 {
2198 	uint16_t *ver;
2199 
2200 	ver  = (uint16_t *) regid->id_suffix;
2201 	*ver = ump->logvol_info->min_udf_readver;
2202 
2203 	regid->id_suffix[2] = 4;	/* unix */
2204 	regid->id_suffix[3] = 8;	/* NetBSD */
2205 }
2206 
2207 
2208 void
2209 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
2210 {
2211 	regid->id_suffix[0] = 4;	/* unix */
2212 	regid->id_suffix[1] = 8;	/* NetBSD */
2213 }
2214 
2215 
2216 void
2217 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
2218 {
2219 	regid->id_suffix[0] = APP_VERSION_MAIN;
2220 	regid->id_suffix[1] = APP_VERSION_SUB;
2221 }
2222 
2223 static int
2224 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
2225 	struct long_ad *parent, uint64_t unique_id)
2226 {
2227 	/* the size of an empty FID is 38 but needs to be a multiple of 4 */
2228 	int fidsize = 40;
2229 
2230 	udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
2231 	fid->file_version_num = udf_rw16(1);	/* UDF 2.3.4.1 */
2232 	fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
2233 	fid->icb = *parent;
2234 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
2235 	fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH);
2236 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
2237 
2238 	return fidsize;
2239 }
2240 
2241 /* --------------------------------------------------------------------- */
2242 
2243 /*
2244  * Extended attribute support. UDF knows of 3 places for extended attributes:
2245  *
2246  * (a) inside the file's (e)fe in the length of the extended attribute area
2247  * before the allocation descriptors/filedata
2248  *
2249  * (b) in a file referenced by (e)fe->ext_attr_icb and
2250  *
2251  * (c) in the e(fe)'s associated stream directory that can hold various
2252  * sub-files. In the stream directory a few fixed named subfiles are reserved
2253  * for NT/Unix ACL's and OS/2 attributes.
2254  *
2255  * NOTE: Extended attributes are read randomly but allways written
2256  * *atomicaly*. For ACL's this interface is propably different but not known
2257  * to me yet.
2258  *
2259  * Order of extended attributes in a space :
2260  *   ECMA 167 EAs
2261  *   Non block aligned Implementation Use EAs
2262  *   Block aligned Implementation Use EAs
2263  *   Application Use EAs
2264  */
2265 
2266 static int
2267 udf_impl_extattr_check(struct impl_extattr_entry *implext)
2268 {
2269 	uint16_t   *spos;
2270 
2271 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2272 		/* checksum valid? */
2273 		DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
2274 		spos = (uint16_t *) implext->data;
2275 		if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
2276 			return EINVAL;
2277 	}
2278 	return 0;
2279 }
2280 
2281 static void
2282 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
2283 {
2284 	uint16_t   *spos;
2285 
2286 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2287 		/* set checksum */
2288 		spos = (uint16_t *) implext->data;
2289 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2290 	}
2291 }
2292 
2293 
2294 int
2295 udf_extattr_search_intern(struct udf_node *node,
2296 	uint32_t sattr, char const *sattrname,
2297 	uint32_t *offsetp, uint32_t *lengthp)
2298 {
2299 	struct extattrhdr_desc    *eahdr;
2300 	struct extattr_entry      *attrhdr;
2301 	struct impl_extattr_entry *implext;
2302 	uint32_t    offset, a_l, sector_size;
2303 	 int32_t    l_ea;
2304 	uint8_t    *pos;
2305 	int         error;
2306 
2307 	/* get mountpoint */
2308 	sector_size = node->ump->discinfo.sector_size;
2309 
2310 	/* get information from fe/efe */
2311 	if (node->fe) {
2312 		l_ea  = udf_rw32(node->fe->l_ea);
2313 		eahdr = (struct extattrhdr_desc *) node->fe->data;
2314 	} else {
2315 		assert(node->efe);
2316 		l_ea  = udf_rw32(node->efe->l_ea);
2317 		eahdr = (struct extattrhdr_desc *) node->efe->data;
2318 	}
2319 
2320 	/* something recorded here? */
2321 	if (l_ea == 0)
2322 		return ENOENT;
2323 
2324 	/* check extended attribute tag; what to do if it fails? */
2325 	error = udf_check_tag(eahdr);
2326 	if (error)
2327 		return EINVAL;
2328 	if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
2329 		return EINVAL;
2330 	error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
2331 	if (error)
2332 		return EINVAL;
2333 
2334 	DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
2335 
2336 	/* looking for Ecma-167 attributes? */
2337 	offset = sizeof(struct extattrhdr_desc);
2338 
2339 	/* looking for either implemenation use or application use */
2340 	if (sattr == 2048) {				/* [4/48.10.8] */
2341 		offset = udf_rw32(eahdr->impl_attr_loc);
2342 		if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2343 			return ENOENT;
2344 	}
2345 	if (sattr == 65536) {				/* [4/48.10.9] */
2346 		offset = udf_rw32(eahdr->appl_attr_loc);
2347 		if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
2348 			return ENOENT;
2349 	}
2350 
2351 	/* paranoia check offset and l_ea */
2352 	if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
2353 		return EINVAL;
2354 
2355 	DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
2356 
2357 	/* find our extended attribute  */
2358 	l_ea -= offset;
2359 	pos = (uint8_t *) eahdr + offset;
2360 
2361 	while (l_ea >= sizeof(struct extattr_entry)) {
2362 		DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
2363 		attrhdr = (struct extattr_entry *) pos;
2364 		implext = (struct impl_extattr_entry *) pos;
2365 
2366 		/* get complete attribute length and check for roque values */
2367 		a_l = udf_rw32(attrhdr->a_l);
2368 		DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
2369 				udf_rw32(attrhdr->type),
2370 				attrhdr->subtype, a_l, l_ea));
2371 		if ((a_l == 0) || (a_l > l_ea))
2372 			return EINVAL;
2373 
2374 		if (attrhdr->type != sattr)
2375 			goto next_attribute;
2376 
2377 		/* we might have found it! */
2378 		if (attrhdr->type < 2048) {	/* Ecma-167 attribute */
2379 			*offsetp = offset;
2380 			*lengthp = a_l;
2381 			return 0;		/* success */
2382 		}
2383 
2384 		/*
2385 		 * Implementation use and application use extended attributes
2386 		 * have a name to identify. They share the same structure only
2387 		 * UDF implementation use extended attributes have a checksum
2388 		 * we need to check
2389 		 */
2390 
2391 		DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
2392 		if (strcmp(implext->imp_id.id, sattrname) == 0) {
2393 			/* we have found our appl/implementation attribute */
2394 			*offsetp = offset;
2395 			*lengthp = a_l;
2396 			return 0;		/* success */
2397 		}
2398 
2399 next_attribute:
2400 		/* next attribute */
2401 		pos    += a_l;
2402 		l_ea   -= a_l;
2403 		offset += a_l;
2404 	}
2405 	/* not found */
2406 	return ENOENT;
2407 }
2408 
2409 
2410 static void
2411 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
2412 	struct extattr_entry *extattr)
2413 {
2414 	struct file_entry      *fe;
2415 	struct extfile_entry   *efe;
2416 	struct extattrhdr_desc *extattrhdr;
2417 	struct impl_extattr_entry *implext;
2418 	uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
2419 	uint32_t *l_eap, l_ad;
2420 	uint16_t *spos;
2421 	uint8_t *bpos, *data;
2422 
2423 	if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
2424 		fe    = &dscr->fe;
2425 		data  = fe->data;
2426 		l_eap = &fe->l_ea;
2427 		l_ad  = udf_rw32(fe->l_ad);
2428 	} else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
2429 		efe   = &dscr->efe;
2430 		data  = efe->data;
2431 		l_eap = &efe->l_ea;
2432 		l_ad  = udf_rw32(efe->l_ad);
2433 	} else {
2434 		panic("Bad tag passed to udf_extattr_insert_internal");
2435 	}
2436 
2437 	/* can't append already written to file descriptors yet */
2438 	assert(l_ad == 0);
2439 
2440 	/* should have a header! */
2441 	extattrhdr = (struct extattrhdr_desc *) data;
2442 	l_ea = udf_rw32(*l_eap);
2443 	if (l_ea == 0) {
2444 		/* create empty extended attribute header */
2445 		exthdr_len = sizeof(struct extattrhdr_desc);
2446 
2447 		udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
2448 			/* loc */ 0);
2449 		extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
2450 		extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
2451 		extattrhdr->tag.desc_crc_len = udf_rw16(8);
2452 
2453 		/* record extended attribute header length */
2454 		l_ea = exthdr_len;
2455 		*l_eap = udf_rw32(l_ea);
2456 	}
2457 
2458 	/* extract locations */
2459 	impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
2460 	appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
2461 	if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2462 		impl_attr_loc = l_ea;
2463 	if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2464 		appl_attr_loc = l_ea;
2465 
2466 	/* Ecma 167 EAs */
2467 	if (udf_rw32(extattr->type) < 2048) {
2468 		assert(impl_attr_loc == l_ea);
2469 		assert(appl_attr_loc == l_ea);
2470 	}
2471 
2472 	/* implementation use extended attributes */
2473 	if (udf_rw32(extattr->type) == 2048) {
2474 		assert(appl_attr_loc == l_ea);
2475 
2476 		/* calculate and write extended attribute header checksum */
2477 		implext = (struct impl_extattr_entry *) extattr;
2478 		assert(udf_rw32(implext->iu_l) == 4);	/* [UDF 3.3.4.5] */
2479 		spos = (uint16_t *) implext->data;
2480 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2481 	}
2482 
2483 	/* application use extended attributes */
2484 	assert(udf_rw32(extattr->type) != 65536);
2485 	assert(appl_attr_loc == l_ea);
2486 
2487 	/* append the attribute at the end of the current space */
2488 	bpos = data + udf_rw32(*l_eap);
2489 	a_l  = udf_rw32(extattr->a_l);
2490 
2491 	/* update impl. attribute locations */
2492 	if (udf_rw32(extattr->type) < 2048) {
2493 		impl_attr_loc = l_ea + a_l;
2494 		appl_attr_loc = l_ea + a_l;
2495 	}
2496 	if (udf_rw32(extattr->type) == 2048) {
2497 		appl_attr_loc = l_ea + a_l;
2498 	}
2499 
2500 	/* copy and advance */
2501 	memcpy(bpos, extattr, a_l);
2502 	l_ea += a_l;
2503 	*l_eap = udf_rw32(l_ea);
2504 
2505 	/* do the `dance` again backwards */
2506 	if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
2507 		if (impl_attr_loc == l_ea)
2508 			impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
2509 		if (appl_attr_loc == l_ea)
2510 			appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
2511 	}
2512 
2513 	/* store offsets */
2514 	extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
2515 	extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
2516 }
2517 
2518 
2519 /* --------------------------------------------------------------------- */
2520 
2521 static int
2522 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
2523 {
2524 	struct udf_mount       *ump;
2525 	struct udf_logvol_info *lvinfo;
2526 	struct impl_extattr_entry     *implext;
2527 	struct vatlvext_extattr_entry  lvext;
2528 	const char *extstr = "*UDF VAT LVExtension";
2529 	uint64_t    vat_uniqueid;
2530 	uint32_t    offset, a_l;
2531 	uint8_t    *ea_start, *lvextpos;
2532 	int         error;
2533 
2534 	/* get mountpoint and lvinfo */
2535 	ump    = vat_node->ump;
2536 	lvinfo = ump->logvol_info;
2537 
2538 	/* get information from fe/efe */
2539 	if (vat_node->fe) {
2540 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2541 		ea_start     = vat_node->fe->data;
2542 	} else {
2543 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2544 		ea_start     = vat_node->efe->data;
2545 	}
2546 
2547 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2548 	if (error)
2549 		return error;
2550 
2551 	implext = (struct impl_extattr_entry *) (ea_start + offset);
2552 	error = udf_impl_extattr_check(implext);
2553 	if (error)
2554 		return error;
2555 
2556 	/* paranoia */
2557 	if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
2558 		DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
2559 		return EINVAL;
2560 	}
2561 
2562 	/*
2563 	 * we have found our "VAT LVExtension attribute. BUT due to a
2564 	 * bug in the specification it might not be word aligned so
2565 	 * copy first to avoid panics on some machines (!!)
2566 	 */
2567 	DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
2568 	lvextpos = implext->data + udf_rw32(implext->iu_l);
2569 	memcpy(&lvext, lvextpos, sizeof(lvext));
2570 
2571 	/* check if it was updated the last time */
2572 	if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
2573 		lvinfo->num_files       = lvext.num_files;
2574 		lvinfo->num_directories = lvext.num_directories;
2575 		udf_update_logvolname(ump, lvext.logvol_id);
2576 	} else {
2577 		DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
2578 		/* replace VAT LVExt by free space EA */
2579 		memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
2580 		strcpy(implext->imp_id.id, "*UDF FreeEASpace");
2581 		udf_calc_impl_extattr_checksum(implext);
2582 	}
2583 
2584 	return 0;
2585 }
2586 
2587 
2588 static int
2589 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
2590 {
2591 	struct udf_mount       *ump;
2592 	struct udf_logvol_info *lvinfo;
2593 	struct impl_extattr_entry     *implext;
2594 	struct vatlvext_extattr_entry  lvext;
2595 	const char *extstr = "*UDF VAT LVExtension";
2596 	uint64_t    vat_uniqueid;
2597 	uint32_t    offset, a_l;
2598 	uint8_t    *ea_start, *lvextpos;
2599 	int         error;
2600 
2601 	/* get mountpoint and lvinfo */
2602 	ump    = vat_node->ump;
2603 	lvinfo = ump->logvol_info;
2604 
2605 	/* get information from fe/efe */
2606 	if (vat_node->fe) {
2607 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2608 		ea_start     = vat_node->fe->data;
2609 	} else {
2610 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2611 		ea_start     = vat_node->efe->data;
2612 	}
2613 
2614 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2615 	if (error)
2616 		return error;
2617 	/* found, it existed */
2618 
2619 	/* paranoia */
2620 	implext = (struct impl_extattr_entry *) (ea_start + offset);
2621 	error = udf_impl_extattr_check(implext);
2622 	if (error) {
2623 		DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
2624 		return error;
2625 	}
2626 	/* it is correct */
2627 
2628 	/*
2629 	 * we have found our "VAT LVExtension attribute. BUT due to a
2630 	 * bug in the specification it might not be word aligned so
2631 	 * copy first to avoid panics on some machines (!!)
2632 	 */
2633 	DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
2634 	lvextpos = implext->data + udf_rw32(implext->iu_l);
2635 
2636 	lvext.unique_id_chk   = vat_uniqueid;
2637 	lvext.num_files       = lvinfo->num_files;
2638 	lvext.num_directories = lvinfo->num_directories;
2639 	memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
2640 
2641 	memcpy(lvextpos, &lvext, sizeof(lvext));
2642 
2643 	return 0;
2644 }
2645 
2646 /* --------------------------------------------------------------------- */
2647 
2648 int
2649 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2650 {
2651 	struct udf_mount *ump = vat_node->ump;
2652 
2653 	if (offset + size > ump->vat_offset + ump->vat_entries * 4)
2654 		return EINVAL;
2655 
2656 	memcpy(blob, ump->vat_table + offset, size);
2657 	return 0;
2658 }
2659 
2660 int
2661 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2662 {
2663 	struct udf_mount *ump = vat_node->ump;
2664 	uint32_t offset_high;
2665 	uint8_t *new_vat_table;
2666 
2667 	/* extent VAT allocation if needed */
2668 	offset_high = offset + size;
2669 	if (offset_high >= ump->vat_table_alloc_len) {
2670 		/* realloc */
2671 		new_vat_table = realloc(ump->vat_table,
2672 			ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
2673 			M_UDFVOLD, M_WAITOK | M_CANFAIL);
2674 		if (!new_vat_table) {
2675 			printf("udf_vat_write: can't extent VAT, out of mem\n");
2676 			return ENOMEM;
2677 		}
2678 		ump->vat_table = new_vat_table;
2679 		ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
2680 	}
2681 	ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
2682 
2683 	memcpy(ump->vat_table + offset, blob, size);
2684 	return 0;
2685 }
2686 
2687 /* --------------------------------------------------------------------- */
2688 
2689 /* TODO support previous VAT location writeout */
2690 static int
2691 udf_update_vat_descriptor(struct udf_mount *ump)
2692 {
2693 	struct udf_node *vat_node = ump->vat_node;
2694 	struct udf_logvol_info *lvinfo = ump->logvol_info;
2695 	struct icb_tag *icbtag;
2696 	struct udf_oldvat_tail *oldvat_tl;
2697 	struct udf_vat *vat;
2698 	uint64_t unique_id;
2699 	uint32_t lb_size;
2700 	uint8_t *raw_vat;
2701 	int filetype, error;
2702 
2703 	KASSERT(vat_node);
2704 	KASSERT(lvinfo);
2705 	lb_size = udf_rw32(ump->logical_vol->lb_size);
2706 
2707 	/* get our new unique_id */
2708 	unique_id = udf_advance_uniqueid(ump);
2709 
2710 	/* get information from fe/efe */
2711 	if (vat_node->fe) {
2712 		icbtag    = &vat_node->fe->icbtag;
2713 		vat_node->fe->unique_id = udf_rw64(unique_id);
2714 	} else {
2715 		icbtag = &vat_node->efe->icbtag;
2716 		vat_node->efe->unique_id = udf_rw64(unique_id);
2717 	}
2718 
2719 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2720 	filetype = icbtag->file_type;
2721 	KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
2722 
2723 	/* allocate piece to process head or tail of VAT file */
2724 	raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
2725 
2726 	if (filetype == 0) {
2727 		/*
2728 		 * Update "*UDF VAT LVExtension" extended attribute from the
2729 		 * lvint if present.
2730 		 */
2731 		udf_update_vat_extattr_from_lvid(vat_node);
2732 
2733 		/* setup identifying regid */
2734 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2735 		memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
2736 
2737 		udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
2738 		udf_add_udf_regid(ump, &oldvat_tl->id);
2739 		oldvat_tl->prev_vat = udf_rw32(0xffffffff);
2740 
2741 		/* write out new tail of virtual allocation table file */
2742 		error = udf_vat_write(vat_node, raw_vat,
2743 			sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
2744 	} else {
2745 		/* compose the VAT2 header */
2746 		vat = (struct udf_vat *) raw_vat;
2747 		memset(vat, 0, sizeof(struct udf_vat));
2748 
2749 		vat->header_len       = udf_rw16(152);	/* as per spec */
2750 		vat->impl_use_len     = udf_rw16(0);
2751 		memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
2752 		vat->prev_vat         = udf_rw32(0xffffffff);
2753 		vat->num_files        = lvinfo->num_files;
2754 		vat->num_directories  = lvinfo->num_directories;
2755 		vat->min_udf_readver  = lvinfo->min_udf_readver;
2756 		vat->min_udf_writever = lvinfo->min_udf_writever;
2757 		vat->max_udf_writever = lvinfo->max_udf_writever;
2758 
2759 		error = udf_vat_write(vat_node, raw_vat,
2760 			sizeof(struct udf_vat), 0);
2761 	}
2762 	free(raw_vat, M_TEMP);
2763 
2764 	return error;	/* success! */
2765 }
2766 
2767 
2768 int
2769 udf_writeout_vat(struct udf_mount *ump)
2770 {
2771 	struct udf_node *vat_node = ump->vat_node;
2772 	uint32_t vat_length;
2773 	int error;
2774 
2775 	KASSERT(vat_node);
2776 
2777 	DPRINTF(CALL, ("udf_writeout_vat\n"));
2778 
2779 	mutex_enter(&ump->allocate_mutex);
2780 	udf_update_vat_descriptor(ump);
2781 
2782 	/* write out the VAT contents ; TODO intelligent writing */
2783 	vat_length = ump->vat_table_len;
2784 	error = vn_rdwr(UIO_WRITE, vat_node->vnode,
2785 		ump->vat_table, ump->vat_table_len, 0,
2786 		UIO_SYSSPACE, IO_NODELOCKED, FSCRED, NULL, NULL);
2787 	if (error) {
2788 		printf("udf_writeout_vat: failed to write out VAT contents\n");
2789 		goto out;
2790 	}
2791 
2792 	mutex_exit(&ump->allocate_mutex);
2793 
2794 	vflushbuf(ump->vat_node->vnode, 1 /* sync */);
2795 	error = VOP_FSYNC(ump->vat_node->vnode,
2796 			FSCRED, FSYNC_WAIT, 0, 0);
2797 	if (error)
2798 		printf("udf_writeout_vat: error writing VAT node!\n");
2799 out:
2800 
2801 	return error;
2802 }
2803 
2804 /* --------------------------------------------------------------------- */
2805 
2806 /*
2807  * Read in relevant pieces of VAT file and check if its indeed a VAT file
2808  * descriptor. If OK, read in complete VAT file.
2809  */
2810 
2811 static int
2812 udf_check_for_vat(struct udf_node *vat_node)
2813 {
2814 	struct udf_mount *ump;
2815 	struct icb_tag   *icbtag;
2816 	struct timestamp *mtime;
2817 	struct udf_vat   *vat;
2818 	struct udf_oldvat_tail *oldvat_tl;
2819 	struct udf_logvol_info *lvinfo;
2820 	uint64_t  unique_id;
2821 	uint32_t  vat_length;
2822 	uint32_t  vat_offset, vat_entries, vat_table_alloc_len;
2823 	uint32_t  sector_size;
2824 	uint32_t *raw_vat;
2825 	uint8_t  *vat_table;
2826 	char     *regid_name;
2827 	int filetype;
2828 	int error;
2829 
2830 	/* vat_length is really 64 bits though impossible */
2831 
2832 	DPRINTF(VOLUMES, ("Checking for VAT\n"));
2833 	if (!vat_node)
2834 		return ENOENT;
2835 
2836 	/* get mount info */
2837 	ump = vat_node->ump;
2838 	sector_size = udf_rw32(ump->logical_vol->lb_size);
2839 
2840 	/* check assertions */
2841 	assert(vat_node->fe || vat_node->efe);
2842 	assert(ump->logvol_integrity);
2843 
2844 	/* set vnode type to regular file or we can't read from it! */
2845 	vat_node->vnode->v_type = VREG;
2846 
2847 	/* get information from fe/efe */
2848 	if (vat_node->fe) {
2849 		vat_length = udf_rw64(vat_node->fe->inf_len);
2850 		icbtag    = &vat_node->fe->icbtag;
2851 		mtime     = &vat_node->fe->mtime;
2852 		unique_id = udf_rw64(vat_node->fe->unique_id);
2853 	} else {
2854 		vat_length = udf_rw64(vat_node->efe->inf_len);
2855 		icbtag = &vat_node->efe->icbtag;
2856 		mtime  = &vat_node->efe->mtime;
2857 		unique_id = udf_rw64(vat_node->efe->unique_id);
2858 	}
2859 
2860 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2861 	filetype = icbtag->file_type;
2862 	if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
2863 		return ENOENT;
2864 
2865 	DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
2866 
2867 	vat_table_alloc_len =
2868 		((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
2869 			* UDF_VAT_CHUNKSIZE;
2870 
2871 	vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
2872 		M_CANFAIL | M_WAITOK);
2873 	if (vat_table == NULL) {
2874 		printf("allocation of %d bytes failed for VAT\n",
2875 			vat_table_alloc_len);
2876 		return ENOMEM;
2877 	}
2878 
2879 	/* allocate piece to read in head or tail of VAT file */
2880 	raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
2881 
2882 	/*
2883 	 * check contents of the file if its the old 1.50 VAT table format.
2884 	 * Its notoriously broken and allthough some implementations support an
2885 	 * extention as defined in the UDF 1.50 errata document, its doubtfull
2886 	 * to be useable since a lot of implementations don't maintain it.
2887 	 */
2888 	lvinfo = ump->logvol_info;
2889 
2890 	if (filetype == 0) {
2891 		/* definition */
2892 		vat_offset  = 0;
2893 		vat_entries = (vat_length-36)/4;
2894 
2895 		/* read in tail of virtual allocation table file */
2896 		error = vn_rdwr(UIO_READ, vat_node->vnode,
2897 				(uint8_t *) raw_vat,
2898 				sizeof(struct udf_oldvat_tail),
2899 				vat_entries * 4,
2900 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2901 				NULL, NULL);
2902 		if (error)
2903 			goto out;
2904 
2905 		/* check 1.50 VAT */
2906 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2907 		regid_name = (char *) oldvat_tl->id.id;
2908 		error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
2909 		if (error) {
2910 			DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
2911 			error = ENOENT;
2912 			goto out;
2913 		}
2914 
2915 		/*
2916 		 * update LVID from "*UDF VAT LVExtension" extended attribute
2917 		 * if present.
2918 		 */
2919 		udf_update_lvid_from_vat_extattr(vat_node);
2920 	} else {
2921 		/* read in head of virtual allocation table file */
2922 		error = vn_rdwr(UIO_READ, vat_node->vnode,
2923 				(uint8_t *) raw_vat,
2924 				sizeof(struct udf_vat), 0,
2925 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2926 				NULL, NULL);
2927 		if (error)
2928 			goto out;
2929 
2930 		/* definition */
2931 		vat = (struct udf_vat *) raw_vat;
2932 		vat_offset  = vat->header_len;
2933 		vat_entries = (vat_length - vat_offset)/4;
2934 
2935 		assert(lvinfo);
2936 		lvinfo->num_files        = vat->num_files;
2937 		lvinfo->num_directories  = vat->num_directories;
2938 		lvinfo->min_udf_readver  = vat->min_udf_readver;
2939 		lvinfo->min_udf_writever = vat->min_udf_writever;
2940 		lvinfo->max_udf_writever = vat->max_udf_writever;
2941 
2942 		udf_update_logvolname(ump, vat->logvol_id);
2943 	}
2944 
2945 	/* read in complete VAT file */
2946 	error = vn_rdwr(UIO_READ, vat_node->vnode,
2947 			vat_table,
2948 			vat_length, 0,
2949 			UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2950 			NULL, NULL);
2951 	if (error)
2952 		printf("read in of complete VAT file failed (error %d)\n",
2953 			error);
2954 	if (error)
2955 		goto out;
2956 
2957 	DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
2958 	ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id);
2959 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
2960 	ump->logvol_integrity->time           = *mtime;
2961 
2962 	ump->vat_table_len = vat_length;
2963 	ump->vat_table_alloc_len = vat_table_alloc_len;
2964 	ump->vat_table   = vat_table;
2965 	ump->vat_offset  = vat_offset;
2966 	ump->vat_entries = vat_entries;
2967 	ump->vat_last_free_lb = 0;		/* start at beginning */
2968 
2969 out:
2970 	if (error) {
2971 		if (vat_table)
2972 			free(vat_table, M_UDFVOLD);
2973 	}
2974 	free(raw_vat, M_TEMP);
2975 
2976 	return error;
2977 }
2978 
2979 /* --------------------------------------------------------------------- */
2980 
2981 static int
2982 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
2983 {
2984 	struct udf_node *vat_node;
2985 	struct long_ad	 icb_loc;
2986 	uint32_t early_vat_loc, late_vat_loc, vat_loc;
2987 	int error;
2988 
2989 	/* mapping info not needed */
2990 	mapping = mapping;
2991 
2992 	vat_loc = ump->last_possible_vat_location;
2993 	early_vat_loc = vat_loc - 256;	/* 8 blocks of 32 sectors */
2994 
2995 	DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n",
2996 		vat_loc, early_vat_loc));
2997 	early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
2998 	late_vat_loc  = vat_loc + 1024;
2999 
3000 	DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n",
3001 		vat_loc, early_vat_loc));
3002 
3003 	/* start looking from the end of the range */
3004 	do {
3005 		DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
3006 		icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
3007 		icb_loc.loc.lb_num   = udf_rw32(vat_loc);
3008 
3009 		error = udf_get_node(ump, &icb_loc, &vat_node);
3010 		if (!error) {
3011 			error = udf_check_for_vat(vat_node);
3012 			DPRINTFIF(VOLUMES, !error,
3013 				("VAT accepted at %d\n", vat_loc));
3014 			if (!error)
3015 				break;
3016 		}
3017 		if (vat_node) {
3018 			vput(vat_node->vnode);
3019 			vat_node = NULL;
3020 		}
3021 		vat_loc--;	/* walk backwards */
3022 	} while (vat_loc >= early_vat_loc);
3023 
3024 	/* keep our VAT node around */
3025 	if (vat_node) {
3026 		UDF_SET_SYSTEMFILE(vat_node->vnode);
3027 		ump->vat_node = vat_node;
3028 	}
3029 
3030 	return error;
3031 }
3032 
3033 /* --------------------------------------------------------------------- */
3034 
3035 static int
3036 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
3037 {
3038 	union dscrptr *dscr;
3039 	struct part_map_spare *pms = &mapping->pms;
3040 	uint32_t lb_num;
3041 	int spar, error;
3042 
3043 	/*
3044 	 * The partition mapping passed on to us specifies the information we
3045 	 * need to locate and initialise the sparable partition mapping
3046 	 * information we need.
3047 	 */
3048 
3049 	DPRINTF(VOLUMES, ("Read sparable table\n"));
3050 	ump->sparable_packet_size = udf_rw16(pms->packet_len);
3051 	KASSERT(ump->sparable_packet_size >= ump->packet_size);	/* XXX */
3052 
3053 	for (spar = 0; spar < pms->n_st; spar++) {
3054 		lb_num = pms->st_loc[spar];
3055 		DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
3056 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3057 		if (!error && dscr) {
3058 			if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
3059 				if (ump->sparing_table)
3060 					free(ump->sparing_table, M_UDFVOLD);
3061 				ump->sparing_table = &dscr->spt;
3062 				dscr = NULL;
3063 				DPRINTF(VOLUMES,
3064 				    ("Sparing table accepted (%d entries)\n",
3065 				     udf_rw16(ump->sparing_table->rt_l)));
3066 				break;	/* we're done */
3067 			}
3068 		}
3069 		if (dscr)
3070 			free(dscr, M_UDFVOLD);
3071 	}
3072 
3073 	if (ump->sparing_table)
3074 		return 0;
3075 
3076 	return ENOENT;
3077 }
3078 
3079 /* --------------------------------------------------------------------- */
3080 
3081 static int
3082 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
3083 {
3084 	struct part_map_meta *pmm = &mapping->pmm;
3085 	struct long_ad	 icb_loc;
3086 	struct vnode *vp;
3087 	int error;
3088 
3089 	DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
3090 	icb_loc.loc.part_num = pmm->part_num;
3091 	icb_loc.loc.lb_num   = pmm->meta_file_lbn;
3092 	DPRINTF(VOLUMES, ("Metadata file\n"));
3093 	error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
3094 	if (ump->metadata_node) {
3095 		vp = ump->metadata_node->vnode;
3096 		UDF_SET_SYSTEMFILE(vp);
3097 	}
3098 
3099 	icb_loc.loc.lb_num   = pmm->meta_mirror_file_lbn;
3100 	if (icb_loc.loc.lb_num != -1) {
3101 		DPRINTF(VOLUMES, ("Metadata copy file\n"));
3102 		error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
3103 		if (ump->metadatamirror_node) {
3104 			vp = ump->metadatamirror_node->vnode;
3105 			UDF_SET_SYSTEMFILE(vp);
3106 		}
3107 	}
3108 
3109 	icb_loc.loc.lb_num   = pmm->meta_bitmap_file_lbn;
3110 	if (icb_loc.loc.lb_num != -1) {
3111 		DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
3112 		error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
3113 		if (ump->metadatabitmap_node) {
3114 			vp = ump->metadatabitmap_node->vnode;
3115 			UDF_SET_SYSTEMFILE(vp);
3116 		}
3117 	}
3118 
3119 	/* if we're mounting read-only we relax the requirements */
3120 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
3121 		error = EFAULT;
3122 		if (ump->metadata_node)
3123 			error = 0;
3124 		if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
3125 			printf( "udf mount: Metadata file not readable, "
3126 				"substituting Metadata copy file\n");
3127 			ump->metadata_node = ump->metadatamirror_node;
3128 			ump->metadatamirror_node = NULL;
3129 			error = 0;
3130 		}
3131 	} else {
3132 		/* mounting read/write */
3133 		/* XXX DISABLED! metadata writing is not working yet XXX */
3134 		if (error)
3135 			error = EROFS;
3136 	}
3137 	DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
3138 				   "metadata files\n"));
3139 	return error;
3140 }
3141 
3142 /* --------------------------------------------------------------------- */
3143 
3144 int
3145 udf_read_vds_tables(struct udf_mount *ump)
3146 {
3147 	union udf_pmap *mapping;
3148 	/* struct udf_args *args = &ump->mount_args; */
3149 	uint32_t n_pm, mt_l;
3150 	uint32_t log_part;
3151 	uint8_t *pmap_pos;
3152 	int pmap_size;
3153 	int error;
3154 
3155 	/* Iterate (again) over the part mappings for locations   */
3156 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
3157 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
3158 	pmap_pos =  ump->logical_vol->maps;
3159 
3160 	for (log_part = 0; log_part < n_pm; log_part++) {
3161 		mapping = (union udf_pmap *) pmap_pos;
3162 		switch (ump->vtop_tp[log_part]) {
3163 		case UDF_VTOP_TYPE_PHYS :
3164 			/* nothing */
3165 			break;
3166 		case UDF_VTOP_TYPE_VIRT :
3167 			/* search and load VAT */
3168 			error = udf_search_vat(ump, mapping);
3169 			if (error)
3170 				return ENOENT;
3171 			break;
3172 		case UDF_VTOP_TYPE_SPARABLE :
3173 			/* load one of the sparable tables */
3174 			error = udf_read_sparables(ump, mapping);
3175 			if (error)
3176 				return ENOENT;
3177 			break;
3178 		case UDF_VTOP_TYPE_META :
3179 			/* load the associated file descriptors */
3180 			error = udf_read_metadata_nodes(ump, mapping);
3181 			if (error)
3182 				return ENOENT;
3183 			break;
3184 		default:
3185 			break;
3186 		}
3187 		pmap_size  = pmap_pos[1];
3188 		pmap_pos  += pmap_size;
3189 	}
3190 
3191 	/* read in and check unallocated and free space info if writing */
3192 	if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
3193 		error = udf_read_physical_partition_spacetables(ump);
3194 		if (error)
3195 			return error;
3196 
3197 		/* also read in metadata partion spacebitmap if defined */
3198 		error = udf_read_metadata_partition_spacetable(ump);
3199 			return error;
3200 	}
3201 
3202 	return 0;
3203 }
3204 
3205 /* --------------------------------------------------------------------- */
3206 
3207 int
3208 udf_read_rootdirs(struct udf_mount *ump)
3209 {
3210 	union dscrptr *dscr;
3211 	/* struct udf_args *args = &ump->mount_args; */
3212 	struct udf_node *rootdir_node, *streamdir_node;
3213 	struct long_ad  fsd_loc, *dir_loc;
3214 	uint32_t lb_num, dummy;
3215 	uint32_t fsd_len;
3216 	int dscr_type;
3217 	int error;
3218 
3219 	/* TODO implement FSD reading in separate function like integrity? */
3220 	/* get fileset descriptor sequence */
3221 	fsd_loc = ump->logical_vol->lv_fsd_loc;
3222 	fsd_len = udf_rw32(fsd_loc.len);
3223 
3224 	dscr  = NULL;
3225 	error = 0;
3226 	while (fsd_len || error) {
3227 		DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
3228 		/* translate fsd_loc to lb_num */
3229 		error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
3230 		if (error)
3231 			break;
3232 		DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
3233 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3234 		/* end markers */
3235 		if (error || (dscr == NULL))
3236 			break;
3237 
3238 		/* analyse */
3239 		dscr_type = udf_rw16(dscr->tag.id);
3240 		if (dscr_type == TAGID_TERM)
3241 			break;
3242 		if (dscr_type != TAGID_FSD) {
3243 			free(dscr, M_UDFVOLD);
3244 			return ENOENT;
3245 		}
3246 
3247 		/*
3248 		 * TODO check for multiple fileset descriptors; its only
3249 		 * picking the last now. Also check for FSD
3250 		 * correctness/interpretability
3251 		 */
3252 
3253 		/* update */
3254 		if (ump->fileset_desc) {
3255 			free(ump->fileset_desc, M_UDFVOLD);
3256 		}
3257 		ump->fileset_desc = &dscr->fsd;
3258 		dscr = NULL;
3259 
3260 		/* continue to the next fsd */
3261 		fsd_len -= ump->discinfo.sector_size;
3262 		fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
3263 
3264 		/* follow up to fsd->next_ex (long_ad) if its not null */
3265 		if (udf_rw32(ump->fileset_desc->next_ex.len)) {
3266 			DPRINTF(VOLUMES, ("follow up FSD extent\n"));
3267 			fsd_loc = ump->fileset_desc->next_ex;
3268 			fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
3269 		}
3270 	}
3271 	if (dscr)
3272 		free(dscr, M_UDFVOLD);
3273 
3274 	/* there has to be one */
3275 	if (ump->fileset_desc == NULL)
3276 		return ENOENT;
3277 
3278 	DPRINTF(VOLUMES, ("FSD read in fine\n"));
3279 	DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
3280 	udf_update_logvolname(ump, ump->logical_vol->logvol_id);
3281 
3282 	/*
3283 	 * Now the FSD is known, read in the rootdirectory and if one exists,
3284 	 * the system stream dir. Some files in the system streamdir are not
3285 	 * wanted in this implementation since they are not maintained. If
3286 	 * writing is enabled we'll delete these files if they exist.
3287 	 */
3288 
3289 	rootdir_node = streamdir_node = NULL;
3290 	dir_loc = NULL;
3291 
3292 	/* try to read in the rootdir */
3293 	dir_loc = &ump->fileset_desc->rootdir_icb;
3294 	error = udf_get_node(ump, dir_loc, &rootdir_node);
3295 	if (error)
3296 		return ENOENT;
3297 
3298 	/* aparently it read in fine */
3299 
3300 	/*
3301 	 * Try the system stream directory; not very likely in the ones we
3302 	 * test, but for completeness.
3303 	 */
3304 	dir_loc = &ump->fileset_desc->streamdir_icb;
3305 	if (udf_rw32(dir_loc->len)) {
3306 		printf("udf_read_rootdirs: streamdir defined ");
3307 		error = udf_get_node(ump, dir_loc, &streamdir_node);
3308 		if (error) {
3309 			printf("but error in streamdir reading\n");
3310 		} else {
3311 			printf("but ignored\n");
3312 			/*
3313 			 * TODO process streamdir `baddies' i.e. files we dont
3314 			 * want if R/W
3315 			 */
3316 		}
3317 	}
3318 
3319 	DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
3320 
3321 	/* release the vnodes again; they'll be auto-recycled later */
3322 	if (streamdir_node) {
3323 		vput(streamdir_node->vnode);
3324 	}
3325 	if (rootdir_node) {
3326 		vput(rootdir_node->vnode);
3327 	}
3328 
3329 	return 0;
3330 }
3331 
3332 /* --------------------------------------------------------------------- */
3333 
3334 /* To make absolutely sure we are NOT returning zero, add one :) */
3335 
3336 long
3337 udf_calchash(struct long_ad *icbptr)
3338 {
3339 	/* ought to be enough since each mountpoint has its own chain */
3340 	return udf_rw32(icbptr->loc.lb_num) + 1;
3341 }
3342 
3343 
3344 static struct udf_node *
3345 udf_hash_lookup(struct udf_mount *ump, struct long_ad *icbptr)
3346 {
3347 	struct udf_node *node;
3348 	struct vnode *vp;
3349 	uint32_t hashline;
3350 
3351 loop:
3352 	mutex_enter(&ump->ihash_lock);
3353 
3354 	hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
3355 	LIST_FOREACH(node, &ump->udf_nodes[hashline], hashchain) {
3356 		assert(node);
3357 		if (node->loc.loc.lb_num   == icbptr->loc.lb_num &&
3358 		    node->loc.loc.part_num == icbptr->loc.part_num) {
3359 			vp = node->vnode;
3360 			assert(vp);
3361 			mutex_enter(&vp->v_interlock);
3362 			mutex_exit(&ump->ihash_lock);
3363 			if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
3364 				goto loop;
3365 			return node;
3366 		}
3367 	}
3368 	mutex_exit(&ump->ihash_lock);
3369 
3370 	return NULL;
3371 }
3372 
3373 
3374 static void
3375 udf_sorted_list_insert(struct udf_node *node)
3376 {
3377 	struct udf_mount *ump;
3378 	struct udf_node  *s_node, *last_node;
3379 	uint32_t loc, s_loc;
3380 
3381 	ump = node->ump;
3382 	last_node = NULL;	/* XXX gcc */
3383 
3384 	if (LIST_EMPTY(&ump->sorted_udf_nodes)) {
3385 		LIST_INSERT_HEAD(&ump->sorted_udf_nodes, node, sortchain);
3386 		return;
3387 	}
3388 
3389 	/*
3390 	 * We sort on logical block number here and not on physical block
3391 	 * number here. Ideally we should go for the physical block nr to get
3392 	 * better sync performance though this sort will ensure that packets
3393 	 * won't get spit up unnessisarily.
3394 	 */
3395 
3396 	loc = udf_rw32(node->loc.loc.lb_num);
3397 	LIST_FOREACH(s_node, &ump->sorted_udf_nodes, sortchain) {
3398 		s_loc = udf_rw32(s_node->loc.loc.lb_num);
3399 		if (s_loc > loc) {
3400 			LIST_INSERT_BEFORE(s_node, node, sortchain);
3401 			return;
3402 		}
3403 		last_node = s_node;
3404 	}
3405 	LIST_INSERT_AFTER(last_node, node, sortchain);
3406 }
3407 
3408 
3409 static void
3410 udf_register_node(struct udf_node *node)
3411 {
3412 	struct udf_mount *ump;
3413 	struct udf_node *chk;
3414 	uint32_t hashline;
3415 
3416 	ump = node->ump;
3417 	mutex_enter(&ump->ihash_lock);
3418 
3419 	/* add to our hash table */
3420 	hashline = udf_calchash(&node->loc) & UDF_INODE_HASHMASK;
3421 #ifdef DEBUG
3422 	LIST_FOREACH(chk, &ump->udf_nodes[hashline], hashchain) {
3423 		assert(chk);
3424 		if (chk->loc.loc.lb_num   == node->loc.loc.lb_num &&
3425 		    chk->loc.loc.part_num == node->loc.loc.part_num)
3426 			panic("Double node entered\n");
3427 	}
3428 #else
3429 	chk = NULL;
3430 #endif
3431 	LIST_INSERT_HEAD(&ump->udf_nodes[hashline], node, hashchain);
3432 
3433 	/* add to our sorted list */
3434 	udf_sorted_list_insert(node);
3435 
3436 	mutex_exit(&ump->ihash_lock);
3437 }
3438 
3439 
3440 static void
3441 udf_deregister_node(struct udf_node *node)
3442 {
3443 	struct udf_mount *ump;
3444 
3445 	ump = node->ump;
3446 	mutex_enter(&ump->ihash_lock);
3447 
3448 	/* from hash and sorted list */
3449 	LIST_REMOVE(node, hashchain);
3450 	LIST_REMOVE(node, sortchain);
3451 
3452 	mutex_exit(&ump->ihash_lock);
3453 }
3454 
3455 /* --------------------------------------------------------------------- */
3456 
3457 static int
3458 udf_validate_session_start(struct udf_mount *ump)
3459 {
3460 	struct mmc_trackinfo trackinfo;
3461 	struct vrs_desc *vrs;
3462 	uint32_t tracknr, sessionnr, sector, sector_size;
3463 	uint32_t iso9660_vrs, write_track_start;
3464 	uint8_t *buffer, *blank, *pos;
3465 	int blks, max_sectors, vrs_len;
3466 	int error;
3467 
3468 	/* disc appendable? */
3469 	if (ump->discinfo.disc_state == MMC_STATE_FULL)
3470 		return EROFS;
3471 
3472 	/* already written here? if so, there should be an ISO VDS */
3473 	if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE)
3474 		return 0;
3475 
3476 	/*
3477 	 * Check if the first track of the session is blank and if so, copy or
3478 	 * create a dummy ISO descriptor so the disc is valid again.
3479 	 */
3480 
3481 	tracknr = ump->discinfo.first_track_last_session;
3482 	memset(&trackinfo, 0, sizeof(struct mmc_trackinfo));
3483 	trackinfo.tracknr = tracknr;
3484 	error = udf_update_trackinfo(ump, &trackinfo);
3485 	if (error)
3486 		return error;
3487 
3488 	udf_dump_trackinfo(&trackinfo);
3489 	KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED));
3490 	KASSERT(trackinfo.sessionnr > 1);
3491 
3492 	KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID);
3493 	write_track_start = trackinfo.next_writable;
3494 
3495 	/* we have to copy the ISO VRS from a former session */
3496 	DPRINTF(VOLUMES, ("validate_session_start: "
3497 			"blank or reserved track, copying VRS\n"));
3498 
3499 	/* sessionnr should be the session we're mounting */
3500 	sessionnr = ump->mount_args.sessionnr;
3501 
3502 	/* start at the first track */
3503 	tracknr   = ump->discinfo.first_track;
3504 	while (tracknr <= ump->discinfo.num_tracks) {
3505 		trackinfo.tracknr = tracknr;
3506 		error = udf_update_trackinfo(ump, &trackinfo);
3507 		if (error) {
3508 			DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3509 			return error;
3510 		}
3511 		if (trackinfo.sessionnr == sessionnr)
3512 			break;
3513 		tracknr++;
3514 	}
3515 	if (trackinfo.sessionnr != sessionnr) {
3516 		DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3517 		return ENOENT;
3518 	}
3519 
3520 	DPRINTF(VOLUMES, ("found possible former ISO VRS at\n"));
3521 	udf_dump_trackinfo(&trackinfo);
3522 
3523         /*
3524          * location of iso9660 vrs is defined as first sector AFTER 32kb,
3525          * minimum ISO `sector size' 2048
3526          */
3527 	sector_size = ump->discinfo.sector_size;
3528 	iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3529 		 + trackinfo.track_start;
3530 
3531 	buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK);
3532 	max_sectors = UDF_ISO_VRS_SIZE / sector_size;
3533 	blks = MAX(1, 2048 / sector_size);
3534 
3535 	error = 0;
3536 	for (sector = 0; sector < max_sectors; sector += blks) {
3537 		pos = buffer + sector * sector_size;
3538 		error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos,
3539 			iso9660_vrs + sector, blks);
3540 		if (error)
3541 			break;
3542 		/* check this ISO descriptor */
3543 		vrs = (struct vrs_desc *) pos;
3544 		DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier));
3545 		if (strncmp(vrs->identifier, VRS_CD001, 5) == 0)
3546 			continue;
3547 		if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0)
3548 			continue;
3549 		if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0)
3550 			continue;
3551 		if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0)
3552 			continue;
3553 		if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0)
3554 			continue;
3555 		if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0)
3556 			break;
3557 		/* now what? for now, end of sequence */
3558 		break;
3559 	}
3560 	vrs_len = sector + blks;
3561 	if (error) {
3562 		DPRINTF(VOLUMES, ("error reading old ISO VRS\n"));
3563 		DPRINTF(VOLUMES, ("creating minimal ISO VRS\n"));
3564 
3565 		memset(buffer, 0, UDF_ISO_VRS_SIZE);
3566 
3567 		vrs = (struct vrs_desc *) (buffer);
3568 		vrs->struct_type = 0;
3569 		vrs->version     = 1;
3570 		memcpy(vrs->identifier,VRS_BEA01, 5);
3571 
3572 		vrs = (struct vrs_desc *) (buffer + 2048);
3573 		vrs->struct_type = 0;
3574 		vrs->version     = 1;
3575 		if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
3576 			memcpy(vrs->identifier,VRS_NSR02, 5);
3577 		} else {
3578 			memcpy(vrs->identifier,VRS_NSR03, 5);
3579 		}
3580 
3581 		vrs = (struct vrs_desc *) (buffer + 4096);
3582 		vrs->struct_type = 0;
3583 		vrs->version     = 1;
3584 		memcpy(vrs->identifier, VRS_TEA01, 5);
3585 
3586 		vrs_len = 3*blks;
3587 	}
3588 
3589 	DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len));
3590 
3591         /*
3592          * location of iso9660 vrs is defined as first sector AFTER 32kb,
3593          * minimum ISO `sector size' 2048
3594          */
3595 	sector_size = ump->discinfo.sector_size;
3596 	iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3597 		 + write_track_start;
3598 
3599 	/* write out 32 kb */
3600 	blank = malloc(sector_size, M_TEMP, M_WAITOK);
3601 	memset(blank, 0, sector_size);
3602 	error = 0;
3603 	for (sector = write_track_start; sector < iso9660_vrs; sector ++) {
3604 		error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3605 			blank, sector, 1);
3606 		if (error)
3607 			break;
3608 	}
3609 	if (!error) {
3610 		/* write out our ISO VRS */
3611 		KASSERT(sector == iso9660_vrs);
3612 		error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer,
3613 				sector, vrs_len);
3614 		sector += vrs_len;
3615 	}
3616 	if (!error) {
3617 		/* fill upto the first anchor at S+256 */
3618 		for (; sector < write_track_start+256; sector++) {
3619 			error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3620 				blank, sector, 1);
3621 			if (error)
3622 				break;
3623 		}
3624 	}
3625 	if (!error) {
3626 		/* write out anchor; write at ABSOLUTE place! */
3627 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE,
3628 			(union dscrptr *) ump->anchors[0], sector, sector);
3629 		if (error)
3630 			printf("writeout of anchor failed!\n");
3631 	}
3632 
3633 	free(blank, M_TEMP);
3634 	free(buffer, M_TEMP);
3635 
3636 	if (error)
3637 		printf("udf_open_session: error writing iso vrs! : "
3638 				"leaving disc in compromised state!\n");
3639 
3640 	/* synchronise device caches */
3641 	(void) udf_synchronise_caches(ump);
3642 
3643 	return error;
3644 }
3645 
3646 
3647 int
3648 udf_open_logvol(struct udf_mount *ump)
3649 {
3650 	int logvol_integrity;
3651 	int error;
3652 
3653 	/* already/still open? */
3654 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3655 	if (logvol_integrity == UDF_INTEGRITY_OPEN)
3656 		return 0;
3657 
3658 	/* can we open it ? */
3659 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
3660 		return EROFS;
3661 
3662 	/* setup write parameters */
3663 	DPRINTF(VOLUMES, ("Setting up write parameters\n"));
3664 	if ((error = udf_setup_writeparams(ump)) != 0)
3665 		return error;
3666 
3667 	/* determine data and metadata tracks (most likely same) */
3668 	error = udf_search_writing_tracks(ump);
3669 	if (error) {
3670 		/* most likely lack of space */
3671 		printf("udf_open_logvol: error searching writing tracks\n");
3672 		return EROFS;
3673 	}
3674 
3675 	/* writeout/update lvint on disc or only in memory */
3676 	DPRINTF(VOLUMES, ("Opening logical volume\n"));
3677 	if (ump->lvopen & UDF_OPEN_SESSION) {
3678 		/* TODO optional track reservation opening */
3679 		error = udf_validate_session_start(ump);
3680 		if (error)
3681 			return error;
3682 
3683 		/* determine data and metadata tracks again */
3684 		error = udf_search_writing_tracks(ump);
3685 	}
3686 
3687 	/* mark it open */
3688 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
3689 
3690 	/* do we need to write it out? */
3691 	if (ump->lvopen & UDF_WRITE_LVINT) {
3692 		error = udf_writeout_lvint(ump, ump->lvopen);
3693 		/* if we couldn't write it mark it closed again */
3694 		if (error) {
3695 			ump->logvol_integrity->integrity_type =
3696 						udf_rw32(UDF_INTEGRITY_CLOSED);
3697 			return error;
3698 		}
3699 	}
3700 
3701 	return 0;
3702 }
3703 
3704 
3705 int
3706 udf_close_logvol(struct udf_mount *ump, int mntflags)
3707 {
3708 	struct vnode *devvp = ump->devvp;
3709 	struct mmc_op mmc_op;
3710 	int logvol_integrity;
3711 	int error = 0, error1 = 0, error2 = 0;
3712 	int tracknr;
3713 	int nvats, n, nok;
3714 
3715 	/* already/still closed? */
3716 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3717 	if (logvol_integrity == UDF_INTEGRITY_CLOSED)
3718 		return 0;
3719 
3720 	/* writeout/update lvint or write out VAT */
3721 	DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n"));
3722 #ifdef DIAGNOSTIC
3723 	if (ump->lvclose & UDF_CLOSE_SESSION)
3724 		KASSERT(ump->lvclose & UDF_WRITE_VAT);
3725 #endif
3726 
3727 	if (ump->lvclose & UDF_WRITE_VAT) {
3728 		DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3729 
3730 		/* write out the VAT data and all its descriptors */
3731 		DPRINTF(VOLUMES, ("writeout vat_node\n"));
3732 		udf_writeout_vat(ump);
3733 		vflushbuf(ump->vat_node->vnode, 1 /* sync */);
3734 
3735 		(void) VOP_FSYNC(ump->vat_node->vnode,
3736 				FSCRED, FSYNC_WAIT, 0, 0);
3737 
3738 		if (ump->lvclose & UDF_CLOSE_SESSION) {
3739 			DPRINTF(VOLUMES, ("udf_close_logvol: closing session "
3740 				"as requested\n"));
3741 		}
3742 
3743 		/* at least two DVD packets and 3 CD-R packets */
3744 		nvats = 32;
3745 
3746 #if notyet
3747 		/*
3748 		 * TODO calculate the available space and if the disc is
3749 		 * allmost full, write out till end-256-1 with banks, write
3750 		 * AVDP and fill up with VATs, then close session and close
3751 		 * disc.
3752 		 */
3753 		if (ump->lvclose & UDF_FINALISE_DISC) {
3754 			error = udf_write_phys_dscr_sync(ump, NULL,
3755 					UDF_C_FLOAT_DSCR,
3756 					(union dscrptr *) ump->anchors[0],
3757 					0, 0);
3758 			if (error)
3759 				printf("writeout of anchor failed!\n");
3760 
3761 			/* pad space with VAT ICBs */
3762 			nvats = 256;
3763 		}
3764 #endif
3765 
3766 		/* write out a number of VAT nodes */
3767 		nok = 0;
3768 		for (n = 0; n < nvats; n++) {
3769 			/* will now only write last FE/EFE */
3770 			ump->vat_node->i_flags |= IN_MODIFIED;
3771 			error = VOP_FSYNC(ump->vat_node->vnode,
3772 					FSCRED, FSYNC_WAIT, 0, 0);
3773 			if (!error)
3774 				nok++;
3775 		}
3776 		if (nok < 14) {
3777 			/* arbitrary; but at least one or two CD frames */
3778 			printf("writeout of at least 14 VATs failed\n");
3779 			return error;
3780 		}
3781 	}
3782 
3783 	/* NOTE the disc is in a (minimal) valid state now; no erroring out */
3784 
3785 	/* finish closing of session */
3786 	if (ump->lvclose & UDF_CLOSE_SESSION) {
3787 		error = udf_validate_session_start(ump);
3788 		if (error)
3789 			return error;
3790 
3791 		/* close all associated tracks */
3792 		tracknr = ump->discinfo.first_track_last_session;
3793 		error = 0;
3794 		while (tracknr <= ump->discinfo.last_track_last_session) {
3795 			DPRINTF(VOLUMES, ("\tclosing possible open "
3796 				"track %d\n", tracknr));
3797 			memset(&mmc_op, 0, sizeof(mmc_op));
3798 			mmc_op.operation   = MMC_OP_CLOSETRACK;
3799 			mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3800 			mmc_op.tracknr     = tracknr;
3801 			error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3802 					FKIOCTL, NOCRED);
3803 			if (error)
3804 				printf("udf_close_logvol: closing of "
3805 					"track %d failed\n", tracknr);
3806 			tracknr ++;
3807 		}
3808 		if (!error) {
3809 			DPRINTF(VOLUMES, ("closing session\n"));
3810 			memset(&mmc_op, 0, sizeof(mmc_op));
3811 			mmc_op.operation   = MMC_OP_CLOSESESSION;
3812 			mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3813 			mmc_op.sessionnr   = ump->discinfo.num_sessions;
3814 			error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3815 					FKIOCTL, NOCRED);
3816 			if (error)
3817 				printf("udf_close_logvol: closing of session"
3818 						"failed\n");
3819 		}
3820 		if (!error)
3821 			ump->lvopen |= UDF_OPEN_SESSION;
3822 		if (error) {
3823 			printf("udf_close_logvol: leaving disc as it is\n");
3824 			ump->lvclose &= ~UDF_FINALISE_DISC;
3825 		}
3826 	}
3827 
3828 	if (ump->lvclose & UDF_FINALISE_DISC) {
3829 		memset(&mmc_op, 0, sizeof(mmc_op));
3830 		mmc_op.operation   = MMC_OP_FINALISEDISC;
3831 		mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3832 		mmc_op.sessionnr   = ump->discinfo.num_sessions;
3833 		error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3834 				FKIOCTL, NOCRED);
3835 		if (error)
3836 			printf("udf_close_logvol: finalising disc"
3837 					"failed\n");
3838 	}
3839 
3840 	/* write out partition bitmaps if requested */
3841 	if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
3842 		/* sync writeout metadata spacetable if existing */
3843 		error1 = udf_write_metadata_partition_spacetable(ump, true);
3844 		if (error1)
3845 			printf( "udf_close_logvol: writeout of metadata space "
3846 				"bitmap failed\n");
3847 
3848 		/* sync writeout partition spacetables */
3849 		error2 = udf_write_physical_partition_spacetables(ump, true);
3850 		if (error2)
3851 			printf( "udf_close_logvol: writeout of space tables "
3852 				"failed\n");
3853 
3854 		if (error1 || error2)
3855 			return (error1 | error2);
3856 
3857 		ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
3858 	}
3859 
3860 	/* mark it closed */
3861 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3862 
3863 	/* do we need to write out the logical volume integrity? */
3864 	if (ump->lvclose & UDF_WRITE_LVINT)
3865 		error = udf_writeout_lvint(ump, ump->lvopen);
3866 	if (error) {
3867 		/* HELP now what? mark it open again for now */
3868 		ump->logvol_integrity->integrity_type =
3869 			udf_rw32(UDF_INTEGRITY_OPEN);
3870 		return error;
3871 	}
3872 
3873 	(void) udf_synchronise_caches(ump);
3874 
3875 	return 0;
3876 }
3877 
3878 /* --------------------------------------------------------------------- */
3879 
3880 /*
3881  * Genfs interfacing
3882  *
3883  * static const struct genfs_ops udf_genfsops = {
3884  * 	.gop_size = genfs_size,
3885  * 		size of transfers
3886  * 	.gop_alloc = udf_gop_alloc,
3887  * 		allocate len bytes at offset
3888  * 	.gop_write = genfs_gop_write,
3889  * 		putpages interface code
3890  * 	.gop_markupdate = udf_gop_markupdate,
3891  * 		set update/modify flags etc.
3892  * }
3893  */
3894 
3895 /*
3896  * Genfs interface. These four functions are the only ones defined though not
3897  * documented... great....
3898  */
3899 
3900 /*
3901  * Callback from genfs to allocate len bytes at offset off; only called when
3902  * filling up gaps in the allocation.
3903  */
3904 /* XXX should we check if there is space enough in udf_gop_alloc? */
3905 static int
3906 udf_gop_alloc(struct vnode *vp, off_t off,
3907     off_t len, int flags, kauth_cred_t cred)
3908 {
3909 #if 0
3910 	struct udf_node *udf_node = VTOI(vp);
3911 	struct udf_mount *ump = udf_node->ump;
3912 	uint32_t lb_size, num_lb;
3913 #endif
3914 
3915 	DPRINTF(NOTIMPL, ("udf_gop_alloc not implemented\n"));
3916 	DPRINTF(ALLOC, ("udf_gop_alloc called for %"PRIu64" bytes\n", len));
3917 
3918 	return 0;
3919 }
3920 
3921 
3922 /*
3923  * callback from genfs to update our flags
3924  */
3925 static void
3926 udf_gop_markupdate(struct vnode *vp, int flags)
3927 {
3928 	struct udf_node *udf_node = VTOI(vp);
3929 	u_long mask = 0;
3930 
3931 	if ((flags & GOP_UPDATE_ACCESSED) != 0) {
3932 		mask = IN_ACCESS;
3933 	}
3934 	if ((flags & GOP_UPDATE_MODIFIED) != 0) {
3935 		if (vp->v_type == VREG) {
3936 			mask |= IN_CHANGE | IN_UPDATE;
3937 		} else {
3938 			mask |= IN_MODIFY;
3939 		}
3940 	}
3941 	if (mask) {
3942 		udf_node->i_flags |= mask;
3943 	}
3944 }
3945 
3946 
3947 static const struct genfs_ops udf_genfsops = {
3948 	.gop_size = genfs_size,
3949 	.gop_alloc = udf_gop_alloc,
3950 	.gop_write = genfs_gop_write_rwmap,
3951 	.gop_markupdate = udf_gop_markupdate,
3952 };
3953 
3954 
3955 /* --------------------------------------------------------------------- */
3956 
3957 int
3958 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
3959 {
3960 	union dscrptr *dscr;
3961 	int error;
3962 
3963 	dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO);
3964 	udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
3965 
3966 	/* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
3967 	dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
3968 	(void) udf_validate_tag_and_crc_sums(dscr);
3969 
3970 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
3971 			dscr, sector, sector);
3972 
3973 	free(dscr, M_TEMP);
3974 
3975 	return error;
3976 }
3977 
3978 
3979 /* --------------------------------------------------------------------- */
3980 
3981 /* UDF<->unix converters */
3982 
3983 /* --------------------------------------------------------------------- */
3984 
3985 static mode_t
3986 udf_perm_to_unix_mode(uint32_t perm)
3987 {
3988 	mode_t mode;
3989 
3990 	mode  = ((perm & UDF_FENTRY_PERM_USER_MASK)      );
3991 	mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK  ) >> 2);
3992 	mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
3993 
3994 	return mode;
3995 }
3996 
3997 /* --------------------------------------------------------------------- */
3998 
3999 static uint32_t
4000 unix_mode_to_udf_perm(mode_t mode)
4001 {
4002 	uint32_t perm;
4003 
4004 	perm  = ((mode & S_IRWXO)     );
4005 	perm |= ((mode & S_IRWXG) << 2);
4006 	perm |= ((mode & S_IRWXU) << 4);
4007 	perm |= ((mode & S_IWOTH) << 3);
4008 	perm |= ((mode & S_IWGRP) << 5);
4009 	perm |= ((mode & S_IWUSR) << 7);
4010 
4011 	return perm;
4012 }
4013 
4014 /* --------------------------------------------------------------------- */
4015 
4016 static uint32_t
4017 udf_icb_to_unix_filetype(uint32_t icbftype)
4018 {
4019 	switch (icbftype) {
4020 	case UDF_ICB_FILETYPE_DIRECTORY :
4021 	case UDF_ICB_FILETYPE_STREAMDIR :
4022 		return S_IFDIR;
4023 	case UDF_ICB_FILETYPE_FIFO :
4024 		return S_IFIFO;
4025 	case UDF_ICB_FILETYPE_CHARDEVICE :
4026 		return S_IFCHR;
4027 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
4028 		return S_IFBLK;
4029 	case UDF_ICB_FILETYPE_RANDOMACCESS :
4030 	case UDF_ICB_FILETYPE_REALTIME :
4031 		return S_IFREG;
4032 	case UDF_ICB_FILETYPE_SYMLINK :
4033 		return S_IFLNK;
4034 	case UDF_ICB_FILETYPE_SOCKET :
4035 		return S_IFSOCK;
4036 	}
4037 	/* no idea what this is */
4038 	return 0;
4039 }
4040 
4041 /* --------------------------------------------------------------------- */
4042 
4043 void
4044 udf_to_unix_name(char *result, int result_len, char *id, int len,
4045 	struct charspec *chsp)
4046 {
4047 	uint16_t   *raw_name, *unix_name;
4048 	uint16_t   *inchp, ch;
4049 	uint8_t	   *outchp;
4050 	const char *osta_id = "OSTA Compressed Unicode";
4051 	int         ucode_chars, nice_uchars, is_osta_typ0, nout;
4052 
4053 	raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
4054 	unix_name = raw_name + 1024;			/* split space in half */
4055 	assert(sizeof(char) == sizeof(uint8_t));
4056 	outchp = (uint8_t *) result;
4057 
4058 	is_osta_typ0  = (chsp->type == 0);
4059 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4060 	if (is_osta_typ0) {
4061 		/* TODO clean up */
4062 		*raw_name = *unix_name = 0;
4063 		ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
4064 		ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
4065 		nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
4066 		/* output UTF8 */
4067 		for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
4068 			ch = *inchp;
4069 			nout = wput_utf8(outchp, result_len, ch);
4070 			outchp += nout; result_len -= nout;
4071 			if (!ch) break;
4072 		}
4073 		*outchp++ = 0;
4074 	} else {
4075 		/* assume 8bit char length byte latin-1 */
4076 		assert(*id == 8);
4077 		assert(strlen((char *) (id+1)) <= MAXNAMLEN);
4078 		strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
4079 	}
4080 	free(raw_name, M_UDFTEMP);
4081 }
4082 
4083 /* --------------------------------------------------------------------- */
4084 
4085 void
4086 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
4087 	struct charspec *chsp)
4088 {
4089 	uint16_t   *raw_name;
4090 	uint16_t   *outchp;
4091 	const char *inchp;
4092 	const char *osta_id = "OSTA Compressed Unicode";
4093 	int         udf_chars, is_osta_typ0, bits;
4094 	size_t      cnt;
4095 
4096 	/* allocate temporary unicode-16 buffer */
4097 	raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
4098 
4099 	/* convert utf8 to unicode-16 */
4100 	*raw_name = 0;
4101 	inchp  = name;
4102 	outchp = raw_name;
4103 	bits = 8;
4104 	for (cnt = name_len, udf_chars = 0; cnt;) {
4105 /*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/
4106 		*outchp = wget_utf8(&inchp, &cnt);
4107 		if (*outchp > 0xff)
4108 			bits=16;
4109 		outchp++;
4110 		udf_chars++;
4111 	}
4112 	/* null terminate just in case */
4113 	*outchp++ = 0;
4114 
4115 	is_osta_typ0  = (chsp->type == 0);
4116 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4117 	if (is_osta_typ0) {
4118 		udf_chars = udf_CompressUnicode(udf_chars, bits,
4119 				(unicode_t *) raw_name,
4120 				(byte *) result);
4121 	} else {
4122 		printf("unix to udf name: no CHSP0 ?\n");
4123 		/* XXX assume 8bit char length byte latin-1 */
4124 		*result++ = 8; udf_chars = 1;
4125 		strncpy(result, name + 1, name_len);
4126 		udf_chars += name_len;
4127 	}
4128 	*result_len = udf_chars;
4129 	free(raw_name, M_UDFTEMP);
4130 }
4131 
4132 /* --------------------------------------------------------------------- */
4133 
4134 void
4135 udf_timestamp_to_timespec(struct udf_mount *ump,
4136 			  struct timestamp *timestamp,
4137 			  struct timespec  *timespec)
4138 {
4139 	struct clock_ymdhms ymdhms;
4140 	uint32_t usecs, secs, nsecs;
4141 	uint16_t tz;
4142 
4143 	/* fill in ymdhms structure from timestamp */
4144 	memset(&ymdhms, 0, sizeof(ymdhms));
4145 	ymdhms.dt_year = udf_rw16(timestamp->year);
4146 	ymdhms.dt_mon  = timestamp->month;
4147 	ymdhms.dt_day  = timestamp->day;
4148 	ymdhms.dt_wday = 0; /* ? */
4149 	ymdhms.dt_hour = timestamp->hour;
4150 	ymdhms.dt_min  = timestamp->minute;
4151 	ymdhms.dt_sec  = timestamp->second;
4152 
4153 	secs = clock_ymdhms_to_secs(&ymdhms);
4154 	usecs = timestamp->usec +
4155 		100*timestamp->hund_usec + 10000*timestamp->centisec;
4156 	nsecs = usecs * 1000;
4157 
4158 	/*
4159 	 * Calculate the time zone.  The timezone is 12 bit signed 2's
4160 	 * compliment, so we gotta do some extra magic to handle it right.
4161 	 */
4162 	tz  = udf_rw16(timestamp->type_tz);
4163 	tz &= 0x0fff;			/* only lower 12 bits are significant */
4164 	if (tz & 0x0800)		/* sign extention */
4165 		tz |= 0xf000;
4166 
4167 	/* TODO check timezone conversion */
4168 	/* check if we are specified a timezone to convert */
4169 	if (udf_rw16(timestamp->type_tz) & 0x1000) {
4170 		if ((int16_t) tz != -2047)
4171 			secs -= (int16_t) tz * 60;
4172 	} else {
4173 		secs -= ump->mount_args.gmtoff;
4174 	}
4175 
4176 	timespec->tv_sec  = secs;
4177 	timespec->tv_nsec = nsecs;
4178 }
4179 
4180 
4181 void
4182 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
4183 {
4184 	struct clock_ymdhms ymdhms;
4185 	uint32_t husec, usec, csec;
4186 
4187 	(void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
4188 
4189 	usec   = timespec->tv_nsec / 1000;
4190 	husec  =  usec / 100;
4191 	usec  -= husec * 100;				/* only 0-99 in usec  */
4192 	csec   = husec / 100;				/* only 0-99 in csec  */
4193 	husec -=  csec * 100;				/* only 0-99 in husec */
4194 
4195 	/* set method 1 for CUT/GMT */
4196 	timestamp->type_tz	= udf_rw16((1<<12) + 0);
4197 	timestamp->year		= udf_rw16(ymdhms.dt_year);
4198 	timestamp->month	= ymdhms.dt_mon;
4199 	timestamp->day		= ymdhms.dt_day;
4200 	timestamp->hour		= ymdhms.dt_hour;
4201 	timestamp->minute	= ymdhms.dt_min;
4202 	timestamp->second	= ymdhms.dt_sec;
4203 	timestamp->centisec	= csec;
4204 	timestamp->hund_usec	= husec;
4205 	timestamp->usec		= usec;
4206 }
4207 
4208 /* --------------------------------------------------------------------- */
4209 
4210 /*
4211  * Attribute and filetypes converters with get/set pairs
4212  */
4213 
4214 uint32_t
4215 udf_getaccessmode(struct udf_node *udf_node)
4216 {
4217 	struct file_entry     *fe = udf_node->fe;;
4218 	struct extfile_entry *efe = udf_node->efe;
4219 	uint32_t udf_perm, icbftype;
4220 	uint32_t mode, ftype;
4221 	uint16_t icbflags;
4222 
4223 	UDF_LOCK_NODE(udf_node, 0);
4224 	if (fe) {
4225 		udf_perm = udf_rw32(fe->perm);
4226 		icbftype = fe->icbtag.file_type;
4227 		icbflags = udf_rw16(fe->icbtag.flags);
4228 	} else {
4229 		assert(udf_node->efe);
4230 		udf_perm = udf_rw32(efe->perm);
4231 		icbftype = efe->icbtag.file_type;
4232 		icbflags = udf_rw16(efe->icbtag.flags);
4233 	}
4234 
4235 	mode  = udf_perm_to_unix_mode(udf_perm);
4236 	ftype = udf_icb_to_unix_filetype(icbftype);
4237 
4238 	/* set suid, sgid, sticky from flags in fe/efe */
4239 	if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
4240 		mode |= S_ISUID;
4241 	if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
4242 		mode |= S_ISGID;
4243 	if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
4244 		mode |= S_ISVTX;
4245 
4246 	UDF_UNLOCK_NODE(udf_node, 0);
4247 
4248 	return mode | ftype;
4249 }
4250 
4251 
4252 void
4253 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
4254 {
4255 	struct file_entry    *fe  = udf_node->fe;
4256 	struct extfile_entry *efe = udf_node->efe;
4257 	uint32_t udf_perm;
4258 	uint16_t icbflags;
4259 
4260 	UDF_LOCK_NODE(udf_node, 0);
4261 	udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
4262 	if (fe) {
4263 		icbflags = udf_rw16(fe->icbtag.flags);
4264 	} else {
4265 		icbflags = udf_rw16(efe->icbtag.flags);
4266 	}
4267 
4268 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
4269 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
4270 	icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
4271 	if (mode & S_ISUID)
4272 		icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
4273 	if (mode & S_ISGID)
4274 		icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
4275 	if (mode & S_ISVTX)
4276 		icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
4277 
4278 	if (fe) {
4279 		fe->perm  = udf_rw32(udf_perm);
4280 		fe->icbtag.flags  = udf_rw16(icbflags);
4281 	} else {
4282 		efe->perm = udf_rw32(udf_perm);
4283 		efe->icbtag.flags = udf_rw16(icbflags);
4284 	}
4285 
4286 	UDF_UNLOCK_NODE(udf_node, 0);
4287 }
4288 
4289 
4290 void
4291 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
4292 {
4293 	struct udf_mount     *ump = udf_node->ump;
4294 	struct file_entry    *fe  = udf_node->fe;
4295 	struct extfile_entry *efe = udf_node->efe;
4296 	uid_t uid;
4297 	gid_t gid;
4298 
4299 	UDF_LOCK_NODE(udf_node, 0);
4300 	if (fe) {
4301 		uid = (uid_t)udf_rw32(fe->uid);
4302 		gid = (gid_t)udf_rw32(fe->gid);
4303 	} else {
4304 		assert(udf_node->efe);
4305 		uid = (uid_t)udf_rw32(efe->uid);
4306 		gid = (gid_t)udf_rw32(efe->gid);
4307 	}
4308 
4309 	/* do the uid/gid translation game */
4310 	if (uid == (uid_t) -1)
4311 		uid = ump->mount_args.anon_uid;
4312 	if (gid == (gid_t) -1)
4313 		gid = ump->mount_args.anon_gid;
4314 
4315 	*uidp = uid;
4316 	*gidp = gid;
4317 
4318 	UDF_UNLOCK_NODE(udf_node, 0);
4319 }
4320 
4321 
4322 void
4323 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
4324 {
4325 	struct udf_mount     *ump = udf_node->ump;
4326 	struct file_entry    *fe  = udf_node->fe;
4327 	struct extfile_entry *efe = udf_node->efe;
4328 	uid_t nobody_uid;
4329 	gid_t nobody_gid;
4330 
4331 	UDF_LOCK_NODE(udf_node, 0);
4332 
4333 	/* do the uid/gid translation game */
4334 	nobody_uid = ump->mount_args.nobody_uid;
4335 	nobody_gid = ump->mount_args.nobody_gid;
4336 	if (uid == nobody_uid)
4337 		uid = (uid_t) -1;
4338 	if (gid == nobody_gid)
4339 		gid = (gid_t) -1;
4340 
4341 	if (fe) {
4342 		fe->uid  = udf_rw32((uint32_t) uid);
4343 		fe->gid  = udf_rw32((uint32_t) gid);
4344 	} else {
4345 		efe->uid = udf_rw32((uint32_t) uid);
4346 		efe->gid = udf_rw32((uint32_t) gid);
4347 	}
4348 
4349 	UDF_UNLOCK_NODE(udf_node, 0);
4350 }
4351 
4352 
4353 /* --------------------------------------------------------------------- */
4354 
4355 
4356 static int
4357 dirhash_fill(struct udf_node *dir_node)
4358 {
4359 	struct vnode *dvp = dir_node->vnode;
4360 	struct dirhash *dirh;
4361 	struct file_entry    *fe  = dir_node->fe;
4362 	struct extfile_entry *efe = dir_node->efe;
4363 	struct fileid_desc *fid;
4364 	struct dirent *dirent;
4365 	uint64_t file_size, pre_diroffset, diroffset;
4366 	uint32_t lb_size;
4367 	int error;
4368 
4369 	/* make sure we have a dirhash to work on */
4370 	dirh = dir_node->dir_hash;
4371 	KASSERT(dirh);
4372 	KASSERT(dirh->refcnt > 0);
4373 
4374 	if (dirh->flags & DIRH_BROKEN)
4375 		return EIO;
4376 	if (dirh->flags & DIRH_COMPLETE)
4377 		return 0;
4378 
4379 	/* make sure we have a clean dirhash to add to */
4380 	dirhash_purge_entries(dirh);
4381 
4382 	/* get directory filesize */
4383 	if (fe) {
4384 		file_size = udf_rw64(fe->inf_len);
4385 	} else {
4386 		assert(efe);
4387 		file_size = udf_rw64(efe->inf_len);
4388 	}
4389 
4390 	/* allocate temporary space for fid */
4391 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4392 	fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4393 
4394 	/* allocate temporary space for dirent */
4395 	dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4396 
4397 	error = 0;
4398 	diroffset = 0;
4399 	while (diroffset < file_size) {
4400 		/* transfer a new fid/dirent */
4401 		pre_diroffset = diroffset;
4402 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4403 		if (error) {
4404 			/* TODO what to do? continue but not add? */
4405 			dirh->flags |= DIRH_BROKEN;
4406 			dirhash_purge_entries(dirh);
4407 			break;
4408 		}
4409 
4410 		if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
4411 			/* register deleted extent for reuse */
4412 			dirhash_enter_freed(dirh, pre_diroffset,
4413 				udf_fidsize(fid));
4414 		} else {
4415 			/* append to the dirhash */
4416 			dirhash_enter(dirh, dirent, pre_diroffset,
4417 				udf_fidsize(fid), 0);
4418 		}
4419 	}
4420 	dirh->flags |= DIRH_COMPLETE;
4421 
4422 	free(fid, M_UDFTEMP);
4423 	free(dirent, M_UDFTEMP);
4424 
4425 	return error;
4426 }
4427 
4428 
4429 /* --------------------------------------------------------------------- */
4430 
4431 /*
4432  * Directory read and manipulation functions.
4433  *
4434  */
4435 
4436 int
4437 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
4438        struct long_ad *icb_loc, int *found)
4439 {
4440 	struct udf_node  *dir_node = VTOI(vp);
4441 	struct dirhash       *dirh;
4442 	struct dirhash_entry *dirh_ep;
4443 	struct fileid_desc *fid;
4444 	struct dirent *dirent;
4445 	uint64_t diroffset;
4446 	uint32_t lb_size;
4447 	int hit, error;
4448 
4449 	/* set default return */
4450 	*found = 0;
4451 
4452 	/* get our dirhash and make sure its read in */
4453 	dirhash_get(&dir_node->dir_hash);
4454 	error = dirhash_fill(dir_node);
4455 	if (error) {
4456 		dirhash_put(dir_node->dir_hash);
4457 		return error;
4458 	}
4459 	dirh = dir_node->dir_hash;
4460 
4461 	/* allocate temporary space for fid */
4462 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4463 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4464 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4465 
4466 	DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
4467 		namelen, namelen, name));
4468 
4469 	/* search our dirhash hits */
4470 	memset(icb_loc, 0, sizeof(*icb_loc));
4471 	dirh_ep = NULL;
4472 	for (;;) {
4473 		hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4474 		/* if no hit, abort the search */
4475 		if (!hit)
4476 			break;
4477 
4478 		/* check this hit */
4479 		diroffset = dirh_ep->offset;
4480 
4481 		/* transfer a new fid/dirent */
4482 		error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
4483 		if (error)
4484 			break;
4485 
4486 		DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
4487 			dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4488 
4489 		/* see if its our entry */
4490 		KASSERT(dirent->d_namlen == namelen);
4491 		if (strncmp(dirent->d_name, name, namelen) == 0) {
4492 			*found = 1;
4493 			*icb_loc = fid->icb;
4494 			break;
4495 		}
4496 	}
4497 	free(fid, M_UDFTEMP);
4498 	free(dirent, M_UDFTEMP);
4499 
4500 	dirhash_put(dir_node->dir_hash);
4501 
4502 	return error;
4503 }
4504 
4505 /* --------------------------------------------------------------------- */
4506 
4507 static int
4508 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
4509 	struct long_ad *node_icb, struct long_ad *parent_icb,
4510 	uint64_t parent_unique_id)
4511 {
4512 	struct timespec now;
4513 	struct icb_tag *icb;
4514 	struct filetimes_extattr_entry *ft_extattr;
4515 	uint64_t unique_id;
4516 	uint32_t fidsize, lb_num;
4517 	uint8_t *bpos;
4518 	int crclen, attrlen;
4519 
4520 	lb_num = udf_rw32(node_icb->loc.lb_num);
4521 	udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
4522 	icb = &fe->icbtag;
4523 
4524 	/*
4525 	 * Always use strategy type 4 unless on WORM wich we don't support
4526 	 * (yet). Fill in defaults and set for internal allocation of data.
4527 	 */
4528 	icb->strat_type      = udf_rw16(4);
4529 	icb->max_num_entries = udf_rw16(1);
4530 	icb->file_type       = file_type;	/* 8 bit */
4531 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
4532 
4533 	fe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
4534 	fe->link_cnt = udf_rw16(0);		/* explicit setting */
4535 
4536 	fe->ckpoint  = udf_rw32(1);		/* user supplied file version */
4537 
4538 	vfs_timestamp(&now);
4539 	udf_timespec_to_timestamp(&now, &fe->atime);
4540 	udf_timespec_to_timestamp(&now, &fe->attrtime);
4541 	udf_timespec_to_timestamp(&now, &fe->mtime);
4542 
4543 	udf_set_regid(&fe->imp_id, IMPL_NAME);
4544 	udf_add_impl_regid(ump, &fe->imp_id);
4545 
4546 	unique_id = udf_advance_uniqueid(ump);
4547 	fe->unique_id = udf_rw64(unique_id);
4548 	fe->l_ea = udf_rw32(0);
4549 
4550 	/* create extended attribute to record our creation time */
4551 	attrlen = UDF_FILETIMES_ATTR_SIZE(1);
4552 	ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
4553 	memset(ft_extattr, 0, attrlen);
4554 	ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
4555 	ft_extattr->hdr.subtype = 1;	/* [4/48.10.5] */
4556 	ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
4557 	ft_extattr->d_l     = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
4558 	ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
4559 	udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
4560 
4561 	udf_extattr_insert_internal(ump, (union dscrptr *) fe,
4562 		(struct extattr_entry *) ft_extattr);
4563 	free(ft_extattr, M_UDFTEMP);
4564 
4565 	/* if its a directory, create '..' */
4566 	bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
4567 	fidsize = 0;
4568 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4569 		fidsize = udf_create_parentfid(ump,
4570 			(struct fileid_desc *) bpos, parent_icb,
4571 			parent_unique_id);
4572 	}
4573 
4574 	/* record fidlength information */
4575 	fe->inf_len = udf_rw64(fidsize);
4576 	fe->l_ad    = udf_rw32(fidsize);
4577 	fe->logblks_rec = udf_rw64(0);		/* intern */
4578 
4579 	crclen  = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
4580 	crclen += udf_rw32(fe->l_ea) + fidsize;
4581 	fe->tag.desc_crc_len = udf_rw16(crclen);
4582 
4583 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
4584 
4585 	return fidsize;
4586 }
4587 
4588 /* --------------------------------------------------------------------- */
4589 
4590 static int
4591 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
4592 	int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
4593 	uint64_t parent_unique_id)
4594 {
4595 	struct timespec now;
4596 	struct icb_tag *icb;
4597 	uint64_t unique_id;
4598 	uint32_t fidsize, lb_num;
4599 	uint8_t *bpos;
4600 	int crclen;
4601 
4602 	lb_num = udf_rw32(node_icb->loc.lb_num);
4603 	udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
4604 	icb = &efe->icbtag;
4605 
4606 	/*
4607 	 * Always use strategy type 4 unless on WORM wich we don't support
4608 	 * (yet). Fill in defaults and set for internal allocation of data.
4609 	 */
4610 	icb->strat_type      = udf_rw16(4);
4611 	icb->max_num_entries = udf_rw16(1);
4612 	icb->file_type       = file_type;	/* 8 bit */
4613 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
4614 
4615 	efe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
4616 	efe->link_cnt = udf_rw16(0);		/* explicit setting */
4617 
4618 	efe->ckpoint  = udf_rw32(1);		/* user supplied file version */
4619 
4620 	vfs_timestamp(&now);
4621 	udf_timespec_to_timestamp(&now, &efe->ctime);
4622 	udf_timespec_to_timestamp(&now, &efe->atime);
4623 	udf_timespec_to_timestamp(&now, &efe->attrtime);
4624 	udf_timespec_to_timestamp(&now, &efe->mtime);
4625 
4626 	udf_set_regid(&efe->imp_id, IMPL_NAME);
4627 	udf_add_impl_regid(ump, &efe->imp_id);
4628 
4629 	unique_id = udf_advance_uniqueid(ump);
4630 	efe->unique_id = udf_rw64(unique_id);
4631 	efe->l_ea = udf_rw32(0);
4632 
4633 	/* if its a directory, create '..' */
4634 	bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
4635 	fidsize = 0;
4636 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4637 		fidsize = udf_create_parentfid(ump,
4638 			(struct fileid_desc *) bpos, parent_icb,
4639 			parent_unique_id);
4640 	}
4641 
4642 	/* record fidlength information */
4643 	efe->obj_size = udf_rw64(fidsize);
4644 	efe->inf_len  = udf_rw64(fidsize);
4645 	efe->l_ad     = udf_rw32(fidsize);
4646 	efe->logblks_rec = udf_rw64(0);		/* intern */
4647 
4648 	crclen  = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
4649 	crclen += udf_rw32(efe->l_ea) + fidsize;
4650 	efe->tag.desc_crc_len = udf_rw16(crclen);
4651 
4652 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
4653 
4654 	return fidsize;
4655 }
4656 
4657 /* --------------------------------------------------------------------- */
4658 
4659 int
4660 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
4661 	struct udf_node *udf_node, struct componentname *cnp)
4662 {
4663 	struct vnode *dvp = dir_node->vnode;
4664 	struct dirhash       *dirh;
4665 	struct dirhash_entry *dirh_ep;
4666 	struct file_entry    *fe  = dir_node->fe;
4667 	struct extfile_entry *efe = dir_node->efe;
4668 	struct fileid_desc *fid;
4669 	struct dirent *dirent;
4670 	uint64_t file_size, diroffset;
4671 	uint32_t lb_size, fidsize;
4672 	int found, error;
4673 	char const *name  = cnp->cn_nameptr;
4674 	int namelen = cnp->cn_namelen;
4675 	int hit, refcnt;
4676 
4677 	/* get our dirhash and make sure its read in */
4678 	dirhash_get(&dir_node->dir_hash);
4679 	error = dirhash_fill(dir_node);
4680 	if (error) {
4681 		dirhash_put(dir_node->dir_hash);
4682 		return error;
4683 	}
4684 	dirh = dir_node->dir_hash;
4685 
4686 	/* get directory filesize */
4687 	if (fe) {
4688 		file_size = udf_rw64(fe->inf_len);
4689 	} else {
4690 		assert(efe);
4691 		file_size = udf_rw64(efe->inf_len);
4692 	}
4693 
4694 	/* allocate temporary space for fid */
4695 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4696 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4697 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4698 
4699 	/* search our dirhash hits */
4700 	found = 0;
4701 	dirh_ep = NULL;
4702 	for (;;) {
4703 		hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4704 		/* if no hit, abort the search */
4705 		if (!hit)
4706 			break;
4707 
4708 		/* check this hit */
4709 		diroffset = dirh_ep->offset;
4710 
4711 		/* transfer a new fid/dirent */
4712 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4713 		if (error)
4714 			break;
4715 
4716 		/* see if its our entry */
4717 		KASSERT(dirent->d_namlen == namelen);
4718 		if (strncmp(dirent->d_name, name, namelen) == 0) {
4719 			found = 1;
4720 			break;
4721 		}
4722 	}
4723 
4724 	if (!found)
4725 		error = ENOENT;
4726 	if (error)
4727 		goto error_out;
4728 
4729 	/* mark deleted */
4730 	fid->file_char |= UDF_FILE_CHAR_DEL;
4731 #ifdef UDF_COMPLETE_DELETE
4732 	memset(&fid->icb, 0, sizeof(fid->icb));
4733 #endif
4734 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4735 
4736 	/* get size of fid and compensate for the read_fid_stream advance */
4737 	fidsize = udf_fidsize(fid);
4738 	diroffset -= fidsize;
4739 
4740 	/* write out */
4741 	error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4742 			fid, fidsize, diroffset,
4743 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4744 			FSCRED, NULL, NULL);
4745 	if (error)
4746 		goto error_out;
4747 
4748 	/* get reference count of attached node */
4749 	if (udf_node->fe) {
4750 		refcnt = udf_rw16(udf_node->fe->link_cnt);
4751 	} else {
4752 		KASSERT(udf_node->efe);
4753 		refcnt = udf_rw16(udf_node->efe->link_cnt);
4754 	}
4755 #ifdef UDF_COMPLETE_DELETE
4756 	/* substract reference counter in attached node */
4757 	refcnt -= 1;
4758 	if (udf_node->fe) {
4759 		udf_node->fe->link_cnt = udf_rw16(refcnt);
4760 	} else {
4761 		udf_node->efe->link_cnt = udf_rw16(refcnt);
4762 	}
4763 
4764 	/* prevent writeout when refcnt == 0 */
4765 	if (refcnt == 0)
4766 		udf_node->i_flags |= IN_DELETED;
4767 
4768 	if (fid->file_char & UDF_FILE_CHAR_DIR) {
4769 		int drefcnt;
4770 
4771 		/* substract reference counter in directory node */
4772 		/* note subtract 2 (?) for its was also backreferenced */
4773 		if (dir_node->fe) {
4774 			drefcnt  = udf_rw16(dir_node->fe->link_cnt);
4775 			drefcnt -= 1;
4776 			dir_node->fe->link_cnt = udf_rw16(drefcnt);
4777 		} else {
4778 			KASSERT(dir_node->efe);
4779 			drefcnt  = udf_rw16(dir_node->efe->link_cnt);
4780 			drefcnt -= 1;
4781 			dir_node->efe->link_cnt = udf_rw16(drefcnt);
4782 		}
4783 	}
4784 
4785 	udf_node->i_flags |= IN_MODIFIED;
4786 	dir_node->i_flags |= IN_MODIFIED;
4787 #endif
4788 	/* if it is/was a hardlink adjust the file count */
4789 	if (refcnt > 0)
4790 		udf_adjust_filecount(udf_node, -1);
4791 
4792 	/* remove from the dirhash */
4793 	dirhash_remove(dirh, dirent, diroffset,
4794 		udf_fidsize(fid));
4795 
4796 error_out:
4797 	free(fid, M_UDFTEMP);
4798 	free(dirent, M_UDFTEMP);
4799 
4800 	dirhash_put(dir_node->dir_hash);
4801 
4802 	return error;
4803 }
4804 
4805 /* --------------------------------------------------------------------- */
4806 
4807 /*
4808  * We are not allowed to split the fid tag itself over an logical block so
4809  * check the space remaining in the logical block.
4810  *
4811  * We try to select the smallest candidate for recycling or when none is
4812  * found, append a new one at the end of the directory.
4813  */
4814 
4815 int
4816 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
4817 	struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
4818 {
4819 	struct vnode *dvp = dir_node->vnode;
4820 	struct dirhash       *dirh;
4821 	struct dirhash_entry *dirh_ep;
4822 	struct fileid_desc   *fid;
4823 	struct icb_tag       *icbtag;
4824 	struct charspec osta_charspec;
4825 	struct dirent   dirent;
4826 	uint64_t unique_id, dir_size;
4827 	uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
4828 	uint32_t chosen_size, chosen_size_diff;
4829 	int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
4830 	int file_char, refcnt, icbflags, addr_type, hit, error;
4831 
4832 	/* get our dirhash and make sure its read in */
4833 	dirhash_get(&dir_node->dir_hash);
4834 	error = dirhash_fill(dir_node);
4835 	if (error) {
4836 		dirhash_put(dir_node->dir_hash);
4837 		return error;
4838 	}
4839 	dirh = dir_node->dir_hash;
4840 
4841 	/* get info */
4842 	lb_size = udf_rw32(ump->logical_vol->lb_size);
4843 	udf_osta_charset(&osta_charspec);
4844 
4845 	if (dir_node->fe) {
4846 		dir_size = udf_rw64(dir_node->fe->inf_len);
4847 		icbtag   = &dir_node->fe->icbtag;
4848 	} else {
4849 		dir_size = udf_rw64(dir_node->efe->inf_len);
4850 		icbtag   = &dir_node->efe->icbtag;
4851 	}
4852 
4853 	icbflags   = udf_rw16(icbtag->flags);
4854 	addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
4855 
4856 	if (udf_node->fe) {
4857 		unique_id = udf_rw64(udf_node->fe->unique_id);
4858 		refcnt    = udf_rw16(udf_node->fe->link_cnt);
4859 	} else {
4860 		unique_id = udf_rw64(udf_node->efe->unique_id);
4861 		refcnt    = udf_rw16(udf_node->efe->link_cnt);
4862 	}
4863 
4864 	if (refcnt > 0) {
4865 		unique_id = udf_advance_uniqueid(ump);
4866 		udf_adjust_filecount(udf_node, 1);
4867 	}
4868 
4869 	/* determine file characteristics */
4870 	file_char = 0;	/* visible non deleted file and not stream metadata */
4871 	if (vap->va_type == VDIR)
4872 		file_char = UDF_FILE_CHAR_DIR;
4873 
4874 	/* malloc scrap buffer */
4875 	fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO);
4876 
4877 	/* calculate _minimum_ fid size */
4878 	unix_to_udf_name((char *) fid->data, &fid->l_fi,
4879 		cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
4880 	fidsize = UDF_FID_SIZE + fid->l_fi;
4881 	fidsize = (fidsize + 3) & ~3;		/* multiple of 4 */
4882 
4883 	/* find position that will fit the FID */
4884 	chosen_fid_pos   = dir_size;
4885 	chosen_size      = 0;
4886 	chosen_size_diff = UINT_MAX;
4887 
4888 	/* shut up gcc */
4889 	dirent.d_namlen = 0;
4890 
4891 	/* search our dirhash hits */
4892 	error = 0;
4893 	dirh_ep = NULL;
4894 	for (;;) {
4895 		hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep);
4896 		/* if no hit, abort the search */
4897 		if (!hit)
4898 			break;
4899 
4900 		/* check this hit for size */
4901 		this_fidsize = dirh_ep->entry_size;
4902 
4903 		/* check this hit */
4904 		fid_pos     = dirh_ep->offset;
4905 		end_fid_pos = fid_pos + this_fidsize;
4906 		size_diff   = this_fidsize - fidsize;
4907 		lb_rest = lb_size - (end_fid_pos % lb_size);
4908 
4909 #ifndef UDF_COMPLETE_DELETE
4910 		/* transfer a new fid/dirent */
4911 		error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
4912 		if (error)
4913 			goto error_out;
4914 
4915 		/* only reuse entries that are wiped */
4916 		/* check if the len + loc are marked zero */
4917 		if (udf_rw32(fid->icb.len) != 0)
4918 			continue;
4919 		if (udf_rw32(fid->icb.loc.lb_num) != 0)
4920 			continue;
4921 		if (udf_rw16(fid->icb.loc.part_num) != 0)
4922 			continue;
4923 #endif	/* UDF_COMPLETE_DELETE */
4924 
4925 		/* select if not splitting the tag and its smaller */
4926 		if ((size_diff >= 0)  &&
4927 			(size_diff < chosen_size_diff) &&
4928 			(lb_rest >= sizeof(struct desc_tag)))
4929 		{
4930 			/* UDF 2.3.4.2+3 specifies rules for iu size */
4931 			if ((size_diff == 0) || (size_diff >= 32)) {
4932 				chosen_fid_pos   = fid_pos;
4933 				chosen_size      = this_fidsize;
4934 				chosen_size_diff = size_diff;
4935 			}
4936 		}
4937 	}
4938 
4939 
4940 	/* extend directory if no other candidate found */
4941 	if (chosen_size == 0) {
4942 		chosen_fid_pos   = dir_size;
4943 		chosen_size      = fidsize;
4944 		chosen_size_diff = 0;
4945 
4946 		/* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
4947 		if (addr_type == UDF_ICB_INTERN_ALLOC) {
4948 			/* pre-grow directory to see if we're to switch */
4949 			udf_grow_node(dir_node, dir_size + chosen_size);
4950 
4951 			icbflags   = udf_rw16(icbtag->flags);
4952 			addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
4953 		}
4954 
4955 		/* make sure the next fid desc_tag won't be splitted */
4956 		if (addr_type != UDF_ICB_INTERN_ALLOC) {
4957 			end_fid_pos = chosen_fid_pos + chosen_size;
4958 			lb_rest = lb_size - (end_fid_pos % lb_size);
4959 
4960 			/* pad with implementation use regid if needed */
4961 			if (lb_rest < sizeof(struct desc_tag))
4962 				chosen_size += 32;
4963 		}
4964 	}
4965 	chosen_size_diff = chosen_size - fidsize;
4966 
4967 	/* populate the FID */
4968 	memset(fid, 0, lb_size);
4969 	udf_inittag(ump, &fid->tag, TAGID_FID, 0);
4970 	fid->file_version_num    = udf_rw16(1);	/* UDF 2.3.4.1 */
4971 	fid->file_char           = file_char;
4972 	fid->icb                 = udf_node->loc;
4973 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
4974 	fid->l_iu                = udf_rw16(0);
4975 
4976 	if (chosen_size > fidsize) {
4977 		/* insert implementation-use regid to space it correctly */
4978 		fid->l_iu = udf_rw16(chosen_size_diff);
4979 
4980 		/* set implementation use */
4981 		udf_set_regid((struct regid *) fid->data, IMPL_NAME);
4982 		udf_add_impl_regid(ump, (struct regid *) fid->data);
4983 	}
4984 
4985 	/* fill in name */
4986 	unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
4987 		&fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
4988 
4989 	fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH);
4990 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4991 
4992 	/* writeout FID/update parent directory */
4993 	error = vn_rdwr(UIO_WRITE, dvp,
4994 			fid, chosen_size, chosen_fid_pos,
4995 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4996 			FSCRED, NULL, NULL);
4997 
4998 	if (error)
4999 		goto error_out;
5000 
5001 	/* add reference counter in attached node */
5002 	if (udf_node->fe) {
5003 		refcnt = udf_rw16(udf_node->fe->link_cnt);
5004 		udf_node->fe->link_cnt = udf_rw16(refcnt+1);
5005 	} else {
5006 		KASSERT(udf_node->efe);
5007 		refcnt = udf_rw16(udf_node->efe->link_cnt);
5008 		udf_node->efe->link_cnt = udf_rw16(refcnt+1);
5009 	}
5010 
5011 	/* mark not deleted if it was... just in case, but do warn */
5012 	if (udf_node->i_flags & IN_DELETED) {
5013 		printf("udf: warning, marking a file undeleted\n");
5014 		udf_node->i_flags &= ~IN_DELETED;
5015 	}
5016 
5017 	if (file_char & UDF_FILE_CHAR_DIR) {
5018 		/* add reference counter in directory node for '..' */
5019 		if (dir_node->fe) {
5020 			refcnt = udf_rw16(dir_node->fe->link_cnt);
5021 			refcnt++;
5022 			dir_node->fe->link_cnt = udf_rw16(refcnt);
5023 		} else {
5024 			KASSERT(dir_node->efe);
5025 			refcnt = udf_rw16(dir_node->efe->link_cnt);
5026 			refcnt++;
5027 			dir_node->efe->link_cnt = udf_rw16(refcnt);
5028 		}
5029 	}
5030 
5031 	/* append to the dirhash */
5032 	dirent.d_namlen = cnp->cn_namelen;
5033 	memcpy(dirent.d_name, cnp->cn_nameptr, cnp->cn_namelen);
5034 	dirhash_enter(dirh, &dirent, chosen_fid_pos,
5035 		udf_fidsize(fid), 1);
5036 
5037 	/* note updates */
5038 	udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
5039 	/* VN_KNOTE(udf_node,  ...) */
5040 	udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
5041 
5042 error_out:
5043 	free(fid, M_TEMP);
5044 
5045 	dirhash_put(dir_node->dir_hash);
5046 
5047 	return error;
5048 }
5049 
5050 /* --------------------------------------------------------------------- */
5051 
5052 /*
5053  * Each node can have an attached streamdir node though not recursively. These
5054  * are otherwise known as named substreams/named extended attributes that have
5055  * no size limitations.
5056  *
5057  * `Normal' extended attributes are indicated with a number and are recorded
5058  * in either the fe/efe descriptor itself for small descriptors or recorded in
5059  * the attached extended attribute file. Since these spaces can get
5060  * fragmented, care ought to be taken.
5061  *
5062  * Since the size of the space reserved for allocation descriptors is limited,
5063  * there is a mechanim provided for extending this space; this is done by a
5064  * special extent to allow schrinking of the allocations without breaking the
5065  * linkage to the allocation extent descriptor.
5066  */
5067 
5068 int
5069 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
5070 	     struct udf_node **udf_noderes)
5071 {
5072 	union dscrptr   *dscr;
5073 	struct udf_node *udf_node;
5074 	struct vnode    *nvp;
5075 	struct long_ad   icb_loc, last_fe_icb_loc;
5076 	uint64_t file_size;
5077 	uint32_t lb_size, sector, dummy;
5078 	uint8_t  *file_data;
5079 	int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
5080 	int slot, eof, error;
5081 
5082 	DPRINTF(NODE, ("udf_get_node called\n"));
5083 	*udf_noderes = udf_node = NULL;
5084 
5085 	/* lock to disallow simultanious creation of same udf_node */
5086 	mutex_enter(&ump->get_node_lock);
5087 
5088 	DPRINTF(NODE, ("\tlookup in hash table\n"));
5089 	/* lookup in hash table */
5090 	assert(ump);
5091 	assert(node_icb_loc);
5092 	udf_node = udf_hash_lookup(ump, node_icb_loc);
5093 	if (udf_node) {
5094 		DPRINTF(NODE, ("\tgot it from the hash!\n"));
5095 		/* vnode is returned locked */
5096 		*udf_noderes = udf_node;
5097 		mutex_exit(&ump->get_node_lock);
5098 		return 0;
5099 	}
5100 
5101 	/* garbage check: translate udf_node_icb_loc to sectornr */
5102 	error = udf_translate_vtop(ump, node_icb_loc, &sector, &dummy);
5103 	if (error) {
5104 		/* no use, this will fail anyway */
5105 		mutex_exit(&ump->get_node_lock);
5106 		return EINVAL;
5107 	}
5108 
5109 	/* build udf_node (do initialise!) */
5110 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5111 	memset(udf_node, 0, sizeof(struct udf_node));
5112 
5113 	DPRINTF(NODE, ("\tget new vnode\n"));
5114 	/* give it a vnode */
5115 	error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
5116         if (error) {
5117 		pool_put(&udf_node_pool, udf_node);
5118 		mutex_exit(&ump->get_node_lock);
5119 		return error;
5120 	}
5121 
5122 	/* always return locked vnode */
5123 	if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
5124 		/* recycle vnode and unlock; simultanious will fail too */
5125 		ungetnewvnode(nvp);
5126 		mutex_exit(&ump->get_node_lock);
5127 		return error;
5128 	}
5129 
5130 	/* initialise crosslinks, note location of fe/efe for hashing */
5131 	udf_node->ump    =  ump;
5132 	udf_node->vnode  =  nvp;
5133 	nvp->v_data      =  udf_node;
5134 	udf_node->loc    = *node_icb_loc;
5135 	udf_node->lockf  =  0;
5136 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5137 	cv_init(&udf_node->node_lock, "udf_nlk");
5138 	genfs_node_init(nvp, &udf_genfsops);	/* inititise genfs */
5139 	udf_node->outstanding_bufs = 0;
5140 	udf_node->outstanding_nodedscr = 0;
5141 
5142 	/* check if we're fetching the root */
5143 	if (ump->fileset_desc)
5144 		if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb,
5145 		    sizeof(struct long_ad)) == 0)
5146 			nvp->v_vflag |= VV_ROOT;
5147 
5148 	/* insert into the hash lookup */
5149 	udf_register_node(udf_node);
5150 
5151 	/* safe to unlock, the entry is in the hash table, vnode is locked */
5152 	mutex_exit(&ump->get_node_lock);
5153 
5154 	icb_loc = *node_icb_loc;
5155 	needs_indirect = 0;
5156 	strat4096 = 0;
5157 	udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
5158 	file_size = 0;
5159 	file_data = NULL;
5160 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5161 
5162 	DPRINTF(NODE, ("\tstart reading descriptors\n"));
5163 	do {
5164 		/* try to read in fe/efe */
5165 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5166 
5167 		/* blank sector marks end of sequence, check this */
5168 		if ((dscr == NULL) &&  (!strat4096))
5169 			error = ENOENT;
5170 
5171 		/* break if read error or blank sector */
5172 		if (error || (dscr == NULL))
5173 			break;
5174 
5175 		/* process descriptor based on the descriptor type */
5176 		dscr_type = udf_rw16(dscr->tag.id);
5177 		DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
5178 
5179 		/* if dealing with an indirect entry, follow the link */
5180 		if (dscr_type == TAGID_INDIRECTENTRY) {
5181 			needs_indirect = 0;
5182 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
5183 			icb_loc = dscr->inde.indirect_icb;
5184 			continue;
5185 		}
5186 
5187 		/* only file entries and extended file entries allowed here */
5188 		if ((dscr_type != TAGID_FENTRY) &&
5189 		    (dscr_type != TAGID_EXTFENTRY)) {
5190 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
5191 			error = ENOENT;
5192 			break;
5193 		}
5194 
5195 		KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
5196 
5197 		/* choose this one */
5198 		last_fe_icb_loc = icb_loc;
5199 
5200 		/* record and process/update (ext)fentry */
5201 		file_data = NULL;
5202 		if (dscr_type == TAGID_FENTRY) {
5203 			if (udf_node->fe)
5204 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5205 					udf_node->fe);
5206 			udf_node->fe  = &dscr->fe;
5207 			strat = udf_rw16(udf_node->fe->icbtag.strat_type);
5208 			udf_file_type = udf_node->fe->icbtag.file_type;
5209 			file_size = udf_rw64(udf_node->fe->inf_len);
5210 			file_data = udf_node->fe->data;
5211 		} else {
5212 			if (udf_node->efe)
5213 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5214 					udf_node->efe);
5215 			udf_node->efe = &dscr->efe;
5216 			strat = udf_rw16(udf_node->efe->icbtag.strat_type);
5217 			udf_file_type = udf_node->efe->icbtag.file_type;
5218 			file_size = udf_rw64(udf_node->efe->inf_len);
5219 			file_data = udf_node->efe->data;
5220 		}
5221 
5222 		/* check recording strategy (structure) */
5223 
5224 		/*
5225 		 * Strategy 4096 is a daisy linked chain terminating with an
5226 		 * unrecorded sector or a TERM descriptor. The next
5227 		 * descriptor is to be found in the sector that follows the
5228 		 * current sector.
5229 		 */
5230 		if (strat == 4096) {
5231 			strat4096 = 1;
5232 			needs_indirect = 1;
5233 
5234 			icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
5235 		}
5236 
5237 		/*
5238 		 * Strategy 4 is the normal strategy and terminates, but if
5239 		 * we're in strategy 4096, we can't have strategy 4 mixed in
5240 		 */
5241 
5242 		if (strat == 4) {
5243 			if (strat4096) {
5244 				error = EINVAL;
5245 				break;
5246 			}
5247 			break;		/* done */
5248 		}
5249 	} while (!error);
5250 
5251 	/* first round of cleanup code */
5252 	if (error) {
5253 		DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
5254 		/* recycle udf_node */
5255 		udf_dispose_node(udf_node);
5256 
5257 		vlockmgr(nvp->v_vnlock, LK_RELEASE);
5258 		nvp->v_data = NULL;
5259 		ungetnewvnode(nvp);
5260 
5261 		return EINVAL;		/* error code ok? */
5262 	}
5263 	DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
5264 
5265 	/* assert no references to dscr anymore beyong this point */
5266 	assert((udf_node->fe) || (udf_node->efe));
5267 	dscr = NULL;
5268 
5269 	/*
5270 	 * Remember where to record an updated version of the descriptor. If
5271 	 * there is a sequence of indirect entries, icb_loc will have been
5272 	 * updated. Its the write disipline to allocate new space and to make
5273 	 * sure the chain is maintained.
5274 	 *
5275 	 * `needs_indirect' flags if the next location is to be filled with
5276 	 * with an indirect entry.
5277 	 */
5278 	udf_node->write_loc = icb_loc;
5279 	udf_node->needs_indirect = needs_indirect;
5280 
5281 	/*
5282 	 * Go trough all allocations extents of this descriptor and when
5283 	 * encountering a redirect read in the allocation extension. These are
5284 	 * daisy-chained.
5285 	 */
5286 	UDF_LOCK_NODE(udf_node, 0);
5287 	udf_node->num_extensions = 0;
5288 
5289 	error   = 0;
5290 	slot    = 0;
5291 	for (;;) {
5292 		udf_get_adslot(udf_node, slot, &icb_loc, &eof);
5293 		DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
5294 			"lb_num = %d, part = %d\n", slot, eof,
5295 			UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
5296 			UDF_EXT_LEN(udf_rw32(icb_loc.len)),
5297 			udf_rw32(icb_loc.loc.lb_num),
5298 			udf_rw16(icb_loc.loc.part_num)));
5299 		if (eof)
5300 			break;
5301 		slot++;
5302 
5303 		if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
5304 			continue;
5305 
5306 		DPRINTF(NODE, ("\tgot redirect extent\n"));
5307 		if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
5308 			DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
5309 					"too many allocation extensions on "
5310 					"udf_node\n"));
5311 			error = EINVAL;
5312 			break;
5313 		}
5314 
5315 		/* length can only be *one* lb : UDF 2.50/2.3.7.1 */
5316 		if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
5317 			DPRINTF(ALLOC, ("udf_get_node: bad allocation "
5318 					"extension size in udf_node\n"));
5319 			error = EINVAL;
5320 			break;
5321 		}
5322 
5323 		DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
5324 			UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
5325 		/* load in allocation extent */
5326 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5327 		if (error || (dscr == NULL))
5328 			break;
5329 
5330 		/* process read-in descriptor */
5331 		dscr_type = udf_rw16(dscr->tag.id);
5332 
5333 		if (dscr_type != TAGID_ALLOCEXTENT) {
5334 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
5335 			error = ENOENT;
5336 			break;
5337 		}
5338 
5339 		DPRINTF(NODE, ("\trecording redirect extent\n"));
5340 		udf_node->ext[udf_node->num_extensions] = &dscr->aee;
5341 		udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
5342 
5343 		udf_node->num_extensions++;
5344 
5345 	} /* while */
5346 	UDF_UNLOCK_NODE(udf_node, 0);
5347 
5348 	/* second round of cleanup code */
5349 	if (error) {
5350 		/* recycle udf_node */
5351 		udf_dispose_node(udf_node);
5352 
5353 		vlockmgr(nvp->v_vnlock, LK_RELEASE);
5354 		nvp->v_data = NULL;
5355 		ungetnewvnode(nvp);
5356 
5357 		return EINVAL;		/* error code ok? */
5358 	}
5359 
5360 	DPRINTF(NODE, ("\tnode read in fine\n"));
5361 
5362 	/*
5363 	 * Translate UDF filetypes into vnode types.
5364 	 *
5365 	 * Systemfiles like the meta main and mirror files are not treated as
5366 	 * normal files, so we type them as having no type. UDF dictates that
5367 	 * they are not allowed to be visible.
5368 	 */
5369 
5370 	switch (udf_file_type) {
5371 	case UDF_ICB_FILETYPE_DIRECTORY :
5372 	case UDF_ICB_FILETYPE_STREAMDIR :
5373 		nvp->v_type = VDIR;
5374 		break;
5375 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
5376 		nvp->v_type = VBLK;
5377 		break;
5378 	case UDF_ICB_FILETYPE_CHARDEVICE :
5379 		nvp->v_type = VCHR;
5380 		break;
5381 	case UDF_ICB_FILETYPE_SOCKET :
5382 		nvp->v_type = VSOCK;
5383 		break;
5384 	case UDF_ICB_FILETYPE_FIFO :
5385 		nvp->v_type = VFIFO;
5386 		break;
5387 	case UDF_ICB_FILETYPE_SYMLINK :
5388 		nvp->v_type = VLNK;
5389 		break;
5390 	case UDF_ICB_FILETYPE_VAT :
5391 	case UDF_ICB_FILETYPE_META_MAIN :
5392 	case UDF_ICB_FILETYPE_META_MIRROR :
5393 		nvp->v_type = VNON;
5394 		break;
5395 	case UDF_ICB_FILETYPE_RANDOMACCESS :
5396 	case UDF_ICB_FILETYPE_REALTIME :
5397 		nvp->v_type = VREG;
5398 		break;
5399 	default:
5400 		/* YIKES, something else */
5401 		nvp->v_type = VNON;
5402 	}
5403 
5404 	/* TODO specfs, fifofs etc etc. vnops setting */
5405 
5406 	/* don't forget to set vnode's v_size */
5407 	uvm_vnp_setsize(nvp, file_size);
5408 
5409 	/* TODO ext attr and streamdir udf_nodes */
5410 
5411 	*udf_noderes = udf_node;
5412 
5413 	return 0;
5414 }
5415 
5416 /* --------------------------------------------------------------------- */
5417 
5418 int
5419 udf_writeout_node(struct udf_node *udf_node, int waitfor)
5420 {
5421 	union dscrptr *dscr;
5422 	struct long_ad *loc;
5423 	int extnr, error;
5424 
5425 	DPRINTF(NODE, ("udf_writeout_node called\n"));
5426 
5427 	KASSERT(udf_node->outstanding_bufs == 0);
5428 	KASSERT(udf_node->outstanding_nodedscr == 0);
5429 
5430 	KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
5431 
5432 	if (udf_node->i_flags & IN_DELETED) {
5433 		DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
5434 		return 0;
5435 	}
5436 
5437 	/* lock node */
5438 	UDF_LOCK_NODE(udf_node, 0);
5439 
5440 	/* at least one descriptor writeout */
5441 	udf_node->outstanding_nodedscr = 1;
5442 
5443 	/* we're going to write out the descriptor so clear the flags */
5444 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
5445 
5446 	/* if we were rebuild, write out the allocation extents */
5447 	if (udf_node->i_flags & IN_NODE_REBUILD) {
5448 		/* mark outstanding node descriptors and issue them */
5449 		udf_node->outstanding_nodedscr += udf_node->num_extensions;
5450 		for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5451 			loc = &udf_node->ext_loc[extnr];
5452 			dscr = (union dscrptr *) udf_node->ext[extnr];
5453 			error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
5454 			if (error)
5455 				return error;
5456 		}
5457 		/* mark allocation extents written out */
5458 		udf_node->i_flags &= ~(IN_NODE_REBUILD);
5459 	}
5460 
5461 	if (udf_node->fe) {
5462 		KASSERT(udf_node->efe == NULL);
5463 		dscr = (union dscrptr *) udf_node->fe;
5464 	} else {
5465 		KASSERT(udf_node->efe);
5466 		KASSERT(udf_node->fe == NULL);
5467 		dscr = (union dscrptr *) udf_node->efe;
5468 	}
5469 	KASSERT(dscr);
5470 
5471 	loc = &udf_node->write_loc;
5472 	error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
5473 	return error;
5474 }
5475 
5476 /* --------------------------------------------------------------------- */
5477 
5478 int
5479 udf_dispose_node(struct udf_node *udf_node)
5480 {
5481 	struct vnode *vp;
5482 	int extnr;
5483 
5484 	DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
5485 	if (!udf_node) {
5486 		DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
5487 		return 0;
5488 	}
5489 
5490 	vp  = udf_node->vnode;
5491 #ifdef DIAGNOSTIC
5492 	if (vp->v_numoutput)
5493 		panic("disposing UDF node with pending I/O's, udf_node = %p, "
5494 				"v_numoutput = %d", udf_node, vp->v_numoutput);
5495 #endif
5496 
5497 	/* wait until out of sync (just in case we happen to stumble over one */
5498 	KASSERT(!mutex_owned(&mntvnode_lock));
5499 	mutex_enter(&mntvnode_lock);
5500 	while (udf_node->i_flags & IN_SYNCED) {
5501 		cv_timedwait(&udf_node->ump->dirtynodes_cv, &mntvnode_lock,
5502 			hz/16);
5503 	}
5504 	mutex_exit(&mntvnode_lock);
5505 
5506 	/* TODO extended attributes and streamdir */
5507 
5508 	/* remove dirhash if present */
5509 	dirhash_purge(&udf_node->dir_hash);
5510 
5511 	/* remove from our hash lookup table */
5512 	udf_deregister_node(udf_node);
5513 
5514 	/* destroy our lock */
5515 	mutex_destroy(&udf_node->node_mutex);
5516 	cv_destroy(&udf_node->node_lock);
5517 
5518 	/* dissociate our udf_node from the vnode */
5519 	genfs_node_destroy(udf_node->vnode);
5520 	vp->v_data = NULL;
5521 
5522 	/* free associated memory and the node itself */
5523 	for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5524 		udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
5525 			udf_node->ext[extnr]);
5526 		udf_node->ext[extnr] = (void *) 0xdeadcccc;
5527 	}
5528 
5529 	if (udf_node->fe)
5530 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5531 			udf_node->fe);
5532 	if (udf_node->efe)
5533 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5534 			udf_node->efe);
5535 
5536 	udf_node->fe  = (void *) 0xdeadaaaa;
5537 	udf_node->efe = (void *) 0xdeadbbbb;
5538 	udf_node->ump = (void *) 0xdeadbeef;
5539 	pool_put(&udf_node_pool, udf_node);
5540 
5541 	return 0;
5542 }
5543 
5544 
5545 
5546 /*
5547  * create a new node using the specified vnodeops, vap and cnp but with the
5548  * udf_file_type. This allows special files to be created. Use with care.
5549  */
5550 
5551 static int
5552 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type,
5553 	int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp)
5554 {
5555 	union dscrptr *dscr;
5556 	struct udf_node *dir_node = VTOI(dvp);;
5557 	struct udf_node *udf_node;
5558 	struct udf_mount *ump = dir_node->ump;
5559 	struct vnode *nvp;
5560 	struct long_ad node_icb_loc;
5561 	uint64_t parent_unique_id;
5562 	uint64_t lmapping;
5563 	uint32_t lb_size, lb_num;
5564 	uint16_t vpart_num;
5565 	uid_t uid;
5566 	gid_t gid, parent_gid;
5567 	int fid_size, error;
5568 
5569 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5570 	*vpp = NULL;
5571 
5572 	/* allocate vnode */
5573 	error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, &nvp);
5574         if (error)
5575 		return error;
5576 
5577 	/* lock node */
5578 	error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY);
5579 	if (error) {
5580 		nvp->v_data = NULL;
5581 		ungetnewvnode(nvp);
5582 		return error;
5583 	}
5584 
5585 	/* get disc allocation for one logical block */
5586 	vpart_num = ump->node_part;
5587 	error = udf_pre_allocate_space(ump, UDF_C_NODE, 1,
5588 			vpart_num, &lmapping);
5589 	lb_num = lmapping;
5590 	if (error) {
5591 		vlockmgr(nvp->v_vnlock, LK_RELEASE);
5592 		ungetnewvnode(nvp);
5593 		return error;
5594 	}
5595 
5596 	/* initialise pointer to location */
5597 	memset(&node_icb_loc, 0, sizeof(struct long_ad));
5598 	node_icb_loc.len = udf_rw32(lb_size);
5599 	node_icb_loc.loc.lb_num   = udf_rw32(lb_num);
5600 	node_icb_loc.loc.part_num = udf_rw16(vpart_num);
5601 
5602 	/* build udf_node (do initialise!) */
5603 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5604 	memset(udf_node, 0, sizeof(struct udf_node));
5605 
5606 	/* initialise crosslinks, note location of fe/efe for hashing */
5607 	/* bugalert: synchronise with udf_get_node() */
5608 	udf_node->ump       = ump;
5609 	udf_node->vnode     = nvp;
5610 	nvp->v_data         = udf_node;
5611 	udf_node->loc       = node_icb_loc;
5612 	udf_node->write_loc = node_icb_loc;
5613 	udf_node->lockf     = 0;
5614 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5615 	cv_init(&udf_node->node_lock, "udf_nlk");
5616 	udf_node->outstanding_bufs = 0;
5617 	udf_node->outstanding_nodedscr = 0;
5618 
5619 	/* initialise genfs */
5620 	genfs_node_init(nvp, &udf_genfsops);
5621 
5622 	/* insert into the hash lookup */
5623 	udf_register_node(udf_node);
5624 
5625 	/* get parent's unique ID for refering '..' if its a directory */
5626 	if (dir_node->fe) {
5627 		parent_unique_id = udf_rw64(dir_node->fe->unique_id);
5628 		parent_gid       = (gid_t) udf_rw32(dir_node->fe->gid);
5629 	} else {
5630 		parent_unique_id = udf_rw64(dir_node->efe->unique_id);
5631 		parent_gid       = (gid_t) udf_rw32(dir_node->efe->gid);
5632 	}
5633 
5634 	/* get descriptor */
5635 	udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
5636 
5637 	/* choose a fe or an efe for it */
5638 	if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
5639 		udf_node->fe = &dscr->fe;
5640 		fid_size = udf_create_new_fe(ump, udf_node->fe,
5641 			udf_file_type, &udf_node->loc,
5642 			&dir_node->loc, parent_unique_id);
5643 		/* TODO add extended attribute for creation time */
5644 	} else {
5645 		udf_node->efe = &dscr->efe;
5646 		fid_size = udf_create_new_efe(ump, udf_node->efe,
5647 			udf_file_type, &udf_node->loc,
5648 			&dir_node->loc, parent_unique_id);
5649 	}
5650 	KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
5651 
5652 	/* update vnode's size and type */
5653 	nvp->v_type = vap->va_type;
5654 	uvm_vnp_setsize(nvp, fid_size);
5655 
5656 	/* set access mode */
5657 	udf_setaccessmode(udf_node, vap->va_mode);
5658 
5659 	/* set ownership */
5660 	uid = kauth_cred_geteuid(cnp->cn_cred);
5661 	gid = parent_gid;
5662 	udf_setownership(udf_node, uid, gid);
5663 
5664 	error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
5665 	if (error) {
5666 		/* free disc allocation for node */
5667 		udf_free_allocated_space(ump, lb_num, vpart_num, 1);
5668 
5669 		/* recycle udf_node */
5670 		udf_dispose_node(udf_node);
5671 		vput(nvp);
5672 
5673 		*vpp = NULL;
5674 		return error;
5675 	}
5676 
5677 	/* adjust file count */
5678 	udf_adjust_filecount(udf_node, 1);
5679 
5680 	/* return result */
5681 	*vpp = nvp;
5682 
5683 	return 0;
5684 }
5685 
5686 
5687 int
5688 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
5689 	struct componentname *cnp)
5690 {
5691 	int (**vnodeops)(void *);
5692 	int udf_file_type;
5693 
5694 	DPRINTF(NODE, ("udf_create_node called\n"));
5695 
5696 	/* what type are we creating ? */
5697 	vnodeops = udf_vnodeop_p;
5698 	/* start with a default */
5699 	udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5700 
5701 	*vpp = NULL;
5702 
5703 	switch (vap->va_type) {
5704 	case VREG :
5705 		udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5706 		break;
5707 	case VDIR :
5708 		udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
5709 		break;
5710 	case VLNK :
5711 		udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
5712 		break;
5713 	case VBLK :
5714 		udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
5715 		/* specfs */
5716 		return ENOTSUP;
5717 		break;
5718 	case VCHR :
5719 		udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
5720 		/* specfs */
5721 		return ENOTSUP;
5722 		break;
5723 	case VFIFO :
5724 		udf_file_type = UDF_ICB_FILETYPE_FIFO;
5725 		/* specfs */
5726 		return ENOTSUP;
5727 		break;
5728 	case VSOCK :
5729 		udf_file_type = UDF_ICB_FILETYPE_SOCKET;
5730 		/* specfs */
5731 		return ENOTSUP;
5732 		break;
5733 	case VNON :
5734 	case VBAD :
5735 	default :
5736 		/* nothing; can we even create these? */
5737 		return EINVAL;
5738 	}
5739 
5740 	return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp);
5741 }
5742 
5743 /* --------------------------------------------------------------------- */
5744 
5745 static void
5746 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
5747 {
5748 	struct udf_mount *ump = udf_node->ump;
5749 	uint32_t lb_size, lb_num, len, num_lb;
5750 	uint16_t vpart_num;
5751 
5752 	/* is there really one? */
5753 	if (mem == NULL)
5754 		return;
5755 
5756 	/* got a descriptor here */
5757 	len       = UDF_EXT_LEN(udf_rw32(loc->len));
5758 	lb_num    = udf_rw32(loc->loc.lb_num);
5759 	vpart_num = udf_rw16(loc->loc.part_num);
5760 
5761 	lb_size = udf_rw32(ump->logical_vol->lb_size);
5762 	num_lb = (len + lb_size -1) / lb_size;
5763 
5764 	udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
5765 }
5766 
5767 void
5768 udf_delete_node(struct udf_node *udf_node)
5769 {
5770 	void *dscr;
5771 	struct udf_mount *ump;
5772 	struct long_ad *loc;
5773 	int extnr, lvint, dummy;
5774 
5775 	ump = udf_node->ump;
5776 
5777 	/* paranoia check on integrity; should be open!; we could panic */
5778 	lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
5779 	if (lvint == UDF_INTEGRITY_CLOSED)
5780 		printf("\tIntegrity was CLOSED!\n");
5781 
5782 	/* whatever the node type, change its size to zero */
5783 	(void) udf_resize_node(udf_node, 0, &dummy);
5784 
5785 	/* force it to be `clean'; no use writing it out */
5786 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
5787 		IN_CHANGE | IN_UPDATE | IN_MODIFY);
5788 
5789 	/* adjust file count */
5790 	udf_adjust_filecount(udf_node, -1);
5791 
5792 	/*
5793 	 * Free its allocated descriptors; memory will be released when
5794 	 * vop_reclaim() is called.
5795 	 */
5796 	loc = &udf_node->loc;
5797 
5798 	dscr = udf_node->fe;
5799 	udf_free_descriptor_space(udf_node, loc, dscr);
5800 	dscr = udf_node->efe;
5801 	udf_free_descriptor_space(udf_node, loc, dscr);
5802 
5803 	for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
5804 		dscr =  udf_node->ext[extnr];
5805 		loc  = &udf_node->ext_loc[extnr];
5806 		udf_free_descriptor_space(udf_node, loc, dscr);
5807 	}
5808 }
5809 
5810 /* --------------------------------------------------------------------- */
5811 
5812 /* set new filesize; node but be LOCKED on entry and is locked on exit */
5813 int
5814 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
5815 {
5816 	struct file_entry    *fe  = udf_node->fe;
5817 	struct extfile_entry *efe = udf_node->efe;
5818 	uint64_t file_size;
5819 	int error;
5820 
5821 	if (fe) {
5822 		file_size  = udf_rw64(fe->inf_len);
5823 	} else {
5824 		assert(udf_node->efe);
5825 		file_size  = udf_rw64(efe->inf_len);
5826 	}
5827 
5828 	DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
5829 			file_size, new_size));
5830 
5831 	/* if not changing, we're done */
5832 	if (file_size == new_size)
5833 		return 0;
5834 
5835 	*extended = (new_size > file_size);
5836 	if (*extended) {
5837 		error = udf_grow_node(udf_node, new_size);
5838 	} else {
5839 		error = udf_shrink_node(udf_node, new_size);
5840 	}
5841 
5842 	return error;
5843 }
5844 
5845 
5846 /* --------------------------------------------------------------------- */
5847 
5848 void
5849 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
5850 	struct timespec *mod, struct timespec *birth)
5851 {
5852 	struct timespec now;
5853 	struct file_entry    *fe;
5854 	struct extfile_entry *efe;
5855 	struct filetimes_extattr_entry *ft_extattr;
5856 	struct timestamp *atime, *mtime, *attrtime, *ctime;
5857 	struct timestamp  fe_ctime;
5858 	struct timespec   cur_birth;
5859 	uint32_t offset, a_l;
5860 	uint8_t *filedata;
5861 	int error;
5862 
5863 	/* protect against rogue values */
5864 	if (!udf_node)
5865 		return;
5866 
5867 	fe  = udf_node->fe;
5868 	efe = udf_node->efe;
5869 
5870 	if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
5871 		return;
5872 
5873 	/* get descriptor information */
5874 	if (fe) {
5875 		atime    = &fe->atime;
5876 		mtime    = &fe->mtime;
5877 		attrtime = &fe->attrtime;
5878 		filedata = fe->data;
5879 
5880 		/* initial save dummy setting */
5881 		ctime    = &fe_ctime;
5882 
5883 		/* check our extended attribute if present */
5884 		error = udf_extattr_search_intern(udf_node,
5885 			UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
5886 		if (!error) {
5887 			ft_extattr = (struct filetimes_extattr_entry *)
5888 				(filedata + offset);
5889 			if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
5890 				ctime = &ft_extattr->times[0];
5891 		}
5892 		/* TODO create the extended attribute if not found ? */
5893 	} else {
5894 		assert(udf_node->efe);
5895 		atime    = &efe->atime;
5896 		mtime    = &efe->mtime;
5897 		attrtime = &efe->attrtime;
5898 		ctime    = &efe->ctime;
5899 	}
5900 
5901 	vfs_timestamp(&now);
5902 
5903 	/* set access time */
5904 	if (udf_node->i_flags & IN_ACCESS) {
5905 		if (acc == NULL)
5906 			acc = &now;
5907 		udf_timespec_to_timestamp(acc, atime);
5908 	}
5909 
5910 	/* set modification time */
5911 	if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
5912 		if (mod == NULL)
5913 			mod = &now;
5914 		udf_timespec_to_timestamp(mod, mtime);
5915 
5916 		/* ensure birthtime is older than set modification! */
5917 		udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
5918 		if ((cur_birth.tv_sec > mod->tv_sec) ||
5919 			  ((cur_birth.tv_sec == mod->tv_sec) &&
5920 			     (cur_birth.tv_nsec > mod->tv_nsec))) {
5921 			udf_timespec_to_timestamp(mod, ctime);
5922 		}
5923 	}
5924 
5925 	/* update birthtime if specified */
5926 	/* XXX we asume here that given birthtime is older than mod */
5927 	if (birth && (birth->tv_sec != VNOVAL)) {
5928 		udf_timespec_to_timestamp(birth, ctime);
5929 	}
5930 
5931 	/* set change time */
5932 	if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
5933 		udf_timespec_to_timestamp(&now, attrtime);
5934 
5935 	/* notify updates to the node itself */
5936 	if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
5937 		udf_node->i_flags |= IN_ACCESSED;
5938 	if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
5939 		udf_node->i_flags |= IN_MODIFIED;
5940 
5941 	/* clear modification flags */
5942 	udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
5943 }
5944 
5945 /* --------------------------------------------------------------------- */
5946 
5947 int
5948 udf_update(struct vnode *vp, struct timespec *acc,
5949 	struct timespec *mod, struct timespec *birth, int updflags)
5950 {
5951 	union dscrptr *dscrptr;
5952 	struct udf_node  *udf_node = VTOI(vp);
5953 	struct udf_mount *ump = udf_node->ump;
5954 	struct regid     *impl_id;
5955 	int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
5956 	int waitfor, flags;
5957 
5958 #ifdef DEBUG
5959 	char bits[128];
5960 	DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
5961 		updflags));
5962 	snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags);
5963 	DPRINTF(CALL, ("\tnode flags %s\n", bits));
5964 	DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
5965 #endif
5966 
5967 	/* set our times */
5968 	udf_itimes(udf_node, acc, mod, birth);
5969 
5970 	/* set our implementation id */
5971 	if (udf_node->fe) {
5972 		dscrptr = (union dscrptr *) udf_node->fe;
5973 		impl_id = &udf_node->fe->imp_id;
5974 	} else {
5975 		dscrptr = (union dscrptr *) udf_node->efe;
5976 		impl_id = &udf_node->efe->imp_id;
5977 	}
5978 
5979 	/* set our ID */
5980 	udf_set_regid(impl_id, IMPL_NAME);
5981 	udf_add_impl_regid(ump, impl_id);
5982 
5983 	/* update our crc! on RMW we are not allowed to change a thing */
5984 	udf_validate_tag_and_crc_sums(dscrptr);
5985 
5986 	/* if called when mounted readonly, never write back */
5987 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
5988 		return 0;
5989 
5990 	/* check if the node is dirty 'enough'*/
5991 	if (updflags & UPDATE_CLOSE) {
5992 		flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
5993 	} else {
5994 		flags = udf_node->i_flags & IN_MODIFIED;
5995 	}
5996 	if (flags == 0)
5997 		return 0;
5998 
5999 	/* determine if we need to write sync or async */
6000 	waitfor = 0;
6001 	if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
6002 		/* sync mounted */
6003 		waitfor = updflags & UPDATE_WAIT;
6004 		if (updflags & UPDATE_DIROP)
6005 			waitfor |= UPDATE_WAIT;
6006 	}
6007 	if (waitfor)
6008 		return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
6009 
6010 	return 0;
6011 }
6012 
6013 
6014 /* --------------------------------------------------------------------- */
6015 
6016 
6017 /*
6018  * Read one fid and process it into a dirent and advance to the next (*fid)
6019  * has to be allocated a logical block in size, (*dirent) struct dirent length
6020  */
6021 
6022 int
6023 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
6024 		    struct fileid_desc *fid, struct dirent *dirent)
6025 {
6026 	struct udf_node  *dir_node = VTOI(vp);
6027 	struct udf_mount *ump = dir_node->ump;
6028 	struct file_entry    *fe  = dir_node->fe;
6029 	struct extfile_entry *efe = dir_node->efe;
6030 	uint32_t      fid_size, lb_size;
6031 	uint64_t      file_size;
6032 	char         *fid_name;
6033 	int           enough, error;
6034 
6035 	assert(fid);
6036 	assert(dirent);
6037 	assert(dir_node);
6038 	assert(offset);
6039 	assert(*offset != 1);
6040 
6041 	DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
6042 	/* check if we're past the end of the directory */
6043 	if (fe) {
6044 		file_size = udf_rw64(fe->inf_len);
6045 	} else {
6046 		assert(dir_node->efe);
6047 		file_size = udf_rw64(efe->inf_len);
6048 	}
6049 	if (*offset >= file_size)
6050 		return EINVAL;
6051 
6052 	/* get maximum length of FID descriptor */
6053 	lb_size = udf_rw32(ump->logical_vol->lb_size);
6054 
6055 	/* initialise return values */
6056 	fid_size = 0;
6057 	memset(dirent, 0, sizeof(struct dirent));
6058 	memset(fid, 0, lb_size);
6059 
6060 	enough  = (file_size - (*offset) >= UDF_FID_SIZE);
6061 	if (!enough) {
6062 		/* short dir ... */
6063 		return EIO;
6064 	}
6065 
6066 	error = vn_rdwr(UIO_READ, vp,
6067 			fid, MIN(file_size - (*offset), lb_size), *offset,
6068 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
6069 			NULL, NULL);
6070 	if (error)
6071 		return error;
6072 
6073 	DPRINTF(FIDS, ("\tfid piece read in fine\n"));
6074 	/*
6075 	 * Check if we got a whole descriptor.
6076 	 * TODO Try to `resync' directory stream when something is very wrong.
6077 	 */
6078 
6079 	/* check if our FID header is OK */
6080 	error = udf_check_tag(fid);
6081 	if (error) {
6082 		goto brokendir;
6083 	}
6084 	DPRINTF(FIDS, ("\ttag check ok\n"));
6085 
6086 	if (udf_rw16(fid->tag.id) != TAGID_FID) {
6087 		error = EIO;
6088 		goto brokendir;
6089 	}
6090 	DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
6091 
6092 	/* check for length */
6093 	fid_size = udf_fidsize(fid);
6094 	enough = (file_size - (*offset) >= fid_size);
6095 	if (!enough) {
6096 		error = EIO;
6097 		goto brokendir;
6098 	}
6099 	DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
6100 
6101 	/* check FID contents */
6102 	error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
6103 brokendir:
6104 	if (error) {
6105 		/* note that is sometimes a bit quick to report */
6106 		printf("UDF: BROKEN DIRECTORY ENTRY\n");
6107 		/* RESYNC? */
6108 		/* TODO: use udf_resync_fid_stream */
6109 		return EIO;
6110 	}
6111 	DPRINTF(FIDS, ("\tpayload checked ok\n"));
6112 
6113 	/* we got a whole and valid descriptor! */
6114 	DPRINTF(FIDS, ("\tinterpret FID\n"));
6115 
6116 	/* create resulting dirent structure */
6117 	fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
6118 	udf_to_unix_name(dirent->d_name, MAXNAMLEN,
6119 		fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
6120 
6121 	/* '..' has no name, so provide one */
6122 	if (fid->file_char & UDF_FILE_CHAR_PAR)
6123 		strcpy(dirent->d_name, "..");
6124 
6125 	dirent->d_fileno = udf_calchash(&fid->icb);	/* inode hash XXX */
6126 	dirent->d_namlen = strlen(dirent->d_name);
6127 	dirent->d_reclen = _DIRENT_SIZE(dirent);
6128 
6129 	/*
6130 	 * Note that its not worth trying to go for the filetypes now... its
6131 	 * too expensive too
6132 	 */
6133 	dirent->d_type = DT_UNKNOWN;
6134 
6135 	/* initial guess for filetype we can make */
6136 	if (fid->file_char & UDF_FILE_CHAR_DIR)
6137 		dirent->d_type = DT_DIR;
6138 
6139 	/* advance */
6140 	*offset += fid_size;
6141 
6142 	return error;
6143 }
6144 
6145 
6146 /* --------------------------------------------------------------------- */
6147 
6148 static void
6149 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor,
6150 	int pass, int *ndirty)
6151 {
6152 	struct udf_node *udf_node, *n_udf_node;
6153 	struct vnode *vp;
6154 	int vdirty, error;
6155 	int on_type, on_flags, on_vnode;
6156 
6157 derailed:
6158 	KASSERT(mutex_owned(&mntvnode_lock));
6159 
6160 	DPRINTF(SYNC, ("sync_pass %d\n", pass));
6161 	udf_node = LIST_FIRST(&ump->sorted_udf_nodes);
6162 	for (;udf_node; udf_node = n_udf_node) {
6163 		DPRINTF(SYNC, ("."));
6164 
6165 		udf_node->i_flags &= ~IN_SYNCED;
6166 		vp = udf_node->vnode;
6167 
6168 		mutex_enter(&vp->v_interlock);
6169 		n_udf_node = LIST_NEXT(udf_node, sortchain);
6170 		if (n_udf_node)
6171 			n_udf_node->i_flags |= IN_SYNCED;
6172 
6173 		/* system nodes are not synced this way */
6174 		if (vp->v_vflag & VV_SYSTEM) {
6175 			mutex_exit(&vp->v_interlock);
6176 			continue;
6177 		}
6178 
6179 		/* check if its dirty enough to even try */
6180 		on_type  = (waitfor == MNT_LAZY || vp->v_type == VNON);
6181 		on_flags = ((udf_node->i_flags &
6182 			(IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0);
6183 		on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd)
6184 			&& UVM_OBJ_IS_CLEAN(&vp->v_uobj);
6185 		if (on_type || (on_flags || on_vnode)) { /* XXX */
6186 			/* not dirty (enough?) */
6187 			mutex_exit(&vp->v_interlock);
6188 			continue;
6189 		}
6190 
6191 		mutex_exit(&mntvnode_lock);
6192 		error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK);
6193 		if (error) {
6194 			mutex_enter(&mntvnode_lock);
6195 			if (error == ENOENT)
6196 				goto derailed;
6197 			*ndirty += 1;
6198 			continue;
6199 		}
6200 
6201 		switch (pass) {
6202 		case 1:
6203 			VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
6204 			break;
6205 		case 2:
6206 			vdirty = vp->v_numoutput;
6207 			if (vp->v_tag == VT_UDF)
6208 				vdirty += udf_node->outstanding_bufs +
6209 					udf_node->outstanding_nodedscr;
6210 			if (vdirty == 0)
6211 				VOP_FSYNC(vp, cred, 0,0,0);
6212 			*ndirty += vdirty;
6213 			break;
6214 		case 3:
6215 			vdirty = vp->v_numoutput;
6216 			if (vp->v_tag == VT_UDF)
6217 				vdirty += udf_node->outstanding_bufs +
6218 					udf_node->outstanding_nodedscr;
6219 			*ndirty += vdirty;
6220 			break;
6221 		}
6222 
6223 		vput(vp);
6224 		mutex_enter(&mntvnode_lock);
6225 	}
6226 	DPRINTF(SYNC, ("END sync_pass %d\n", pass));
6227 }
6228 
6229 
6230 void
6231 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
6232 {
6233 	int dummy, ndirty;
6234 
6235 	mutex_enter(&mntvnode_lock);
6236 recount:
6237 	dummy = 0;
6238 	DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6239 	DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6240 	udf_sync_pass(ump, cred, waitfor, 1, &dummy);
6241 
6242 	DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6243 	DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6244 	udf_sync_pass(ump, cred, waitfor, 2, &dummy);
6245 
6246 	if (waitfor == MNT_WAIT) {
6247 		ndirty = ump->devvp->v_numoutput;
6248 		DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n",
6249 			ndirty));
6250 		udf_sync_pass(ump, cred, waitfor, 3, &ndirty);
6251 		DPRINTF(SYNC, ("counted num dirty pending blocks %d\n",
6252 			ndirty));
6253 
6254 		if (ndirty) {
6255 			/* 1/4 second wait */
6256 			cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock,
6257 				hz/4);
6258 			goto recount;
6259 		}
6260 	}
6261 
6262 	mutex_exit(&mntvnode_lock);
6263 }
6264 
6265 /* --------------------------------------------------------------------- */
6266 
6267 /*
6268  * Read and write file extent in/from the buffer.
6269  *
6270  * The splitup of the extent into seperate request-buffers is to minimise
6271  * copying around as much as possible.
6272  *
6273  * block based file reading and writing
6274  */
6275 
6276 static int
6277 udf_read_internal(struct udf_node *node, uint8_t *blob)
6278 {
6279 	struct udf_mount *ump;
6280 	struct file_entry     *fe = node->fe;
6281 	struct extfile_entry *efe = node->efe;
6282 	uint64_t inflen;
6283 	uint32_t sector_size;
6284 	uint8_t  *pos;
6285 	int icbflags, addr_type;
6286 
6287 	/* get extent and do some paranoia checks */
6288 	ump = node->ump;
6289 	sector_size = ump->discinfo.sector_size;
6290 
6291 	if (fe) {
6292 		inflen   = udf_rw64(fe->inf_len);
6293 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
6294 		icbflags = udf_rw16(fe->icbtag.flags);
6295 	} else {
6296 		assert(node->efe);
6297 		inflen   = udf_rw64(efe->inf_len);
6298 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
6299 		icbflags = udf_rw16(efe->icbtag.flags);
6300 	}
6301 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6302 
6303 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
6304 	assert(inflen < sector_size);
6305 
6306 	/* copy out info */
6307 	memset(blob, 0, sector_size);
6308 	memcpy(blob, pos, inflen);
6309 
6310 	return 0;
6311 }
6312 
6313 
6314 static int
6315 udf_write_internal(struct udf_node *node, uint8_t *blob)
6316 {
6317 	struct udf_mount *ump;
6318 	struct file_entry     *fe = node->fe;
6319 	struct extfile_entry *efe = node->efe;
6320 	uint64_t inflen;
6321 	uint32_t sector_size;
6322 	uint8_t  *pos;
6323 	int icbflags, addr_type;
6324 
6325 	/* get extent and do some paranoia checks */
6326 	ump = node->ump;
6327 	sector_size = ump->discinfo.sector_size;
6328 
6329 	if (fe) {
6330 		inflen   = udf_rw64(fe->inf_len);
6331 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
6332 		icbflags = udf_rw16(fe->icbtag.flags);
6333 	} else {
6334 		assert(node->efe);
6335 		inflen   = udf_rw64(efe->inf_len);
6336 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
6337 		icbflags = udf_rw16(efe->icbtag.flags);
6338 	}
6339 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6340 
6341 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
6342 	assert(inflen < sector_size);
6343 
6344 	/* copy in blob */
6345 	/* memset(pos, 0, inflen); */
6346 	memcpy(pos, blob, inflen);
6347 
6348 	return 0;
6349 }
6350 
6351 
6352 void
6353 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
6354 {
6355 	struct buf *nestbuf;
6356 	struct udf_mount *ump = udf_node->ump;
6357 	uint64_t   *mapping;
6358 	uint64_t    run_start;
6359 	uint32_t    sector_size;
6360 	uint32_t    buf_offset, sector, rbuflen, rblk;
6361 	uint32_t    from, lblkno;
6362 	uint32_t    sectors;
6363 	uint8_t    *buf_pos;
6364 	int error, run_length, isdir, what;
6365 
6366 	sector_size = udf_node->ump->discinfo.sector_size;
6367 
6368 	from    = buf->b_blkno;
6369 	sectors = buf->b_bcount / sector_size;
6370 
6371 	isdir   = (udf_node->vnode->v_type == VDIR);
6372 	what    = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
6373 
6374 	/* assure we have enough translation slots */
6375 	KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
6376 	KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
6377 
6378 	if (sectors > UDF_MAX_MAPPINGS) {
6379 		printf("udf_read_filebuf: implementation limit on bufsize\n");
6380 		buf->b_error  = EIO;
6381 		biodone(buf);
6382 		return;
6383 	}
6384 
6385 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6386 
6387 	error = 0;
6388 	DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
6389 	error = udf_translate_file_extent(udf_node, from, sectors, mapping);
6390 	if (error) {
6391 		buf->b_error  = error;
6392 		biodone(buf);
6393 		goto out;
6394 	}
6395 	DPRINTF(READ, ("\ttranslate extent went OK\n"));
6396 
6397 	/* pre-check if its an internal */
6398 	if (*mapping == UDF_TRANS_INTERN) {
6399 		error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
6400 		if (error)
6401 			buf->b_error  = error;
6402 		biodone(buf);
6403 		goto out;
6404 	}
6405 	DPRINTF(READ, ("\tnot intern\n"));
6406 
6407 #ifdef DEBUG
6408 	if (udf_verbose & UDF_DEBUG_TRANSLATE) {
6409 		printf("Returned translation table:\n");
6410 		for (sector = 0; sector < sectors; sector++) {
6411 			printf("%d : %"PRIu64"\n", sector, mapping[sector]);
6412 		}
6413 	}
6414 #endif
6415 
6416 	/* request read-in of data from disc sheduler */
6417 	buf->b_resid = buf->b_bcount;
6418 	for (sector = 0; sector < sectors; sector++) {
6419 		buf_offset = sector * sector_size;
6420 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
6421 		DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
6422 
6423 		/* check if its zero or unmapped to stop reading */
6424 		switch (mapping[sector]) {
6425 		case UDF_TRANS_UNMAPPED:
6426 		case UDF_TRANS_ZERO:
6427 			/* copy zero sector TODO runlength like below */
6428 			memset(buf_pos, 0, sector_size);
6429 			DPRINTF(READ, ("\treturning zero sector\n"));
6430 			nestiobuf_done(buf, sector_size, 0);
6431 			break;
6432 		default :
6433 			DPRINTF(READ, ("\tread sector "
6434 			    "%"PRIu64"\n", mapping[sector]));
6435 
6436 			lblkno = from + sector;
6437 			run_start  = mapping[sector];
6438 			run_length = 1;
6439 			while (sector < sectors-1) {
6440 				if (mapping[sector+1] != mapping[sector]+1)
6441 					break;
6442 				run_length++;
6443 				sector++;
6444 			}
6445 
6446 			/*
6447 			 * nest an iobuf and mark it for async reading. Since
6448 			 * we're using nested buffers, they can't be cached by
6449 			 * design.
6450 			 */
6451 			rbuflen = run_length * sector_size;
6452 			rblk    = run_start  * (sector_size/DEV_BSIZE);
6453 
6454 			nestbuf = getiobuf(NULL, true);
6455 			nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6456 			/* nestbuf is B_ASYNC */
6457 
6458 			/* identify this nestbuf */
6459 			nestbuf->b_lblkno   = lblkno;
6460 			assert(nestbuf->b_vp == udf_node->vnode);
6461 
6462 			/* CD shedules on raw blkno */
6463 			nestbuf->b_blkno      = rblk;
6464 			nestbuf->b_proc       = NULL;
6465 			nestbuf->b_rawblkno   = rblk;
6466 			nestbuf->b_udf_c_type = what;
6467 
6468 			udf_discstrat_queuebuf(ump, nestbuf);
6469 		}
6470 	}
6471 out:
6472 	/* if we're synchronously reading, wait for the completion */
6473 	if ((buf->b_flags & B_ASYNC) == 0)
6474 		biowait(buf);
6475 
6476 	DPRINTF(READ, ("\tend of read_filebuf\n"));
6477 	free(mapping, M_TEMP);
6478 	return;
6479 }
6480 
6481 
6482 void
6483 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
6484 {
6485 	struct buf *nestbuf;
6486 	struct udf_mount *ump = udf_node->ump;
6487 	uint64_t   *mapping;
6488 	uint64_t    run_start;
6489 	uint32_t    lb_size;
6490 	uint32_t    buf_offset, lb_num, rbuflen, rblk;
6491 	uint32_t    from, lblkno;
6492 	uint32_t    num_lb;
6493 	int error, run_length, isdir, what, s;
6494 
6495 	lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
6496 
6497 	from   = buf->b_blkno;
6498 	num_lb = buf->b_bcount / lb_size;
6499 
6500 	isdir  = (udf_node->vnode->v_type == VDIR);
6501 	what   = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
6502 
6503 	if (udf_node == ump->metadatabitmap_node)
6504 		what = UDF_C_METADATA_SBM;
6505 
6506 	/* assure we have enough translation slots */
6507 	KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
6508 	KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
6509 
6510 	if (num_lb > UDF_MAX_MAPPINGS) {
6511 		printf("udf_write_filebuf: implementation limit on bufsize\n");
6512 		buf->b_error  = EIO;
6513 		biodone(buf);
6514 		return;
6515 	}
6516 
6517 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6518 
6519 	error = 0;
6520 	DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
6521 	error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
6522 	if (error) {
6523 		buf->b_error  = error;
6524 		biodone(buf);
6525 		goto out;
6526 	}
6527 	DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
6528 
6529 	/* if its internally mapped, we can write it in the descriptor itself */
6530 	if (*mapping == UDF_TRANS_INTERN) {
6531 		/* TODO paranoia check if we ARE going to have enough space */
6532 		error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
6533 		if (error)
6534 			buf->b_error  = error;
6535 		biodone(buf);
6536 		goto out;
6537 	}
6538 	DPRINTF(WRITE, ("\tnot intern\n"));
6539 
6540 	/* request write out of data to disc sheduler */
6541 	buf->b_resid = buf->b_bcount;
6542 	for (lb_num = 0; lb_num < num_lb; lb_num++) {
6543 		buf_offset = lb_num * lb_size;
6544 		DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
6545 
6546 		/*
6547 		 * Mappings are not that important here. Just before we write
6548 		 * the lb_num we late-allocate them when needed and update the
6549 		 * mapping in the udf_node.
6550 		 */
6551 
6552 		/* XXX why not ignore the mapping altogether ? */
6553 		/* TODO estimate here how much will be late-allocated */
6554 		DPRINTF(WRITE, ("\twrite lb_num "
6555 		    "%"PRIu64, mapping[lb_num]));
6556 
6557 		lblkno = from + lb_num;
6558 		run_start  = mapping[lb_num];
6559 		run_length = 1;
6560 		while (lb_num < num_lb-1) {
6561 			if (mapping[lb_num+1] != mapping[lb_num]+1)
6562 				if (mapping[lb_num+1] != mapping[lb_num])
6563 					break;
6564 			run_length++;
6565 			lb_num++;
6566 		}
6567 		DPRINTF(WRITE, ("+ %d\n", run_length));
6568 
6569 		/* nest an iobuf on the master buffer for the extent */
6570 		rbuflen = run_length * lb_size;
6571 		rblk = run_start * (lb_size/DEV_BSIZE);
6572 
6573 #if 0
6574 		/* if its zero or unmapped, our blknr gets -1 for unmapped */
6575 		switch (mapping[lb_num]) {
6576 		case UDF_TRANS_UNMAPPED:
6577 		case UDF_TRANS_ZERO:
6578 			rblk = -1;
6579 			break;
6580 		default:
6581 			rblk = run_start * (lb_size/DEV_BSIZE);
6582 			break;
6583 		}
6584 #endif
6585 
6586 		nestbuf = getiobuf(NULL, true);
6587 		nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6588 		/* nestbuf is B_ASYNC */
6589 
6590 		/* identify this nestbuf */
6591 		nestbuf->b_lblkno   = lblkno;
6592 		KASSERT(nestbuf->b_vp == udf_node->vnode);
6593 
6594 		/* CD shedules on raw blkno */
6595 		nestbuf->b_blkno      = rblk;
6596 		nestbuf->b_proc       = NULL;
6597 		nestbuf->b_rawblkno   = rblk;
6598 		nestbuf->b_udf_c_type = what;
6599 
6600 		/* increment our outstanding bufs counter */
6601 		s = splbio();
6602 			udf_node->outstanding_bufs++;
6603 		splx(s);
6604 
6605 		udf_discstrat_queuebuf(ump, nestbuf);
6606 	}
6607 out:
6608 	/* if we're synchronously writing, wait for the completion */
6609 	if ((buf->b_flags & B_ASYNC) == 0)
6610 		biowait(buf);
6611 
6612 	DPRINTF(WRITE, ("\tend of write_filebuf\n"));
6613 	free(mapping, M_TEMP);
6614 	return;
6615 }
6616 
6617 /* --------------------------------------------------------------------- */
6618 
6619 
6620