1 /* $NetBSD: udf_subr.c,v 1.91 2009/05/20 15:30:26 reinoud Exp $ */ 2 3 /* 4 * Copyright (c) 2006, 2008 Reinoud Zandijk 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * 27 */ 28 29 30 #include <sys/cdefs.h> 31 #ifndef lint 32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.91 2009/05/20 15:30:26 reinoud Exp $"); 33 #endif /* not lint */ 34 35 36 #if defined(_KERNEL_OPT) 37 #include "opt_compat_netbsd.h" 38 #endif 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/sysctl.h> 43 #include <sys/namei.h> 44 #include <sys/proc.h> 45 #include <sys/kernel.h> 46 #include <sys/vnode.h> 47 #include <miscfs/genfs/genfs_node.h> 48 #include <sys/mount.h> 49 #include <sys/buf.h> 50 #include <sys/file.h> 51 #include <sys/device.h> 52 #include <sys/disklabel.h> 53 #include <sys/ioctl.h> 54 #include <sys/malloc.h> 55 #include <sys/dirent.h> 56 #include <sys/stat.h> 57 #include <sys/conf.h> 58 #include <sys/kauth.h> 59 #include <fs/unicode.h> 60 #include <dev/clock_subr.h> 61 62 #include <fs/udf/ecma167-udf.h> 63 #include <fs/udf/udf_mount.h> 64 #include <sys/dirhash.h> 65 66 #include "udf.h" 67 #include "udf_subr.h" 68 #include "udf_bswap.h" 69 70 71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data) 72 73 #define UDF_SET_SYSTEMFILE(vp) \ 74 /* XXXAD Is the vnode locked? */ \ 75 (vp)->v_vflag |= VV_SYSTEM; \ 76 vref(vp); \ 77 vput(vp); \ 78 79 extern int syncer_maxdelay; /* maximum delay time */ 80 extern int (**udf_vnodeop_p)(void *); 81 82 /* --------------------------------------------------------------------- */ 83 84 //#ifdef DEBUG 85 #if 1 86 87 #if 0 88 static void 89 udf_dumpblob(boid *blob, uint32_t dlen) 90 { 91 int i, j; 92 93 printf("blob = %p\n", blob); 94 printf("dump of %d bytes\n", dlen); 95 96 for (i = 0; i < dlen; i+ = 16) { 97 printf("%04x ", i); 98 for (j = 0; j < 16; j++) { 99 if (i+j < dlen) { 100 printf("%02x ", blob[i+j]); 101 } else { 102 printf(" "); 103 } 104 } 105 for (j = 0; j < 16; j++) { 106 if (i+j < dlen) { 107 if (blob[i+j]>32 && blob[i+j]! = 127) { 108 printf("%c", blob[i+j]); 109 } else { 110 printf("."); 111 } 112 } 113 } 114 printf("\n"); 115 } 116 printf("\n"); 117 Debugger(); 118 } 119 #endif 120 121 static void 122 udf_dump_discinfo(struct udf_mount *ump) 123 { 124 char bits[128]; 125 struct mmc_discinfo *di = &ump->discinfo; 126 127 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0) 128 return; 129 130 printf("Device/media info :\n"); 131 printf("\tMMC profile 0x%02x\n", di->mmc_profile); 132 printf("\tderived class %d\n", di->mmc_class); 133 printf("\tsector size %d\n", di->sector_size); 134 printf("\tdisc state %d\n", di->disc_state); 135 printf("\tlast ses state %d\n", di->last_session_state); 136 printf("\tbg format state %d\n", di->bg_format_state); 137 printf("\tfrst track %d\n", di->first_track); 138 printf("\tfst on last ses %d\n", di->first_track_last_session); 139 printf("\tlst on last ses %d\n", di->last_track_last_session); 140 printf("\tlink block penalty %d\n", di->link_block_penalty); 141 snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags); 142 printf("\tdisc flags %s\n", bits); 143 printf("\tdisc id %x\n", di->disc_id); 144 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode); 145 146 printf("\tnum sessions %d\n", di->num_sessions); 147 printf("\tnum tracks %d\n", di->num_tracks); 148 149 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur); 150 printf("\tcapabilities cur %s\n", bits); 151 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap); 152 printf("\tcapabilities cap %s\n", bits); 153 } 154 155 static void 156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo) 157 { 158 char bits[128]; 159 160 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0) 161 return; 162 163 printf("Trackinfo for track %d:\n", trackinfo->tracknr); 164 printf("\tsessionnr %d\n", trackinfo->sessionnr); 165 printf("\ttrack mode %d\n", trackinfo->track_mode); 166 printf("\tdata mode %d\n", trackinfo->data_mode); 167 snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags); 168 printf("\tflags %s\n", bits); 169 170 printf("\ttrack start %d\n", trackinfo->track_start); 171 printf("\tnext_writable %d\n", trackinfo->next_writable); 172 printf("\tfree_blocks %d\n", trackinfo->free_blocks); 173 printf("\tpacket_size %d\n", trackinfo->packet_size); 174 printf("\ttrack size %d\n", trackinfo->track_size); 175 printf("\tlast recorded block %d\n", trackinfo->last_recorded); 176 } 177 178 #else 179 #define udf_dump_discinfo(a); 180 #define udf_dump_trackinfo(a); 181 #endif 182 183 184 /* --------------------------------------------------------------------- */ 185 186 /* not called often */ 187 int 188 udf_update_discinfo(struct udf_mount *ump) 189 { 190 struct vnode *devvp = ump->devvp; 191 struct partinfo dpart; 192 struct mmc_discinfo *di; 193 int error; 194 195 DPRINTF(VOLUMES, ("read/update disc info\n")); 196 di = &ump->discinfo; 197 memset(di, 0, sizeof(struct mmc_discinfo)); 198 199 /* check if we're on a MMC capable device, i.e. CD/DVD */ 200 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED); 201 if (error == 0) { 202 udf_dump_discinfo(ump); 203 return 0; 204 } 205 206 /* disc partition support */ 207 error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED); 208 if (error) 209 return ENODEV; 210 211 /* set up a disc info profile for partitions */ 212 di->mmc_profile = 0x01; /* disc type */ 213 di->mmc_class = MMC_CLASS_DISC; 214 di->disc_state = MMC_STATE_CLOSED; 215 di->last_session_state = MMC_STATE_CLOSED; 216 di->bg_format_state = MMC_BGFSTATE_COMPLETED; 217 di->link_block_penalty = 0; 218 219 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE | 220 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE; 221 di->mmc_cap = di->mmc_cur; 222 di->disc_flags = MMC_DFLAGS_UNRESTRICTED; 223 224 /* TODO problem with last_possible_lba on resizable VND; request */ 225 di->last_possible_lba = dpart.part->p_size; 226 di->sector_size = dpart.disklab->d_secsize; 227 228 di->num_sessions = 1; 229 di->num_tracks = 1; 230 231 di->first_track = 1; 232 di->first_track_last_session = di->last_track_last_session = 1; 233 234 udf_dump_discinfo(ump); 235 return 0; 236 } 237 238 239 int 240 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti) 241 { 242 struct vnode *devvp = ump->devvp; 243 struct mmc_discinfo *di = &ump->discinfo; 244 int error, class; 245 246 DPRINTF(VOLUMES, ("read track info\n")); 247 248 class = di->mmc_class; 249 if (class != MMC_CLASS_DISC) { 250 /* tracknr specified in struct ti */ 251 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED); 252 return error; 253 } 254 255 /* disc partition support */ 256 if (ti->tracknr != 1) 257 return EIO; 258 259 /* create fake ti (TODO check for resized vnds) */ 260 ti->sessionnr = 1; 261 262 ti->track_mode = 0; /* XXX */ 263 ti->data_mode = 0; /* XXX */ 264 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID; 265 266 ti->track_start = 0; 267 ti->packet_size = 1; 268 269 /* TODO support for resizable vnd */ 270 ti->track_size = di->last_possible_lba; 271 ti->next_writable = di->last_possible_lba; 272 ti->last_recorded = ti->next_writable; 273 ti->free_blocks = 0; 274 275 return 0; 276 } 277 278 279 int 280 udf_setup_writeparams(struct udf_mount *ump) 281 { 282 struct mmc_writeparams mmc_writeparams; 283 int error; 284 285 if (ump->discinfo.mmc_class == MMC_CLASS_DISC) 286 return 0; 287 288 /* 289 * only CD burning normally needs setting up, but other disc types 290 * might need other settings to be made. The MMC framework will set up 291 * the nessisary recording parameters according to the disc 292 * characteristics read in. Modifications can be made in the discinfo 293 * structure passed to change the nature of the disc. 294 */ 295 296 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams)); 297 mmc_writeparams.mmc_class = ump->discinfo.mmc_class; 298 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur; 299 300 /* 301 * UDF dictates first track to determine track mode for the whole 302 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1] 303 * To prevent problems with a `reserved' track in front we start with 304 * the 2nd track and if that is not valid, go for the 1st. 305 */ 306 mmc_writeparams.tracknr = 2; 307 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */ 308 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */ 309 310 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams, 311 FKIOCTL, NOCRED); 312 if (error) { 313 mmc_writeparams.tracknr = 1; 314 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, 315 &mmc_writeparams, FKIOCTL, NOCRED); 316 } 317 return error; 318 } 319 320 321 int 322 udf_synchronise_caches(struct udf_mount *ump) 323 { 324 struct mmc_op mmc_op; 325 326 DPRINTF(CALL, ("udf_synchronise_caches()\n")); 327 328 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 329 return 0; 330 331 /* discs are done now */ 332 if (ump->discinfo.mmc_class == MMC_CLASS_DISC) 333 return 0; 334 335 memset(&mmc_op, 0, sizeof(struct mmc_op)); 336 mmc_op.operation = MMC_OP_SYNCHRONISECACHE; 337 338 /* ignore return code */ 339 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED); 340 341 return 0; 342 } 343 344 /* --------------------------------------------------------------------- */ 345 346 /* track/session searching for mounting */ 347 int 348 udf_search_tracks(struct udf_mount *ump, struct udf_args *args, 349 int *first_tracknr, int *last_tracknr) 350 { 351 struct mmc_trackinfo trackinfo; 352 uint32_t tracknr, start_track, num_tracks; 353 int error; 354 355 /* if negative, sessionnr is relative to last session */ 356 if (args->sessionnr < 0) { 357 args->sessionnr += ump->discinfo.num_sessions; 358 } 359 360 /* sanity */ 361 if (args->sessionnr < 0) 362 args->sessionnr = 0; 363 if (args->sessionnr > ump->discinfo.num_sessions) 364 args->sessionnr = ump->discinfo.num_sessions; 365 366 /* search the tracks for this session, zero session nr indicates last */ 367 if (args->sessionnr == 0) 368 args->sessionnr = ump->discinfo.num_sessions; 369 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) 370 args->sessionnr--; 371 372 /* sanity again */ 373 if (args->sessionnr < 0) 374 args->sessionnr = 0; 375 376 /* search the first and last track of the specified session */ 377 num_tracks = ump->discinfo.num_tracks; 378 start_track = ump->discinfo.first_track; 379 380 /* search for first track of this session */ 381 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) { 382 /* get track info */ 383 trackinfo.tracknr = tracknr; 384 error = udf_update_trackinfo(ump, &trackinfo); 385 if (error) 386 return error; 387 388 if (trackinfo.sessionnr == args->sessionnr) 389 break; 390 } 391 *first_tracknr = tracknr; 392 393 /* search for last track of this session */ 394 for (;tracknr <= num_tracks; tracknr++) { 395 /* get track info */ 396 trackinfo.tracknr = tracknr; 397 error = udf_update_trackinfo(ump, &trackinfo); 398 if (error || (trackinfo.sessionnr != args->sessionnr)) { 399 tracknr--; 400 break; 401 } 402 } 403 if (tracknr > num_tracks) 404 tracknr--; 405 406 *last_tracknr = tracknr; 407 408 if (*last_tracknr < *first_tracknr) { 409 printf( "udf_search_tracks: sanity check on drive+disc failed, " 410 "drive returned garbage\n"); 411 return EINVAL; 412 } 413 414 assert(*last_tracknr >= *first_tracknr); 415 return 0; 416 } 417 418 419 /* 420 * NOTE: this is the only routine in this file that directly peeks into the 421 * metadata file but since its at a larval state of the mount it can't hurt. 422 * 423 * XXX candidate for udf_allocation.c 424 * XXX clean me up!, change to new node reading code. 425 */ 426 427 static void 428 udf_check_track_metadata_overlap(struct udf_mount *ump, 429 struct mmc_trackinfo *trackinfo) 430 { 431 struct part_desc *part; 432 struct file_entry *fe; 433 struct extfile_entry *efe; 434 struct short_ad *s_ad; 435 struct long_ad *l_ad; 436 uint32_t track_start, track_end; 437 uint32_t phys_part_start, phys_part_end, part_start, part_end; 438 uint32_t sector_size, len, alloclen, plb_num; 439 uint8_t *pos; 440 int addr_type, icblen, icbflags, flags; 441 442 /* get our track extents */ 443 track_start = trackinfo->track_start; 444 track_end = track_start + trackinfo->track_size; 445 446 /* get our base partition extent */ 447 KASSERT(ump->node_part == ump->fids_part); 448 part = ump->partitions[ump->node_part]; 449 phys_part_start = udf_rw32(part->start_loc); 450 phys_part_end = phys_part_start + udf_rw32(part->part_len); 451 452 /* no use if its outside the physical partition */ 453 if ((phys_part_start >= track_end) || (phys_part_end < track_start)) 454 return; 455 456 /* 457 * now follow all extents in the fe/efe to see if they refer to this 458 * track 459 */ 460 461 sector_size = ump->discinfo.sector_size; 462 463 /* XXX should we claim exclusive access to the metafile ? */ 464 /* TODO: move to new node read code */ 465 fe = ump->metadata_node->fe; 466 efe = ump->metadata_node->efe; 467 if (fe) { 468 alloclen = udf_rw32(fe->l_ad); 469 pos = &fe->data[0] + udf_rw32(fe->l_ea); 470 icbflags = udf_rw16(fe->icbtag.flags); 471 } else { 472 assert(efe); 473 alloclen = udf_rw32(efe->l_ad); 474 pos = &efe->data[0] + udf_rw32(efe->l_ea); 475 icbflags = udf_rw16(efe->icbtag.flags); 476 } 477 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 478 479 while (alloclen) { 480 if (addr_type == UDF_ICB_SHORT_ALLOC) { 481 icblen = sizeof(struct short_ad); 482 s_ad = (struct short_ad *) pos; 483 len = udf_rw32(s_ad->len); 484 plb_num = udf_rw32(s_ad->lb_num); 485 } else { 486 /* should not be present, but why not */ 487 icblen = sizeof(struct long_ad); 488 l_ad = (struct long_ad *) pos; 489 len = udf_rw32(l_ad->len); 490 plb_num = udf_rw32(l_ad->loc.lb_num); 491 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */ 492 } 493 /* process extent */ 494 flags = UDF_EXT_FLAGS(len); 495 len = UDF_EXT_LEN(len); 496 497 part_start = phys_part_start + plb_num; 498 part_end = part_start + (len / sector_size); 499 500 if ((part_start >= track_start) && (part_end <= track_end)) { 501 /* extent is enclosed within this track */ 502 ump->metadata_track = *trackinfo; 503 return; 504 } 505 506 pos += icblen; 507 alloclen -= icblen; 508 } 509 } 510 511 512 int 513 udf_search_writing_tracks(struct udf_mount *ump) 514 { 515 struct vnode *devvp = ump->devvp; 516 struct mmc_trackinfo trackinfo; 517 struct mmc_op mmc_op; 518 struct part_desc *part; 519 uint32_t tracknr, start_track, num_tracks; 520 uint32_t track_start, track_end, part_start, part_end; 521 int node_alloc, error; 522 523 /* 524 * in the CD/(HD)DVD/BD recordable device model a few tracks within 525 * the last session might be open but in the UDF device model at most 526 * three tracks can be open: a reserved track for delayed ISO VRS 527 * writing, a data track and a metadata track. We search here for the 528 * data track and the metadata track. Note that the reserved track is 529 * troublesome but can be detected by its small size of < 512 sectors. 530 */ 531 532 /* update discinfo since it might have changed */ 533 error = udf_update_discinfo(ump); 534 if (error) 535 return error; 536 537 num_tracks = ump->discinfo.num_tracks; 538 start_track = ump->discinfo.first_track; 539 540 /* fetch info on first and possibly only track */ 541 trackinfo.tracknr = start_track; 542 error = udf_update_trackinfo(ump, &trackinfo); 543 if (error) 544 return error; 545 546 /* copy results to our mount point */ 547 ump->data_track = trackinfo; 548 ump->metadata_track = trackinfo; 549 550 /* if not sequential, we're done */ 551 if (num_tracks == 1) 552 return 0; 553 554 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) { 555 /* get track info */ 556 trackinfo.tracknr = tracknr; 557 error = udf_update_trackinfo(ump, &trackinfo); 558 if (error) 559 return error; 560 561 /* 562 * If this track is marked damaged, ask for repair. This is an 563 * optional command, so ignore its error but report warning. 564 */ 565 if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) { 566 memset(&mmc_op, 0, sizeof(mmc_op)); 567 mmc_op.operation = MMC_OP_REPAIRTRACK; 568 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 569 mmc_op.tracknr = tracknr; 570 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED); 571 if (error) 572 (void)printf("Drive can't explicitly repair " 573 "damaged track %d, but it might " 574 "autorepair\n", tracknr); 575 576 /* reget track info */ 577 error = udf_update_trackinfo(ump, &trackinfo); 578 if (error) 579 return error; 580 } 581 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0) 582 continue; 583 584 track_start = trackinfo.track_start; 585 track_end = track_start + trackinfo.track_size; 586 587 /* check for overlap on data partition */ 588 part = ump->partitions[ump->data_part]; 589 part_start = udf_rw32(part->start_loc); 590 part_end = part_start + udf_rw32(part->part_len); 591 if ((part_start < track_end) && (part_end > track_start)) { 592 ump->data_track = trackinfo; 593 /* TODO check if UDF partition data_part is writable */ 594 } 595 596 /* check for overlap on metadata partition */ 597 node_alloc = ump->vtop_alloc[ump->node_part]; 598 if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) || 599 (node_alloc == UDF_ALLOC_METABITMAP)) { 600 udf_check_track_metadata_overlap(ump, &trackinfo); 601 } else { 602 ump->metadata_track = trackinfo; 603 } 604 } 605 606 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0) 607 return EROFS; 608 609 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0) 610 return EROFS; 611 612 return 0; 613 } 614 615 /* --------------------------------------------------------------------- */ 616 617 /* 618 * Check if the blob starts with a good UDF tag. Tags are protected by a 619 * checksum over the reader except one byte at position 4 that is the checksum 620 * itself. 621 */ 622 623 int 624 udf_check_tag(void *blob) 625 { 626 struct desc_tag *tag = blob; 627 uint8_t *pos, sum, cnt; 628 629 /* check TAG header checksum */ 630 pos = (uint8_t *) tag; 631 sum = 0; 632 633 for(cnt = 0; cnt < 16; cnt++) { 634 if (cnt != 4) 635 sum += *pos; 636 pos++; 637 } 638 if (sum != tag->cksum) { 639 /* bad tag header checksum; this is not a valid tag */ 640 return EINVAL; 641 } 642 643 return 0; 644 } 645 646 647 /* 648 * check tag payload will check descriptor CRC as specified. 649 * If the descriptor is too long, it will return EIO otherwise EINVAL. 650 */ 651 652 int 653 udf_check_tag_payload(void *blob, uint32_t max_length) 654 { 655 struct desc_tag *tag = blob; 656 uint16_t crc, crc_len; 657 658 crc_len = udf_rw16(tag->desc_crc_len); 659 660 /* check payload CRC if applicable */ 661 if (crc_len == 0) 662 return 0; 663 664 if (crc_len > max_length) 665 return EIO; 666 667 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len); 668 if (crc != udf_rw16(tag->desc_crc)) { 669 /* bad payload CRC; this is a broken tag */ 670 return EINVAL; 671 } 672 673 return 0; 674 } 675 676 677 void 678 udf_validate_tag_sum(void *blob) 679 { 680 struct desc_tag *tag = blob; 681 uint8_t *pos, sum, cnt; 682 683 /* calculate TAG header checksum */ 684 pos = (uint8_t *) tag; 685 sum = 0; 686 687 for(cnt = 0; cnt < 16; cnt++) { 688 if (cnt != 4) sum += *pos; 689 pos++; 690 } 691 tag->cksum = sum; /* 8 bit */ 692 } 693 694 695 /* assumes sector number of descriptor to be saved already present */ 696 void 697 udf_validate_tag_and_crc_sums(void *blob) 698 { 699 struct desc_tag *tag = blob; 700 uint8_t *btag = (uint8_t *) tag; 701 uint16_t crc, crc_len; 702 703 crc_len = udf_rw16(tag->desc_crc_len); 704 705 /* check payload CRC if applicable */ 706 if (crc_len > 0) { 707 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len); 708 tag->desc_crc = udf_rw16(crc); 709 } 710 711 /* calculate TAG header checksum */ 712 udf_validate_tag_sum(blob); 713 } 714 715 /* --------------------------------------------------------------------- */ 716 717 /* 718 * XXX note the different semantics from udfclient: for FIDs it still rounds 719 * up to sectors. Use udf_fidsize() for a correct length. 720 */ 721 722 int 723 udf_tagsize(union dscrptr *dscr, uint32_t lb_size) 724 { 725 uint32_t size, tag_id, num_lb, elmsz; 726 727 tag_id = udf_rw16(dscr->tag.id); 728 729 switch (tag_id) { 730 case TAGID_LOGVOL : 731 size = sizeof(struct logvol_desc) - 1; 732 size += udf_rw32(dscr->lvd.mt_l); 733 break; 734 case TAGID_UNALLOC_SPACE : 735 elmsz = sizeof(struct extent_ad); 736 size = sizeof(struct unalloc_sp_desc) - elmsz; 737 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz; 738 break; 739 case TAGID_FID : 740 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu); 741 size = (size + 3) & ~3; 742 break; 743 case TAGID_LOGVOL_INTEGRITY : 744 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t); 745 size += udf_rw32(dscr->lvid.l_iu); 746 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t)); 747 break; 748 case TAGID_SPACE_BITMAP : 749 size = sizeof(struct space_bitmap_desc) - 1; 750 size += udf_rw32(dscr->sbd.num_bytes); 751 break; 752 case TAGID_SPARING_TABLE : 753 elmsz = sizeof(struct spare_map_entry); 754 size = sizeof(struct udf_sparing_table) - elmsz; 755 size += udf_rw16(dscr->spt.rt_l) * elmsz; 756 break; 757 case TAGID_FENTRY : 758 size = sizeof(struct file_entry); 759 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1; 760 break; 761 case TAGID_EXTFENTRY : 762 size = sizeof(struct extfile_entry); 763 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1; 764 break; 765 case TAGID_FSD : 766 size = sizeof(struct fileset_desc); 767 break; 768 default : 769 size = sizeof(union dscrptr); 770 break; 771 } 772 773 if ((size == 0) || (lb_size == 0)) 774 return 0; 775 776 if (lb_size == 1) 777 return size; 778 779 /* round up in sectors */ 780 num_lb = (size + lb_size -1) / lb_size; 781 return num_lb * lb_size; 782 } 783 784 785 int 786 udf_fidsize(struct fileid_desc *fid) 787 { 788 uint32_t size; 789 790 if (udf_rw16(fid->tag.id) != TAGID_FID) 791 panic("got udf_fidsize on non FID\n"); 792 793 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu); 794 size = (size + 3) & ~3; 795 796 return size; 797 } 798 799 /* --------------------------------------------------------------------- */ 800 801 void 802 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno) 803 { 804 int ret; 805 806 mutex_enter(&udf_node->node_mutex); 807 /* wait until free */ 808 while (udf_node->i_flags & IN_LOCKED) { 809 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8); 810 /* TODO check if we should return error; abort */ 811 if (ret == EWOULDBLOCK) { 812 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block " 813 "wanted at %s:%d, previously locked at %s:%d\n", 814 udf_node, fname, lineno, 815 udf_node->lock_fname, udf_node->lock_lineno)); 816 } 817 } 818 /* grab */ 819 udf_node->i_flags |= IN_LOCKED | flag; 820 /* debug */ 821 udf_node->lock_fname = fname; 822 udf_node->lock_lineno = lineno; 823 824 mutex_exit(&udf_node->node_mutex); 825 } 826 827 828 void 829 udf_unlock_node(struct udf_node *udf_node, int flag) 830 { 831 mutex_enter(&udf_node->node_mutex); 832 udf_node->i_flags &= ~(IN_LOCKED | flag); 833 cv_broadcast(&udf_node->node_lock); 834 mutex_exit(&udf_node->node_mutex); 835 } 836 837 838 /* --------------------------------------------------------------------- */ 839 840 static int 841 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst) 842 { 843 int error; 844 845 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD, 846 (union dscrptr **) dst); 847 if (!error) { 848 /* blank terminator blocks are not allowed here */ 849 if (*dst == NULL) 850 return ENOENT; 851 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) { 852 error = ENOENT; 853 free(*dst, M_UDFVOLD); 854 *dst = NULL; 855 DPRINTF(VOLUMES, ("Not an anchor\n")); 856 } 857 } 858 859 return error; 860 } 861 862 863 int 864 udf_read_anchors(struct udf_mount *ump) 865 { 866 struct udf_args *args = &ump->mount_args; 867 struct mmc_trackinfo first_track; 868 struct mmc_trackinfo second_track; 869 struct mmc_trackinfo last_track; 870 struct anchor_vdp **anchorsp; 871 uint32_t track_start; 872 uint32_t track_end; 873 uint32_t positions[4]; 874 int first_tracknr, last_tracknr; 875 int error, anch, ok, first_anchor; 876 877 /* search the first and last track of the specified session */ 878 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr); 879 if (!error) { 880 first_track.tracknr = first_tracknr; 881 error = udf_update_trackinfo(ump, &first_track); 882 } 883 if (!error) { 884 last_track.tracknr = last_tracknr; 885 error = udf_update_trackinfo(ump, &last_track); 886 } 887 if ((!error) && (first_tracknr != last_tracknr)) { 888 second_track.tracknr = first_tracknr+1; 889 error = udf_update_trackinfo(ump, &second_track); 890 } 891 if (error) { 892 printf("UDF mount: reading disc geometry failed\n"); 893 return 0; 894 } 895 896 track_start = first_track.track_start; 897 898 /* `end' is not as straitforward as start. */ 899 track_end = last_track.track_start 900 + last_track.track_size - last_track.free_blocks - 1; 901 902 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) { 903 /* end of track is not straitforward here */ 904 if (last_track.flags & MMC_TRACKINFO_LRA_VALID) 905 track_end = last_track.last_recorded; 906 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID) 907 track_end = last_track.next_writable 908 - ump->discinfo.link_block_penalty; 909 } 910 911 /* its no use reading a blank track */ 912 first_anchor = 0; 913 if (first_track.flags & MMC_TRACKINFO_BLANK) 914 first_anchor = 1; 915 916 /* get our packet size */ 917 ump->packet_size = first_track.packet_size; 918 if (first_track.flags & MMC_TRACKINFO_BLANK) 919 ump->packet_size = second_track.packet_size; 920 921 if (ump->packet_size <= 1) { 922 /* take max, but not bigger than 64 */ 923 ump->packet_size = MAXPHYS / ump->discinfo.sector_size; 924 ump->packet_size = MIN(ump->packet_size, 64); 925 } 926 KASSERT(ump->packet_size >= 1); 927 928 /* read anchors start+256, start+512, end-256, end */ 929 positions[0] = track_start+256; 930 positions[1] = track_end-256; 931 positions[2] = track_end; 932 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */ 933 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */ 934 935 ok = 0; 936 anchorsp = ump->anchors; 937 for (anch = first_anchor; anch < 4; anch++) { 938 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch, 939 positions[anch])); 940 error = udf_read_anchor(ump, positions[anch], anchorsp); 941 if (!error) { 942 anchorsp++; 943 ok++; 944 } 945 } 946 947 /* VATs are only recorded on sequential media, but initialise */ 948 ump->first_possible_vat_location = track_start + 2; 949 ump->last_possible_vat_location = track_end + last_track.packet_size; 950 951 return ok; 952 } 953 954 /* --------------------------------------------------------------------- */ 955 956 /* we dont try to be smart; we just record the parts */ 957 #define UDF_UPDATE_DSCR(name, dscr) \ 958 if (name) \ 959 free(name, M_UDFVOLD); \ 960 name = dscr; 961 962 static int 963 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr) 964 { 965 struct part_desc *part; 966 uint16_t phys_part, raw_phys_part; 967 968 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n", 969 udf_rw16(dscr->tag.id))); 970 switch (udf_rw16(dscr->tag.id)) { 971 case TAGID_PRI_VOL : /* primary partition */ 972 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd); 973 break; 974 case TAGID_LOGVOL : /* logical volume */ 975 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd); 976 break; 977 case TAGID_UNALLOC_SPACE : /* unallocated space */ 978 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd); 979 break; 980 case TAGID_IMP_VOL : /* implementation */ 981 /* XXX do we care about multiple impl. descr ? */ 982 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd); 983 break; 984 case TAGID_PARTITION : /* physical partition */ 985 /* not much use if its not allocated */ 986 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) { 987 free(dscr, M_UDFVOLD); 988 break; 989 } 990 991 /* 992 * BUGALERT: some rogue implementations use random physical 993 * partion numbers to break other implementations so lookup 994 * the number. 995 */ 996 raw_phys_part = udf_rw16(dscr->pd.part_num); 997 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 998 part = ump->partitions[phys_part]; 999 if (part == NULL) 1000 break; 1001 if (udf_rw16(part->part_num) == raw_phys_part) 1002 break; 1003 } 1004 if (phys_part == UDF_PARTITIONS) { 1005 free(dscr, M_UDFVOLD); 1006 return EINVAL; 1007 } 1008 1009 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd); 1010 break; 1011 case TAGID_VOL : /* volume space extender; rare */ 1012 DPRINTF(VOLUMES, ("VDS extender ignored\n")); 1013 free(dscr, M_UDFVOLD); 1014 break; 1015 default : 1016 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n", 1017 udf_rw16(dscr->tag.id))); 1018 free(dscr, M_UDFVOLD); 1019 } 1020 1021 return 0; 1022 } 1023 #undef UDF_UPDATE_DSCR 1024 1025 /* --------------------------------------------------------------------- */ 1026 1027 static int 1028 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len) 1029 { 1030 union dscrptr *dscr; 1031 uint32_t sector_size, dscr_size; 1032 int error; 1033 1034 sector_size = ump->discinfo.sector_size; 1035 1036 /* loc is sectornr, len is in bytes */ 1037 error = EIO; 1038 while (len) { 1039 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr); 1040 if (error) 1041 return error; 1042 1043 /* blank block is a terminator */ 1044 if (dscr == NULL) 1045 return 0; 1046 1047 /* TERM descriptor is a terminator */ 1048 if (udf_rw16(dscr->tag.id) == TAGID_TERM) { 1049 free(dscr, M_UDFVOLD); 1050 return 0; 1051 } 1052 1053 /* process all others */ 1054 dscr_size = udf_tagsize(dscr, sector_size); 1055 error = udf_process_vds_descriptor(ump, dscr); 1056 if (error) { 1057 free(dscr, M_UDFVOLD); 1058 break; 1059 } 1060 assert((dscr_size % sector_size) == 0); 1061 1062 len -= dscr_size; 1063 loc += dscr_size / sector_size; 1064 } 1065 1066 return error; 1067 } 1068 1069 1070 int 1071 udf_read_vds_space(struct udf_mount *ump) 1072 { 1073 /* struct udf_args *args = &ump->mount_args; */ 1074 struct anchor_vdp *anchor, *anchor2; 1075 size_t size; 1076 uint32_t main_loc, main_len; 1077 uint32_t reserve_loc, reserve_len; 1078 int error; 1079 1080 /* 1081 * read in VDS space provided by the anchors; if one descriptor read 1082 * fails, try the mirror sector. 1083 * 1084 * check if 2nd anchor is different from 1st; if so, go for 2nd. This 1085 * avoids the `compatibility features' of DirectCD that may confuse 1086 * stuff completely. 1087 */ 1088 1089 anchor = ump->anchors[0]; 1090 anchor2 = ump->anchors[1]; 1091 assert(anchor); 1092 1093 if (anchor2) { 1094 size = sizeof(struct extent_ad); 1095 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size)) 1096 anchor = anchor2; 1097 /* reserve is specified to be a literal copy of main */ 1098 } 1099 1100 main_loc = udf_rw32(anchor->main_vds_ex.loc); 1101 main_len = udf_rw32(anchor->main_vds_ex.len); 1102 1103 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc); 1104 reserve_len = udf_rw32(anchor->reserve_vds_ex.len); 1105 1106 error = udf_read_vds_extent(ump, main_loc, main_len); 1107 if (error) { 1108 printf("UDF mount: reading in reserve VDS extent\n"); 1109 error = udf_read_vds_extent(ump, reserve_loc, reserve_len); 1110 } 1111 1112 return error; 1113 } 1114 1115 /* --------------------------------------------------------------------- */ 1116 1117 /* 1118 * Read in the logical volume integrity sequence pointed to by our logical 1119 * volume descriptor. Its a sequence that can be extended using fields in the 1120 * integrity descriptor itself. On sequential media only one is found, on 1121 * rewritable media a sequence of descriptors can be found as a form of 1122 * history keeping and on non sequential write-once media the chain is vital 1123 * to allow more and more descriptors to be written. The last descriptor 1124 * written in an extent needs to claim space for a new extent. 1125 */ 1126 1127 static int 1128 udf_retrieve_lvint(struct udf_mount *ump) 1129 { 1130 union dscrptr *dscr; 1131 struct logvol_int_desc *lvint; 1132 struct udf_lvintq *trace; 1133 uint32_t lb_size, lbnum, len; 1134 int dscr_type, error, trace_len; 1135 1136 lb_size = udf_rw32(ump->logical_vol->lb_size); 1137 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len); 1138 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc); 1139 1140 /* clean trace */ 1141 memset(ump->lvint_trace, 0, 1142 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq)); 1143 1144 trace_len = 0; 1145 trace = ump->lvint_trace; 1146 trace->start = lbnum; 1147 trace->end = lbnum + len/lb_size; 1148 trace->pos = 0; 1149 trace->wpos = 0; 1150 1151 lvint = NULL; 1152 dscr = NULL; 1153 error = 0; 1154 while (len) { 1155 trace->pos = lbnum - trace->start; 1156 trace->wpos = trace->pos + 1; 1157 1158 /* read in our integrity descriptor */ 1159 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr); 1160 if (!error) { 1161 if (dscr == NULL) { 1162 trace->wpos = trace->pos; 1163 break; /* empty terminates */ 1164 } 1165 dscr_type = udf_rw16(dscr->tag.id); 1166 if (dscr_type == TAGID_TERM) { 1167 trace->wpos = trace->pos; 1168 break; /* clean terminator */ 1169 } 1170 if (dscr_type != TAGID_LOGVOL_INTEGRITY) { 1171 /* fatal... corrupt disc */ 1172 error = ENOENT; 1173 break; 1174 } 1175 if (lvint) 1176 free(lvint, M_UDFVOLD); 1177 lvint = &dscr->lvid; 1178 dscr = NULL; 1179 } /* else hope for the best... maybe the next is ok */ 1180 1181 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n", 1182 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN")); 1183 1184 /* proceed sequential */ 1185 lbnum += 1; 1186 len -= lb_size; 1187 1188 /* are we linking to a new piece? */ 1189 if (dscr && lvint->next_extent.len) { 1190 len = udf_rw32(lvint->next_extent.len); 1191 lbnum = udf_rw32(lvint->next_extent.loc); 1192 1193 if (trace_len >= UDF_LVDINT_SEGMENTS-1) { 1194 /* IEK! segment link full... */ 1195 DPRINTF(VOLUMES, ("lvdint segments full\n")); 1196 error = EINVAL; 1197 } else { 1198 trace++; 1199 trace_len++; 1200 1201 trace->start = lbnum; 1202 trace->end = lbnum + len/lb_size; 1203 trace->pos = 0; 1204 trace->wpos = 0; 1205 } 1206 } 1207 } 1208 1209 /* clean up the mess, esp. when there is an error */ 1210 if (dscr) 1211 free(dscr, M_UDFVOLD); 1212 1213 if (error && lvint) { 1214 free(lvint, M_UDFVOLD); 1215 lvint = NULL; 1216 } 1217 1218 if (!lvint) 1219 error = ENOENT; 1220 1221 ump->logvol_integrity = lvint; 1222 return error; 1223 } 1224 1225 1226 static int 1227 udf_loose_lvint_history(struct udf_mount *ump) 1228 { 1229 union dscrptr **bufs, *dscr, *last_dscr; 1230 struct udf_lvintq *trace, *in_trace, *out_trace; 1231 struct logvol_int_desc *lvint; 1232 uint32_t in_ext, in_pos, in_len; 1233 uint32_t out_ext, out_wpos, out_len; 1234 uint32_t lb_size, packet_size, lb_num; 1235 uint32_t len, start; 1236 int ext, minext, extlen, cnt, cpy_len, dscr_type; 1237 int losing; 1238 int error; 1239 1240 DPRINTF(VOLUMES, ("need to lose some lvint history\n")); 1241 1242 lb_size = udf_rw32(ump->logical_vol->lb_size); 1243 packet_size = ump->data_track.packet_size; /* XXX data track */ 1244 1245 /* search smallest extent */ 1246 trace = &ump->lvint_trace[0]; 1247 minext = trace->end - trace->start; 1248 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) { 1249 trace = &ump->lvint_trace[ext]; 1250 extlen = trace->end - trace->start; 1251 if (extlen == 0) 1252 break; 1253 minext = MIN(minext, extlen); 1254 } 1255 losing = MIN(minext, UDF_LVINT_LOSSAGE); 1256 /* no sense wiping all */ 1257 if (losing == minext) 1258 losing--; 1259 1260 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing)); 1261 1262 /* get buffer for pieces */ 1263 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK); 1264 1265 in_ext = 0; 1266 in_pos = losing; 1267 in_trace = &ump->lvint_trace[in_ext]; 1268 in_len = in_trace->end - in_trace->start; 1269 out_ext = 0; 1270 out_wpos = 0; 1271 out_trace = &ump->lvint_trace[out_ext]; 1272 out_len = out_trace->end - out_trace->start; 1273 1274 last_dscr = NULL; 1275 for(;;) { 1276 out_trace->pos = out_wpos; 1277 out_trace->wpos = out_trace->pos; 1278 if (in_pos >= in_len) { 1279 in_ext++; 1280 in_pos = 0; 1281 in_trace = &ump->lvint_trace[in_ext]; 1282 in_len = in_trace->end - in_trace->start; 1283 } 1284 if (out_wpos >= out_len) { 1285 out_ext++; 1286 out_wpos = 0; 1287 out_trace = &ump->lvint_trace[out_ext]; 1288 out_len = out_trace->end - out_trace->start; 1289 } 1290 /* copy overlap contents */ 1291 cpy_len = MIN(in_len - in_pos, out_len - out_wpos); 1292 cpy_len = MIN(cpy_len, in_len - in_trace->pos); 1293 if (cpy_len == 0) 1294 break; 1295 1296 /* copy */ 1297 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len)); 1298 for (cnt = 0; cnt < cpy_len; cnt++) { 1299 /* read in our integrity descriptor */ 1300 lb_num = in_trace->start + in_pos + cnt; 1301 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, 1302 &dscr); 1303 if (error) { 1304 /* copy last one */ 1305 dscr = last_dscr; 1306 } 1307 bufs[cnt] = dscr; 1308 if (!error) { 1309 if (dscr == NULL) { 1310 out_trace->pos = out_wpos + cnt; 1311 out_trace->wpos = out_trace->pos; 1312 break; /* empty terminates */ 1313 } 1314 dscr_type = udf_rw16(dscr->tag.id); 1315 if (dscr_type == TAGID_TERM) { 1316 out_trace->pos = out_wpos + cnt; 1317 out_trace->wpos = out_trace->pos; 1318 break; /* clean terminator */ 1319 } 1320 if (dscr_type != TAGID_LOGVOL_INTEGRITY) { 1321 panic( "UDF integrity sequence " 1322 "corrupted while mounted!\n"); 1323 } 1324 last_dscr = dscr; 1325 } 1326 } 1327 1328 /* patch up if first entry was on error */ 1329 if (bufs[0] == NULL) { 1330 for (cnt = 0; cnt < cpy_len; cnt++) 1331 if (bufs[cnt] != NULL) 1332 break; 1333 last_dscr = bufs[cnt]; 1334 for (; cnt > 0; cnt--) { 1335 bufs[cnt] = last_dscr; 1336 } 1337 } 1338 1339 /* glue + write out */ 1340 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len)); 1341 for (cnt = 0; cnt < cpy_len; cnt++) { 1342 lb_num = out_trace->start + out_wpos + cnt; 1343 lvint = &bufs[cnt]->lvid; 1344 1345 /* set continuation */ 1346 len = 0; 1347 start = 0; 1348 if (out_wpos + cnt == out_len) { 1349 /* get continuation */ 1350 trace = &ump->lvint_trace[out_ext+1]; 1351 len = trace->end - trace->start; 1352 start = trace->start; 1353 } 1354 lvint->next_extent.len = udf_rw32(len); 1355 lvint->next_extent.loc = udf_rw32(start); 1356 1357 lb_num = trace->start + trace->wpos; 1358 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1359 bufs[cnt], lb_num, lb_num); 1360 DPRINTFIF(VOLUMES, error, 1361 ("error writing lvint lb_num\n")); 1362 } 1363 1364 /* free non repeating descriptors */ 1365 last_dscr = NULL; 1366 for (cnt = 0; cnt < cpy_len; cnt++) { 1367 if (bufs[cnt] != last_dscr) 1368 free(bufs[cnt], M_UDFVOLD); 1369 last_dscr = bufs[cnt]; 1370 } 1371 1372 /* advance */ 1373 in_pos += cpy_len; 1374 out_wpos += cpy_len; 1375 } 1376 1377 free(bufs, M_TEMP); 1378 1379 return 0; 1380 } 1381 1382 1383 static int 1384 udf_writeout_lvint(struct udf_mount *ump, int lvflag) 1385 { 1386 struct udf_lvintq *trace; 1387 struct timeval now_v; 1388 struct timespec now_s; 1389 uint32_t sector; 1390 int logvol_integrity; 1391 int space, error; 1392 1393 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n")); 1394 1395 again: 1396 /* get free space in last chunk */ 1397 trace = ump->lvint_trace; 1398 while (trace->wpos > (trace->end - trace->start)) { 1399 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, " 1400 "wpos = %d\n", trace->start, trace->end, 1401 trace->pos, trace->wpos)); 1402 trace++; 1403 } 1404 1405 /* check if there is space to append */ 1406 space = (trace->end - trace->start) - trace->wpos; 1407 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, " 1408 "space = %d\n", trace->start, trace->end, trace->pos, 1409 trace->wpos, space)); 1410 1411 /* get state */ 1412 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 1413 if (logvol_integrity == UDF_INTEGRITY_CLOSED) { 1414 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) { 1415 /* don't allow this logvol to be opened */ 1416 /* TODO extent LVINT space if possible */ 1417 return EROFS; 1418 } 1419 } 1420 1421 if (space < 1) { 1422 if (lvflag & UDF_APPENDONLY_LVINT) 1423 return EROFS; 1424 /* loose history by re-writing extents */ 1425 error = udf_loose_lvint_history(ump); 1426 if (error) 1427 return error; 1428 goto again; 1429 } 1430 1431 /* update our integrity descriptor to identify us and timestamp it */ 1432 DPRINTF(VOLUMES, ("updating integrity descriptor\n")); 1433 microtime(&now_v); 1434 TIMEVAL_TO_TIMESPEC(&now_v, &now_s); 1435 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time); 1436 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME); 1437 udf_add_impl_regid(ump, &ump->logvol_info->impl_id); 1438 1439 /* writeout integrity descriptor */ 1440 sector = trace->start + trace->wpos; 1441 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1442 (union dscrptr *) ump->logvol_integrity, 1443 sector, sector); 1444 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error)); 1445 if (error) 1446 return error; 1447 1448 /* advance write position */ 1449 trace->wpos++; space--; 1450 if (space >= 1) { 1451 /* append terminator */ 1452 sector = trace->start + trace->wpos; 1453 error = udf_write_terminator(ump, sector); 1454 1455 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error)); 1456 } 1457 1458 space = (trace->end - trace->start) - trace->wpos; 1459 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, " 1460 "space = %d\n", trace->start, trace->end, trace->pos, 1461 trace->wpos, space)); 1462 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor " 1463 "successfull\n")); 1464 1465 return error; 1466 } 1467 1468 /* --------------------------------------------------------------------- */ 1469 1470 static int 1471 udf_read_physical_partition_spacetables(struct udf_mount *ump) 1472 { 1473 union dscrptr *dscr; 1474 /* struct udf_args *args = &ump->mount_args; */ 1475 struct part_desc *partd; 1476 struct part_hdr_desc *parthdr; 1477 struct udf_bitmap *bitmap; 1478 uint32_t phys_part; 1479 uint32_t lb_num, len; 1480 int error, dscr_type; 1481 1482 /* unallocated space map */ 1483 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1484 partd = ump->partitions[phys_part]; 1485 if (partd == NULL) 1486 continue; 1487 parthdr = &partd->_impl_use.part_hdr; 1488 1489 lb_num = udf_rw32(partd->start_loc); 1490 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num); 1491 len = udf_rw32(parthdr->unalloc_space_bitmap.len); 1492 if (len == 0) 1493 continue; 1494 1495 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num)); 1496 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 1497 if (!error && dscr) { 1498 /* analyse */ 1499 dscr_type = udf_rw16(dscr->tag.id); 1500 if (dscr_type == TAGID_SPACE_BITMAP) { 1501 DPRINTF(VOLUMES, ("Accepting space bitmap\n")); 1502 ump->part_unalloc_dscr[phys_part] = &dscr->sbd; 1503 1504 /* fill in ump->part_unalloc_bits */ 1505 bitmap = &ump->part_unalloc_bits[phys_part]; 1506 bitmap->blob = (uint8_t *) dscr; 1507 bitmap->bits = dscr->sbd.data; 1508 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1509 bitmap->pages = NULL; /* TODO */ 1510 bitmap->data_pos = 0; 1511 bitmap->metadata_pos = 0; 1512 } else { 1513 free(dscr, M_UDFVOLD); 1514 1515 printf( "UDF mount: error reading unallocated " 1516 "space bitmap\n"); 1517 return EROFS; 1518 } 1519 } else { 1520 /* blank not allowed */ 1521 printf("UDF mount: blank unallocated space bitmap\n"); 1522 return EROFS; 1523 } 1524 } 1525 1526 /* unallocated space table (not supported) */ 1527 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1528 partd = ump->partitions[phys_part]; 1529 if (partd == NULL) 1530 continue; 1531 parthdr = &partd->_impl_use.part_hdr; 1532 1533 len = udf_rw32(parthdr->unalloc_space_table.len); 1534 if (len) { 1535 printf("UDF mount: space tables not supported\n"); 1536 return EROFS; 1537 } 1538 } 1539 1540 /* freed space map */ 1541 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1542 partd = ump->partitions[phys_part]; 1543 if (partd == NULL) 1544 continue; 1545 parthdr = &partd->_impl_use.part_hdr; 1546 1547 /* freed space map */ 1548 lb_num = udf_rw32(partd->start_loc); 1549 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num); 1550 len = udf_rw32(parthdr->freed_space_bitmap.len); 1551 if (len == 0) 1552 continue; 1553 1554 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num)); 1555 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 1556 if (!error && dscr) { 1557 /* analyse */ 1558 dscr_type = udf_rw16(dscr->tag.id); 1559 if (dscr_type == TAGID_SPACE_BITMAP) { 1560 DPRINTF(VOLUMES, ("Accepting space bitmap\n")); 1561 ump->part_freed_dscr[phys_part] = &dscr->sbd; 1562 1563 /* fill in ump->part_freed_bits */ 1564 bitmap = &ump->part_unalloc_bits[phys_part]; 1565 bitmap->blob = (uint8_t *) dscr; 1566 bitmap->bits = dscr->sbd.data; 1567 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1568 bitmap->pages = NULL; /* TODO */ 1569 bitmap->data_pos = 0; 1570 bitmap->metadata_pos = 0; 1571 } else { 1572 free(dscr, M_UDFVOLD); 1573 1574 printf( "UDF mount: error reading freed " 1575 "space bitmap\n"); 1576 return EROFS; 1577 } 1578 } else { 1579 /* blank not allowed */ 1580 printf("UDF mount: blank freed space bitmap\n"); 1581 return EROFS; 1582 } 1583 } 1584 1585 /* freed space table (not supported) */ 1586 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1587 partd = ump->partitions[phys_part]; 1588 if (partd == NULL) 1589 continue; 1590 parthdr = &partd->_impl_use.part_hdr; 1591 1592 len = udf_rw32(parthdr->freed_space_table.len); 1593 if (len) { 1594 printf("UDF mount: space tables not supported\n"); 1595 return EROFS; 1596 } 1597 } 1598 1599 return 0; 1600 } 1601 1602 1603 /* TODO implement async writeout */ 1604 int 1605 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor) 1606 { 1607 union dscrptr *dscr; 1608 /* struct udf_args *args = &ump->mount_args; */ 1609 struct part_desc *partd; 1610 struct part_hdr_desc *parthdr; 1611 uint32_t phys_part; 1612 uint32_t lb_num, len, ptov; 1613 int error_all, error; 1614 1615 error_all = 0; 1616 /* unallocated space map */ 1617 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1618 partd = ump->partitions[phys_part]; 1619 if (partd == NULL) 1620 continue; 1621 parthdr = &partd->_impl_use.part_hdr; 1622 1623 ptov = udf_rw32(partd->start_loc); 1624 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num); 1625 len = udf_rw32(parthdr->unalloc_space_bitmap.len); 1626 if (len == 0) 1627 continue; 1628 1629 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n", 1630 lb_num + ptov)); 1631 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part]; 1632 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1633 (union dscrptr *) dscr, 1634 ptov + lb_num, lb_num); 1635 if (error) { 1636 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error)); 1637 error_all = error; 1638 } 1639 } 1640 1641 /* freed space map */ 1642 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1643 partd = ump->partitions[phys_part]; 1644 if (partd == NULL) 1645 continue; 1646 parthdr = &partd->_impl_use.part_hdr; 1647 1648 /* freed space map */ 1649 ptov = udf_rw32(partd->start_loc); 1650 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num); 1651 len = udf_rw32(parthdr->freed_space_bitmap.len); 1652 if (len == 0) 1653 continue; 1654 1655 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n", 1656 lb_num + ptov)); 1657 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part]; 1658 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1659 (union dscrptr *) dscr, 1660 ptov + lb_num, lb_num); 1661 if (error) { 1662 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error)); 1663 error_all = error; 1664 } 1665 } 1666 1667 return error_all; 1668 } 1669 1670 1671 static int 1672 udf_read_metadata_partition_spacetable(struct udf_mount *ump) 1673 { 1674 struct udf_node *bitmap_node; 1675 union dscrptr *dscr; 1676 struct udf_bitmap *bitmap; 1677 uint64_t inflen; 1678 int error, dscr_type; 1679 1680 bitmap_node = ump->metadatabitmap_node; 1681 1682 /* only read in when metadata bitmap node is read in */ 1683 if (bitmap_node == NULL) 1684 return 0; 1685 1686 if (bitmap_node->fe) { 1687 inflen = udf_rw64(bitmap_node->fe->inf_len); 1688 } else { 1689 KASSERT(bitmap_node->efe); 1690 inflen = udf_rw64(bitmap_node->efe->inf_len); 1691 } 1692 1693 DPRINTF(VOLUMES, ("Reading metadata space bitmap for " 1694 "%"PRIu64" bytes\n", inflen)); 1695 1696 /* allocate space for bitmap */ 1697 dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK); 1698 if (!dscr) 1699 return ENOMEM; 1700 1701 /* set vnode type to regular file or we can't read from it! */ 1702 bitmap_node->vnode->v_type = VREG; 1703 1704 /* read in complete metadata bitmap file */ 1705 error = vn_rdwr(UIO_READ, bitmap_node->vnode, 1706 dscr, 1707 inflen, 0, 1708 UIO_SYSSPACE, 1709 IO_SYNC | IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED, 1710 NULL, NULL); 1711 if (error) { 1712 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n")); 1713 goto errorout; 1714 } 1715 1716 /* analyse */ 1717 dscr_type = udf_rw16(dscr->tag.id); 1718 if (dscr_type == TAGID_SPACE_BITMAP) { 1719 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n")); 1720 ump->metadata_unalloc_dscr = &dscr->sbd; 1721 1722 /* fill in bitmap bits */ 1723 bitmap = &ump->metadata_unalloc_bits; 1724 bitmap->blob = (uint8_t *) dscr; 1725 bitmap->bits = dscr->sbd.data; 1726 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1727 bitmap->pages = NULL; /* TODO */ 1728 bitmap->data_pos = 0; 1729 bitmap->metadata_pos = 0; 1730 } else { 1731 DPRINTF(VOLUMES, ("No valid bitmap found!\n")); 1732 goto errorout; 1733 } 1734 1735 return 0; 1736 1737 errorout: 1738 free(dscr, M_UDFVOLD); 1739 printf( "UDF mount: error reading unallocated " 1740 "space bitmap for metadata partition\n"); 1741 return EROFS; 1742 } 1743 1744 1745 int 1746 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor) 1747 { 1748 struct udf_node *bitmap_node; 1749 union dscrptr *dscr; 1750 uint64_t inflen, new_inflen; 1751 int dummy, error; 1752 1753 bitmap_node = ump->metadatabitmap_node; 1754 1755 /* only write out when metadata bitmap node is known */ 1756 if (bitmap_node == NULL) 1757 return 0; 1758 1759 if (bitmap_node->fe) { 1760 inflen = udf_rw64(bitmap_node->fe->inf_len); 1761 } else { 1762 KASSERT(bitmap_node->efe); 1763 inflen = udf_rw64(bitmap_node->efe->inf_len); 1764 } 1765 1766 /* reduce length to zero */ 1767 dscr = (union dscrptr *) ump->metadata_unalloc_dscr; 1768 new_inflen = udf_tagsize(dscr, 1); 1769 1770 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from " 1771 "%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen)); 1772 1773 error = udf_resize_node(bitmap_node, new_inflen, &dummy); 1774 if (error) 1775 printf("Error resizing metadata space bitmap\n"); 1776 1777 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode, 1778 dscr, 1779 new_inflen, 0, 1780 UIO_SYSSPACE, 1781 IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED, 1782 NULL, NULL); 1783 1784 bitmap_node->i_flags |= IN_MODIFIED; 1785 vflushbuf(bitmap_node->vnode, 1 /* sync */); 1786 1787 error = VOP_FSYNC(bitmap_node->vnode, 1788 FSCRED, FSYNC_WAIT, 0, 0); 1789 1790 if (error) 1791 printf( "Error writing out metadata partition unalloced " 1792 "space bitmap!\n"); 1793 1794 return error; 1795 } 1796 1797 1798 /* --------------------------------------------------------------------- */ 1799 1800 /* 1801 * Checks if ump's vds information is correct and complete 1802 */ 1803 1804 int 1805 udf_process_vds(struct udf_mount *ump) { 1806 union udf_pmap *mapping; 1807 /* struct udf_args *args = &ump->mount_args; */ 1808 struct logvol_int_desc *lvint; 1809 struct udf_logvol_info *lvinfo; 1810 struct part_desc *part; 1811 uint32_t n_pm, mt_l; 1812 uint8_t *pmap_pos; 1813 char *domain_name, *map_name; 1814 const char *check_name; 1815 char bits[128]; 1816 int pmap_stype, pmap_size; 1817 int pmap_type, log_part, phys_part, raw_phys_part, maps_on; 1818 int n_phys, n_virt, n_spar, n_meta; 1819 int len, error; 1820 1821 if (ump == NULL) 1822 return ENOENT; 1823 1824 /* we need at least an anchor (trivial, but for safety) */ 1825 if (ump->anchors[0] == NULL) 1826 return EINVAL; 1827 1828 /* we need at least one primary and one logical volume descriptor */ 1829 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL) 1830 return EINVAL; 1831 1832 /* we need at least one partition descriptor */ 1833 if (ump->partitions[0] == NULL) 1834 return EINVAL; 1835 1836 /* check logical volume sector size verses device sector size */ 1837 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) { 1838 printf("UDF mount: format violation, lb_size != sector size\n"); 1839 return EINVAL; 1840 } 1841 1842 /* check domain name */ 1843 domain_name = ump->logical_vol->domain_id.id; 1844 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) { 1845 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n"); 1846 return EINVAL; 1847 } 1848 1849 /* retrieve logical volume integrity sequence */ 1850 error = udf_retrieve_lvint(ump); 1851 1852 /* 1853 * We need at least one logvol integrity descriptor recorded. Note 1854 * that its OK to have an open logical volume integrity here. The VAT 1855 * will close/update the integrity. 1856 */ 1857 if (ump->logvol_integrity == NULL) 1858 return EINVAL; 1859 1860 /* process derived structures */ 1861 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 1862 lvint = ump->logvol_integrity; 1863 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]); 1864 ump->logvol_info = lvinfo; 1865 1866 /* TODO check udf versions? */ 1867 1868 /* 1869 * check logvol mappings: effective virt->log partmap translation 1870 * check and recording of the mapping results. Saves expensive 1871 * strncmp() in tight places. 1872 */ 1873 DPRINTF(VOLUMES, ("checking logvol mappings\n")); 1874 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 1875 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */ 1876 pmap_pos = ump->logical_vol->maps; 1877 1878 if (n_pm > UDF_PMAPS) { 1879 printf("UDF mount: too many mappings\n"); 1880 return EINVAL; 1881 } 1882 1883 /* count types and set partition numbers */ 1884 ump->data_part = ump->node_part = ump->fids_part = 0; 1885 n_phys = n_virt = n_spar = n_meta = 0; 1886 for (log_part = 0; log_part < n_pm; log_part++) { 1887 mapping = (union udf_pmap *) pmap_pos; 1888 pmap_stype = pmap_pos[0]; 1889 pmap_size = pmap_pos[1]; 1890 switch (pmap_stype) { 1891 case 1: /* physical mapping */ 1892 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */ 1893 raw_phys_part = udf_rw16(mapping->pm1.part_num); 1894 pmap_type = UDF_VTOP_TYPE_PHYS; 1895 n_phys++; 1896 ump->data_part = log_part; 1897 ump->node_part = log_part; 1898 ump->fids_part = log_part; 1899 break; 1900 case 2: /* virtual/sparable/meta mapping */ 1901 map_name = mapping->pm2.part_id.id; 1902 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */ 1903 raw_phys_part = udf_rw16(mapping->pm2.part_num); 1904 pmap_type = UDF_VTOP_TYPE_UNKNOWN; 1905 len = UDF_REGID_ID_SIZE; 1906 1907 check_name = "*UDF Virtual Partition"; 1908 if (strncmp(map_name, check_name, len) == 0) { 1909 pmap_type = UDF_VTOP_TYPE_VIRT; 1910 n_virt++; 1911 ump->node_part = log_part; 1912 break; 1913 } 1914 check_name = "*UDF Sparable Partition"; 1915 if (strncmp(map_name, check_name, len) == 0) { 1916 pmap_type = UDF_VTOP_TYPE_SPARABLE; 1917 n_spar++; 1918 ump->data_part = log_part; 1919 ump->node_part = log_part; 1920 ump->fids_part = log_part; 1921 break; 1922 } 1923 check_name = "*UDF Metadata Partition"; 1924 if (strncmp(map_name, check_name, len) == 0) { 1925 pmap_type = UDF_VTOP_TYPE_META; 1926 n_meta++; 1927 ump->node_part = log_part; 1928 ump->fids_part = log_part; 1929 break; 1930 } 1931 break; 1932 default: 1933 return EINVAL; 1934 } 1935 1936 /* 1937 * BUGALERT: some rogue implementations use random physical 1938 * partion numbers to break other implementations so lookup 1939 * the number. 1940 */ 1941 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1942 part = ump->partitions[phys_part]; 1943 if (part == NULL) 1944 continue; 1945 if (udf_rw16(part->part_num) == raw_phys_part) 1946 break; 1947 } 1948 1949 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part, 1950 raw_phys_part, phys_part, pmap_type)); 1951 1952 if (phys_part == UDF_PARTITIONS) 1953 return EINVAL; 1954 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN) 1955 return EINVAL; 1956 1957 ump->vtop [log_part] = phys_part; 1958 ump->vtop_tp[log_part] = pmap_type; 1959 1960 pmap_pos += pmap_size; 1961 } 1962 /* not winning the beauty contest */ 1963 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW; 1964 1965 /* test some basic UDF assertions/requirements */ 1966 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1)) 1967 return EINVAL; 1968 1969 if (n_virt) { 1970 if ((n_phys == 0) || n_spar || n_meta) 1971 return EINVAL; 1972 } 1973 if (n_spar + n_phys == 0) 1974 return EINVAL; 1975 1976 /* select allocation type for each logical partition */ 1977 for (log_part = 0; log_part < n_pm; log_part++) { 1978 maps_on = ump->vtop[log_part]; 1979 switch (ump->vtop_tp[log_part]) { 1980 case UDF_VTOP_TYPE_PHYS : 1981 assert(maps_on == log_part); 1982 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP; 1983 break; 1984 case UDF_VTOP_TYPE_VIRT : 1985 ump->vtop_alloc[log_part] = UDF_ALLOC_VAT; 1986 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL; 1987 break; 1988 case UDF_VTOP_TYPE_SPARABLE : 1989 assert(maps_on == log_part); 1990 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP; 1991 break; 1992 case UDF_VTOP_TYPE_META : 1993 ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP; 1994 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) { 1995 /* special case for UDF 2.60 */ 1996 ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL; 1997 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL; 1998 } 1999 break; 2000 default: 2001 panic("bad alloction type in udf's ump->vtop\n"); 2002 } 2003 } 2004 2005 /* determine logical volume open/closure actions */ 2006 if (n_virt) { 2007 ump->lvopen = 0; 2008 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) 2009 ump->lvopen |= UDF_OPEN_SESSION ; 2010 ump->lvclose = UDF_WRITE_VAT; 2011 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION) 2012 ump->lvclose |= UDF_CLOSE_SESSION; 2013 } else { 2014 /* `normal' rewritable or non sequential media */ 2015 ump->lvopen = UDF_WRITE_LVINT; 2016 ump->lvclose = UDF_WRITE_LVINT; 2017 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0) 2018 ump->lvopen |= UDF_APPENDONLY_LVINT; 2019 } 2020 2021 /* 2022 * Determine sheduler error behaviour. For virtual partions, update 2023 * the trackinfo; for sparable partitions replace a whole block on the 2024 * sparable table. Allways requeue. 2025 */ 2026 ump->lvreadwrite = 0; 2027 if (n_virt) 2028 ump->lvreadwrite = UDF_UPDATE_TRACKINFO; 2029 if (n_spar) 2030 ump->lvreadwrite = UDF_REMAP_BLOCK; 2031 2032 /* 2033 * Select our sheduler 2034 */ 2035 ump->strategy = &udf_strat_rmw; 2036 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE)) 2037 ump->strategy = &udf_strat_sequential; 2038 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) || 2039 (ump->discinfo.mmc_class == MMC_CLASS_UNKN)) 2040 ump->strategy = &udf_strat_direct; 2041 if (n_spar) 2042 ump->strategy = &udf_strat_rmw; 2043 2044 #if 0 2045 /* read-only access won't benefit from the other shedulers */ 2046 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 2047 ump->strategy = &udf_strat_direct; 2048 #endif 2049 2050 /* print results */ 2051 DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part)); 2052 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part])); 2053 DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part)); 2054 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part])); 2055 DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part)); 2056 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part])); 2057 2058 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen); 2059 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits)); 2060 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose); 2061 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits)); 2062 snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite); 2063 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits)); 2064 2065 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n", 2066 (ump->strategy == &udf_strat_direct) ? "Direct" : 2067 (ump->strategy == &udf_strat_sequential) ? "Sequential" : 2068 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!")); 2069 2070 /* signal its OK for now */ 2071 return 0; 2072 } 2073 2074 /* --------------------------------------------------------------------- */ 2075 2076 /* 2077 * Update logical volume name in all structures that keep a record of it. We 2078 * use memmove since each of them might be specified as a source. 2079 * 2080 * Note that it doesn't update the VAT structure! 2081 */ 2082 2083 static void 2084 udf_update_logvolname(struct udf_mount *ump, char *logvol_id) 2085 { 2086 struct logvol_desc *lvd = NULL; 2087 struct fileset_desc *fsd = NULL; 2088 struct udf_lv_info *lvi = NULL; 2089 2090 DPRINTF(VOLUMES, ("Updating logical volume name\n")); 2091 lvd = ump->logical_vol; 2092 fsd = ump->fileset_desc; 2093 if (ump->implementation) 2094 lvi = &ump->implementation->_impl_use.lv_info; 2095 2096 /* logvol's id might be specified as origional so use memmove here */ 2097 memmove(lvd->logvol_id, logvol_id, 128); 2098 if (fsd) 2099 memmove(fsd->logvol_id, logvol_id, 128); 2100 if (lvi) 2101 memmove(lvi->logvol_id, logvol_id, 128); 2102 } 2103 2104 /* --------------------------------------------------------------------- */ 2105 2106 void 2107 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid, 2108 uint32_t sector) 2109 { 2110 assert(ump->logical_vol); 2111 2112 tag->id = udf_rw16(tagid); 2113 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver; 2114 tag->cksum = 0; 2115 tag->reserved = 0; 2116 tag->serial_num = ump->logical_vol->tag.serial_num; 2117 tag->tag_loc = udf_rw32(sector); 2118 } 2119 2120 2121 uint64_t 2122 udf_advance_uniqueid(struct udf_mount *ump) 2123 { 2124 uint64_t unique_id; 2125 2126 mutex_enter(&ump->logvol_mutex); 2127 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id); 2128 if (unique_id < 0x10) 2129 unique_id = 0x10; 2130 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1); 2131 mutex_exit(&ump->logvol_mutex); 2132 2133 return unique_id; 2134 } 2135 2136 2137 static void 2138 udf_adjust_filecount(struct udf_node *udf_node, int sign) 2139 { 2140 struct udf_mount *ump = udf_node->ump; 2141 uint32_t num_dirs, num_files; 2142 int udf_file_type; 2143 2144 /* get file type */ 2145 if (udf_node->fe) { 2146 udf_file_type = udf_node->fe->icbtag.file_type; 2147 } else { 2148 udf_file_type = udf_node->efe->icbtag.file_type; 2149 } 2150 2151 /* adjust file count */ 2152 mutex_enter(&ump->allocate_mutex); 2153 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) { 2154 num_dirs = udf_rw32(ump->logvol_info->num_directories); 2155 ump->logvol_info->num_directories = 2156 udf_rw32((num_dirs + sign)); 2157 } else { 2158 num_files = udf_rw32(ump->logvol_info->num_files); 2159 ump->logvol_info->num_files = 2160 udf_rw32((num_files + sign)); 2161 } 2162 mutex_exit(&ump->allocate_mutex); 2163 } 2164 2165 2166 void 2167 udf_osta_charset(struct charspec *charspec) 2168 { 2169 memset(charspec, 0, sizeof(struct charspec)); 2170 charspec->type = 0; 2171 strcpy((char *) charspec->inf, "OSTA Compressed Unicode"); 2172 } 2173 2174 2175 /* first call udf_set_regid and then the suffix */ 2176 void 2177 udf_set_regid(struct regid *regid, char const *name) 2178 { 2179 memset(regid, 0, sizeof(struct regid)); 2180 regid->flags = 0; /* not dirty and not protected */ 2181 strcpy((char *) regid->id, name); 2182 } 2183 2184 2185 void 2186 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid) 2187 { 2188 uint16_t *ver; 2189 2190 ver = (uint16_t *) regid->id_suffix; 2191 *ver = ump->logvol_info->min_udf_readver; 2192 } 2193 2194 2195 void 2196 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid) 2197 { 2198 uint16_t *ver; 2199 2200 ver = (uint16_t *) regid->id_suffix; 2201 *ver = ump->logvol_info->min_udf_readver; 2202 2203 regid->id_suffix[2] = 4; /* unix */ 2204 regid->id_suffix[3] = 8; /* NetBSD */ 2205 } 2206 2207 2208 void 2209 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid) 2210 { 2211 regid->id_suffix[0] = 4; /* unix */ 2212 regid->id_suffix[1] = 8; /* NetBSD */ 2213 } 2214 2215 2216 void 2217 udf_add_app_regid(struct udf_mount *ump, struct regid *regid) 2218 { 2219 regid->id_suffix[0] = APP_VERSION_MAIN; 2220 regid->id_suffix[1] = APP_VERSION_SUB; 2221 } 2222 2223 static int 2224 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid, 2225 struct long_ad *parent, uint64_t unique_id) 2226 { 2227 /* the size of an empty FID is 38 but needs to be a multiple of 4 */ 2228 int fidsize = 40; 2229 2230 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num)); 2231 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */ 2232 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR; 2233 fid->icb = *parent; 2234 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id); 2235 fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH); 2236 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 2237 2238 return fidsize; 2239 } 2240 2241 /* --------------------------------------------------------------------- */ 2242 2243 /* 2244 * Extended attribute support. UDF knows of 3 places for extended attributes: 2245 * 2246 * (a) inside the file's (e)fe in the length of the extended attribute area 2247 * before the allocation descriptors/filedata 2248 * 2249 * (b) in a file referenced by (e)fe->ext_attr_icb and 2250 * 2251 * (c) in the e(fe)'s associated stream directory that can hold various 2252 * sub-files. In the stream directory a few fixed named subfiles are reserved 2253 * for NT/Unix ACL's and OS/2 attributes. 2254 * 2255 * NOTE: Extended attributes are read randomly but allways written 2256 * *atomicaly*. For ACL's this interface is propably different but not known 2257 * to me yet. 2258 * 2259 * Order of extended attributes in a space : 2260 * ECMA 167 EAs 2261 * Non block aligned Implementation Use EAs 2262 * Block aligned Implementation Use EAs 2263 * Application Use EAs 2264 */ 2265 2266 static int 2267 udf_impl_extattr_check(struct impl_extattr_entry *implext) 2268 { 2269 uint16_t *spos; 2270 2271 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) { 2272 /* checksum valid? */ 2273 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n")); 2274 spos = (uint16_t *) implext->data; 2275 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext)) 2276 return EINVAL; 2277 } 2278 return 0; 2279 } 2280 2281 static void 2282 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext) 2283 { 2284 uint16_t *spos; 2285 2286 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) { 2287 /* set checksum */ 2288 spos = (uint16_t *) implext->data; 2289 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext)); 2290 } 2291 } 2292 2293 2294 int 2295 udf_extattr_search_intern(struct udf_node *node, 2296 uint32_t sattr, char const *sattrname, 2297 uint32_t *offsetp, uint32_t *lengthp) 2298 { 2299 struct extattrhdr_desc *eahdr; 2300 struct extattr_entry *attrhdr; 2301 struct impl_extattr_entry *implext; 2302 uint32_t offset, a_l, sector_size; 2303 int32_t l_ea; 2304 uint8_t *pos; 2305 int error; 2306 2307 /* get mountpoint */ 2308 sector_size = node->ump->discinfo.sector_size; 2309 2310 /* get information from fe/efe */ 2311 if (node->fe) { 2312 l_ea = udf_rw32(node->fe->l_ea); 2313 eahdr = (struct extattrhdr_desc *) node->fe->data; 2314 } else { 2315 assert(node->efe); 2316 l_ea = udf_rw32(node->efe->l_ea); 2317 eahdr = (struct extattrhdr_desc *) node->efe->data; 2318 } 2319 2320 /* something recorded here? */ 2321 if (l_ea == 0) 2322 return ENOENT; 2323 2324 /* check extended attribute tag; what to do if it fails? */ 2325 error = udf_check_tag(eahdr); 2326 if (error) 2327 return EINVAL; 2328 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR) 2329 return EINVAL; 2330 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc)); 2331 if (error) 2332 return EINVAL; 2333 2334 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea)); 2335 2336 /* looking for Ecma-167 attributes? */ 2337 offset = sizeof(struct extattrhdr_desc); 2338 2339 /* looking for either implemenation use or application use */ 2340 if (sattr == 2048) { /* [4/48.10.8] */ 2341 offset = udf_rw32(eahdr->impl_attr_loc); 2342 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2343 return ENOENT; 2344 } 2345 if (sattr == 65536) { /* [4/48.10.9] */ 2346 offset = udf_rw32(eahdr->appl_attr_loc); 2347 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT) 2348 return ENOENT; 2349 } 2350 2351 /* paranoia check offset and l_ea */ 2352 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry)) 2353 return EINVAL; 2354 2355 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset)); 2356 2357 /* find our extended attribute */ 2358 l_ea -= offset; 2359 pos = (uint8_t *) eahdr + offset; 2360 2361 while (l_ea >= sizeof(struct extattr_entry)) { 2362 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea)); 2363 attrhdr = (struct extattr_entry *) pos; 2364 implext = (struct impl_extattr_entry *) pos; 2365 2366 /* get complete attribute length and check for roque values */ 2367 a_l = udf_rw32(attrhdr->a_l); 2368 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n", 2369 udf_rw32(attrhdr->type), 2370 attrhdr->subtype, a_l, l_ea)); 2371 if ((a_l == 0) || (a_l > l_ea)) 2372 return EINVAL; 2373 2374 if (attrhdr->type != sattr) 2375 goto next_attribute; 2376 2377 /* we might have found it! */ 2378 if (attrhdr->type < 2048) { /* Ecma-167 attribute */ 2379 *offsetp = offset; 2380 *lengthp = a_l; 2381 return 0; /* success */ 2382 } 2383 2384 /* 2385 * Implementation use and application use extended attributes 2386 * have a name to identify. They share the same structure only 2387 * UDF implementation use extended attributes have a checksum 2388 * we need to check 2389 */ 2390 2391 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id)); 2392 if (strcmp(implext->imp_id.id, sattrname) == 0) { 2393 /* we have found our appl/implementation attribute */ 2394 *offsetp = offset; 2395 *lengthp = a_l; 2396 return 0; /* success */ 2397 } 2398 2399 next_attribute: 2400 /* next attribute */ 2401 pos += a_l; 2402 l_ea -= a_l; 2403 offset += a_l; 2404 } 2405 /* not found */ 2406 return ENOENT; 2407 } 2408 2409 2410 static void 2411 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr, 2412 struct extattr_entry *extattr) 2413 { 2414 struct file_entry *fe; 2415 struct extfile_entry *efe; 2416 struct extattrhdr_desc *extattrhdr; 2417 struct impl_extattr_entry *implext; 2418 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len; 2419 uint32_t *l_eap, l_ad; 2420 uint16_t *spos; 2421 uint8_t *bpos, *data; 2422 2423 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) { 2424 fe = &dscr->fe; 2425 data = fe->data; 2426 l_eap = &fe->l_ea; 2427 l_ad = udf_rw32(fe->l_ad); 2428 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) { 2429 efe = &dscr->efe; 2430 data = efe->data; 2431 l_eap = &efe->l_ea; 2432 l_ad = udf_rw32(efe->l_ad); 2433 } else { 2434 panic("Bad tag passed to udf_extattr_insert_internal"); 2435 } 2436 2437 /* can't append already written to file descriptors yet */ 2438 assert(l_ad == 0); 2439 2440 /* should have a header! */ 2441 extattrhdr = (struct extattrhdr_desc *) data; 2442 l_ea = udf_rw32(*l_eap); 2443 if (l_ea == 0) { 2444 /* create empty extended attribute header */ 2445 exthdr_len = sizeof(struct extattrhdr_desc); 2446 2447 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR, 2448 /* loc */ 0); 2449 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len); 2450 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len); 2451 extattrhdr->tag.desc_crc_len = udf_rw16(8); 2452 2453 /* record extended attribute header length */ 2454 l_ea = exthdr_len; 2455 *l_eap = udf_rw32(l_ea); 2456 } 2457 2458 /* extract locations */ 2459 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc); 2460 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc); 2461 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2462 impl_attr_loc = l_ea; 2463 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2464 appl_attr_loc = l_ea; 2465 2466 /* Ecma 167 EAs */ 2467 if (udf_rw32(extattr->type) < 2048) { 2468 assert(impl_attr_loc == l_ea); 2469 assert(appl_attr_loc == l_ea); 2470 } 2471 2472 /* implementation use extended attributes */ 2473 if (udf_rw32(extattr->type) == 2048) { 2474 assert(appl_attr_loc == l_ea); 2475 2476 /* calculate and write extended attribute header checksum */ 2477 implext = (struct impl_extattr_entry *) extattr; 2478 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */ 2479 spos = (uint16_t *) implext->data; 2480 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext)); 2481 } 2482 2483 /* application use extended attributes */ 2484 assert(udf_rw32(extattr->type) != 65536); 2485 assert(appl_attr_loc == l_ea); 2486 2487 /* append the attribute at the end of the current space */ 2488 bpos = data + udf_rw32(*l_eap); 2489 a_l = udf_rw32(extattr->a_l); 2490 2491 /* update impl. attribute locations */ 2492 if (udf_rw32(extattr->type) < 2048) { 2493 impl_attr_loc = l_ea + a_l; 2494 appl_attr_loc = l_ea + a_l; 2495 } 2496 if (udf_rw32(extattr->type) == 2048) { 2497 appl_attr_loc = l_ea + a_l; 2498 } 2499 2500 /* copy and advance */ 2501 memcpy(bpos, extattr, a_l); 2502 l_ea += a_l; 2503 *l_eap = udf_rw32(l_ea); 2504 2505 /* do the `dance` again backwards */ 2506 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) { 2507 if (impl_attr_loc == l_ea) 2508 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT; 2509 if (appl_attr_loc == l_ea) 2510 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT; 2511 } 2512 2513 /* store offsets */ 2514 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc); 2515 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc); 2516 } 2517 2518 2519 /* --------------------------------------------------------------------- */ 2520 2521 static int 2522 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node) 2523 { 2524 struct udf_mount *ump; 2525 struct udf_logvol_info *lvinfo; 2526 struct impl_extattr_entry *implext; 2527 struct vatlvext_extattr_entry lvext; 2528 const char *extstr = "*UDF VAT LVExtension"; 2529 uint64_t vat_uniqueid; 2530 uint32_t offset, a_l; 2531 uint8_t *ea_start, *lvextpos; 2532 int error; 2533 2534 /* get mountpoint and lvinfo */ 2535 ump = vat_node->ump; 2536 lvinfo = ump->logvol_info; 2537 2538 /* get information from fe/efe */ 2539 if (vat_node->fe) { 2540 vat_uniqueid = udf_rw64(vat_node->fe->unique_id); 2541 ea_start = vat_node->fe->data; 2542 } else { 2543 vat_uniqueid = udf_rw64(vat_node->efe->unique_id); 2544 ea_start = vat_node->efe->data; 2545 } 2546 2547 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l); 2548 if (error) 2549 return error; 2550 2551 implext = (struct impl_extattr_entry *) (ea_start + offset); 2552 error = udf_impl_extattr_check(implext); 2553 if (error) 2554 return error; 2555 2556 /* paranoia */ 2557 if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) { 2558 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n")); 2559 return EINVAL; 2560 } 2561 2562 /* 2563 * we have found our "VAT LVExtension attribute. BUT due to a 2564 * bug in the specification it might not be word aligned so 2565 * copy first to avoid panics on some machines (!!) 2566 */ 2567 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n")); 2568 lvextpos = implext->data + udf_rw32(implext->iu_l); 2569 memcpy(&lvext, lvextpos, sizeof(lvext)); 2570 2571 /* check if it was updated the last time */ 2572 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) { 2573 lvinfo->num_files = lvext.num_files; 2574 lvinfo->num_directories = lvext.num_directories; 2575 udf_update_logvolname(ump, lvext.logvol_id); 2576 } else { 2577 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n")); 2578 /* replace VAT LVExt by free space EA */ 2579 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE); 2580 strcpy(implext->imp_id.id, "*UDF FreeEASpace"); 2581 udf_calc_impl_extattr_checksum(implext); 2582 } 2583 2584 return 0; 2585 } 2586 2587 2588 static int 2589 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node) 2590 { 2591 struct udf_mount *ump; 2592 struct udf_logvol_info *lvinfo; 2593 struct impl_extattr_entry *implext; 2594 struct vatlvext_extattr_entry lvext; 2595 const char *extstr = "*UDF VAT LVExtension"; 2596 uint64_t vat_uniqueid; 2597 uint32_t offset, a_l; 2598 uint8_t *ea_start, *lvextpos; 2599 int error; 2600 2601 /* get mountpoint and lvinfo */ 2602 ump = vat_node->ump; 2603 lvinfo = ump->logvol_info; 2604 2605 /* get information from fe/efe */ 2606 if (vat_node->fe) { 2607 vat_uniqueid = udf_rw64(vat_node->fe->unique_id); 2608 ea_start = vat_node->fe->data; 2609 } else { 2610 vat_uniqueid = udf_rw64(vat_node->efe->unique_id); 2611 ea_start = vat_node->efe->data; 2612 } 2613 2614 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l); 2615 if (error) 2616 return error; 2617 /* found, it existed */ 2618 2619 /* paranoia */ 2620 implext = (struct impl_extattr_entry *) (ea_start + offset); 2621 error = udf_impl_extattr_check(implext); 2622 if (error) { 2623 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n")); 2624 return error; 2625 } 2626 /* it is correct */ 2627 2628 /* 2629 * we have found our "VAT LVExtension attribute. BUT due to a 2630 * bug in the specification it might not be word aligned so 2631 * copy first to avoid panics on some machines (!!) 2632 */ 2633 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n")); 2634 lvextpos = implext->data + udf_rw32(implext->iu_l); 2635 2636 lvext.unique_id_chk = vat_uniqueid; 2637 lvext.num_files = lvinfo->num_files; 2638 lvext.num_directories = lvinfo->num_directories; 2639 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128); 2640 2641 memcpy(lvextpos, &lvext, sizeof(lvext)); 2642 2643 return 0; 2644 } 2645 2646 /* --------------------------------------------------------------------- */ 2647 2648 int 2649 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset) 2650 { 2651 struct udf_mount *ump = vat_node->ump; 2652 2653 if (offset + size > ump->vat_offset + ump->vat_entries * 4) 2654 return EINVAL; 2655 2656 memcpy(blob, ump->vat_table + offset, size); 2657 return 0; 2658 } 2659 2660 int 2661 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset) 2662 { 2663 struct udf_mount *ump = vat_node->ump; 2664 uint32_t offset_high; 2665 uint8_t *new_vat_table; 2666 2667 /* extent VAT allocation if needed */ 2668 offset_high = offset + size; 2669 if (offset_high >= ump->vat_table_alloc_len) { 2670 /* realloc */ 2671 new_vat_table = realloc(ump->vat_table, 2672 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE, 2673 M_UDFVOLD, M_WAITOK | M_CANFAIL); 2674 if (!new_vat_table) { 2675 printf("udf_vat_write: can't extent VAT, out of mem\n"); 2676 return ENOMEM; 2677 } 2678 ump->vat_table = new_vat_table; 2679 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE; 2680 } 2681 ump->vat_table_len = MAX(ump->vat_table_len, offset_high); 2682 2683 memcpy(ump->vat_table + offset, blob, size); 2684 return 0; 2685 } 2686 2687 /* --------------------------------------------------------------------- */ 2688 2689 /* TODO support previous VAT location writeout */ 2690 static int 2691 udf_update_vat_descriptor(struct udf_mount *ump) 2692 { 2693 struct udf_node *vat_node = ump->vat_node; 2694 struct udf_logvol_info *lvinfo = ump->logvol_info; 2695 struct icb_tag *icbtag; 2696 struct udf_oldvat_tail *oldvat_tl; 2697 struct udf_vat *vat; 2698 uint64_t unique_id; 2699 uint32_t lb_size; 2700 uint8_t *raw_vat; 2701 int filetype, error; 2702 2703 KASSERT(vat_node); 2704 KASSERT(lvinfo); 2705 lb_size = udf_rw32(ump->logical_vol->lb_size); 2706 2707 /* get our new unique_id */ 2708 unique_id = udf_advance_uniqueid(ump); 2709 2710 /* get information from fe/efe */ 2711 if (vat_node->fe) { 2712 icbtag = &vat_node->fe->icbtag; 2713 vat_node->fe->unique_id = udf_rw64(unique_id); 2714 } else { 2715 icbtag = &vat_node->efe->icbtag; 2716 vat_node->efe->unique_id = udf_rw64(unique_id); 2717 } 2718 2719 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ 2720 filetype = icbtag->file_type; 2721 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT)); 2722 2723 /* allocate piece to process head or tail of VAT file */ 2724 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK); 2725 2726 if (filetype == 0) { 2727 /* 2728 * Update "*UDF VAT LVExtension" extended attribute from the 2729 * lvint if present. 2730 */ 2731 udf_update_vat_extattr_from_lvid(vat_node); 2732 2733 /* setup identifying regid */ 2734 oldvat_tl = (struct udf_oldvat_tail *) raw_vat; 2735 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail)); 2736 2737 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl"); 2738 udf_add_udf_regid(ump, &oldvat_tl->id); 2739 oldvat_tl->prev_vat = udf_rw32(0xffffffff); 2740 2741 /* write out new tail of virtual allocation table file */ 2742 error = udf_vat_write(vat_node, raw_vat, 2743 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4); 2744 } else { 2745 /* compose the VAT2 header */ 2746 vat = (struct udf_vat *) raw_vat; 2747 memset(vat, 0, sizeof(struct udf_vat)); 2748 2749 vat->header_len = udf_rw16(152); /* as per spec */ 2750 vat->impl_use_len = udf_rw16(0); 2751 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128); 2752 vat->prev_vat = udf_rw32(0xffffffff); 2753 vat->num_files = lvinfo->num_files; 2754 vat->num_directories = lvinfo->num_directories; 2755 vat->min_udf_readver = lvinfo->min_udf_readver; 2756 vat->min_udf_writever = lvinfo->min_udf_writever; 2757 vat->max_udf_writever = lvinfo->max_udf_writever; 2758 2759 error = udf_vat_write(vat_node, raw_vat, 2760 sizeof(struct udf_vat), 0); 2761 } 2762 free(raw_vat, M_TEMP); 2763 2764 return error; /* success! */ 2765 } 2766 2767 2768 int 2769 udf_writeout_vat(struct udf_mount *ump) 2770 { 2771 struct udf_node *vat_node = ump->vat_node; 2772 uint32_t vat_length; 2773 int error; 2774 2775 KASSERT(vat_node); 2776 2777 DPRINTF(CALL, ("udf_writeout_vat\n")); 2778 2779 mutex_enter(&ump->allocate_mutex); 2780 udf_update_vat_descriptor(ump); 2781 2782 /* write out the VAT contents ; TODO intelligent writing */ 2783 vat_length = ump->vat_table_len; 2784 error = vn_rdwr(UIO_WRITE, vat_node->vnode, 2785 ump->vat_table, ump->vat_table_len, 0, 2786 UIO_SYSSPACE, IO_NODELOCKED, FSCRED, NULL, NULL); 2787 if (error) { 2788 printf("udf_writeout_vat: failed to write out VAT contents\n"); 2789 goto out; 2790 } 2791 2792 mutex_exit(&ump->allocate_mutex); 2793 2794 vflushbuf(ump->vat_node->vnode, 1 /* sync */); 2795 error = VOP_FSYNC(ump->vat_node->vnode, 2796 FSCRED, FSYNC_WAIT, 0, 0); 2797 if (error) 2798 printf("udf_writeout_vat: error writing VAT node!\n"); 2799 out: 2800 2801 return error; 2802 } 2803 2804 /* --------------------------------------------------------------------- */ 2805 2806 /* 2807 * Read in relevant pieces of VAT file and check if its indeed a VAT file 2808 * descriptor. If OK, read in complete VAT file. 2809 */ 2810 2811 static int 2812 udf_check_for_vat(struct udf_node *vat_node) 2813 { 2814 struct udf_mount *ump; 2815 struct icb_tag *icbtag; 2816 struct timestamp *mtime; 2817 struct udf_vat *vat; 2818 struct udf_oldvat_tail *oldvat_tl; 2819 struct udf_logvol_info *lvinfo; 2820 uint64_t unique_id; 2821 uint32_t vat_length; 2822 uint32_t vat_offset, vat_entries, vat_table_alloc_len; 2823 uint32_t sector_size; 2824 uint32_t *raw_vat; 2825 uint8_t *vat_table; 2826 char *regid_name; 2827 int filetype; 2828 int error; 2829 2830 /* vat_length is really 64 bits though impossible */ 2831 2832 DPRINTF(VOLUMES, ("Checking for VAT\n")); 2833 if (!vat_node) 2834 return ENOENT; 2835 2836 /* get mount info */ 2837 ump = vat_node->ump; 2838 sector_size = udf_rw32(ump->logical_vol->lb_size); 2839 2840 /* check assertions */ 2841 assert(vat_node->fe || vat_node->efe); 2842 assert(ump->logvol_integrity); 2843 2844 /* set vnode type to regular file or we can't read from it! */ 2845 vat_node->vnode->v_type = VREG; 2846 2847 /* get information from fe/efe */ 2848 if (vat_node->fe) { 2849 vat_length = udf_rw64(vat_node->fe->inf_len); 2850 icbtag = &vat_node->fe->icbtag; 2851 mtime = &vat_node->fe->mtime; 2852 unique_id = udf_rw64(vat_node->fe->unique_id); 2853 } else { 2854 vat_length = udf_rw64(vat_node->efe->inf_len); 2855 icbtag = &vat_node->efe->icbtag; 2856 mtime = &vat_node->efe->mtime; 2857 unique_id = udf_rw64(vat_node->efe->unique_id); 2858 } 2859 2860 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ 2861 filetype = icbtag->file_type; 2862 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT)) 2863 return ENOENT; 2864 2865 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length)); 2866 2867 vat_table_alloc_len = 2868 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE) 2869 * UDF_VAT_CHUNKSIZE; 2870 2871 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD, 2872 M_CANFAIL | M_WAITOK); 2873 if (vat_table == NULL) { 2874 printf("allocation of %d bytes failed for VAT\n", 2875 vat_table_alloc_len); 2876 return ENOMEM; 2877 } 2878 2879 /* allocate piece to read in head or tail of VAT file */ 2880 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK); 2881 2882 /* 2883 * check contents of the file if its the old 1.50 VAT table format. 2884 * Its notoriously broken and allthough some implementations support an 2885 * extention as defined in the UDF 1.50 errata document, its doubtfull 2886 * to be useable since a lot of implementations don't maintain it. 2887 */ 2888 lvinfo = ump->logvol_info; 2889 2890 if (filetype == 0) { 2891 /* definition */ 2892 vat_offset = 0; 2893 vat_entries = (vat_length-36)/4; 2894 2895 /* read in tail of virtual allocation table file */ 2896 error = vn_rdwr(UIO_READ, vat_node->vnode, 2897 (uint8_t *) raw_vat, 2898 sizeof(struct udf_oldvat_tail), 2899 vat_entries * 4, 2900 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2901 NULL, NULL); 2902 if (error) 2903 goto out; 2904 2905 /* check 1.50 VAT */ 2906 oldvat_tl = (struct udf_oldvat_tail *) raw_vat; 2907 regid_name = (char *) oldvat_tl->id.id; 2908 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22); 2909 if (error) { 2910 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n")); 2911 error = ENOENT; 2912 goto out; 2913 } 2914 2915 /* 2916 * update LVID from "*UDF VAT LVExtension" extended attribute 2917 * if present. 2918 */ 2919 udf_update_lvid_from_vat_extattr(vat_node); 2920 } else { 2921 /* read in head of virtual allocation table file */ 2922 error = vn_rdwr(UIO_READ, vat_node->vnode, 2923 (uint8_t *) raw_vat, 2924 sizeof(struct udf_vat), 0, 2925 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2926 NULL, NULL); 2927 if (error) 2928 goto out; 2929 2930 /* definition */ 2931 vat = (struct udf_vat *) raw_vat; 2932 vat_offset = vat->header_len; 2933 vat_entries = (vat_length - vat_offset)/4; 2934 2935 assert(lvinfo); 2936 lvinfo->num_files = vat->num_files; 2937 lvinfo->num_directories = vat->num_directories; 2938 lvinfo->min_udf_readver = vat->min_udf_readver; 2939 lvinfo->min_udf_writever = vat->min_udf_writever; 2940 lvinfo->max_udf_writever = vat->max_udf_writever; 2941 2942 udf_update_logvolname(ump, vat->logvol_id); 2943 } 2944 2945 /* read in complete VAT file */ 2946 error = vn_rdwr(UIO_READ, vat_node->vnode, 2947 vat_table, 2948 vat_length, 0, 2949 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2950 NULL, NULL); 2951 if (error) 2952 printf("read in of complete VAT file failed (error %d)\n", 2953 error); 2954 if (error) 2955 goto out; 2956 2957 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n")); 2958 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id); 2959 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); 2960 ump->logvol_integrity->time = *mtime; 2961 2962 ump->vat_table_len = vat_length; 2963 ump->vat_table_alloc_len = vat_table_alloc_len; 2964 ump->vat_table = vat_table; 2965 ump->vat_offset = vat_offset; 2966 ump->vat_entries = vat_entries; 2967 ump->vat_last_free_lb = 0; /* start at beginning */ 2968 2969 out: 2970 if (error) { 2971 if (vat_table) 2972 free(vat_table, M_UDFVOLD); 2973 } 2974 free(raw_vat, M_TEMP); 2975 2976 return error; 2977 } 2978 2979 /* --------------------------------------------------------------------- */ 2980 2981 static int 2982 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping) 2983 { 2984 struct udf_node *vat_node; 2985 struct long_ad icb_loc; 2986 uint32_t early_vat_loc, late_vat_loc, vat_loc; 2987 int error; 2988 2989 /* mapping info not needed */ 2990 mapping = mapping; 2991 2992 vat_loc = ump->last_possible_vat_location; 2993 early_vat_loc = vat_loc - 256; /* 8 blocks of 32 sectors */ 2994 2995 DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n", 2996 vat_loc, early_vat_loc)); 2997 early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location); 2998 late_vat_loc = vat_loc + 1024; 2999 3000 DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n", 3001 vat_loc, early_vat_loc)); 3002 3003 /* start looking from the end of the range */ 3004 do { 3005 DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc)); 3006 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART); 3007 icb_loc.loc.lb_num = udf_rw32(vat_loc); 3008 3009 error = udf_get_node(ump, &icb_loc, &vat_node); 3010 if (!error) { 3011 error = udf_check_for_vat(vat_node); 3012 DPRINTFIF(VOLUMES, !error, 3013 ("VAT accepted at %d\n", vat_loc)); 3014 if (!error) 3015 break; 3016 } 3017 if (vat_node) { 3018 vput(vat_node->vnode); 3019 vat_node = NULL; 3020 } 3021 vat_loc--; /* walk backwards */ 3022 } while (vat_loc >= early_vat_loc); 3023 3024 /* keep our VAT node around */ 3025 if (vat_node) { 3026 UDF_SET_SYSTEMFILE(vat_node->vnode); 3027 ump->vat_node = vat_node; 3028 } 3029 3030 return error; 3031 } 3032 3033 /* --------------------------------------------------------------------- */ 3034 3035 static int 3036 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping) 3037 { 3038 union dscrptr *dscr; 3039 struct part_map_spare *pms = &mapping->pms; 3040 uint32_t lb_num; 3041 int spar, error; 3042 3043 /* 3044 * The partition mapping passed on to us specifies the information we 3045 * need to locate and initialise the sparable partition mapping 3046 * information we need. 3047 */ 3048 3049 DPRINTF(VOLUMES, ("Read sparable table\n")); 3050 ump->sparable_packet_size = udf_rw16(pms->packet_len); 3051 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */ 3052 3053 for (spar = 0; spar < pms->n_st; spar++) { 3054 lb_num = pms->st_loc[spar]; 3055 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num)); 3056 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 3057 if (!error && dscr) { 3058 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) { 3059 if (ump->sparing_table) 3060 free(ump->sparing_table, M_UDFVOLD); 3061 ump->sparing_table = &dscr->spt; 3062 dscr = NULL; 3063 DPRINTF(VOLUMES, 3064 ("Sparing table accepted (%d entries)\n", 3065 udf_rw16(ump->sparing_table->rt_l))); 3066 break; /* we're done */ 3067 } 3068 } 3069 if (dscr) 3070 free(dscr, M_UDFVOLD); 3071 } 3072 3073 if (ump->sparing_table) 3074 return 0; 3075 3076 return ENOENT; 3077 } 3078 3079 /* --------------------------------------------------------------------- */ 3080 3081 static int 3082 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping) 3083 { 3084 struct part_map_meta *pmm = &mapping->pmm; 3085 struct long_ad icb_loc; 3086 struct vnode *vp; 3087 int error; 3088 3089 DPRINTF(VOLUMES, ("Reading in Metadata files\n")); 3090 icb_loc.loc.part_num = pmm->part_num; 3091 icb_loc.loc.lb_num = pmm->meta_file_lbn; 3092 DPRINTF(VOLUMES, ("Metadata file\n")); 3093 error = udf_get_node(ump, &icb_loc, &ump->metadata_node); 3094 if (ump->metadata_node) { 3095 vp = ump->metadata_node->vnode; 3096 UDF_SET_SYSTEMFILE(vp); 3097 } 3098 3099 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn; 3100 if (icb_loc.loc.lb_num != -1) { 3101 DPRINTF(VOLUMES, ("Metadata copy file\n")); 3102 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node); 3103 if (ump->metadatamirror_node) { 3104 vp = ump->metadatamirror_node->vnode; 3105 UDF_SET_SYSTEMFILE(vp); 3106 } 3107 } 3108 3109 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn; 3110 if (icb_loc.loc.lb_num != -1) { 3111 DPRINTF(VOLUMES, ("Metadata bitmap file\n")); 3112 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node); 3113 if (ump->metadatabitmap_node) { 3114 vp = ump->metadatabitmap_node->vnode; 3115 UDF_SET_SYSTEMFILE(vp); 3116 } 3117 } 3118 3119 /* if we're mounting read-only we relax the requirements */ 3120 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) { 3121 error = EFAULT; 3122 if (ump->metadata_node) 3123 error = 0; 3124 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) { 3125 printf( "udf mount: Metadata file not readable, " 3126 "substituting Metadata copy file\n"); 3127 ump->metadata_node = ump->metadatamirror_node; 3128 ump->metadatamirror_node = NULL; 3129 error = 0; 3130 } 3131 } else { 3132 /* mounting read/write */ 3133 /* XXX DISABLED! metadata writing is not working yet XXX */ 3134 if (error) 3135 error = EROFS; 3136 } 3137 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read " 3138 "metadata files\n")); 3139 return error; 3140 } 3141 3142 /* --------------------------------------------------------------------- */ 3143 3144 int 3145 udf_read_vds_tables(struct udf_mount *ump) 3146 { 3147 union udf_pmap *mapping; 3148 /* struct udf_args *args = &ump->mount_args; */ 3149 uint32_t n_pm, mt_l; 3150 uint32_t log_part; 3151 uint8_t *pmap_pos; 3152 int pmap_size; 3153 int error; 3154 3155 /* Iterate (again) over the part mappings for locations */ 3156 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 3157 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */ 3158 pmap_pos = ump->logical_vol->maps; 3159 3160 for (log_part = 0; log_part < n_pm; log_part++) { 3161 mapping = (union udf_pmap *) pmap_pos; 3162 switch (ump->vtop_tp[log_part]) { 3163 case UDF_VTOP_TYPE_PHYS : 3164 /* nothing */ 3165 break; 3166 case UDF_VTOP_TYPE_VIRT : 3167 /* search and load VAT */ 3168 error = udf_search_vat(ump, mapping); 3169 if (error) 3170 return ENOENT; 3171 break; 3172 case UDF_VTOP_TYPE_SPARABLE : 3173 /* load one of the sparable tables */ 3174 error = udf_read_sparables(ump, mapping); 3175 if (error) 3176 return ENOENT; 3177 break; 3178 case UDF_VTOP_TYPE_META : 3179 /* load the associated file descriptors */ 3180 error = udf_read_metadata_nodes(ump, mapping); 3181 if (error) 3182 return ENOENT; 3183 break; 3184 default: 3185 break; 3186 } 3187 pmap_size = pmap_pos[1]; 3188 pmap_pos += pmap_size; 3189 } 3190 3191 /* read in and check unallocated and free space info if writing */ 3192 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) { 3193 error = udf_read_physical_partition_spacetables(ump); 3194 if (error) 3195 return error; 3196 3197 /* also read in metadata partion spacebitmap if defined */ 3198 error = udf_read_metadata_partition_spacetable(ump); 3199 return error; 3200 } 3201 3202 return 0; 3203 } 3204 3205 /* --------------------------------------------------------------------- */ 3206 3207 int 3208 udf_read_rootdirs(struct udf_mount *ump) 3209 { 3210 union dscrptr *dscr; 3211 /* struct udf_args *args = &ump->mount_args; */ 3212 struct udf_node *rootdir_node, *streamdir_node; 3213 struct long_ad fsd_loc, *dir_loc; 3214 uint32_t lb_num, dummy; 3215 uint32_t fsd_len; 3216 int dscr_type; 3217 int error; 3218 3219 /* TODO implement FSD reading in separate function like integrity? */ 3220 /* get fileset descriptor sequence */ 3221 fsd_loc = ump->logical_vol->lv_fsd_loc; 3222 fsd_len = udf_rw32(fsd_loc.len); 3223 3224 dscr = NULL; 3225 error = 0; 3226 while (fsd_len || error) { 3227 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len)); 3228 /* translate fsd_loc to lb_num */ 3229 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy); 3230 if (error) 3231 break; 3232 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num)); 3233 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 3234 /* end markers */ 3235 if (error || (dscr == NULL)) 3236 break; 3237 3238 /* analyse */ 3239 dscr_type = udf_rw16(dscr->tag.id); 3240 if (dscr_type == TAGID_TERM) 3241 break; 3242 if (dscr_type != TAGID_FSD) { 3243 free(dscr, M_UDFVOLD); 3244 return ENOENT; 3245 } 3246 3247 /* 3248 * TODO check for multiple fileset descriptors; its only 3249 * picking the last now. Also check for FSD 3250 * correctness/interpretability 3251 */ 3252 3253 /* update */ 3254 if (ump->fileset_desc) { 3255 free(ump->fileset_desc, M_UDFVOLD); 3256 } 3257 ump->fileset_desc = &dscr->fsd; 3258 dscr = NULL; 3259 3260 /* continue to the next fsd */ 3261 fsd_len -= ump->discinfo.sector_size; 3262 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1); 3263 3264 /* follow up to fsd->next_ex (long_ad) if its not null */ 3265 if (udf_rw32(ump->fileset_desc->next_ex.len)) { 3266 DPRINTF(VOLUMES, ("follow up FSD extent\n")); 3267 fsd_loc = ump->fileset_desc->next_ex; 3268 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len); 3269 } 3270 } 3271 if (dscr) 3272 free(dscr, M_UDFVOLD); 3273 3274 /* there has to be one */ 3275 if (ump->fileset_desc == NULL) 3276 return ENOENT; 3277 3278 DPRINTF(VOLUMES, ("FSD read in fine\n")); 3279 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n")); 3280 udf_update_logvolname(ump, ump->logical_vol->logvol_id); 3281 3282 /* 3283 * Now the FSD is known, read in the rootdirectory and if one exists, 3284 * the system stream dir. Some files in the system streamdir are not 3285 * wanted in this implementation since they are not maintained. If 3286 * writing is enabled we'll delete these files if they exist. 3287 */ 3288 3289 rootdir_node = streamdir_node = NULL; 3290 dir_loc = NULL; 3291 3292 /* try to read in the rootdir */ 3293 dir_loc = &ump->fileset_desc->rootdir_icb; 3294 error = udf_get_node(ump, dir_loc, &rootdir_node); 3295 if (error) 3296 return ENOENT; 3297 3298 /* aparently it read in fine */ 3299 3300 /* 3301 * Try the system stream directory; not very likely in the ones we 3302 * test, but for completeness. 3303 */ 3304 dir_loc = &ump->fileset_desc->streamdir_icb; 3305 if (udf_rw32(dir_loc->len)) { 3306 printf("udf_read_rootdirs: streamdir defined "); 3307 error = udf_get_node(ump, dir_loc, &streamdir_node); 3308 if (error) { 3309 printf("but error in streamdir reading\n"); 3310 } else { 3311 printf("but ignored\n"); 3312 /* 3313 * TODO process streamdir `baddies' i.e. files we dont 3314 * want if R/W 3315 */ 3316 } 3317 } 3318 3319 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n")); 3320 3321 /* release the vnodes again; they'll be auto-recycled later */ 3322 if (streamdir_node) { 3323 vput(streamdir_node->vnode); 3324 } 3325 if (rootdir_node) { 3326 vput(rootdir_node->vnode); 3327 } 3328 3329 return 0; 3330 } 3331 3332 /* --------------------------------------------------------------------- */ 3333 3334 /* To make absolutely sure we are NOT returning zero, add one :) */ 3335 3336 long 3337 udf_calchash(struct long_ad *icbptr) 3338 { 3339 /* ought to be enough since each mountpoint has its own chain */ 3340 return udf_rw32(icbptr->loc.lb_num) + 1; 3341 } 3342 3343 3344 static struct udf_node * 3345 udf_hash_lookup(struct udf_mount *ump, struct long_ad *icbptr) 3346 { 3347 struct udf_node *node; 3348 struct vnode *vp; 3349 uint32_t hashline; 3350 3351 loop: 3352 mutex_enter(&ump->ihash_lock); 3353 3354 hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK; 3355 LIST_FOREACH(node, &ump->udf_nodes[hashline], hashchain) { 3356 assert(node); 3357 if (node->loc.loc.lb_num == icbptr->loc.lb_num && 3358 node->loc.loc.part_num == icbptr->loc.part_num) { 3359 vp = node->vnode; 3360 assert(vp); 3361 mutex_enter(&vp->v_interlock); 3362 mutex_exit(&ump->ihash_lock); 3363 if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK)) 3364 goto loop; 3365 return node; 3366 } 3367 } 3368 mutex_exit(&ump->ihash_lock); 3369 3370 return NULL; 3371 } 3372 3373 3374 static void 3375 udf_sorted_list_insert(struct udf_node *node) 3376 { 3377 struct udf_mount *ump; 3378 struct udf_node *s_node, *last_node; 3379 uint32_t loc, s_loc; 3380 3381 ump = node->ump; 3382 last_node = NULL; /* XXX gcc */ 3383 3384 if (LIST_EMPTY(&ump->sorted_udf_nodes)) { 3385 LIST_INSERT_HEAD(&ump->sorted_udf_nodes, node, sortchain); 3386 return; 3387 } 3388 3389 /* 3390 * We sort on logical block number here and not on physical block 3391 * number here. Ideally we should go for the physical block nr to get 3392 * better sync performance though this sort will ensure that packets 3393 * won't get spit up unnessisarily. 3394 */ 3395 3396 loc = udf_rw32(node->loc.loc.lb_num); 3397 LIST_FOREACH(s_node, &ump->sorted_udf_nodes, sortchain) { 3398 s_loc = udf_rw32(s_node->loc.loc.lb_num); 3399 if (s_loc > loc) { 3400 LIST_INSERT_BEFORE(s_node, node, sortchain); 3401 return; 3402 } 3403 last_node = s_node; 3404 } 3405 LIST_INSERT_AFTER(last_node, node, sortchain); 3406 } 3407 3408 3409 static void 3410 udf_register_node(struct udf_node *node) 3411 { 3412 struct udf_mount *ump; 3413 struct udf_node *chk; 3414 uint32_t hashline; 3415 3416 ump = node->ump; 3417 mutex_enter(&ump->ihash_lock); 3418 3419 /* add to our hash table */ 3420 hashline = udf_calchash(&node->loc) & UDF_INODE_HASHMASK; 3421 #ifdef DEBUG 3422 LIST_FOREACH(chk, &ump->udf_nodes[hashline], hashchain) { 3423 assert(chk); 3424 if (chk->loc.loc.lb_num == node->loc.loc.lb_num && 3425 chk->loc.loc.part_num == node->loc.loc.part_num) 3426 panic("Double node entered\n"); 3427 } 3428 #else 3429 chk = NULL; 3430 #endif 3431 LIST_INSERT_HEAD(&ump->udf_nodes[hashline], node, hashchain); 3432 3433 /* add to our sorted list */ 3434 udf_sorted_list_insert(node); 3435 3436 mutex_exit(&ump->ihash_lock); 3437 } 3438 3439 3440 static void 3441 udf_deregister_node(struct udf_node *node) 3442 { 3443 struct udf_mount *ump; 3444 3445 ump = node->ump; 3446 mutex_enter(&ump->ihash_lock); 3447 3448 /* from hash and sorted list */ 3449 LIST_REMOVE(node, hashchain); 3450 LIST_REMOVE(node, sortchain); 3451 3452 mutex_exit(&ump->ihash_lock); 3453 } 3454 3455 /* --------------------------------------------------------------------- */ 3456 3457 static int 3458 udf_validate_session_start(struct udf_mount *ump) 3459 { 3460 struct mmc_trackinfo trackinfo; 3461 struct vrs_desc *vrs; 3462 uint32_t tracknr, sessionnr, sector, sector_size; 3463 uint32_t iso9660_vrs, write_track_start; 3464 uint8_t *buffer, *blank, *pos; 3465 int blks, max_sectors, vrs_len; 3466 int error; 3467 3468 /* disc appendable? */ 3469 if (ump->discinfo.disc_state == MMC_STATE_FULL) 3470 return EROFS; 3471 3472 /* already written here? if so, there should be an ISO VDS */ 3473 if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE) 3474 return 0; 3475 3476 /* 3477 * Check if the first track of the session is blank and if so, copy or 3478 * create a dummy ISO descriptor so the disc is valid again. 3479 */ 3480 3481 tracknr = ump->discinfo.first_track_last_session; 3482 memset(&trackinfo, 0, sizeof(struct mmc_trackinfo)); 3483 trackinfo.tracknr = tracknr; 3484 error = udf_update_trackinfo(ump, &trackinfo); 3485 if (error) 3486 return error; 3487 3488 udf_dump_trackinfo(&trackinfo); 3489 KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED)); 3490 KASSERT(trackinfo.sessionnr > 1); 3491 3492 KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID); 3493 write_track_start = trackinfo.next_writable; 3494 3495 /* we have to copy the ISO VRS from a former session */ 3496 DPRINTF(VOLUMES, ("validate_session_start: " 3497 "blank or reserved track, copying VRS\n")); 3498 3499 /* sessionnr should be the session we're mounting */ 3500 sessionnr = ump->mount_args.sessionnr; 3501 3502 /* start at the first track */ 3503 tracknr = ump->discinfo.first_track; 3504 while (tracknr <= ump->discinfo.num_tracks) { 3505 trackinfo.tracknr = tracknr; 3506 error = udf_update_trackinfo(ump, &trackinfo); 3507 if (error) { 3508 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n")); 3509 return error; 3510 } 3511 if (trackinfo.sessionnr == sessionnr) 3512 break; 3513 tracknr++; 3514 } 3515 if (trackinfo.sessionnr != sessionnr) { 3516 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n")); 3517 return ENOENT; 3518 } 3519 3520 DPRINTF(VOLUMES, ("found possible former ISO VRS at\n")); 3521 udf_dump_trackinfo(&trackinfo); 3522 3523 /* 3524 * location of iso9660 vrs is defined as first sector AFTER 32kb, 3525 * minimum ISO `sector size' 2048 3526 */ 3527 sector_size = ump->discinfo.sector_size; 3528 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size) 3529 + trackinfo.track_start; 3530 3531 buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK); 3532 max_sectors = UDF_ISO_VRS_SIZE / sector_size; 3533 blks = MAX(1, 2048 / sector_size); 3534 3535 error = 0; 3536 for (sector = 0; sector < max_sectors; sector += blks) { 3537 pos = buffer + sector * sector_size; 3538 error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos, 3539 iso9660_vrs + sector, blks); 3540 if (error) 3541 break; 3542 /* check this ISO descriptor */ 3543 vrs = (struct vrs_desc *) pos; 3544 DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier)); 3545 if (strncmp(vrs->identifier, VRS_CD001, 5) == 0) 3546 continue; 3547 if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0) 3548 continue; 3549 if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0) 3550 continue; 3551 if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0) 3552 continue; 3553 if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0) 3554 continue; 3555 if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0) 3556 break; 3557 /* now what? for now, end of sequence */ 3558 break; 3559 } 3560 vrs_len = sector + blks; 3561 if (error) { 3562 DPRINTF(VOLUMES, ("error reading old ISO VRS\n")); 3563 DPRINTF(VOLUMES, ("creating minimal ISO VRS\n")); 3564 3565 memset(buffer, 0, UDF_ISO_VRS_SIZE); 3566 3567 vrs = (struct vrs_desc *) (buffer); 3568 vrs->struct_type = 0; 3569 vrs->version = 1; 3570 memcpy(vrs->identifier,VRS_BEA01, 5); 3571 3572 vrs = (struct vrs_desc *) (buffer + 2048); 3573 vrs->struct_type = 0; 3574 vrs->version = 1; 3575 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) { 3576 memcpy(vrs->identifier,VRS_NSR02, 5); 3577 } else { 3578 memcpy(vrs->identifier,VRS_NSR03, 5); 3579 } 3580 3581 vrs = (struct vrs_desc *) (buffer + 4096); 3582 vrs->struct_type = 0; 3583 vrs->version = 1; 3584 memcpy(vrs->identifier, VRS_TEA01, 5); 3585 3586 vrs_len = 3*blks; 3587 } 3588 3589 DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len)); 3590 3591 /* 3592 * location of iso9660 vrs is defined as first sector AFTER 32kb, 3593 * minimum ISO `sector size' 2048 3594 */ 3595 sector_size = ump->discinfo.sector_size; 3596 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size) 3597 + write_track_start; 3598 3599 /* write out 32 kb */ 3600 blank = malloc(sector_size, M_TEMP, M_WAITOK); 3601 memset(blank, 0, sector_size); 3602 error = 0; 3603 for (sector = write_track_start; sector < iso9660_vrs; sector ++) { 3604 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, 3605 blank, sector, 1); 3606 if (error) 3607 break; 3608 } 3609 if (!error) { 3610 /* write out our ISO VRS */ 3611 KASSERT(sector == iso9660_vrs); 3612 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer, 3613 sector, vrs_len); 3614 sector += vrs_len; 3615 } 3616 if (!error) { 3617 /* fill upto the first anchor at S+256 */ 3618 for (; sector < write_track_start+256; sector++) { 3619 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, 3620 blank, sector, 1); 3621 if (error) 3622 break; 3623 } 3624 } 3625 if (!error) { 3626 /* write out anchor; write at ABSOLUTE place! */ 3627 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE, 3628 (union dscrptr *) ump->anchors[0], sector, sector); 3629 if (error) 3630 printf("writeout of anchor failed!\n"); 3631 } 3632 3633 free(blank, M_TEMP); 3634 free(buffer, M_TEMP); 3635 3636 if (error) 3637 printf("udf_open_session: error writing iso vrs! : " 3638 "leaving disc in compromised state!\n"); 3639 3640 /* synchronise device caches */ 3641 (void) udf_synchronise_caches(ump); 3642 3643 return error; 3644 } 3645 3646 3647 int 3648 udf_open_logvol(struct udf_mount *ump) 3649 { 3650 int logvol_integrity; 3651 int error; 3652 3653 /* already/still open? */ 3654 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 3655 if (logvol_integrity == UDF_INTEGRITY_OPEN) 3656 return 0; 3657 3658 /* can we open it ? */ 3659 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 3660 return EROFS; 3661 3662 /* setup write parameters */ 3663 DPRINTF(VOLUMES, ("Setting up write parameters\n")); 3664 if ((error = udf_setup_writeparams(ump)) != 0) 3665 return error; 3666 3667 /* determine data and metadata tracks (most likely same) */ 3668 error = udf_search_writing_tracks(ump); 3669 if (error) { 3670 /* most likely lack of space */ 3671 printf("udf_open_logvol: error searching writing tracks\n"); 3672 return EROFS; 3673 } 3674 3675 /* writeout/update lvint on disc or only in memory */ 3676 DPRINTF(VOLUMES, ("Opening logical volume\n")); 3677 if (ump->lvopen & UDF_OPEN_SESSION) { 3678 /* TODO optional track reservation opening */ 3679 error = udf_validate_session_start(ump); 3680 if (error) 3681 return error; 3682 3683 /* determine data and metadata tracks again */ 3684 error = udf_search_writing_tracks(ump); 3685 } 3686 3687 /* mark it open */ 3688 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN); 3689 3690 /* do we need to write it out? */ 3691 if (ump->lvopen & UDF_WRITE_LVINT) { 3692 error = udf_writeout_lvint(ump, ump->lvopen); 3693 /* if we couldn't write it mark it closed again */ 3694 if (error) { 3695 ump->logvol_integrity->integrity_type = 3696 udf_rw32(UDF_INTEGRITY_CLOSED); 3697 return error; 3698 } 3699 } 3700 3701 return 0; 3702 } 3703 3704 3705 int 3706 udf_close_logvol(struct udf_mount *ump, int mntflags) 3707 { 3708 struct vnode *devvp = ump->devvp; 3709 struct mmc_op mmc_op; 3710 int logvol_integrity; 3711 int error = 0, error1 = 0, error2 = 0; 3712 int tracknr; 3713 int nvats, n, nok; 3714 3715 /* already/still closed? */ 3716 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 3717 if (logvol_integrity == UDF_INTEGRITY_CLOSED) 3718 return 0; 3719 3720 /* writeout/update lvint or write out VAT */ 3721 DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n")); 3722 #ifdef DIAGNOSTIC 3723 if (ump->lvclose & UDF_CLOSE_SESSION) 3724 KASSERT(ump->lvclose & UDF_WRITE_VAT); 3725 #endif 3726 3727 if (ump->lvclose & UDF_WRITE_VAT) { 3728 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n")); 3729 3730 /* write out the VAT data and all its descriptors */ 3731 DPRINTF(VOLUMES, ("writeout vat_node\n")); 3732 udf_writeout_vat(ump); 3733 vflushbuf(ump->vat_node->vnode, 1 /* sync */); 3734 3735 (void) VOP_FSYNC(ump->vat_node->vnode, 3736 FSCRED, FSYNC_WAIT, 0, 0); 3737 3738 if (ump->lvclose & UDF_CLOSE_SESSION) { 3739 DPRINTF(VOLUMES, ("udf_close_logvol: closing session " 3740 "as requested\n")); 3741 } 3742 3743 /* at least two DVD packets and 3 CD-R packets */ 3744 nvats = 32; 3745 3746 #if notyet 3747 /* 3748 * TODO calculate the available space and if the disc is 3749 * allmost full, write out till end-256-1 with banks, write 3750 * AVDP and fill up with VATs, then close session and close 3751 * disc. 3752 */ 3753 if (ump->lvclose & UDF_FINALISE_DISC) { 3754 error = udf_write_phys_dscr_sync(ump, NULL, 3755 UDF_C_FLOAT_DSCR, 3756 (union dscrptr *) ump->anchors[0], 3757 0, 0); 3758 if (error) 3759 printf("writeout of anchor failed!\n"); 3760 3761 /* pad space with VAT ICBs */ 3762 nvats = 256; 3763 } 3764 #endif 3765 3766 /* write out a number of VAT nodes */ 3767 nok = 0; 3768 for (n = 0; n < nvats; n++) { 3769 /* will now only write last FE/EFE */ 3770 ump->vat_node->i_flags |= IN_MODIFIED; 3771 error = VOP_FSYNC(ump->vat_node->vnode, 3772 FSCRED, FSYNC_WAIT, 0, 0); 3773 if (!error) 3774 nok++; 3775 } 3776 if (nok < 14) { 3777 /* arbitrary; but at least one or two CD frames */ 3778 printf("writeout of at least 14 VATs failed\n"); 3779 return error; 3780 } 3781 } 3782 3783 /* NOTE the disc is in a (minimal) valid state now; no erroring out */ 3784 3785 /* finish closing of session */ 3786 if (ump->lvclose & UDF_CLOSE_SESSION) { 3787 error = udf_validate_session_start(ump); 3788 if (error) 3789 return error; 3790 3791 /* close all associated tracks */ 3792 tracknr = ump->discinfo.first_track_last_session; 3793 error = 0; 3794 while (tracknr <= ump->discinfo.last_track_last_session) { 3795 DPRINTF(VOLUMES, ("\tclosing possible open " 3796 "track %d\n", tracknr)); 3797 memset(&mmc_op, 0, sizeof(mmc_op)); 3798 mmc_op.operation = MMC_OP_CLOSETRACK; 3799 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 3800 mmc_op.tracknr = tracknr; 3801 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, 3802 FKIOCTL, NOCRED); 3803 if (error) 3804 printf("udf_close_logvol: closing of " 3805 "track %d failed\n", tracknr); 3806 tracknr ++; 3807 } 3808 if (!error) { 3809 DPRINTF(VOLUMES, ("closing session\n")); 3810 memset(&mmc_op, 0, sizeof(mmc_op)); 3811 mmc_op.operation = MMC_OP_CLOSESESSION; 3812 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 3813 mmc_op.sessionnr = ump->discinfo.num_sessions; 3814 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, 3815 FKIOCTL, NOCRED); 3816 if (error) 3817 printf("udf_close_logvol: closing of session" 3818 "failed\n"); 3819 } 3820 if (!error) 3821 ump->lvopen |= UDF_OPEN_SESSION; 3822 if (error) { 3823 printf("udf_close_logvol: leaving disc as it is\n"); 3824 ump->lvclose &= ~UDF_FINALISE_DISC; 3825 } 3826 } 3827 3828 if (ump->lvclose & UDF_FINALISE_DISC) { 3829 memset(&mmc_op, 0, sizeof(mmc_op)); 3830 mmc_op.operation = MMC_OP_FINALISEDISC; 3831 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 3832 mmc_op.sessionnr = ump->discinfo.num_sessions; 3833 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, 3834 FKIOCTL, NOCRED); 3835 if (error) 3836 printf("udf_close_logvol: finalising disc" 3837 "failed\n"); 3838 } 3839 3840 /* write out partition bitmaps if requested */ 3841 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) { 3842 /* sync writeout metadata spacetable if existing */ 3843 error1 = udf_write_metadata_partition_spacetable(ump, true); 3844 if (error1) 3845 printf( "udf_close_logvol: writeout of metadata space " 3846 "bitmap failed\n"); 3847 3848 /* sync writeout partition spacetables */ 3849 error2 = udf_write_physical_partition_spacetables(ump, true); 3850 if (error2) 3851 printf( "udf_close_logvol: writeout of space tables " 3852 "failed\n"); 3853 3854 if (error1 || error2) 3855 return (error1 | error2); 3856 3857 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS; 3858 } 3859 3860 /* mark it closed */ 3861 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); 3862 3863 /* do we need to write out the logical volume integrity? */ 3864 if (ump->lvclose & UDF_WRITE_LVINT) 3865 error = udf_writeout_lvint(ump, ump->lvopen); 3866 if (error) { 3867 /* HELP now what? mark it open again for now */ 3868 ump->logvol_integrity->integrity_type = 3869 udf_rw32(UDF_INTEGRITY_OPEN); 3870 return error; 3871 } 3872 3873 (void) udf_synchronise_caches(ump); 3874 3875 return 0; 3876 } 3877 3878 /* --------------------------------------------------------------------- */ 3879 3880 /* 3881 * Genfs interfacing 3882 * 3883 * static const struct genfs_ops udf_genfsops = { 3884 * .gop_size = genfs_size, 3885 * size of transfers 3886 * .gop_alloc = udf_gop_alloc, 3887 * allocate len bytes at offset 3888 * .gop_write = genfs_gop_write, 3889 * putpages interface code 3890 * .gop_markupdate = udf_gop_markupdate, 3891 * set update/modify flags etc. 3892 * } 3893 */ 3894 3895 /* 3896 * Genfs interface. These four functions are the only ones defined though not 3897 * documented... great.... 3898 */ 3899 3900 /* 3901 * Callback from genfs to allocate len bytes at offset off; only called when 3902 * filling up gaps in the allocation. 3903 */ 3904 /* XXX should we check if there is space enough in udf_gop_alloc? */ 3905 static int 3906 udf_gop_alloc(struct vnode *vp, off_t off, 3907 off_t len, int flags, kauth_cred_t cred) 3908 { 3909 #if 0 3910 struct udf_node *udf_node = VTOI(vp); 3911 struct udf_mount *ump = udf_node->ump; 3912 uint32_t lb_size, num_lb; 3913 #endif 3914 3915 DPRINTF(NOTIMPL, ("udf_gop_alloc not implemented\n")); 3916 DPRINTF(ALLOC, ("udf_gop_alloc called for %"PRIu64" bytes\n", len)); 3917 3918 return 0; 3919 } 3920 3921 3922 /* 3923 * callback from genfs to update our flags 3924 */ 3925 static void 3926 udf_gop_markupdate(struct vnode *vp, int flags) 3927 { 3928 struct udf_node *udf_node = VTOI(vp); 3929 u_long mask = 0; 3930 3931 if ((flags & GOP_UPDATE_ACCESSED) != 0) { 3932 mask = IN_ACCESS; 3933 } 3934 if ((flags & GOP_UPDATE_MODIFIED) != 0) { 3935 if (vp->v_type == VREG) { 3936 mask |= IN_CHANGE | IN_UPDATE; 3937 } else { 3938 mask |= IN_MODIFY; 3939 } 3940 } 3941 if (mask) { 3942 udf_node->i_flags |= mask; 3943 } 3944 } 3945 3946 3947 static const struct genfs_ops udf_genfsops = { 3948 .gop_size = genfs_size, 3949 .gop_alloc = udf_gop_alloc, 3950 .gop_write = genfs_gop_write_rwmap, 3951 .gop_markupdate = udf_gop_markupdate, 3952 }; 3953 3954 3955 /* --------------------------------------------------------------------- */ 3956 3957 int 3958 udf_write_terminator(struct udf_mount *ump, uint32_t sector) 3959 { 3960 union dscrptr *dscr; 3961 int error; 3962 3963 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO); 3964 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector); 3965 3966 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */ 3967 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH); 3968 (void) udf_validate_tag_and_crc_sums(dscr); 3969 3970 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 3971 dscr, sector, sector); 3972 3973 free(dscr, M_TEMP); 3974 3975 return error; 3976 } 3977 3978 3979 /* --------------------------------------------------------------------- */ 3980 3981 /* UDF<->unix converters */ 3982 3983 /* --------------------------------------------------------------------- */ 3984 3985 static mode_t 3986 udf_perm_to_unix_mode(uint32_t perm) 3987 { 3988 mode_t mode; 3989 3990 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) ); 3991 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2); 3992 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4); 3993 3994 return mode; 3995 } 3996 3997 /* --------------------------------------------------------------------- */ 3998 3999 static uint32_t 4000 unix_mode_to_udf_perm(mode_t mode) 4001 { 4002 uint32_t perm; 4003 4004 perm = ((mode & S_IRWXO) ); 4005 perm |= ((mode & S_IRWXG) << 2); 4006 perm |= ((mode & S_IRWXU) << 4); 4007 perm |= ((mode & S_IWOTH) << 3); 4008 perm |= ((mode & S_IWGRP) << 5); 4009 perm |= ((mode & S_IWUSR) << 7); 4010 4011 return perm; 4012 } 4013 4014 /* --------------------------------------------------------------------- */ 4015 4016 static uint32_t 4017 udf_icb_to_unix_filetype(uint32_t icbftype) 4018 { 4019 switch (icbftype) { 4020 case UDF_ICB_FILETYPE_DIRECTORY : 4021 case UDF_ICB_FILETYPE_STREAMDIR : 4022 return S_IFDIR; 4023 case UDF_ICB_FILETYPE_FIFO : 4024 return S_IFIFO; 4025 case UDF_ICB_FILETYPE_CHARDEVICE : 4026 return S_IFCHR; 4027 case UDF_ICB_FILETYPE_BLOCKDEVICE : 4028 return S_IFBLK; 4029 case UDF_ICB_FILETYPE_RANDOMACCESS : 4030 case UDF_ICB_FILETYPE_REALTIME : 4031 return S_IFREG; 4032 case UDF_ICB_FILETYPE_SYMLINK : 4033 return S_IFLNK; 4034 case UDF_ICB_FILETYPE_SOCKET : 4035 return S_IFSOCK; 4036 } 4037 /* no idea what this is */ 4038 return 0; 4039 } 4040 4041 /* --------------------------------------------------------------------- */ 4042 4043 void 4044 udf_to_unix_name(char *result, int result_len, char *id, int len, 4045 struct charspec *chsp) 4046 { 4047 uint16_t *raw_name, *unix_name; 4048 uint16_t *inchp, ch; 4049 uint8_t *outchp; 4050 const char *osta_id = "OSTA Compressed Unicode"; 4051 int ucode_chars, nice_uchars, is_osta_typ0, nout; 4052 4053 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK); 4054 unix_name = raw_name + 1024; /* split space in half */ 4055 assert(sizeof(char) == sizeof(uint8_t)); 4056 outchp = (uint8_t *) result; 4057 4058 is_osta_typ0 = (chsp->type == 0); 4059 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0); 4060 if (is_osta_typ0) { 4061 /* TODO clean up */ 4062 *raw_name = *unix_name = 0; 4063 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name); 4064 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name)); 4065 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars); 4066 /* output UTF8 */ 4067 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) { 4068 ch = *inchp; 4069 nout = wput_utf8(outchp, result_len, ch); 4070 outchp += nout; result_len -= nout; 4071 if (!ch) break; 4072 } 4073 *outchp++ = 0; 4074 } else { 4075 /* assume 8bit char length byte latin-1 */ 4076 assert(*id == 8); 4077 assert(strlen((char *) (id+1)) <= MAXNAMLEN); 4078 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1))); 4079 } 4080 free(raw_name, M_UDFTEMP); 4081 } 4082 4083 /* --------------------------------------------------------------------- */ 4084 4085 void 4086 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len, 4087 struct charspec *chsp) 4088 { 4089 uint16_t *raw_name; 4090 uint16_t *outchp; 4091 const char *inchp; 4092 const char *osta_id = "OSTA Compressed Unicode"; 4093 int udf_chars, is_osta_typ0, bits; 4094 size_t cnt; 4095 4096 /* allocate temporary unicode-16 buffer */ 4097 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK); 4098 4099 /* convert utf8 to unicode-16 */ 4100 *raw_name = 0; 4101 inchp = name; 4102 outchp = raw_name; 4103 bits = 8; 4104 for (cnt = name_len, udf_chars = 0; cnt;) { 4105 /*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/ 4106 *outchp = wget_utf8(&inchp, &cnt); 4107 if (*outchp > 0xff) 4108 bits=16; 4109 outchp++; 4110 udf_chars++; 4111 } 4112 /* null terminate just in case */ 4113 *outchp++ = 0; 4114 4115 is_osta_typ0 = (chsp->type == 0); 4116 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0); 4117 if (is_osta_typ0) { 4118 udf_chars = udf_CompressUnicode(udf_chars, bits, 4119 (unicode_t *) raw_name, 4120 (byte *) result); 4121 } else { 4122 printf("unix to udf name: no CHSP0 ?\n"); 4123 /* XXX assume 8bit char length byte latin-1 */ 4124 *result++ = 8; udf_chars = 1; 4125 strncpy(result, name + 1, name_len); 4126 udf_chars += name_len; 4127 } 4128 *result_len = udf_chars; 4129 free(raw_name, M_UDFTEMP); 4130 } 4131 4132 /* --------------------------------------------------------------------- */ 4133 4134 void 4135 udf_timestamp_to_timespec(struct udf_mount *ump, 4136 struct timestamp *timestamp, 4137 struct timespec *timespec) 4138 { 4139 struct clock_ymdhms ymdhms; 4140 uint32_t usecs, secs, nsecs; 4141 uint16_t tz; 4142 4143 /* fill in ymdhms structure from timestamp */ 4144 memset(&ymdhms, 0, sizeof(ymdhms)); 4145 ymdhms.dt_year = udf_rw16(timestamp->year); 4146 ymdhms.dt_mon = timestamp->month; 4147 ymdhms.dt_day = timestamp->day; 4148 ymdhms.dt_wday = 0; /* ? */ 4149 ymdhms.dt_hour = timestamp->hour; 4150 ymdhms.dt_min = timestamp->minute; 4151 ymdhms.dt_sec = timestamp->second; 4152 4153 secs = clock_ymdhms_to_secs(&ymdhms); 4154 usecs = timestamp->usec + 4155 100*timestamp->hund_usec + 10000*timestamp->centisec; 4156 nsecs = usecs * 1000; 4157 4158 /* 4159 * Calculate the time zone. The timezone is 12 bit signed 2's 4160 * compliment, so we gotta do some extra magic to handle it right. 4161 */ 4162 tz = udf_rw16(timestamp->type_tz); 4163 tz &= 0x0fff; /* only lower 12 bits are significant */ 4164 if (tz & 0x0800) /* sign extention */ 4165 tz |= 0xf000; 4166 4167 /* TODO check timezone conversion */ 4168 /* check if we are specified a timezone to convert */ 4169 if (udf_rw16(timestamp->type_tz) & 0x1000) { 4170 if ((int16_t) tz != -2047) 4171 secs -= (int16_t) tz * 60; 4172 } else { 4173 secs -= ump->mount_args.gmtoff; 4174 } 4175 4176 timespec->tv_sec = secs; 4177 timespec->tv_nsec = nsecs; 4178 } 4179 4180 4181 void 4182 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp) 4183 { 4184 struct clock_ymdhms ymdhms; 4185 uint32_t husec, usec, csec; 4186 4187 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms); 4188 4189 usec = timespec->tv_nsec / 1000; 4190 husec = usec / 100; 4191 usec -= husec * 100; /* only 0-99 in usec */ 4192 csec = husec / 100; /* only 0-99 in csec */ 4193 husec -= csec * 100; /* only 0-99 in husec */ 4194 4195 /* set method 1 for CUT/GMT */ 4196 timestamp->type_tz = udf_rw16((1<<12) + 0); 4197 timestamp->year = udf_rw16(ymdhms.dt_year); 4198 timestamp->month = ymdhms.dt_mon; 4199 timestamp->day = ymdhms.dt_day; 4200 timestamp->hour = ymdhms.dt_hour; 4201 timestamp->minute = ymdhms.dt_min; 4202 timestamp->second = ymdhms.dt_sec; 4203 timestamp->centisec = csec; 4204 timestamp->hund_usec = husec; 4205 timestamp->usec = usec; 4206 } 4207 4208 /* --------------------------------------------------------------------- */ 4209 4210 /* 4211 * Attribute and filetypes converters with get/set pairs 4212 */ 4213 4214 uint32_t 4215 udf_getaccessmode(struct udf_node *udf_node) 4216 { 4217 struct file_entry *fe = udf_node->fe;; 4218 struct extfile_entry *efe = udf_node->efe; 4219 uint32_t udf_perm, icbftype; 4220 uint32_t mode, ftype; 4221 uint16_t icbflags; 4222 4223 UDF_LOCK_NODE(udf_node, 0); 4224 if (fe) { 4225 udf_perm = udf_rw32(fe->perm); 4226 icbftype = fe->icbtag.file_type; 4227 icbflags = udf_rw16(fe->icbtag.flags); 4228 } else { 4229 assert(udf_node->efe); 4230 udf_perm = udf_rw32(efe->perm); 4231 icbftype = efe->icbtag.file_type; 4232 icbflags = udf_rw16(efe->icbtag.flags); 4233 } 4234 4235 mode = udf_perm_to_unix_mode(udf_perm); 4236 ftype = udf_icb_to_unix_filetype(icbftype); 4237 4238 /* set suid, sgid, sticky from flags in fe/efe */ 4239 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID) 4240 mode |= S_ISUID; 4241 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID) 4242 mode |= S_ISGID; 4243 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY) 4244 mode |= S_ISVTX; 4245 4246 UDF_UNLOCK_NODE(udf_node, 0); 4247 4248 return mode | ftype; 4249 } 4250 4251 4252 void 4253 udf_setaccessmode(struct udf_node *udf_node, mode_t mode) 4254 { 4255 struct file_entry *fe = udf_node->fe; 4256 struct extfile_entry *efe = udf_node->efe; 4257 uint32_t udf_perm; 4258 uint16_t icbflags; 4259 4260 UDF_LOCK_NODE(udf_node, 0); 4261 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS); 4262 if (fe) { 4263 icbflags = udf_rw16(fe->icbtag.flags); 4264 } else { 4265 icbflags = udf_rw16(efe->icbtag.flags); 4266 } 4267 4268 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID; 4269 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID; 4270 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY; 4271 if (mode & S_ISUID) 4272 icbflags |= UDF_ICB_TAG_FLAGS_SETUID; 4273 if (mode & S_ISGID) 4274 icbflags |= UDF_ICB_TAG_FLAGS_SETGID; 4275 if (mode & S_ISVTX) 4276 icbflags |= UDF_ICB_TAG_FLAGS_STICKY; 4277 4278 if (fe) { 4279 fe->perm = udf_rw32(udf_perm); 4280 fe->icbtag.flags = udf_rw16(icbflags); 4281 } else { 4282 efe->perm = udf_rw32(udf_perm); 4283 efe->icbtag.flags = udf_rw16(icbflags); 4284 } 4285 4286 UDF_UNLOCK_NODE(udf_node, 0); 4287 } 4288 4289 4290 void 4291 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp) 4292 { 4293 struct udf_mount *ump = udf_node->ump; 4294 struct file_entry *fe = udf_node->fe; 4295 struct extfile_entry *efe = udf_node->efe; 4296 uid_t uid; 4297 gid_t gid; 4298 4299 UDF_LOCK_NODE(udf_node, 0); 4300 if (fe) { 4301 uid = (uid_t)udf_rw32(fe->uid); 4302 gid = (gid_t)udf_rw32(fe->gid); 4303 } else { 4304 assert(udf_node->efe); 4305 uid = (uid_t)udf_rw32(efe->uid); 4306 gid = (gid_t)udf_rw32(efe->gid); 4307 } 4308 4309 /* do the uid/gid translation game */ 4310 if (uid == (uid_t) -1) 4311 uid = ump->mount_args.anon_uid; 4312 if (gid == (gid_t) -1) 4313 gid = ump->mount_args.anon_gid; 4314 4315 *uidp = uid; 4316 *gidp = gid; 4317 4318 UDF_UNLOCK_NODE(udf_node, 0); 4319 } 4320 4321 4322 void 4323 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid) 4324 { 4325 struct udf_mount *ump = udf_node->ump; 4326 struct file_entry *fe = udf_node->fe; 4327 struct extfile_entry *efe = udf_node->efe; 4328 uid_t nobody_uid; 4329 gid_t nobody_gid; 4330 4331 UDF_LOCK_NODE(udf_node, 0); 4332 4333 /* do the uid/gid translation game */ 4334 nobody_uid = ump->mount_args.nobody_uid; 4335 nobody_gid = ump->mount_args.nobody_gid; 4336 if (uid == nobody_uid) 4337 uid = (uid_t) -1; 4338 if (gid == nobody_gid) 4339 gid = (gid_t) -1; 4340 4341 if (fe) { 4342 fe->uid = udf_rw32((uint32_t) uid); 4343 fe->gid = udf_rw32((uint32_t) gid); 4344 } else { 4345 efe->uid = udf_rw32((uint32_t) uid); 4346 efe->gid = udf_rw32((uint32_t) gid); 4347 } 4348 4349 UDF_UNLOCK_NODE(udf_node, 0); 4350 } 4351 4352 4353 /* --------------------------------------------------------------------- */ 4354 4355 4356 static int 4357 dirhash_fill(struct udf_node *dir_node) 4358 { 4359 struct vnode *dvp = dir_node->vnode; 4360 struct dirhash *dirh; 4361 struct file_entry *fe = dir_node->fe; 4362 struct extfile_entry *efe = dir_node->efe; 4363 struct fileid_desc *fid; 4364 struct dirent *dirent; 4365 uint64_t file_size, pre_diroffset, diroffset; 4366 uint32_t lb_size; 4367 int error; 4368 4369 /* make sure we have a dirhash to work on */ 4370 dirh = dir_node->dir_hash; 4371 KASSERT(dirh); 4372 KASSERT(dirh->refcnt > 0); 4373 4374 if (dirh->flags & DIRH_BROKEN) 4375 return EIO; 4376 if (dirh->flags & DIRH_COMPLETE) 4377 return 0; 4378 4379 /* make sure we have a clean dirhash to add to */ 4380 dirhash_purge_entries(dirh); 4381 4382 /* get directory filesize */ 4383 if (fe) { 4384 file_size = udf_rw64(fe->inf_len); 4385 } else { 4386 assert(efe); 4387 file_size = udf_rw64(efe->inf_len); 4388 } 4389 4390 /* allocate temporary space for fid */ 4391 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4392 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4393 4394 /* allocate temporary space for dirent */ 4395 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4396 4397 error = 0; 4398 diroffset = 0; 4399 while (diroffset < file_size) { 4400 /* transfer a new fid/dirent */ 4401 pre_diroffset = diroffset; 4402 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4403 if (error) { 4404 /* TODO what to do? continue but not add? */ 4405 dirh->flags |= DIRH_BROKEN; 4406 dirhash_purge_entries(dirh); 4407 break; 4408 } 4409 4410 if ((fid->file_char & UDF_FILE_CHAR_DEL)) { 4411 /* register deleted extent for reuse */ 4412 dirhash_enter_freed(dirh, pre_diroffset, 4413 udf_fidsize(fid)); 4414 } else { 4415 /* append to the dirhash */ 4416 dirhash_enter(dirh, dirent, pre_diroffset, 4417 udf_fidsize(fid), 0); 4418 } 4419 } 4420 dirh->flags |= DIRH_COMPLETE; 4421 4422 free(fid, M_UDFTEMP); 4423 free(dirent, M_UDFTEMP); 4424 4425 return error; 4426 } 4427 4428 4429 /* --------------------------------------------------------------------- */ 4430 4431 /* 4432 * Directory read and manipulation functions. 4433 * 4434 */ 4435 4436 int 4437 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen, 4438 struct long_ad *icb_loc, int *found) 4439 { 4440 struct udf_node *dir_node = VTOI(vp); 4441 struct dirhash *dirh; 4442 struct dirhash_entry *dirh_ep; 4443 struct fileid_desc *fid; 4444 struct dirent *dirent; 4445 uint64_t diroffset; 4446 uint32_t lb_size; 4447 int hit, error; 4448 4449 /* set default return */ 4450 *found = 0; 4451 4452 /* get our dirhash and make sure its read in */ 4453 dirhash_get(&dir_node->dir_hash); 4454 error = dirhash_fill(dir_node); 4455 if (error) { 4456 dirhash_put(dir_node->dir_hash); 4457 return error; 4458 } 4459 dirh = dir_node->dir_hash; 4460 4461 /* allocate temporary space for fid */ 4462 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4463 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4464 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4465 4466 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n", 4467 namelen, namelen, name)); 4468 4469 /* search our dirhash hits */ 4470 memset(icb_loc, 0, sizeof(*icb_loc)); 4471 dirh_ep = NULL; 4472 for (;;) { 4473 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep); 4474 /* if no hit, abort the search */ 4475 if (!hit) 4476 break; 4477 4478 /* check this hit */ 4479 diroffset = dirh_ep->offset; 4480 4481 /* transfer a new fid/dirent */ 4482 error = udf_read_fid_stream(vp, &diroffset, fid, dirent); 4483 if (error) 4484 break; 4485 4486 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n", 4487 dirent->d_namlen, dirent->d_namlen, dirent->d_name)); 4488 4489 /* see if its our entry */ 4490 KASSERT(dirent->d_namlen == namelen); 4491 if (strncmp(dirent->d_name, name, namelen) == 0) { 4492 *found = 1; 4493 *icb_loc = fid->icb; 4494 break; 4495 } 4496 } 4497 free(fid, M_UDFTEMP); 4498 free(dirent, M_UDFTEMP); 4499 4500 dirhash_put(dir_node->dir_hash); 4501 4502 return error; 4503 } 4504 4505 /* --------------------------------------------------------------------- */ 4506 4507 static int 4508 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type, 4509 struct long_ad *node_icb, struct long_ad *parent_icb, 4510 uint64_t parent_unique_id) 4511 { 4512 struct timespec now; 4513 struct icb_tag *icb; 4514 struct filetimes_extattr_entry *ft_extattr; 4515 uint64_t unique_id; 4516 uint32_t fidsize, lb_num; 4517 uint8_t *bpos; 4518 int crclen, attrlen; 4519 4520 lb_num = udf_rw32(node_icb->loc.lb_num); 4521 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num); 4522 icb = &fe->icbtag; 4523 4524 /* 4525 * Always use strategy type 4 unless on WORM wich we don't support 4526 * (yet). Fill in defaults and set for internal allocation of data. 4527 */ 4528 icb->strat_type = udf_rw16(4); 4529 icb->max_num_entries = udf_rw16(1); 4530 icb->file_type = file_type; /* 8 bit */ 4531 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC); 4532 4533 fe->perm = udf_rw32(0x7fff); /* all is allowed */ 4534 fe->link_cnt = udf_rw16(0); /* explicit setting */ 4535 4536 fe->ckpoint = udf_rw32(1); /* user supplied file version */ 4537 4538 vfs_timestamp(&now); 4539 udf_timespec_to_timestamp(&now, &fe->atime); 4540 udf_timespec_to_timestamp(&now, &fe->attrtime); 4541 udf_timespec_to_timestamp(&now, &fe->mtime); 4542 4543 udf_set_regid(&fe->imp_id, IMPL_NAME); 4544 udf_add_impl_regid(ump, &fe->imp_id); 4545 4546 unique_id = udf_advance_uniqueid(ump); 4547 fe->unique_id = udf_rw64(unique_id); 4548 fe->l_ea = udf_rw32(0); 4549 4550 /* create extended attribute to record our creation time */ 4551 attrlen = UDF_FILETIMES_ATTR_SIZE(1); 4552 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK); 4553 memset(ft_extattr, 0, attrlen); 4554 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO); 4555 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */ 4556 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1)); 4557 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */ 4558 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION; 4559 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]); 4560 4561 udf_extattr_insert_internal(ump, (union dscrptr *) fe, 4562 (struct extattr_entry *) ft_extattr); 4563 free(ft_extattr, M_UDFTEMP); 4564 4565 /* if its a directory, create '..' */ 4566 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea); 4567 fidsize = 0; 4568 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) { 4569 fidsize = udf_create_parentfid(ump, 4570 (struct fileid_desc *) bpos, parent_icb, 4571 parent_unique_id); 4572 } 4573 4574 /* record fidlength information */ 4575 fe->inf_len = udf_rw64(fidsize); 4576 fe->l_ad = udf_rw32(fidsize); 4577 fe->logblks_rec = udf_rw64(0); /* intern */ 4578 4579 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH; 4580 crclen += udf_rw32(fe->l_ea) + fidsize; 4581 fe->tag.desc_crc_len = udf_rw16(crclen); 4582 4583 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe); 4584 4585 return fidsize; 4586 } 4587 4588 /* --------------------------------------------------------------------- */ 4589 4590 static int 4591 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe, 4592 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb, 4593 uint64_t parent_unique_id) 4594 { 4595 struct timespec now; 4596 struct icb_tag *icb; 4597 uint64_t unique_id; 4598 uint32_t fidsize, lb_num; 4599 uint8_t *bpos; 4600 int crclen; 4601 4602 lb_num = udf_rw32(node_icb->loc.lb_num); 4603 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num); 4604 icb = &efe->icbtag; 4605 4606 /* 4607 * Always use strategy type 4 unless on WORM wich we don't support 4608 * (yet). Fill in defaults and set for internal allocation of data. 4609 */ 4610 icb->strat_type = udf_rw16(4); 4611 icb->max_num_entries = udf_rw16(1); 4612 icb->file_type = file_type; /* 8 bit */ 4613 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC); 4614 4615 efe->perm = udf_rw32(0x7fff); /* all is allowed */ 4616 efe->link_cnt = udf_rw16(0); /* explicit setting */ 4617 4618 efe->ckpoint = udf_rw32(1); /* user supplied file version */ 4619 4620 vfs_timestamp(&now); 4621 udf_timespec_to_timestamp(&now, &efe->ctime); 4622 udf_timespec_to_timestamp(&now, &efe->atime); 4623 udf_timespec_to_timestamp(&now, &efe->attrtime); 4624 udf_timespec_to_timestamp(&now, &efe->mtime); 4625 4626 udf_set_regid(&efe->imp_id, IMPL_NAME); 4627 udf_add_impl_regid(ump, &efe->imp_id); 4628 4629 unique_id = udf_advance_uniqueid(ump); 4630 efe->unique_id = udf_rw64(unique_id); 4631 efe->l_ea = udf_rw32(0); 4632 4633 /* if its a directory, create '..' */ 4634 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea); 4635 fidsize = 0; 4636 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) { 4637 fidsize = udf_create_parentfid(ump, 4638 (struct fileid_desc *) bpos, parent_icb, 4639 parent_unique_id); 4640 } 4641 4642 /* record fidlength information */ 4643 efe->obj_size = udf_rw64(fidsize); 4644 efe->inf_len = udf_rw64(fidsize); 4645 efe->l_ad = udf_rw32(fidsize); 4646 efe->logblks_rec = udf_rw64(0); /* intern */ 4647 4648 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH; 4649 crclen += udf_rw32(efe->l_ea) + fidsize; 4650 efe->tag.desc_crc_len = udf_rw16(crclen); 4651 4652 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe); 4653 4654 return fidsize; 4655 } 4656 4657 /* --------------------------------------------------------------------- */ 4658 4659 int 4660 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node, 4661 struct udf_node *udf_node, struct componentname *cnp) 4662 { 4663 struct vnode *dvp = dir_node->vnode; 4664 struct dirhash *dirh; 4665 struct dirhash_entry *dirh_ep; 4666 struct file_entry *fe = dir_node->fe; 4667 struct extfile_entry *efe = dir_node->efe; 4668 struct fileid_desc *fid; 4669 struct dirent *dirent; 4670 uint64_t file_size, diroffset; 4671 uint32_t lb_size, fidsize; 4672 int found, error; 4673 char const *name = cnp->cn_nameptr; 4674 int namelen = cnp->cn_namelen; 4675 int hit, refcnt; 4676 4677 /* get our dirhash and make sure its read in */ 4678 dirhash_get(&dir_node->dir_hash); 4679 error = dirhash_fill(dir_node); 4680 if (error) { 4681 dirhash_put(dir_node->dir_hash); 4682 return error; 4683 } 4684 dirh = dir_node->dir_hash; 4685 4686 /* get directory filesize */ 4687 if (fe) { 4688 file_size = udf_rw64(fe->inf_len); 4689 } else { 4690 assert(efe); 4691 file_size = udf_rw64(efe->inf_len); 4692 } 4693 4694 /* allocate temporary space for fid */ 4695 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4696 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4697 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4698 4699 /* search our dirhash hits */ 4700 found = 0; 4701 dirh_ep = NULL; 4702 for (;;) { 4703 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep); 4704 /* if no hit, abort the search */ 4705 if (!hit) 4706 break; 4707 4708 /* check this hit */ 4709 diroffset = dirh_ep->offset; 4710 4711 /* transfer a new fid/dirent */ 4712 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4713 if (error) 4714 break; 4715 4716 /* see if its our entry */ 4717 KASSERT(dirent->d_namlen == namelen); 4718 if (strncmp(dirent->d_name, name, namelen) == 0) { 4719 found = 1; 4720 break; 4721 } 4722 } 4723 4724 if (!found) 4725 error = ENOENT; 4726 if (error) 4727 goto error_out; 4728 4729 /* mark deleted */ 4730 fid->file_char |= UDF_FILE_CHAR_DEL; 4731 #ifdef UDF_COMPLETE_DELETE 4732 memset(&fid->icb, 0, sizeof(fid->icb)); 4733 #endif 4734 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 4735 4736 /* get size of fid and compensate for the read_fid_stream advance */ 4737 fidsize = udf_fidsize(fid); 4738 diroffset -= fidsize; 4739 4740 /* write out */ 4741 error = vn_rdwr(UIO_WRITE, dir_node->vnode, 4742 fid, fidsize, diroffset, 4743 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 4744 FSCRED, NULL, NULL); 4745 if (error) 4746 goto error_out; 4747 4748 /* get reference count of attached node */ 4749 if (udf_node->fe) { 4750 refcnt = udf_rw16(udf_node->fe->link_cnt); 4751 } else { 4752 KASSERT(udf_node->efe); 4753 refcnt = udf_rw16(udf_node->efe->link_cnt); 4754 } 4755 #ifdef UDF_COMPLETE_DELETE 4756 /* substract reference counter in attached node */ 4757 refcnt -= 1; 4758 if (udf_node->fe) { 4759 udf_node->fe->link_cnt = udf_rw16(refcnt); 4760 } else { 4761 udf_node->efe->link_cnt = udf_rw16(refcnt); 4762 } 4763 4764 /* prevent writeout when refcnt == 0 */ 4765 if (refcnt == 0) 4766 udf_node->i_flags |= IN_DELETED; 4767 4768 if (fid->file_char & UDF_FILE_CHAR_DIR) { 4769 int drefcnt; 4770 4771 /* substract reference counter in directory node */ 4772 /* note subtract 2 (?) for its was also backreferenced */ 4773 if (dir_node->fe) { 4774 drefcnt = udf_rw16(dir_node->fe->link_cnt); 4775 drefcnt -= 1; 4776 dir_node->fe->link_cnt = udf_rw16(drefcnt); 4777 } else { 4778 KASSERT(dir_node->efe); 4779 drefcnt = udf_rw16(dir_node->efe->link_cnt); 4780 drefcnt -= 1; 4781 dir_node->efe->link_cnt = udf_rw16(drefcnt); 4782 } 4783 } 4784 4785 udf_node->i_flags |= IN_MODIFIED; 4786 dir_node->i_flags |= IN_MODIFIED; 4787 #endif 4788 /* if it is/was a hardlink adjust the file count */ 4789 if (refcnt > 0) 4790 udf_adjust_filecount(udf_node, -1); 4791 4792 /* remove from the dirhash */ 4793 dirhash_remove(dirh, dirent, diroffset, 4794 udf_fidsize(fid)); 4795 4796 error_out: 4797 free(fid, M_UDFTEMP); 4798 free(dirent, M_UDFTEMP); 4799 4800 dirhash_put(dir_node->dir_hash); 4801 4802 return error; 4803 } 4804 4805 /* --------------------------------------------------------------------- */ 4806 4807 /* 4808 * We are not allowed to split the fid tag itself over an logical block so 4809 * check the space remaining in the logical block. 4810 * 4811 * We try to select the smallest candidate for recycling or when none is 4812 * found, append a new one at the end of the directory. 4813 */ 4814 4815 int 4816 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node, 4817 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp) 4818 { 4819 struct vnode *dvp = dir_node->vnode; 4820 struct dirhash *dirh; 4821 struct dirhash_entry *dirh_ep; 4822 struct fileid_desc *fid; 4823 struct icb_tag *icbtag; 4824 struct charspec osta_charspec; 4825 struct dirent dirent; 4826 uint64_t unique_id, dir_size; 4827 uint64_t fid_pos, end_fid_pos, chosen_fid_pos; 4828 uint32_t chosen_size, chosen_size_diff; 4829 int lb_size, lb_rest, fidsize, this_fidsize, size_diff; 4830 int file_char, refcnt, icbflags, addr_type, hit, error; 4831 4832 /* get our dirhash and make sure its read in */ 4833 dirhash_get(&dir_node->dir_hash); 4834 error = dirhash_fill(dir_node); 4835 if (error) { 4836 dirhash_put(dir_node->dir_hash); 4837 return error; 4838 } 4839 dirh = dir_node->dir_hash; 4840 4841 /* get info */ 4842 lb_size = udf_rw32(ump->logical_vol->lb_size); 4843 udf_osta_charset(&osta_charspec); 4844 4845 if (dir_node->fe) { 4846 dir_size = udf_rw64(dir_node->fe->inf_len); 4847 icbtag = &dir_node->fe->icbtag; 4848 } else { 4849 dir_size = udf_rw64(dir_node->efe->inf_len); 4850 icbtag = &dir_node->efe->icbtag; 4851 } 4852 4853 icbflags = udf_rw16(icbtag->flags); 4854 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 4855 4856 if (udf_node->fe) { 4857 unique_id = udf_rw64(udf_node->fe->unique_id); 4858 refcnt = udf_rw16(udf_node->fe->link_cnt); 4859 } else { 4860 unique_id = udf_rw64(udf_node->efe->unique_id); 4861 refcnt = udf_rw16(udf_node->efe->link_cnt); 4862 } 4863 4864 if (refcnt > 0) { 4865 unique_id = udf_advance_uniqueid(ump); 4866 udf_adjust_filecount(udf_node, 1); 4867 } 4868 4869 /* determine file characteristics */ 4870 file_char = 0; /* visible non deleted file and not stream metadata */ 4871 if (vap->va_type == VDIR) 4872 file_char = UDF_FILE_CHAR_DIR; 4873 4874 /* malloc scrap buffer */ 4875 fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO); 4876 4877 /* calculate _minimum_ fid size */ 4878 unix_to_udf_name((char *) fid->data, &fid->l_fi, 4879 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); 4880 fidsize = UDF_FID_SIZE + fid->l_fi; 4881 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */ 4882 4883 /* find position that will fit the FID */ 4884 chosen_fid_pos = dir_size; 4885 chosen_size = 0; 4886 chosen_size_diff = UINT_MAX; 4887 4888 /* shut up gcc */ 4889 dirent.d_namlen = 0; 4890 4891 /* search our dirhash hits */ 4892 error = 0; 4893 dirh_ep = NULL; 4894 for (;;) { 4895 hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep); 4896 /* if no hit, abort the search */ 4897 if (!hit) 4898 break; 4899 4900 /* check this hit for size */ 4901 this_fidsize = dirh_ep->entry_size; 4902 4903 /* check this hit */ 4904 fid_pos = dirh_ep->offset; 4905 end_fid_pos = fid_pos + this_fidsize; 4906 size_diff = this_fidsize - fidsize; 4907 lb_rest = lb_size - (end_fid_pos % lb_size); 4908 4909 #ifndef UDF_COMPLETE_DELETE 4910 /* transfer a new fid/dirent */ 4911 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent); 4912 if (error) 4913 goto error_out; 4914 4915 /* only reuse entries that are wiped */ 4916 /* check if the len + loc are marked zero */ 4917 if (udf_rw32(fid->icb.len) != 0) 4918 continue; 4919 if (udf_rw32(fid->icb.loc.lb_num) != 0) 4920 continue; 4921 if (udf_rw16(fid->icb.loc.part_num) != 0) 4922 continue; 4923 #endif /* UDF_COMPLETE_DELETE */ 4924 4925 /* select if not splitting the tag and its smaller */ 4926 if ((size_diff >= 0) && 4927 (size_diff < chosen_size_diff) && 4928 (lb_rest >= sizeof(struct desc_tag))) 4929 { 4930 /* UDF 2.3.4.2+3 specifies rules for iu size */ 4931 if ((size_diff == 0) || (size_diff >= 32)) { 4932 chosen_fid_pos = fid_pos; 4933 chosen_size = this_fidsize; 4934 chosen_size_diff = size_diff; 4935 } 4936 } 4937 } 4938 4939 4940 /* extend directory if no other candidate found */ 4941 if (chosen_size == 0) { 4942 chosen_fid_pos = dir_size; 4943 chosen_size = fidsize; 4944 chosen_size_diff = 0; 4945 4946 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */ 4947 if (addr_type == UDF_ICB_INTERN_ALLOC) { 4948 /* pre-grow directory to see if we're to switch */ 4949 udf_grow_node(dir_node, dir_size + chosen_size); 4950 4951 icbflags = udf_rw16(icbtag->flags); 4952 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 4953 } 4954 4955 /* make sure the next fid desc_tag won't be splitted */ 4956 if (addr_type != UDF_ICB_INTERN_ALLOC) { 4957 end_fid_pos = chosen_fid_pos + chosen_size; 4958 lb_rest = lb_size - (end_fid_pos % lb_size); 4959 4960 /* pad with implementation use regid if needed */ 4961 if (lb_rest < sizeof(struct desc_tag)) 4962 chosen_size += 32; 4963 } 4964 } 4965 chosen_size_diff = chosen_size - fidsize; 4966 4967 /* populate the FID */ 4968 memset(fid, 0, lb_size); 4969 udf_inittag(ump, &fid->tag, TAGID_FID, 0); 4970 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */ 4971 fid->file_char = file_char; 4972 fid->icb = udf_node->loc; 4973 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id); 4974 fid->l_iu = udf_rw16(0); 4975 4976 if (chosen_size > fidsize) { 4977 /* insert implementation-use regid to space it correctly */ 4978 fid->l_iu = udf_rw16(chosen_size_diff); 4979 4980 /* set implementation use */ 4981 udf_set_regid((struct regid *) fid->data, IMPL_NAME); 4982 udf_add_impl_regid(ump, (struct regid *) fid->data); 4983 } 4984 4985 /* fill in name */ 4986 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu), 4987 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); 4988 4989 fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH); 4990 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 4991 4992 /* writeout FID/update parent directory */ 4993 error = vn_rdwr(UIO_WRITE, dvp, 4994 fid, chosen_size, chosen_fid_pos, 4995 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 4996 FSCRED, NULL, NULL); 4997 4998 if (error) 4999 goto error_out; 5000 5001 /* add reference counter in attached node */ 5002 if (udf_node->fe) { 5003 refcnt = udf_rw16(udf_node->fe->link_cnt); 5004 udf_node->fe->link_cnt = udf_rw16(refcnt+1); 5005 } else { 5006 KASSERT(udf_node->efe); 5007 refcnt = udf_rw16(udf_node->efe->link_cnt); 5008 udf_node->efe->link_cnt = udf_rw16(refcnt+1); 5009 } 5010 5011 /* mark not deleted if it was... just in case, but do warn */ 5012 if (udf_node->i_flags & IN_DELETED) { 5013 printf("udf: warning, marking a file undeleted\n"); 5014 udf_node->i_flags &= ~IN_DELETED; 5015 } 5016 5017 if (file_char & UDF_FILE_CHAR_DIR) { 5018 /* add reference counter in directory node for '..' */ 5019 if (dir_node->fe) { 5020 refcnt = udf_rw16(dir_node->fe->link_cnt); 5021 refcnt++; 5022 dir_node->fe->link_cnt = udf_rw16(refcnt); 5023 } else { 5024 KASSERT(dir_node->efe); 5025 refcnt = udf_rw16(dir_node->efe->link_cnt); 5026 refcnt++; 5027 dir_node->efe->link_cnt = udf_rw16(refcnt); 5028 } 5029 } 5030 5031 /* append to the dirhash */ 5032 dirent.d_namlen = cnp->cn_namelen; 5033 memcpy(dirent.d_name, cnp->cn_nameptr, cnp->cn_namelen); 5034 dirhash_enter(dirh, &dirent, chosen_fid_pos, 5035 udf_fidsize(fid), 1); 5036 5037 /* note updates */ 5038 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */ 5039 /* VN_KNOTE(udf_node, ...) */ 5040 udf_update(udf_node->vnode, NULL, NULL, NULL, 0); 5041 5042 error_out: 5043 free(fid, M_TEMP); 5044 5045 dirhash_put(dir_node->dir_hash); 5046 5047 return error; 5048 } 5049 5050 /* --------------------------------------------------------------------- */ 5051 5052 /* 5053 * Each node can have an attached streamdir node though not recursively. These 5054 * are otherwise known as named substreams/named extended attributes that have 5055 * no size limitations. 5056 * 5057 * `Normal' extended attributes are indicated with a number and are recorded 5058 * in either the fe/efe descriptor itself for small descriptors or recorded in 5059 * the attached extended attribute file. Since these spaces can get 5060 * fragmented, care ought to be taken. 5061 * 5062 * Since the size of the space reserved for allocation descriptors is limited, 5063 * there is a mechanim provided for extending this space; this is done by a 5064 * special extent to allow schrinking of the allocations without breaking the 5065 * linkage to the allocation extent descriptor. 5066 */ 5067 5068 int 5069 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc, 5070 struct udf_node **udf_noderes) 5071 { 5072 union dscrptr *dscr; 5073 struct udf_node *udf_node; 5074 struct vnode *nvp; 5075 struct long_ad icb_loc, last_fe_icb_loc; 5076 uint64_t file_size; 5077 uint32_t lb_size, sector, dummy; 5078 uint8_t *file_data; 5079 int udf_file_type, dscr_type, strat, strat4096, needs_indirect; 5080 int slot, eof, error; 5081 5082 DPRINTF(NODE, ("udf_get_node called\n")); 5083 *udf_noderes = udf_node = NULL; 5084 5085 /* lock to disallow simultanious creation of same udf_node */ 5086 mutex_enter(&ump->get_node_lock); 5087 5088 DPRINTF(NODE, ("\tlookup in hash table\n")); 5089 /* lookup in hash table */ 5090 assert(ump); 5091 assert(node_icb_loc); 5092 udf_node = udf_hash_lookup(ump, node_icb_loc); 5093 if (udf_node) { 5094 DPRINTF(NODE, ("\tgot it from the hash!\n")); 5095 /* vnode is returned locked */ 5096 *udf_noderes = udf_node; 5097 mutex_exit(&ump->get_node_lock); 5098 return 0; 5099 } 5100 5101 /* garbage check: translate udf_node_icb_loc to sectornr */ 5102 error = udf_translate_vtop(ump, node_icb_loc, §or, &dummy); 5103 if (error) { 5104 /* no use, this will fail anyway */ 5105 mutex_exit(&ump->get_node_lock); 5106 return EINVAL; 5107 } 5108 5109 /* build udf_node (do initialise!) */ 5110 udf_node = pool_get(&udf_node_pool, PR_WAITOK); 5111 memset(udf_node, 0, sizeof(struct udf_node)); 5112 5113 DPRINTF(NODE, ("\tget new vnode\n")); 5114 /* give it a vnode */ 5115 error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp); 5116 if (error) { 5117 pool_put(&udf_node_pool, udf_node); 5118 mutex_exit(&ump->get_node_lock); 5119 return error; 5120 } 5121 5122 /* always return locked vnode */ 5123 if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) { 5124 /* recycle vnode and unlock; simultanious will fail too */ 5125 ungetnewvnode(nvp); 5126 mutex_exit(&ump->get_node_lock); 5127 return error; 5128 } 5129 5130 /* initialise crosslinks, note location of fe/efe for hashing */ 5131 udf_node->ump = ump; 5132 udf_node->vnode = nvp; 5133 nvp->v_data = udf_node; 5134 udf_node->loc = *node_icb_loc; 5135 udf_node->lockf = 0; 5136 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE); 5137 cv_init(&udf_node->node_lock, "udf_nlk"); 5138 genfs_node_init(nvp, &udf_genfsops); /* inititise genfs */ 5139 udf_node->outstanding_bufs = 0; 5140 udf_node->outstanding_nodedscr = 0; 5141 5142 /* check if we're fetching the root */ 5143 if (ump->fileset_desc) 5144 if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb, 5145 sizeof(struct long_ad)) == 0) 5146 nvp->v_vflag |= VV_ROOT; 5147 5148 /* insert into the hash lookup */ 5149 udf_register_node(udf_node); 5150 5151 /* safe to unlock, the entry is in the hash table, vnode is locked */ 5152 mutex_exit(&ump->get_node_lock); 5153 5154 icb_loc = *node_icb_loc; 5155 needs_indirect = 0; 5156 strat4096 = 0; 5157 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN; 5158 file_size = 0; 5159 file_data = NULL; 5160 lb_size = udf_rw32(ump->logical_vol->lb_size); 5161 5162 DPRINTF(NODE, ("\tstart reading descriptors\n")); 5163 do { 5164 /* try to read in fe/efe */ 5165 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr); 5166 5167 /* blank sector marks end of sequence, check this */ 5168 if ((dscr == NULL) && (!strat4096)) 5169 error = ENOENT; 5170 5171 /* break if read error or blank sector */ 5172 if (error || (dscr == NULL)) 5173 break; 5174 5175 /* process descriptor based on the descriptor type */ 5176 dscr_type = udf_rw16(dscr->tag.id); 5177 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type)); 5178 5179 /* if dealing with an indirect entry, follow the link */ 5180 if (dscr_type == TAGID_INDIRECTENTRY) { 5181 needs_indirect = 0; 5182 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5183 icb_loc = dscr->inde.indirect_icb; 5184 continue; 5185 } 5186 5187 /* only file entries and extended file entries allowed here */ 5188 if ((dscr_type != TAGID_FENTRY) && 5189 (dscr_type != TAGID_EXTFENTRY)) { 5190 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5191 error = ENOENT; 5192 break; 5193 } 5194 5195 KASSERT(udf_tagsize(dscr, lb_size) == lb_size); 5196 5197 /* choose this one */ 5198 last_fe_icb_loc = icb_loc; 5199 5200 /* record and process/update (ext)fentry */ 5201 file_data = NULL; 5202 if (dscr_type == TAGID_FENTRY) { 5203 if (udf_node->fe) 5204 udf_free_logvol_dscr(ump, &last_fe_icb_loc, 5205 udf_node->fe); 5206 udf_node->fe = &dscr->fe; 5207 strat = udf_rw16(udf_node->fe->icbtag.strat_type); 5208 udf_file_type = udf_node->fe->icbtag.file_type; 5209 file_size = udf_rw64(udf_node->fe->inf_len); 5210 file_data = udf_node->fe->data; 5211 } else { 5212 if (udf_node->efe) 5213 udf_free_logvol_dscr(ump, &last_fe_icb_loc, 5214 udf_node->efe); 5215 udf_node->efe = &dscr->efe; 5216 strat = udf_rw16(udf_node->efe->icbtag.strat_type); 5217 udf_file_type = udf_node->efe->icbtag.file_type; 5218 file_size = udf_rw64(udf_node->efe->inf_len); 5219 file_data = udf_node->efe->data; 5220 } 5221 5222 /* check recording strategy (structure) */ 5223 5224 /* 5225 * Strategy 4096 is a daisy linked chain terminating with an 5226 * unrecorded sector or a TERM descriptor. The next 5227 * descriptor is to be found in the sector that follows the 5228 * current sector. 5229 */ 5230 if (strat == 4096) { 5231 strat4096 = 1; 5232 needs_indirect = 1; 5233 5234 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1; 5235 } 5236 5237 /* 5238 * Strategy 4 is the normal strategy and terminates, but if 5239 * we're in strategy 4096, we can't have strategy 4 mixed in 5240 */ 5241 5242 if (strat == 4) { 5243 if (strat4096) { 5244 error = EINVAL; 5245 break; 5246 } 5247 break; /* done */ 5248 } 5249 } while (!error); 5250 5251 /* first round of cleanup code */ 5252 if (error) { 5253 DPRINTF(NODE, ("\tnode fe/efe failed!\n")); 5254 /* recycle udf_node */ 5255 udf_dispose_node(udf_node); 5256 5257 vlockmgr(nvp->v_vnlock, LK_RELEASE); 5258 nvp->v_data = NULL; 5259 ungetnewvnode(nvp); 5260 5261 return EINVAL; /* error code ok? */ 5262 } 5263 DPRINTF(NODE, ("\tnode fe/efe read in fine\n")); 5264 5265 /* assert no references to dscr anymore beyong this point */ 5266 assert((udf_node->fe) || (udf_node->efe)); 5267 dscr = NULL; 5268 5269 /* 5270 * Remember where to record an updated version of the descriptor. If 5271 * there is a sequence of indirect entries, icb_loc will have been 5272 * updated. Its the write disipline to allocate new space and to make 5273 * sure the chain is maintained. 5274 * 5275 * `needs_indirect' flags if the next location is to be filled with 5276 * with an indirect entry. 5277 */ 5278 udf_node->write_loc = icb_loc; 5279 udf_node->needs_indirect = needs_indirect; 5280 5281 /* 5282 * Go trough all allocations extents of this descriptor and when 5283 * encountering a redirect read in the allocation extension. These are 5284 * daisy-chained. 5285 */ 5286 UDF_LOCK_NODE(udf_node, 0); 5287 udf_node->num_extensions = 0; 5288 5289 error = 0; 5290 slot = 0; 5291 for (;;) { 5292 udf_get_adslot(udf_node, slot, &icb_loc, &eof); 5293 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, " 5294 "lb_num = %d, part = %d\n", slot, eof, 5295 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)), 5296 UDF_EXT_LEN(udf_rw32(icb_loc.len)), 5297 udf_rw32(icb_loc.loc.lb_num), 5298 udf_rw16(icb_loc.loc.part_num))); 5299 if (eof) 5300 break; 5301 slot++; 5302 5303 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT) 5304 continue; 5305 5306 DPRINTF(NODE, ("\tgot redirect extent\n")); 5307 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) { 5308 DPRINTF(ALLOC, ("udf_get_node: implementation limit, " 5309 "too many allocation extensions on " 5310 "udf_node\n")); 5311 error = EINVAL; 5312 break; 5313 } 5314 5315 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */ 5316 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) { 5317 DPRINTF(ALLOC, ("udf_get_node: bad allocation " 5318 "extension size in udf_node\n")); 5319 error = EINVAL; 5320 break; 5321 } 5322 5323 DPRINTF(NODE, ("read allocation extent at lb_num %d\n", 5324 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num)))); 5325 /* load in allocation extent */ 5326 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr); 5327 if (error || (dscr == NULL)) 5328 break; 5329 5330 /* process read-in descriptor */ 5331 dscr_type = udf_rw16(dscr->tag.id); 5332 5333 if (dscr_type != TAGID_ALLOCEXTENT) { 5334 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5335 error = ENOENT; 5336 break; 5337 } 5338 5339 DPRINTF(NODE, ("\trecording redirect extent\n")); 5340 udf_node->ext[udf_node->num_extensions] = &dscr->aee; 5341 udf_node->ext_loc[udf_node->num_extensions] = icb_loc; 5342 5343 udf_node->num_extensions++; 5344 5345 } /* while */ 5346 UDF_UNLOCK_NODE(udf_node, 0); 5347 5348 /* second round of cleanup code */ 5349 if (error) { 5350 /* recycle udf_node */ 5351 udf_dispose_node(udf_node); 5352 5353 vlockmgr(nvp->v_vnlock, LK_RELEASE); 5354 nvp->v_data = NULL; 5355 ungetnewvnode(nvp); 5356 5357 return EINVAL; /* error code ok? */ 5358 } 5359 5360 DPRINTF(NODE, ("\tnode read in fine\n")); 5361 5362 /* 5363 * Translate UDF filetypes into vnode types. 5364 * 5365 * Systemfiles like the meta main and mirror files are not treated as 5366 * normal files, so we type them as having no type. UDF dictates that 5367 * they are not allowed to be visible. 5368 */ 5369 5370 switch (udf_file_type) { 5371 case UDF_ICB_FILETYPE_DIRECTORY : 5372 case UDF_ICB_FILETYPE_STREAMDIR : 5373 nvp->v_type = VDIR; 5374 break; 5375 case UDF_ICB_FILETYPE_BLOCKDEVICE : 5376 nvp->v_type = VBLK; 5377 break; 5378 case UDF_ICB_FILETYPE_CHARDEVICE : 5379 nvp->v_type = VCHR; 5380 break; 5381 case UDF_ICB_FILETYPE_SOCKET : 5382 nvp->v_type = VSOCK; 5383 break; 5384 case UDF_ICB_FILETYPE_FIFO : 5385 nvp->v_type = VFIFO; 5386 break; 5387 case UDF_ICB_FILETYPE_SYMLINK : 5388 nvp->v_type = VLNK; 5389 break; 5390 case UDF_ICB_FILETYPE_VAT : 5391 case UDF_ICB_FILETYPE_META_MAIN : 5392 case UDF_ICB_FILETYPE_META_MIRROR : 5393 nvp->v_type = VNON; 5394 break; 5395 case UDF_ICB_FILETYPE_RANDOMACCESS : 5396 case UDF_ICB_FILETYPE_REALTIME : 5397 nvp->v_type = VREG; 5398 break; 5399 default: 5400 /* YIKES, something else */ 5401 nvp->v_type = VNON; 5402 } 5403 5404 /* TODO specfs, fifofs etc etc. vnops setting */ 5405 5406 /* don't forget to set vnode's v_size */ 5407 uvm_vnp_setsize(nvp, file_size); 5408 5409 /* TODO ext attr and streamdir udf_nodes */ 5410 5411 *udf_noderes = udf_node; 5412 5413 return 0; 5414 } 5415 5416 /* --------------------------------------------------------------------- */ 5417 5418 int 5419 udf_writeout_node(struct udf_node *udf_node, int waitfor) 5420 { 5421 union dscrptr *dscr; 5422 struct long_ad *loc; 5423 int extnr, error; 5424 5425 DPRINTF(NODE, ("udf_writeout_node called\n")); 5426 5427 KASSERT(udf_node->outstanding_bufs == 0); 5428 KASSERT(udf_node->outstanding_nodedscr == 0); 5429 5430 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd)); 5431 5432 if (udf_node->i_flags & IN_DELETED) { 5433 DPRINTF(NODE, ("\tnode deleted; not writing out\n")); 5434 return 0; 5435 } 5436 5437 /* lock node */ 5438 UDF_LOCK_NODE(udf_node, 0); 5439 5440 /* at least one descriptor writeout */ 5441 udf_node->outstanding_nodedscr = 1; 5442 5443 /* we're going to write out the descriptor so clear the flags */ 5444 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED); 5445 5446 /* if we were rebuild, write out the allocation extents */ 5447 if (udf_node->i_flags & IN_NODE_REBUILD) { 5448 /* mark outstanding node descriptors and issue them */ 5449 udf_node->outstanding_nodedscr += udf_node->num_extensions; 5450 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) { 5451 loc = &udf_node->ext_loc[extnr]; 5452 dscr = (union dscrptr *) udf_node->ext[extnr]; 5453 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0); 5454 if (error) 5455 return error; 5456 } 5457 /* mark allocation extents written out */ 5458 udf_node->i_flags &= ~(IN_NODE_REBUILD); 5459 } 5460 5461 if (udf_node->fe) { 5462 KASSERT(udf_node->efe == NULL); 5463 dscr = (union dscrptr *) udf_node->fe; 5464 } else { 5465 KASSERT(udf_node->efe); 5466 KASSERT(udf_node->fe == NULL); 5467 dscr = (union dscrptr *) udf_node->efe; 5468 } 5469 KASSERT(dscr); 5470 5471 loc = &udf_node->write_loc; 5472 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor); 5473 return error; 5474 } 5475 5476 /* --------------------------------------------------------------------- */ 5477 5478 int 5479 udf_dispose_node(struct udf_node *udf_node) 5480 { 5481 struct vnode *vp; 5482 int extnr; 5483 5484 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node)); 5485 if (!udf_node) { 5486 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n")); 5487 return 0; 5488 } 5489 5490 vp = udf_node->vnode; 5491 #ifdef DIAGNOSTIC 5492 if (vp->v_numoutput) 5493 panic("disposing UDF node with pending I/O's, udf_node = %p, " 5494 "v_numoutput = %d", udf_node, vp->v_numoutput); 5495 #endif 5496 5497 /* wait until out of sync (just in case we happen to stumble over one */ 5498 KASSERT(!mutex_owned(&mntvnode_lock)); 5499 mutex_enter(&mntvnode_lock); 5500 while (udf_node->i_flags & IN_SYNCED) { 5501 cv_timedwait(&udf_node->ump->dirtynodes_cv, &mntvnode_lock, 5502 hz/16); 5503 } 5504 mutex_exit(&mntvnode_lock); 5505 5506 /* TODO extended attributes and streamdir */ 5507 5508 /* remove dirhash if present */ 5509 dirhash_purge(&udf_node->dir_hash); 5510 5511 /* remove from our hash lookup table */ 5512 udf_deregister_node(udf_node); 5513 5514 /* destroy our lock */ 5515 mutex_destroy(&udf_node->node_mutex); 5516 cv_destroy(&udf_node->node_lock); 5517 5518 /* dissociate our udf_node from the vnode */ 5519 genfs_node_destroy(udf_node->vnode); 5520 vp->v_data = NULL; 5521 5522 /* free associated memory and the node itself */ 5523 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) { 5524 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr], 5525 udf_node->ext[extnr]); 5526 udf_node->ext[extnr] = (void *) 0xdeadcccc; 5527 } 5528 5529 if (udf_node->fe) 5530 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc, 5531 udf_node->fe); 5532 if (udf_node->efe) 5533 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc, 5534 udf_node->efe); 5535 5536 udf_node->fe = (void *) 0xdeadaaaa; 5537 udf_node->efe = (void *) 0xdeadbbbb; 5538 udf_node->ump = (void *) 0xdeadbeef; 5539 pool_put(&udf_node_pool, udf_node); 5540 5541 return 0; 5542 } 5543 5544 5545 5546 /* 5547 * create a new node using the specified vnodeops, vap and cnp but with the 5548 * udf_file_type. This allows special files to be created. Use with care. 5549 */ 5550 5551 static int 5552 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type, 5553 int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp) 5554 { 5555 union dscrptr *dscr; 5556 struct udf_node *dir_node = VTOI(dvp);; 5557 struct udf_node *udf_node; 5558 struct udf_mount *ump = dir_node->ump; 5559 struct vnode *nvp; 5560 struct long_ad node_icb_loc; 5561 uint64_t parent_unique_id; 5562 uint64_t lmapping; 5563 uint32_t lb_size, lb_num; 5564 uint16_t vpart_num; 5565 uid_t uid; 5566 gid_t gid, parent_gid; 5567 int fid_size, error; 5568 5569 lb_size = udf_rw32(ump->logical_vol->lb_size); 5570 *vpp = NULL; 5571 5572 /* allocate vnode */ 5573 error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, &nvp); 5574 if (error) 5575 return error; 5576 5577 /* lock node */ 5578 error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY); 5579 if (error) { 5580 nvp->v_data = NULL; 5581 ungetnewvnode(nvp); 5582 return error; 5583 } 5584 5585 /* get disc allocation for one logical block */ 5586 vpart_num = ump->node_part; 5587 error = udf_pre_allocate_space(ump, UDF_C_NODE, 1, 5588 vpart_num, &lmapping); 5589 lb_num = lmapping; 5590 if (error) { 5591 vlockmgr(nvp->v_vnlock, LK_RELEASE); 5592 ungetnewvnode(nvp); 5593 return error; 5594 } 5595 5596 /* initialise pointer to location */ 5597 memset(&node_icb_loc, 0, sizeof(struct long_ad)); 5598 node_icb_loc.len = udf_rw32(lb_size); 5599 node_icb_loc.loc.lb_num = udf_rw32(lb_num); 5600 node_icb_loc.loc.part_num = udf_rw16(vpart_num); 5601 5602 /* build udf_node (do initialise!) */ 5603 udf_node = pool_get(&udf_node_pool, PR_WAITOK); 5604 memset(udf_node, 0, sizeof(struct udf_node)); 5605 5606 /* initialise crosslinks, note location of fe/efe for hashing */ 5607 /* bugalert: synchronise with udf_get_node() */ 5608 udf_node->ump = ump; 5609 udf_node->vnode = nvp; 5610 nvp->v_data = udf_node; 5611 udf_node->loc = node_icb_loc; 5612 udf_node->write_loc = node_icb_loc; 5613 udf_node->lockf = 0; 5614 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE); 5615 cv_init(&udf_node->node_lock, "udf_nlk"); 5616 udf_node->outstanding_bufs = 0; 5617 udf_node->outstanding_nodedscr = 0; 5618 5619 /* initialise genfs */ 5620 genfs_node_init(nvp, &udf_genfsops); 5621 5622 /* insert into the hash lookup */ 5623 udf_register_node(udf_node); 5624 5625 /* get parent's unique ID for refering '..' if its a directory */ 5626 if (dir_node->fe) { 5627 parent_unique_id = udf_rw64(dir_node->fe->unique_id); 5628 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid); 5629 } else { 5630 parent_unique_id = udf_rw64(dir_node->efe->unique_id); 5631 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid); 5632 } 5633 5634 /* get descriptor */ 5635 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr); 5636 5637 /* choose a fe or an efe for it */ 5638 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) { 5639 udf_node->fe = &dscr->fe; 5640 fid_size = udf_create_new_fe(ump, udf_node->fe, 5641 udf_file_type, &udf_node->loc, 5642 &dir_node->loc, parent_unique_id); 5643 /* TODO add extended attribute for creation time */ 5644 } else { 5645 udf_node->efe = &dscr->efe; 5646 fid_size = udf_create_new_efe(ump, udf_node->efe, 5647 udf_file_type, &udf_node->loc, 5648 &dir_node->loc, parent_unique_id); 5649 } 5650 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num); 5651 5652 /* update vnode's size and type */ 5653 nvp->v_type = vap->va_type; 5654 uvm_vnp_setsize(nvp, fid_size); 5655 5656 /* set access mode */ 5657 udf_setaccessmode(udf_node, vap->va_mode); 5658 5659 /* set ownership */ 5660 uid = kauth_cred_geteuid(cnp->cn_cred); 5661 gid = parent_gid; 5662 udf_setownership(udf_node, uid, gid); 5663 5664 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp); 5665 if (error) { 5666 /* free disc allocation for node */ 5667 udf_free_allocated_space(ump, lb_num, vpart_num, 1); 5668 5669 /* recycle udf_node */ 5670 udf_dispose_node(udf_node); 5671 vput(nvp); 5672 5673 *vpp = NULL; 5674 return error; 5675 } 5676 5677 /* adjust file count */ 5678 udf_adjust_filecount(udf_node, 1); 5679 5680 /* return result */ 5681 *vpp = nvp; 5682 5683 return 0; 5684 } 5685 5686 5687 int 5688 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap, 5689 struct componentname *cnp) 5690 { 5691 int (**vnodeops)(void *); 5692 int udf_file_type; 5693 5694 DPRINTF(NODE, ("udf_create_node called\n")); 5695 5696 /* what type are we creating ? */ 5697 vnodeops = udf_vnodeop_p; 5698 /* start with a default */ 5699 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS; 5700 5701 *vpp = NULL; 5702 5703 switch (vap->va_type) { 5704 case VREG : 5705 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS; 5706 break; 5707 case VDIR : 5708 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY; 5709 break; 5710 case VLNK : 5711 udf_file_type = UDF_ICB_FILETYPE_SYMLINK; 5712 break; 5713 case VBLK : 5714 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE; 5715 /* specfs */ 5716 return ENOTSUP; 5717 break; 5718 case VCHR : 5719 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE; 5720 /* specfs */ 5721 return ENOTSUP; 5722 break; 5723 case VFIFO : 5724 udf_file_type = UDF_ICB_FILETYPE_FIFO; 5725 /* specfs */ 5726 return ENOTSUP; 5727 break; 5728 case VSOCK : 5729 udf_file_type = UDF_ICB_FILETYPE_SOCKET; 5730 /* specfs */ 5731 return ENOTSUP; 5732 break; 5733 case VNON : 5734 case VBAD : 5735 default : 5736 /* nothing; can we even create these? */ 5737 return EINVAL; 5738 } 5739 5740 return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp); 5741 } 5742 5743 /* --------------------------------------------------------------------- */ 5744 5745 static void 5746 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem) 5747 { 5748 struct udf_mount *ump = udf_node->ump; 5749 uint32_t lb_size, lb_num, len, num_lb; 5750 uint16_t vpart_num; 5751 5752 /* is there really one? */ 5753 if (mem == NULL) 5754 return; 5755 5756 /* got a descriptor here */ 5757 len = UDF_EXT_LEN(udf_rw32(loc->len)); 5758 lb_num = udf_rw32(loc->loc.lb_num); 5759 vpart_num = udf_rw16(loc->loc.part_num); 5760 5761 lb_size = udf_rw32(ump->logical_vol->lb_size); 5762 num_lb = (len + lb_size -1) / lb_size; 5763 5764 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb); 5765 } 5766 5767 void 5768 udf_delete_node(struct udf_node *udf_node) 5769 { 5770 void *dscr; 5771 struct udf_mount *ump; 5772 struct long_ad *loc; 5773 int extnr, lvint, dummy; 5774 5775 ump = udf_node->ump; 5776 5777 /* paranoia check on integrity; should be open!; we could panic */ 5778 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type); 5779 if (lvint == UDF_INTEGRITY_CLOSED) 5780 printf("\tIntegrity was CLOSED!\n"); 5781 5782 /* whatever the node type, change its size to zero */ 5783 (void) udf_resize_node(udf_node, 0, &dummy); 5784 5785 /* force it to be `clean'; no use writing it out */ 5786 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS | 5787 IN_CHANGE | IN_UPDATE | IN_MODIFY); 5788 5789 /* adjust file count */ 5790 udf_adjust_filecount(udf_node, -1); 5791 5792 /* 5793 * Free its allocated descriptors; memory will be released when 5794 * vop_reclaim() is called. 5795 */ 5796 loc = &udf_node->loc; 5797 5798 dscr = udf_node->fe; 5799 udf_free_descriptor_space(udf_node, loc, dscr); 5800 dscr = udf_node->efe; 5801 udf_free_descriptor_space(udf_node, loc, dscr); 5802 5803 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) { 5804 dscr = udf_node->ext[extnr]; 5805 loc = &udf_node->ext_loc[extnr]; 5806 udf_free_descriptor_space(udf_node, loc, dscr); 5807 } 5808 } 5809 5810 /* --------------------------------------------------------------------- */ 5811 5812 /* set new filesize; node but be LOCKED on entry and is locked on exit */ 5813 int 5814 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended) 5815 { 5816 struct file_entry *fe = udf_node->fe; 5817 struct extfile_entry *efe = udf_node->efe; 5818 uint64_t file_size; 5819 int error; 5820 5821 if (fe) { 5822 file_size = udf_rw64(fe->inf_len); 5823 } else { 5824 assert(udf_node->efe); 5825 file_size = udf_rw64(efe->inf_len); 5826 } 5827 5828 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n", 5829 file_size, new_size)); 5830 5831 /* if not changing, we're done */ 5832 if (file_size == new_size) 5833 return 0; 5834 5835 *extended = (new_size > file_size); 5836 if (*extended) { 5837 error = udf_grow_node(udf_node, new_size); 5838 } else { 5839 error = udf_shrink_node(udf_node, new_size); 5840 } 5841 5842 return error; 5843 } 5844 5845 5846 /* --------------------------------------------------------------------- */ 5847 5848 void 5849 udf_itimes(struct udf_node *udf_node, struct timespec *acc, 5850 struct timespec *mod, struct timespec *birth) 5851 { 5852 struct timespec now; 5853 struct file_entry *fe; 5854 struct extfile_entry *efe; 5855 struct filetimes_extattr_entry *ft_extattr; 5856 struct timestamp *atime, *mtime, *attrtime, *ctime; 5857 struct timestamp fe_ctime; 5858 struct timespec cur_birth; 5859 uint32_t offset, a_l; 5860 uint8_t *filedata; 5861 int error; 5862 5863 /* protect against rogue values */ 5864 if (!udf_node) 5865 return; 5866 5867 fe = udf_node->fe; 5868 efe = udf_node->efe; 5869 5870 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY))) 5871 return; 5872 5873 /* get descriptor information */ 5874 if (fe) { 5875 atime = &fe->atime; 5876 mtime = &fe->mtime; 5877 attrtime = &fe->attrtime; 5878 filedata = fe->data; 5879 5880 /* initial save dummy setting */ 5881 ctime = &fe_ctime; 5882 5883 /* check our extended attribute if present */ 5884 error = udf_extattr_search_intern(udf_node, 5885 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l); 5886 if (!error) { 5887 ft_extattr = (struct filetimes_extattr_entry *) 5888 (filedata + offset); 5889 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION) 5890 ctime = &ft_extattr->times[0]; 5891 } 5892 /* TODO create the extended attribute if not found ? */ 5893 } else { 5894 assert(udf_node->efe); 5895 atime = &efe->atime; 5896 mtime = &efe->mtime; 5897 attrtime = &efe->attrtime; 5898 ctime = &efe->ctime; 5899 } 5900 5901 vfs_timestamp(&now); 5902 5903 /* set access time */ 5904 if (udf_node->i_flags & IN_ACCESS) { 5905 if (acc == NULL) 5906 acc = &now; 5907 udf_timespec_to_timestamp(acc, atime); 5908 } 5909 5910 /* set modification time */ 5911 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) { 5912 if (mod == NULL) 5913 mod = &now; 5914 udf_timespec_to_timestamp(mod, mtime); 5915 5916 /* ensure birthtime is older than set modification! */ 5917 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth); 5918 if ((cur_birth.tv_sec > mod->tv_sec) || 5919 ((cur_birth.tv_sec == mod->tv_sec) && 5920 (cur_birth.tv_nsec > mod->tv_nsec))) { 5921 udf_timespec_to_timestamp(mod, ctime); 5922 } 5923 } 5924 5925 /* update birthtime if specified */ 5926 /* XXX we asume here that given birthtime is older than mod */ 5927 if (birth && (birth->tv_sec != VNOVAL)) { 5928 udf_timespec_to_timestamp(birth, ctime); 5929 } 5930 5931 /* set change time */ 5932 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY)) 5933 udf_timespec_to_timestamp(&now, attrtime); 5934 5935 /* notify updates to the node itself */ 5936 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY)) 5937 udf_node->i_flags |= IN_ACCESSED; 5938 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE)) 5939 udf_node->i_flags |= IN_MODIFIED; 5940 5941 /* clear modification flags */ 5942 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY); 5943 } 5944 5945 /* --------------------------------------------------------------------- */ 5946 5947 int 5948 udf_update(struct vnode *vp, struct timespec *acc, 5949 struct timespec *mod, struct timespec *birth, int updflags) 5950 { 5951 union dscrptr *dscrptr; 5952 struct udf_node *udf_node = VTOI(vp); 5953 struct udf_mount *ump = udf_node->ump; 5954 struct regid *impl_id; 5955 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC); 5956 int waitfor, flags; 5957 5958 #ifdef DEBUG 5959 char bits[128]; 5960 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth, 5961 updflags)); 5962 snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags); 5963 DPRINTF(CALL, ("\tnode flags %s\n", bits)); 5964 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async)); 5965 #endif 5966 5967 /* set our times */ 5968 udf_itimes(udf_node, acc, mod, birth); 5969 5970 /* set our implementation id */ 5971 if (udf_node->fe) { 5972 dscrptr = (union dscrptr *) udf_node->fe; 5973 impl_id = &udf_node->fe->imp_id; 5974 } else { 5975 dscrptr = (union dscrptr *) udf_node->efe; 5976 impl_id = &udf_node->efe->imp_id; 5977 } 5978 5979 /* set our ID */ 5980 udf_set_regid(impl_id, IMPL_NAME); 5981 udf_add_impl_regid(ump, impl_id); 5982 5983 /* update our crc! on RMW we are not allowed to change a thing */ 5984 udf_validate_tag_and_crc_sums(dscrptr); 5985 5986 /* if called when mounted readonly, never write back */ 5987 if (vp->v_mount->mnt_flag & MNT_RDONLY) 5988 return 0; 5989 5990 /* check if the node is dirty 'enough'*/ 5991 if (updflags & UPDATE_CLOSE) { 5992 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED); 5993 } else { 5994 flags = udf_node->i_flags & IN_MODIFIED; 5995 } 5996 if (flags == 0) 5997 return 0; 5998 5999 /* determine if we need to write sync or async */ 6000 waitfor = 0; 6001 if ((flags & IN_MODIFIED) && (mnt_async == 0)) { 6002 /* sync mounted */ 6003 waitfor = updflags & UPDATE_WAIT; 6004 if (updflags & UPDATE_DIROP) 6005 waitfor |= UPDATE_WAIT; 6006 } 6007 if (waitfor) 6008 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0); 6009 6010 return 0; 6011 } 6012 6013 6014 /* --------------------------------------------------------------------- */ 6015 6016 6017 /* 6018 * Read one fid and process it into a dirent and advance to the next (*fid) 6019 * has to be allocated a logical block in size, (*dirent) struct dirent length 6020 */ 6021 6022 int 6023 udf_read_fid_stream(struct vnode *vp, uint64_t *offset, 6024 struct fileid_desc *fid, struct dirent *dirent) 6025 { 6026 struct udf_node *dir_node = VTOI(vp); 6027 struct udf_mount *ump = dir_node->ump; 6028 struct file_entry *fe = dir_node->fe; 6029 struct extfile_entry *efe = dir_node->efe; 6030 uint32_t fid_size, lb_size; 6031 uint64_t file_size; 6032 char *fid_name; 6033 int enough, error; 6034 6035 assert(fid); 6036 assert(dirent); 6037 assert(dir_node); 6038 assert(offset); 6039 assert(*offset != 1); 6040 6041 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset)); 6042 /* check if we're past the end of the directory */ 6043 if (fe) { 6044 file_size = udf_rw64(fe->inf_len); 6045 } else { 6046 assert(dir_node->efe); 6047 file_size = udf_rw64(efe->inf_len); 6048 } 6049 if (*offset >= file_size) 6050 return EINVAL; 6051 6052 /* get maximum length of FID descriptor */ 6053 lb_size = udf_rw32(ump->logical_vol->lb_size); 6054 6055 /* initialise return values */ 6056 fid_size = 0; 6057 memset(dirent, 0, sizeof(struct dirent)); 6058 memset(fid, 0, lb_size); 6059 6060 enough = (file_size - (*offset) >= UDF_FID_SIZE); 6061 if (!enough) { 6062 /* short dir ... */ 6063 return EIO; 6064 } 6065 6066 error = vn_rdwr(UIO_READ, vp, 6067 fid, MIN(file_size - (*offset), lb_size), *offset, 6068 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED, 6069 NULL, NULL); 6070 if (error) 6071 return error; 6072 6073 DPRINTF(FIDS, ("\tfid piece read in fine\n")); 6074 /* 6075 * Check if we got a whole descriptor. 6076 * TODO Try to `resync' directory stream when something is very wrong. 6077 */ 6078 6079 /* check if our FID header is OK */ 6080 error = udf_check_tag(fid); 6081 if (error) { 6082 goto brokendir; 6083 } 6084 DPRINTF(FIDS, ("\ttag check ok\n")); 6085 6086 if (udf_rw16(fid->tag.id) != TAGID_FID) { 6087 error = EIO; 6088 goto brokendir; 6089 } 6090 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n")); 6091 6092 /* check for length */ 6093 fid_size = udf_fidsize(fid); 6094 enough = (file_size - (*offset) >= fid_size); 6095 if (!enough) { 6096 error = EIO; 6097 goto brokendir; 6098 } 6099 DPRINTF(FIDS, ("\tthe complete fid is read in\n")); 6100 6101 /* check FID contents */ 6102 error = udf_check_tag_payload((union dscrptr *) fid, lb_size); 6103 brokendir: 6104 if (error) { 6105 /* note that is sometimes a bit quick to report */ 6106 printf("UDF: BROKEN DIRECTORY ENTRY\n"); 6107 /* RESYNC? */ 6108 /* TODO: use udf_resync_fid_stream */ 6109 return EIO; 6110 } 6111 DPRINTF(FIDS, ("\tpayload checked ok\n")); 6112 6113 /* we got a whole and valid descriptor! */ 6114 DPRINTF(FIDS, ("\tinterpret FID\n")); 6115 6116 /* create resulting dirent structure */ 6117 fid_name = (char *) fid->data + udf_rw16(fid->l_iu); 6118 udf_to_unix_name(dirent->d_name, MAXNAMLEN, 6119 fid_name, fid->l_fi, &ump->logical_vol->desc_charset); 6120 6121 /* '..' has no name, so provide one */ 6122 if (fid->file_char & UDF_FILE_CHAR_PAR) 6123 strcpy(dirent->d_name, ".."); 6124 6125 dirent->d_fileno = udf_calchash(&fid->icb); /* inode hash XXX */ 6126 dirent->d_namlen = strlen(dirent->d_name); 6127 dirent->d_reclen = _DIRENT_SIZE(dirent); 6128 6129 /* 6130 * Note that its not worth trying to go for the filetypes now... its 6131 * too expensive too 6132 */ 6133 dirent->d_type = DT_UNKNOWN; 6134 6135 /* initial guess for filetype we can make */ 6136 if (fid->file_char & UDF_FILE_CHAR_DIR) 6137 dirent->d_type = DT_DIR; 6138 6139 /* advance */ 6140 *offset += fid_size; 6141 6142 return error; 6143 } 6144 6145 6146 /* --------------------------------------------------------------------- */ 6147 6148 static void 6149 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor, 6150 int pass, int *ndirty) 6151 { 6152 struct udf_node *udf_node, *n_udf_node; 6153 struct vnode *vp; 6154 int vdirty, error; 6155 int on_type, on_flags, on_vnode; 6156 6157 derailed: 6158 KASSERT(mutex_owned(&mntvnode_lock)); 6159 6160 DPRINTF(SYNC, ("sync_pass %d\n", pass)); 6161 udf_node = LIST_FIRST(&ump->sorted_udf_nodes); 6162 for (;udf_node; udf_node = n_udf_node) { 6163 DPRINTF(SYNC, (".")); 6164 6165 udf_node->i_flags &= ~IN_SYNCED; 6166 vp = udf_node->vnode; 6167 6168 mutex_enter(&vp->v_interlock); 6169 n_udf_node = LIST_NEXT(udf_node, sortchain); 6170 if (n_udf_node) 6171 n_udf_node->i_flags |= IN_SYNCED; 6172 6173 /* system nodes are not synced this way */ 6174 if (vp->v_vflag & VV_SYSTEM) { 6175 mutex_exit(&vp->v_interlock); 6176 continue; 6177 } 6178 6179 /* check if its dirty enough to even try */ 6180 on_type = (waitfor == MNT_LAZY || vp->v_type == VNON); 6181 on_flags = ((udf_node->i_flags & 6182 (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0); 6183 on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd) 6184 && UVM_OBJ_IS_CLEAN(&vp->v_uobj); 6185 if (on_type || (on_flags || on_vnode)) { /* XXX */ 6186 /* not dirty (enough?) */ 6187 mutex_exit(&vp->v_interlock); 6188 continue; 6189 } 6190 6191 mutex_exit(&mntvnode_lock); 6192 error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK); 6193 if (error) { 6194 mutex_enter(&mntvnode_lock); 6195 if (error == ENOENT) 6196 goto derailed; 6197 *ndirty += 1; 6198 continue; 6199 } 6200 6201 switch (pass) { 6202 case 1: 6203 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0); 6204 break; 6205 case 2: 6206 vdirty = vp->v_numoutput; 6207 if (vp->v_tag == VT_UDF) 6208 vdirty += udf_node->outstanding_bufs + 6209 udf_node->outstanding_nodedscr; 6210 if (vdirty == 0) 6211 VOP_FSYNC(vp, cred, 0,0,0); 6212 *ndirty += vdirty; 6213 break; 6214 case 3: 6215 vdirty = vp->v_numoutput; 6216 if (vp->v_tag == VT_UDF) 6217 vdirty += udf_node->outstanding_bufs + 6218 udf_node->outstanding_nodedscr; 6219 *ndirty += vdirty; 6220 break; 6221 } 6222 6223 vput(vp); 6224 mutex_enter(&mntvnode_lock); 6225 } 6226 DPRINTF(SYNC, ("END sync_pass %d\n", pass)); 6227 } 6228 6229 6230 void 6231 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor) 6232 { 6233 int dummy, ndirty; 6234 6235 mutex_enter(&mntvnode_lock); 6236 recount: 6237 dummy = 0; 6238 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n")); 6239 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n")); 6240 udf_sync_pass(ump, cred, waitfor, 1, &dummy); 6241 6242 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n")); 6243 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n")); 6244 udf_sync_pass(ump, cred, waitfor, 2, &dummy); 6245 6246 if (waitfor == MNT_WAIT) { 6247 ndirty = ump->devvp->v_numoutput; 6248 DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n", 6249 ndirty)); 6250 udf_sync_pass(ump, cred, waitfor, 3, &ndirty); 6251 DPRINTF(SYNC, ("counted num dirty pending blocks %d\n", 6252 ndirty)); 6253 6254 if (ndirty) { 6255 /* 1/4 second wait */ 6256 cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock, 6257 hz/4); 6258 goto recount; 6259 } 6260 } 6261 6262 mutex_exit(&mntvnode_lock); 6263 } 6264 6265 /* --------------------------------------------------------------------- */ 6266 6267 /* 6268 * Read and write file extent in/from the buffer. 6269 * 6270 * The splitup of the extent into seperate request-buffers is to minimise 6271 * copying around as much as possible. 6272 * 6273 * block based file reading and writing 6274 */ 6275 6276 static int 6277 udf_read_internal(struct udf_node *node, uint8_t *blob) 6278 { 6279 struct udf_mount *ump; 6280 struct file_entry *fe = node->fe; 6281 struct extfile_entry *efe = node->efe; 6282 uint64_t inflen; 6283 uint32_t sector_size; 6284 uint8_t *pos; 6285 int icbflags, addr_type; 6286 6287 /* get extent and do some paranoia checks */ 6288 ump = node->ump; 6289 sector_size = ump->discinfo.sector_size; 6290 6291 if (fe) { 6292 inflen = udf_rw64(fe->inf_len); 6293 pos = &fe->data[0] + udf_rw32(fe->l_ea); 6294 icbflags = udf_rw16(fe->icbtag.flags); 6295 } else { 6296 assert(node->efe); 6297 inflen = udf_rw64(efe->inf_len); 6298 pos = &efe->data[0] + udf_rw32(efe->l_ea); 6299 icbflags = udf_rw16(efe->icbtag.flags); 6300 } 6301 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 6302 6303 assert(addr_type == UDF_ICB_INTERN_ALLOC); 6304 assert(inflen < sector_size); 6305 6306 /* copy out info */ 6307 memset(blob, 0, sector_size); 6308 memcpy(blob, pos, inflen); 6309 6310 return 0; 6311 } 6312 6313 6314 static int 6315 udf_write_internal(struct udf_node *node, uint8_t *blob) 6316 { 6317 struct udf_mount *ump; 6318 struct file_entry *fe = node->fe; 6319 struct extfile_entry *efe = node->efe; 6320 uint64_t inflen; 6321 uint32_t sector_size; 6322 uint8_t *pos; 6323 int icbflags, addr_type; 6324 6325 /* get extent and do some paranoia checks */ 6326 ump = node->ump; 6327 sector_size = ump->discinfo.sector_size; 6328 6329 if (fe) { 6330 inflen = udf_rw64(fe->inf_len); 6331 pos = &fe->data[0] + udf_rw32(fe->l_ea); 6332 icbflags = udf_rw16(fe->icbtag.flags); 6333 } else { 6334 assert(node->efe); 6335 inflen = udf_rw64(efe->inf_len); 6336 pos = &efe->data[0] + udf_rw32(efe->l_ea); 6337 icbflags = udf_rw16(efe->icbtag.flags); 6338 } 6339 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 6340 6341 assert(addr_type == UDF_ICB_INTERN_ALLOC); 6342 assert(inflen < sector_size); 6343 6344 /* copy in blob */ 6345 /* memset(pos, 0, inflen); */ 6346 memcpy(pos, blob, inflen); 6347 6348 return 0; 6349 } 6350 6351 6352 void 6353 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf) 6354 { 6355 struct buf *nestbuf; 6356 struct udf_mount *ump = udf_node->ump; 6357 uint64_t *mapping; 6358 uint64_t run_start; 6359 uint32_t sector_size; 6360 uint32_t buf_offset, sector, rbuflen, rblk; 6361 uint32_t from, lblkno; 6362 uint32_t sectors; 6363 uint8_t *buf_pos; 6364 int error, run_length, isdir, what; 6365 6366 sector_size = udf_node->ump->discinfo.sector_size; 6367 6368 from = buf->b_blkno; 6369 sectors = buf->b_bcount / sector_size; 6370 6371 isdir = (udf_node->vnode->v_type == VDIR); 6372 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA; 6373 6374 /* assure we have enough translation slots */ 6375 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS); 6376 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS); 6377 6378 if (sectors > UDF_MAX_MAPPINGS) { 6379 printf("udf_read_filebuf: implementation limit on bufsize\n"); 6380 buf->b_error = EIO; 6381 biodone(buf); 6382 return; 6383 } 6384 6385 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK); 6386 6387 error = 0; 6388 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors)); 6389 error = udf_translate_file_extent(udf_node, from, sectors, mapping); 6390 if (error) { 6391 buf->b_error = error; 6392 biodone(buf); 6393 goto out; 6394 } 6395 DPRINTF(READ, ("\ttranslate extent went OK\n")); 6396 6397 /* pre-check if its an internal */ 6398 if (*mapping == UDF_TRANS_INTERN) { 6399 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data); 6400 if (error) 6401 buf->b_error = error; 6402 biodone(buf); 6403 goto out; 6404 } 6405 DPRINTF(READ, ("\tnot intern\n")); 6406 6407 #ifdef DEBUG 6408 if (udf_verbose & UDF_DEBUG_TRANSLATE) { 6409 printf("Returned translation table:\n"); 6410 for (sector = 0; sector < sectors; sector++) { 6411 printf("%d : %"PRIu64"\n", sector, mapping[sector]); 6412 } 6413 } 6414 #endif 6415 6416 /* request read-in of data from disc sheduler */ 6417 buf->b_resid = buf->b_bcount; 6418 for (sector = 0; sector < sectors; sector++) { 6419 buf_offset = sector * sector_size; 6420 buf_pos = (uint8_t *) buf->b_data + buf_offset; 6421 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector)); 6422 6423 /* check if its zero or unmapped to stop reading */ 6424 switch (mapping[sector]) { 6425 case UDF_TRANS_UNMAPPED: 6426 case UDF_TRANS_ZERO: 6427 /* copy zero sector TODO runlength like below */ 6428 memset(buf_pos, 0, sector_size); 6429 DPRINTF(READ, ("\treturning zero sector\n")); 6430 nestiobuf_done(buf, sector_size, 0); 6431 break; 6432 default : 6433 DPRINTF(READ, ("\tread sector " 6434 "%"PRIu64"\n", mapping[sector])); 6435 6436 lblkno = from + sector; 6437 run_start = mapping[sector]; 6438 run_length = 1; 6439 while (sector < sectors-1) { 6440 if (mapping[sector+1] != mapping[sector]+1) 6441 break; 6442 run_length++; 6443 sector++; 6444 } 6445 6446 /* 6447 * nest an iobuf and mark it for async reading. Since 6448 * we're using nested buffers, they can't be cached by 6449 * design. 6450 */ 6451 rbuflen = run_length * sector_size; 6452 rblk = run_start * (sector_size/DEV_BSIZE); 6453 6454 nestbuf = getiobuf(NULL, true); 6455 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); 6456 /* nestbuf is B_ASYNC */ 6457 6458 /* identify this nestbuf */ 6459 nestbuf->b_lblkno = lblkno; 6460 assert(nestbuf->b_vp == udf_node->vnode); 6461 6462 /* CD shedules on raw blkno */ 6463 nestbuf->b_blkno = rblk; 6464 nestbuf->b_proc = NULL; 6465 nestbuf->b_rawblkno = rblk; 6466 nestbuf->b_udf_c_type = what; 6467 6468 udf_discstrat_queuebuf(ump, nestbuf); 6469 } 6470 } 6471 out: 6472 /* if we're synchronously reading, wait for the completion */ 6473 if ((buf->b_flags & B_ASYNC) == 0) 6474 biowait(buf); 6475 6476 DPRINTF(READ, ("\tend of read_filebuf\n")); 6477 free(mapping, M_TEMP); 6478 return; 6479 } 6480 6481 6482 void 6483 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf) 6484 { 6485 struct buf *nestbuf; 6486 struct udf_mount *ump = udf_node->ump; 6487 uint64_t *mapping; 6488 uint64_t run_start; 6489 uint32_t lb_size; 6490 uint32_t buf_offset, lb_num, rbuflen, rblk; 6491 uint32_t from, lblkno; 6492 uint32_t num_lb; 6493 int error, run_length, isdir, what, s; 6494 6495 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); 6496 6497 from = buf->b_blkno; 6498 num_lb = buf->b_bcount / lb_size; 6499 6500 isdir = (udf_node->vnode->v_type == VDIR); 6501 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA; 6502 6503 if (udf_node == ump->metadatabitmap_node) 6504 what = UDF_C_METADATA_SBM; 6505 6506 /* assure we have enough translation slots */ 6507 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS); 6508 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS); 6509 6510 if (num_lb > UDF_MAX_MAPPINGS) { 6511 printf("udf_write_filebuf: implementation limit on bufsize\n"); 6512 buf->b_error = EIO; 6513 biodone(buf); 6514 return; 6515 } 6516 6517 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK); 6518 6519 error = 0; 6520 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb)); 6521 error = udf_translate_file_extent(udf_node, from, num_lb, mapping); 6522 if (error) { 6523 buf->b_error = error; 6524 biodone(buf); 6525 goto out; 6526 } 6527 DPRINTF(WRITE, ("\ttranslate extent went OK\n")); 6528 6529 /* if its internally mapped, we can write it in the descriptor itself */ 6530 if (*mapping == UDF_TRANS_INTERN) { 6531 /* TODO paranoia check if we ARE going to have enough space */ 6532 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data); 6533 if (error) 6534 buf->b_error = error; 6535 biodone(buf); 6536 goto out; 6537 } 6538 DPRINTF(WRITE, ("\tnot intern\n")); 6539 6540 /* request write out of data to disc sheduler */ 6541 buf->b_resid = buf->b_bcount; 6542 for (lb_num = 0; lb_num < num_lb; lb_num++) { 6543 buf_offset = lb_num * lb_size; 6544 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num)); 6545 6546 /* 6547 * Mappings are not that important here. Just before we write 6548 * the lb_num we late-allocate them when needed and update the 6549 * mapping in the udf_node. 6550 */ 6551 6552 /* XXX why not ignore the mapping altogether ? */ 6553 /* TODO estimate here how much will be late-allocated */ 6554 DPRINTF(WRITE, ("\twrite lb_num " 6555 "%"PRIu64, mapping[lb_num])); 6556 6557 lblkno = from + lb_num; 6558 run_start = mapping[lb_num]; 6559 run_length = 1; 6560 while (lb_num < num_lb-1) { 6561 if (mapping[lb_num+1] != mapping[lb_num]+1) 6562 if (mapping[lb_num+1] != mapping[lb_num]) 6563 break; 6564 run_length++; 6565 lb_num++; 6566 } 6567 DPRINTF(WRITE, ("+ %d\n", run_length)); 6568 6569 /* nest an iobuf on the master buffer for the extent */ 6570 rbuflen = run_length * lb_size; 6571 rblk = run_start * (lb_size/DEV_BSIZE); 6572 6573 #if 0 6574 /* if its zero or unmapped, our blknr gets -1 for unmapped */ 6575 switch (mapping[lb_num]) { 6576 case UDF_TRANS_UNMAPPED: 6577 case UDF_TRANS_ZERO: 6578 rblk = -1; 6579 break; 6580 default: 6581 rblk = run_start * (lb_size/DEV_BSIZE); 6582 break; 6583 } 6584 #endif 6585 6586 nestbuf = getiobuf(NULL, true); 6587 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); 6588 /* nestbuf is B_ASYNC */ 6589 6590 /* identify this nestbuf */ 6591 nestbuf->b_lblkno = lblkno; 6592 KASSERT(nestbuf->b_vp == udf_node->vnode); 6593 6594 /* CD shedules on raw blkno */ 6595 nestbuf->b_blkno = rblk; 6596 nestbuf->b_proc = NULL; 6597 nestbuf->b_rawblkno = rblk; 6598 nestbuf->b_udf_c_type = what; 6599 6600 /* increment our outstanding bufs counter */ 6601 s = splbio(); 6602 udf_node->outstanding_bufs++; 6603 splx(s); 6604 6605 udf_discstrat_queuebuf(ump, nestbuf); 6606 } 6607 out: 6608 /* if we're synchronously writing, wait for the completion */ 6609 if ((buf->b_flags & B_ASYNC) == 0) 6610 biowait(buf); 6611 6612 DPRINTF(WRITE, ("\tend of write_filebuf\n")); 6613 free(mapping, M_TEMP); 6614 return; 6615 } 6616 6617 /* --------------------------------------------------------------------- */ 6618 6619 6620