xref: /netbsd-src/sys/fs/udf/udf_subr.c (revision 0920b4f20b78ab1ccd9f2312fbe10deaf000cbf3)
1 /* $NetBSD: udf_subr.c,v 1.36 2007/07/29 13:31:11 ad Exp $ */
2 
3 /*
4  * Copyright (c) 2006 Reinoud Zandijk
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *          This product includes software developed for the
18  *          NetBSD Project.  See http://www.NetBSD.org/ for
19  *          information about NetBSD.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  */
35 
36 
37 #include <sys/cdefs.h>
38 #ifndef lint
39 __RCSID("$NetBSD: udf_subr.c,v 1.36 2007/07/29 13:31:11 ad Exp $");
40 #endif /* not lint */
41 
42 
43 #if defined(_KERNEL_OPT)
44 #include "opt_quota.h"
45 #include "opt_compat_netbsd.h"
46 #endif
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/sysctl.h>
51 #include <sys/namei.h>
52 #include <sys/proc.h>
53 #include <sys/kernel.h>
54 #include <sys/vnode.h>
55 #include <miscfs/genfs/genfs_node.h>
56 #include <sys/mount.h>
57 #include <sys/buf.h>
58 #include <sys/file.h>
59 #include <sys/device.h>
60 #include <sys/disklabel.h>
61 #include <sys/ioctl.h>
62 #include <sys/malloc.h>
63 #include <sys/dirent.h>
64 #include <sys/stat.h>
65 #include <sys/conf.h>
66 #include <sys/kauth.h>
67 #include <dev/clock_subr.h>
68 
69 #include <fs/udf/ecma167-udf.h>
70 #include <fs/udf/udf_mount.h>
71 
72 #include "udf.h"
73 #include "udf_subr.h"
74 #include "udf_bswap.h"
75 
76 
77 #define VTOI(vnode) ((struct udf_node *) vnode->v_data)
78 
79 
80 /* predefines */
81 
82 
83 #if 0
84 {
85 	int i, j, dlen;
86 	uint8_t *blob;
87 
88 	blob = (uint8_t *) fid;
89 	dlen = file_size - (*offset);
90 
91 	printf("blob = %p\n", blob);
92 	printf("dump of %d bytes\n", dlen);
93 
94 	for (i = 0; i < dlen; i+ = 16) {
95 		printf("%04x ", i);
96 		for (j = 0; j < 16; j++) {
97 			if (i+j < dlen) {
98 				printf("%02x ", blob[i+j]);
99 			} else {
100 				printf("   ");
101 			}
102 		}
103 		for (j = 0; j < 16; j++) {
104 			if (i+j < dlen) {
105 				if (blob[i+j]>32 && blob[i+j]! = 127) {
106 					printf("%c", blob[i+j]);
107 				} else {
108 					printf(".");
109 				}
110 			}
111 		}
112 		printf("\n");
113 	}
114 	printf("\n");
115 }
116 Debugger();
117 #endif
118 
119 
120 /* --------------------------------------------------------------------- */
121 
122 /* STUB */
123 
124 static int
125 udf_bread(struct udf_mount *ump, uint32_t sector, struct buf **bpp)
126 {
127 	int sector_size = ump->discinfo.sector_size;
128 	int blks = sector_size / DEV_BSIZE;
129 
130 	/* NOTE bread() checks if block is in cache or not */
131 	return bread(ump->devvp, sector*blks, sector_size, NOCRED, bpp);
132 }
133 
134 
135 /* --------------------------------------------------------------------- */
136 
137 /*
138  * Check if the blob starts with a good UDF tag. Tags are protected by a
139  * checksum over the reader except one byte at position 4 that is the checksum
140  * itself.
141  */
142 
143 int
144 udf_check_tag(void *blob)
145 {
146 	struct desc_tag *tag = blob;
147 	uint8_t *pos, sum, cnt;
148 
149 	/* check TAG header checksum */
150 	pos = (uint8_t *) tag;
151 	sum = 0;
152 
153 	for(cnt = 0; cnt < 16; cnt++) {
154 		if (cnt != 4)
155 			sum += *pos;
156 		pos++;
157 	}
158 	if (sum != tag->cksum) {
159 		/* bad tag header checksum; this is not a valid tag */
160 		return EINVAL;
161 	}
162 
163 	return 0;
164 }
165 
166 /* --------------------------------------------------------------------- */
167 
168 /*
169  * check tag payload will check descriptor CRC as specified.
170  * If the descriptor is too short, it will return EIO otherwise EINVAL.
171  */
172 
173 int
174 udf_check_tag_payload(void *blob, uint32_t max_length)
175 {
176 	struct desc_tag *tag = blob;
177 	uint16_t crc, crc_len;
178 
179 	crc_len = udf_rw16(tag->desc_crc_len);
180 
181 	/* check payload CRC if applicable */
182 	if (crc_len == 0)
183 		return 0;
184 
185 	if (crc_len > max_length)
186 		return EIO;
187 
188 	crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
189 	if (crc != udf_rw16(tag->desc_crc)) {
190 		/* bad payload CRC; this is a broken tag */
191 		return EINVAL;
192 	}
193 
194 	return 0;
195 }
196 
197 /* --------------------------------------------------------------------- */
198 
199 int
200 udf_validate_tag_sum(void *blob)
201 {
202 	struct desc_tag *tag = blob;
203 	uint8_t *pos, sum, cnt;
204 
205 	/* calculate TAG header checksum */
206 	pos = (uint8_t *) tag;
207 	sum = 0;
208 
209 	for(cnt = 0; cnt < 16; cnt++) {
210 		if (cnt != 4) sum += *pos;
211 		pos++;
212 	}
213 	tag->cksum = sum;	/* 8 bit */
214 
215 	return 0;
216 }
217 
218 /* --------------------------------------------------------------------- */
219 
220 /* assumes sector number of descriptor to be saved already present */
221 
222 int
223 udf_validate_tag_and_crc_sums(void *blob)
224 {
225 	struct desc_tag *tag  = blob;
226 	uint8_t         *btag = (uint8_t *) tag;
227 	uint16_t crc, crc_len;
228 
229 	crc_len = udf_rw16(tag->desc_crc_len);
230 
231 	/* check payload CRC if applicable */
232 	if (crc_len > 0) {
233 		crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
234 		tag->desc_crc = udf_rw16(crc);
235 	}
236 
237 	/* calculate TAG header checksum */
238 	return udf_validate_tag_sum(blob);
239 }
240 
241 /* --------------------------------------------------------------------- */
242 
243 /*
244  * XXX note the different semantics from udfclient: for FIDs it still rounds
245  * up to sectors. Use udf_fidsize() for a correct length.
246  */
247 
248 int
249 udf_tagsize(union dscrptr *dscr, uint32_t udf_sector_size)
250 {
251 	uint32_t size, tag_id, num_secs, elmsz;
252 
253 	tag_id = udf_rw16(dscr->tag.id);
254 
255 	switch (tag_id) {
256 	case TAGID_LOGVOL :
257 		size  = sizeof(struct logvol_desc) - 1;
258 		size += udf_rw32(dscr->lvd.mt_l);
259 		break;
260 	case TAGID_UNALLOC_SPACE :
261 		elmsz = sizeof(struct extent_ad);
262 		size  = sizeof(struct unalloc_sp_desc) - elmsz;
263 		size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
264 		break;
265 	case TAGID_FID :
266 		size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
267 		size = (size + 3) & ~3;
268 		break;
269 	case TAGID_LOGVOL_INTEGRITY :
270 		size  = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
271 		size += udf_rw32(dscr->lvid.l_iu);
272 		size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
273 		break;
274 	case TAGID_SPACE_BITMAP :
275 		size  = sizeof(struct space_bitmap_desc) - 1;
276 		size += udf_rw32(dscr->sbd.num_bytes);
277 		break;
278 	case TAGID_SPARING_TABLE :
279 		elmsz = sizeof(struct spare_map_entry);
280 		size  = sizeof(struct udf_sparing_table) - elmsz;
281 		size += udf_rw16(dscr->spt.rt_l) * elmsz;
282 		break;
283 	case TAGID_FENTRY :
284 		size  = sizeof(struct file_entry);
285 		size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
286 		break;
287 	case TAGID_EXTFENTRY :
288 		size  = sizeof(struct extfile_entry);
289 		size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
290 		break;
291 	case TAGID_FSD :
292 		size  = sizeof(struct fileset_desc);
293 		break;
294 	default :
295 		size = sizeof(union dscrptr);
296 		break;
297 	}
298 
299 	if ((size == 0) || (udf_sector_size == 0)) return 0;
300 
301 	/* round up in sectors */
302 	num_secs = (size + udf_sector_size -1) / udf_sector_size;
303 	return num_secs * udf_sector_size;
304 }
305 
306 
307 static int
308 udf_fidsize(struct fileid_desc *fid, uint32_t udf_sector_size)
309 {
310 	uint32_t size;
311 
312 	if (udf_rw16(fid->tag.id) != TAGID_FID)
313 		panic("got udf_fidsize on non FID\n");
314 
315 	size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
316 	size = (size + 3) & ~3;
317 
318 	return size;
319 }
320 
321 /* --------------------------------------------------------------------- */
322 
323 /*
324  * Problem with read_descriptor are long descriptors spanning more than one
325  * sector. Luckily long descriptors can't be in `logical space'.
326  *
327  * Size of allocated piece is returned in multiple of sector size due to
328  * udf_calc_udf_malloc_size().
329  */
330 
331 int
332 udf_read_descriptor(struct udf_mount *ump, uint32_t sector,
333 		    struct malloc_type *mtype, union dscrptr **dstp)
334 {
335 	union dscrptr *src, *dst;
336 	struct buf *bp;
337 	uint8_t *pos;
338 	int blks, blk, dscrlen;
339 	int i, error, sector_size;
340 
341 	sector_size = ump->discinfo.sector_size;
342 
343 	*dstp = dst = NULL;
344 	dscrlen = sector_size;
345 
346 	/* read initial piece */
347 	error = udf_bread(ump, sector, &bp);
348 	DPRINTFIF(DESCRIPTOR, error, ("read error (%d)\n", error));
349 
350 	if (!error) {
351 		/* check if its a valid tag */
352 		error = udf_check_tag(bp->b_data);
353 		if (error) {
354 			/* check if its an empty block */
355 			pos = bp->b_data;
356 			for (i = 0; i < sector_size; i++, pos++) {
357 				if (*pos) break;
358 			}
359 			if (i == sector_size) {
360 				/* return no error but with no dscrptr */
361 				/* dispose first block */
362 				brelse(bp);
363 				return 0;
364 			}
365 		}
366 	}
367 	DPRINTFIF(DESCRIPTOR, error, ("bad tag checksum\n"));
368 	if (!error) {
369 		src = (union dscrptr *) bp->b_data;
370 		dscrlen = udf_tagsize(src, sector_size);
371 		dst = malloc(dscrlen, mtype, M_WAITOK);
372 		memcpy(dst, src, sector_size);
373 	}
374 	/* dispose first block */
375 	bp->b_flags |= B_AGE;
376 	brelse(bp);
377 
378 	if (!error && (dscrlen > sector_size)) {
379 		DPRINTF(DESCRIPTOR, ("multi block descriptor read\n"));
380 		/*
381 		 * Read the rest of descriptor. Since it is only used at mount
382 		 * time its overdone to define and use a specific udf_breadn
383 		 * for this alone.
384 		 */
385 		blks = (dscrlen + sector_size -1) / sector_size;
386 		for (blk = 1; blk < blks; blk++) {
387 			error = udf_bread(ump, sector + blk, &bp);
388 			if (error) {
389 				brelse(bp);
390 				break;
391 			}
392 			pos = (uint8_t *) dst + blk*sector_size;
393 			memcpy(pos, bp->b_data, sector_size);
394 
395 			/* dispose block */
396 			bp->b_flags |= B_AGE;
397 			brelse(bp);
398 		}
399 		DPRINTFIF(DESCRIPTOR, error, ("read error on multi (%d)\n",
400 		    error));
401 	}
402 	if (!error) {
403 		error = udf_check_tag_payload(dst, dscrlen);
404 		DPRINTFIF(DESCRIPTOR, error, ("bad payload check sum\n"));
405 	}
406 	if (error && dst) {
407 		free(dst, mtype);
408 		dst = NULL;
409 	}
410 	*dstp = dst;
411 
412 	return error;
413 }
414 
415 /* --------------------------------------------------------------------- */
416 #ifdef DEBUG
417 static void
418 udf_dump_discinfo(struct udf_mount *ump)
419 {
420 	char   bits[128];
421 	struct mmc_discinfo *di = &ump->discinfo;
422 
423 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
424 		return;
425 
426 	printf("Device/media info  :\n");
427 	printf("\tMMC profile        0x%02x\n", di->mmc_profile);
428 	printf("\tderived class      %d\n", di->mmc_class);
429 	printf("\tsector size        %d\n", di->sector_size);
430 	printf("\tdisc state         %d\n", di->disc_state);
431 	printf("\tlast ses state     %d\n", di->last_session_state);
432 	printf("\tbg format state    %d\n", di->bg_format_state);
433 	printf("\tfrst track         %d\n", di->first_track);
434 	printf("\tfst on last ses    %d\n", di->first_track_last_session);
435 	printf("\tlst on last ses    %d\n", di->last_track_last_session);
436 	printf("\tlink block penalty %d\n", di->link_block_penalty);
437 	bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits,
438 		sizeof(bits));
439 	printf("\tdisc flags         %s\n", bits);
440 	printf("\tdisc id            %x\n", di->disc_id);
441 	printf("\tdisc barcode       %"PRIx64"\n", di->disc_barcode);
442 
443 	printf("\tnum sessions       %d\n", di->num_sessions);
444 	printf("\tnum tracks         %d\n", di->num_tracks);
445 
446 	bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits));
447 	printf("\tcapabilities cur   %s\n", bits);
448 	bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits));
449 	printf("\tcapabilities cap   %s\n", bits);
450 }
451 #else
452 #define udf_dump_discinfo(a);
453 #endif
454 
455 /* not called often */
456 int
457 udf_update_discinfo(struct udf_mount *ump)
458 {
459 	struct vnode *devvp = ump->devvp;
460 	struct partinfo dpart;
461 	struct mmc_discinfo *di;
462 	int error;
463 
464 	DPRINTF(VOLUMES, ("read/update disc info\n"));
465 	di = &ump->discinfo;
466 	memset(di, 0, sizeof(struct mmc_discinfo));
467 
468 	/* check if we're on a MMC capable device, i.e. CD/DVD */
469 	error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED, NULL);
470 	if (error == 0) {
471 		udf_dump_discinfo(ump);
472 		return 0;
473 	}
474 
475 	/* disc partition support */
476 	error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED, NULL);
477 	if (error)
478 		return ENODEV;
479 
480 	/* set up a disc info profile for partitions */
481 	di->mmc_profile		= 0x01;	/* disc type */
482 	di->mmc_class		= MMC_CLASS_DISC;
483 	di->disc_state		= MMC_STATE_CLOSED;
484 	di->last_session_state	= MMC_STATE_CLOSED;
485 	di->bg_format_state	= MMC_BGFSTATE_COMPLETED;
486 	di->link_block_penalty	= 0;
487 
488 	di->mmc_cur     = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
489 		MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
490 	di->mmc_cap    = di->mmc_cur;
491 	di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
492 
493 	/* TODO problem with last_possible_lba on resizable VND; request */
494 	di->last_possible_lba = dpart.part->p_size;
495 	di->sector_size       = dpart.disklab->d_secsize;
496 	di->blockingnr        = 1;
497 
498 	di->num_sessions = 1;
499 	di->num_tracks   = 1;
500 
501 	di->first_track  = 1;
502 	di->first_track_last_session = di->last_track_last_session = 1;
503 
504 	udf_dump_discinfo(ump);
505 	return 0;
506 }
507 
508 /* --------------------------------------------------------------------- */
509 
510 int
511 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
512 {
513 	struct vnode *devvp = ump->devvp;
514 	struct mmc_discinfo *di = &ump->discinfo;
515 	int error, class;
516 
517 	DPRINTF(VOLUMES, ("read track info\n"));
518 
519 	class = di->mmc_class;
520 	if (class != MMC_CLASS_DISC) {
521 		/* tracknr specified in struct ti */
522 		error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL,
523 			NOCRED, NULL);
524 		return error;
525 	}
526 
527 	/* disc partition support */
528 	if (ti->tracknr != 1)
529 		return EIO;
530 
531 	/* create fake ti (TODO check for resized vnds) */
532 	ti->sessionnr  = 1;
533 
534 	ti->track_mode = 0;	/* XXX */
535 	ti->data_mode  = 0;	/* XXX */
536 	ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
537 
538 	ti->track_start    = 0;
539 	ti->packet_size    = 1;
540 
541 	/* TODO support for resizable vnd */
542 	ti->track_size    = di->last_possible_lba;
543 	ti->next_writable = di->last_possible_lba;
544 	ti->last_recorded = ti->next_writable;
545 	ti->free_blocks   = 0;
546 
547 	return 0;
548 }
549 
550 /* --------------------------------------------------------------------- */
551 
552 /* track/session searching for mounting */
553 
554 static int
555 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
556 		  int *first_tracknr, int *last_tracknr)
557 {
558 	struct mmc_trackinfo trackinfo;
559 	uint32_t tracknr, start_track, num_tracks;
560 	int error;
561 
562 	/* if negative, sessionnr is relative to last session */
563 	if (args->sessionnr < 0) {
564 		args->sessionnr += ump->discinfo.num_sessions;
565 		/* sanity */
566 		if (args->sessionnr < 0)
567 			args->sessionnr = 0;
568 	}
569 
570 	/* sanity */
571 	if (args->sessionnr > ump->discinfo.num_sessions)
572 		args->sessionnr = ump->discinfo.num_sessions;
573 
574 	/* search the tracks for this session, zero session nr indicates last */
575 	if (args->sessionnr == 0) {
576 		args->sessionnr = ump->discinfo.num_sessions;
577 		if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) {
578 			args->sessionnr--;
579 		}
580 	}
581 
582 	/* search the first and last track of the specified session */
583 	num_tracks  = ump->discinfo.num_tracks;
584 	start_track = ump->discinfo.first_track;
585 
586 	/* search for first track of this session */
587 	for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
588 		/* get track info */
589 		trackinfo.tracknr = tracknr;
590 		error = udf_update_trackinfo(ump, &trackinfo);
591 		if (error)
592 			return error;
593 
594 		if (trackinfo.sessionnr == args->sessionnr)
595 			break;
596 	}
597 	*first_tracknr = tracknr;
598 
599 	/* search for last track of this session */
600 	for (;tracknr <= num_tracks; tracknr++) {
601 		/* get track info */
602 		trackinfo.tracknr = tracknr;
603 		error = udf_update_trackinfo(ump, &trackinfo);
604 		if (error || (trackinfo.sessionnr != args->sessionnr)) {
605 			tracknr--;
606 			break;
607 		}
608 	}
609 	if (tracknr > num_tracks)
610 		tracknr--;
611 
612 	*last_tracknr = tracknr;
613 
614 	assert(*last_tracknr >= *first_tracknr);
615 	return 0;
616 }
617 
618 /* --------------------------------------------------------------------- */
619 
620 static int
621 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
622 {
623 	int error;
624 
625 	error = udf_read_descriptor(ump, sector, M_UDFVOLD,
626 			(union dscrptr **) dst);
627 	if (!error) {
628 		/* blank terminator blocks are not allowed here */
629 		if (*dst == NULL)
630 			return ENOENT;
631 		if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
632 			error = ENOENT;
633 			free(*dst, M_UDFVOLD);
634 			*dst = NULL;
635 			DPRINTF(VOLUMES, ("Not an anchor\n"));
636 		}
637 	}
638 
639 	return error;
640 }
641 
642 
643 int
644 udf_read_anchors(struct udf_mount *ump, struct udf_args *args)
645 {
646 	struct mmc_trackinfo first_track;
647 	struct mmc_trackinfo last_track;
648 	struct anchor_vdp **anchorsp;
649 	uint32_t track_start;
650 	uint32_t track_end;
651 	uint32_t positions[4];
652 	int first_tracknr, last_tracknr;
653 	int error, anch, ok, first_anchor;
654 
655 	/* search the first and last track of the specified session */
656 	error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
657 	if (!error) {
658 		first_track.tracknr = first_tracknr;
659 		error = udf_update_trackinfo(ump, &first_track);
660 	}
661 	if (!error) {
662 		last_track.tracknr = last_tracknr;
663 		error = udf_update_trackinfo(ump, &last_track);
664 	}
665 	if (error) {
666 		printf("UDF mount: reading disc geometry failed\n");
667 		return 0;
668 	}
669 
670 	track_start = first_track.track_start;
671 
672 	/* `end' is not as straitforward as start. */
673 	track_end =   last_track.track_start
674 		    + last_track.track_size - last_track.free_blocks - 1;
675 
676 	if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
677 		/* end of track is not straitforward here */
678 		if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
679 			track_end = last_track.last_recorded;
680 		else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
681 			track_end = last_track.next_writable
682 				    - ump->discinfo.link_block_penalty;
683 	}
684 
685 	/* its no use reading a blank track */
686 	first_anchor = 0;
687 	if (first_track.flags & MMC_TRACKINFO_BLANK)
688 		first_anchor = 1;
689 
690 	/* read anchors start+256, start+512, end-256, end */
691 	positions[0] = track_start+256;
692 	positions[1] =   track_end-256;
693 	positions[2] =   track_end;
694 	positions[3] = track_start+512;	/* [UDF 2.60/6.11.2] */
695 	/* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
696 
697 	ok = 0;
698 	anchorsp = ump->anchors;
699 	for (anch = first_anchor; anch < 4; anch++) {
700 		DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
701 		    positions[anch]));
702 		error = udf_read_anchor(ump, positions[anch], anchorsp);
703 		if (!error) {
704 			anchorsp++;
705 			ok++;
706 		}
707 	}
708 
709 	/* VATs are only recorded on sequential media, but initialise */
710 	ump->first_possible_vat_location = track_start + 256 + 1;
711 	ump->last_possible_vat_location  = track_end
712 		+ ump->discinfo.blockingnr;
713 
714 	return ok;
715 }
716 
717 /* --------------------------------------------------------------------- */
718 
719 /* we dont try to be smart; we just record the parts */
720 #define UDF_UPDATE_DSCR(name, dscr) \
721 	if (name) \
722 		free(name, M_UDFVOLD); \
723 	name = dscr;
724 
725 static int
726 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
727 {
728 	struct part_desc *part;
729 	uint16_t phys_part, raw_phys_part;
730 
731 	DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
732 	    udf_rw16(dscr->tag.id)));
733 	switch (udf_rw16(dscr->tag.id)) {
734 	case TAGID_PRI_VOL :		/* primary partition		*/
735 		UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
736 		break;
737 	case TAGID_LOGVOL :		/* logical volume		*/
738 		UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
739 		break;
740 	case TAGID_UNALLOC_SPACE :	/* unallocated space		*/
741 		UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
742 		break;
743 	case TAGID_IMP_VOL :		/* implementation		*/
744 		/* XXX do we care about multiple impl. descr ? */
745 		UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
746 		break;
747 	case TAGID_PARTITION :		/* physical partition		*/
748 		/* not much use if its not allocated */
749 		if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
750 			free(dscr, M_UDFVOLD);
751 			break;
752 		}
753 
754 		/*
755 		 * BUGALERT: some rogue implementations use random physical
756 		 * partion numbers to break other implementations so lookup
757 		 * the number.
758 		 */
759 		raw_phys_part = udf_rw16(dscr->pd.part_num);
760 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
761 			part = ump->partitions[phys_part];
762 			if (part == NULL)
763 				break;
764 			if (udf_rw16(part->part_num) == raw_phys_part)
765 				break;
766 		}
767 		if (phys_part == UDF_PARTITIONS) {
768 			free(dscr, M_UDFVOLD);
769 			return EINVAL;
770 		}
771 
772 		UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
773 		break;
774 	case TAGID_VOL :		/* volume space extender; rare	*/
775 		DPRINTF(VOLUMES, ("VDS extender ignored\n"));
776 		free(dscr, M_UDFVOLD);
777 		break;
778 	default :
779 		DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
780 		    udf_rw16(dscr->tag.id)));
781 		free(dscr, M_UDFVOLD);
782 	}
783 
784 	return 0;
785 }
786 #undef UDF_UPDATE_DSCR
787 
788 /* --------------------------------------------------------------------- */
789 
790 static int
791 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
792 {
793 	union dscrptr *dscr;
794 	uint32_t sector_size, dscr_size;
795 	int error;
796 
797 	sector_size = ump->discinfo.sector_size;
798 
799 	/* loc is sectornr, len is in bytes */
800 	error = EIO;
801 	while (len) {
802 		error = udf_read_descriptor(ump, loc, M_UDFVOLD, &dscr);
803 		if (error)
804 			return error;
805 
806 		/* blank block is a terminator */
807 		if (dscr == NULL)
808 			return 0;
809 
810 		/* TERM descriptor is a terminator */
811 		if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
812 			free(dscr, M_UDFVOLD);
813 			return 0;
814 		}
815 
816 		/* process all others */
817 		dscr_size = udf_tagsize(dscr, sector_size);
818 		error = udf_process_vds_descriptor(ump, dscr);
819 		if (error) {
820 			free(dscr, M_UDFVOLD);
821 			break;
822 		}
823 		assert((dscr_size % sector_size) == 0);
824 
825 		len -= dscr_size;
826 		loc += dscr_size / sector_size;
827 	}
828 
829 	return error;
830 }
831 
832 
833 int
834 udf_read_vds_space(struct udf_mount *ump)
835 {
836 	struct anchor_vdp *anchor, *anchor2;
837 	size_t size;
838 	uint32_t main_loc, main_len;
839 	uint32_t reserve_loc, reserve_len;
840 	int error;
841 
842 	/*
843 	 * read in VDS space provided by the anchors; if one descriptor read
844 	 * fails, try the mirror sector.
845 	 *
846 	 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
847 	 * avoids the `compatibility features' of DirectCD that may confuse
848 	 * stuff completely.
849 	 */
850 
851 	anchor  = ump->anchors[0];
852 	anchor2 = ump->anchors[1];
853 	assert(anchor);
854 
855 	if (anchor2) {
856 		size = sizeof(struct extent_ad);
857 		if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
858 			anchor = anchor2;
859 		/* reserve is specified to be a literal copy of main */
860 	}
861 
862 	main_loc    = udf_rw32(anchor->main_vds_ex.loc);
863 	main_len    = udf_rw32(anchor->main_vds_ex.len);
864 
865 	reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
866 	reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
867 
868 	error = udf_read_vds_extent(ump, main_loc, main_len);
869 	if (error) {
870 		printf("UDF mount: reading in reserve VDS extent\n");
871 		error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
872 	}
873 
874 	return error;
875 }
876 
877 /* --------------------------------------------------------------------- */
878 
879 /*
880  * Read in the logical volume integrity sequence pointed to by our logical
881  * volume descriptor. Its a sequence that can be extended using fields in the
882  * integrity descriptor itself. On sequential media only one is found, on
883  * rewritable media a sequence of descriptors can be found as a form of
884  * history keeping and on non sequential write-once media the chain is vital
885  * to allow more and more descriptors to be written. The last descriptor
886  * written in an extent needs to claim space for a new extent.
887  */
888 
889 static int
890 udf_retrieve_lvint(struct udf_mount *ump, struct logvol_int_desc **lvintp)
891 {
892 	union dscrptr *dscr;
893 	struct logvol_int_desc *lvint;
894 	uint32_t sector_size, sector, len;
895 	int dscr_type, error;
896 
897 	sector_size = ump->discinfo.sector_size;
898 	len    = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
899 	sector = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
900 
901 	lvint = NULL;
902 	dscr  = NULL;
903 	error = 0;
904 	while (len) {
905 		/* read in our integrity descriptor */
906 		error = udf_read_descriptor(ump, sector, M_UDFVOLD, &dscr);
907 		if (!error) {
908 			if (dscr == NULL)
909 				break;		/* empty terminates */
910 			dscr_type = udf_rw16(dscr->tag.id);
911 			if (dscr_type == TAGID_TERM) {
912 				break;		/* clean terminator */
913 			}
914 			if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
915 				/* fatal... corrupt disc */
916 				error = ENOENT;
917 				break;
918 			}
919 			if (lvint)
920 				free(lvint, M_UDFVOLD);
921 			lvint = &dscr->lvid;
922 			dscr = NULL;
923 		} /* else hope for the best... maybe the next is ok */
924 
925 		DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
926 		    udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
927 
928 		/* proceed sequential */
929 		sector += 1;
930 		len    -= sector_size;
931 
932 		/* are we linking to a new piece? */
933 		if (lvint->next_extent.len) {
934 			len    = udf_rw32(lvint->next_extent.len);
935 			sector = udf_rw32(lvint->next_extent.loc);
936 		}
937 	}
938 
939 	/* clean up the mess, esp. when there is an error */
940 	if (dscr)
941 		free(dscr, M_UDFVOLD);
942 
943 	if (error && lvint) {
944 		free(lvint, M_UDFVOLD);
945 		lvint = NULL;
946 	}
947 
948 	if (!lvint)
949 		error = ENOENT;
950 
951 	*lvintp = lvint;
952 	return error;
953 }
954 
955 /* --------------------------------------------------------------------- */
956 
957 /*
958  * Checks if ump's vds information is correct and complete
959  */
960 
961 int
962 udf_process_vds(struct udf_mount *ump, struct udf_args *args)
963 {
964 	union udf_pmap *mapping;
965 	struct logvol_int_desc *lvint;
966 	struct udf_logvol_info *lvinfo;
967 	struct part_desc *part;
968 	uint32_t n_pm, mt_l;
969 	uint8_t *pmap_pos;
970 	char *domain_name, *map_name;
971 	const char *check_name;
972 	int pmap_stype, pmap_size;
973 	int pmap_type, log_part, phys_part, raw_phys_part;
974 	int n_phys, n_virt, n_spar, n_meta;
975 	int len, error;
976 
977 	if (ump == NULL)
978 		return ENOENT;
979 
980 	/* we need at least an anchor (trivial, but for safety) */
981 	if (ump->anchors[0] == NULL)
982 		return EINVAL;
983 
984 	/* we need at least one primary and one logical volume descriptor */
985 	if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
986 		return EINVAL;
987 
988 	/* we need at least one partition descriptor */
989 	if (ump->partitions[0] == NULL)
990 		return EINVAL;
991 
992 	/* check logical volume sector size verses device sector size */
993 	if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
994 		printf("UDF mount: format violation, lb_size != sector size\n");
995 		return EINVAL;
996 	}
997 
998 	domain_name = ump->logical_vol->domain_id.id;
999 	if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
1000 		printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
1001 		return EINVAL;
1002 	}
1003 
1004 	/* retrieve logical volume integrity sequence */
1005 	error = udf_retrieve_lvint(ump, &ump->logvol_integrity);
1006 
1007 	/*
1008 	 * We need at least one logvol integrity descriptor recorded.  Note
1009 	 * that its OK to have an open logical volume integrity here. The VAT
1010 	 * will close/update the integrity.
1011 	 */
1012 	if (ump->logvol_integrity == NULL)
1013 		return EINVAL;
1014 
1015 	/* process derived structures */
1016 	n_pm   = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
1017 	lvint  = ump->logvol_integrity;
1018 	lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1019 	ump->logvol_info = lvinfo;
1020 
1021 	/* TODO check udf versions? */
1022 
1023 	/*
1024 	 * check logvol mappings: effective virt->log partmap translation
1025 	 * check and recording of the mapping results. Saves expensive
1026 	 * strncmp() in tight places.
1027 	 */
1028 	DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1029 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
1030 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
1031 	pmap_pos =  ump->logical_vol->maps;
1032 
1033 	if (n_pm > UDF_PMAPS) {
1034 		printf("UDF mount: too many mappings\n");
1035 		return EINVAL;
1036 	}
1037 
1038 	n_phys = n_virt = n_spar = n_meta = 0;
1039 	for (log_part = 0; log_part < n_pm; log_part++) {
1040 		mapping = (union udf_pmap *) pmap_pos;
1041 		pmap_stype = pmap_pos[0];
1042 		pmap_size  = pmap_pos[1];
1043 		switch (pmap_stype) {
1044 		case 1:	/* physical mapping */
1045 			/* volseq    = udf_rw16(mapping->pm1.vol_seq_num); */
1046 			raw_phys_part = udf_rw16(mapping->pm1.part_num);
1047 			pmap_type = UDF_VTOP_TYPE_PHYS;
1048 			n_phys++;
1049 			break;
1050 		case 2: /* virtual/sparable/meta mapping */
1051 			map_name  = mapping->pm2.part_id.id;
1052 			/* volseq  = udf_rw16(mapping->pm2.vol_seq_num); */
1053 			raw_phys_part = udf_rw16(mapping->pm2.part_num);
1054 			pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1055 			len = UDF_REGID_ID_SIZE;
1056 
1057 			check_name = "*UDF Virtual Partition";
1058 			if (strncmp(map_name, check_name, len) == 0) {
1059 				pmap_type = UDF_VTOP_TYPE_VIRT;
1060 				n_virt++;
1061 				break;
1062 			}
1063 			check_name = "*UDF Sparable Partition";
1064 			if (strncmp(map_name, check_name, len) == 0) {
1065 				pmap_type = UDF_VTOP_TYPE_SPARABLE;
1066 				n_spar++;
1067 				break;
1068 			}
1069 			check_name = "*UDF Metadata Partition";
1070 			if (strncmp(map_name, check_name, len) == 0) {
1071 				pmap_type = UDF_VTOP_TYPE_META;
1072 				n_meta++;
1073 				break;
1074 			}
1075 			break;
1076 		default:
1077 			return EINVAL;
1078 		}
1079 
1080 		/*
1081 		 * BUGALERT: some rogue implementations use random physical
1082 		 * partion numbers to break other implementations so lookup
1083 		 * the number.
1084 		 */
1085 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1086 			part = ump->partitions[phys_part];
1087 			if (part == NULL)
1088 				continue;
1089 			if (udf_rw16(part->part_num) == raw_phys_part)
1090 				break;
1091 		}
1092 
1093 		DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
1094 		    raw_phys_part, phys_part, pmap_type));
1095 
1096 		if (phys_part == UDF_PARTITIONS)
1097 			return EINVAL;
1098 		if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1099 			return EINVAL;
1100 
1101 		ump->vtop   [log_part] = phys_part;
1102 		ump->vtop_tp[log_part] = pmap_type;
1103 
1104 		pmap_pos += pmap_size;
1105 	}
1106 	/* not winning the beauty contest */
1107 	ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1108 
1109 	/* test some basic UDF assertions/requirements */
1110 	if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
1111 		return EINVAL;
1112 
1113 	if (n_virt) {
1114 		if ((n_phys == 0) || n_spar || n_meta)
1115 			return EINVAL;
1116 	}
1117 	if (n_spar + n_phys == 0)
1118 		return EINVAL;
1119 
1120 	/* vat's can only be on a sequential media */
1121 	ump->data_alloc = UDF_ALLOC_SPACEMAP;
1122 	if (n_virt)
1123 		ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
1124 
1125 	ump->meta_alloc = UDF_ALLOC_SPACEMAP;
1126 	if (n_virt)
1127 		ump->meta_alloc = UDF_ALLOC_VAT;
1128 	if (n_meta)
1129 		ump->meta_alloc = UDF_ALLOC_METABITMAP;
1130 
1131 	/* special cases for pseudo-overwrite */
1132 	if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
1133 		ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
1134 		if (n_meta) {
1135 			ump->meta_alloc = UDF_ALLOC_METASEQUENTIAL;
1136 		} else {
1137 			ump->meta_alloc = UDF_ALLOC_RELAXEDSEQUENTIAL;
1138 		}
1139 	}
1140 
1141 	DPRINTF(VOLUMES, ("\tdata alloc scheme %d, meta alloc scheme %d\n",
1142 	    ump->data_alloc, ump->meta_alloc));
1143 	/* TODO determine partitions to write data and metadata ? */
1144 
1145 	/* signal its OK for now */
1146 	return 0;
1147 }
1148 
1149 /* --------------------------------------------------------------------- */
1150 
1151 /*
1152  * Read in complete VAT file and check if its indeed a VAT file descriptor
1153  */
1154 
1155 static int
1156 udf_check_for_vat(struct udf_node *vat_node)
1157 {
1158 	struct udf_mount *ump;
1159 	struct icb_tag   *icbtag;
1160 	struct timestamp *mtime;
1161 	struct regid     *regid;
1162 	struct udf_vat   *vat;
1163 	struct udf_logvol_info *lvinfo;
1164 	uint32_t  vat_length, alloc_length;
1165 	uint32_t  vat_offset, vat_entries;
1166 	uint32_t  sector_size;
1167 	uint32_t  sectors;
1168 	uint32_t *raw_vat;
1169 	char     *regid_name;
1170 	int filetype;
1171 	int error;
1172 
1173 	/* vat_length is really 64 bits though impossible */
1174 
1175 	DPRINTF(VOLUMES, ("Checking for VAT\n"));
1176 	if (!vat_node)
1177 		return ENOENT;
1178 
1179 	/* get mount info */
1180 	ump = vat_node->ump;
1181 
1182 	/* check assertions */
1183 	assert(vat_node->fe || vat_node->efe);
1184 	assert(ump->logvol_integrity);
1185 
1186 	/* get information from fe/efe */
1187 	if (vat_node->fe) {
1188 		vat_length = udf_rw64(vat_node->fe->inf_len);
1189 		icbtag = &vat_node->fe->icbtag;
1190 		mtime  = &vat_node->fe->mtime;
1191 	} else {
1192 		vat_length = udf_rw64(vat_node->efe->inf_len);
1193 		icbtag = &vat_node->efe->icbtag;
1194 		mtime  = &vat_node->efe->mtime;
1195 	}
1196 
1197 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
1198 	filetype = icbtag->file_type;
1199 	if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
1200 		return ENOENT;
1201 
1202 	DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
1203 	/* place a sanity check on the length; currently 1Mb in size */
1204 	if (vat_length > 1*1024*1024)
1205 		return ENOENT;
1206 
1207 	/* get sector size */
1208 	sector_size = vat_node->ump->discinfo.sector_size;
1209 
1210 	/* calculate how many sectors to read in and how much to allocate */
1211 	sectors = (vat_length + sector_size -1) / sector_size;
1212 	alloc_length = (sectors + 2) * sector_size;
1213 
1214 	/* try to allocate the space */
1215 	ump->vat_table_alloc_length = alloc_length;
1216 	ump->vat_table = malloc(alloc_length, M_UDFVOLD, M_CANFAIL | M_WAITOK);
1217 	if (!ump->vat_table)
1218 		return ENOMEM;		/* impossible to allocate */
1219 	DPRINTF(VOLUMES, ("\talloced fine\n"));
1220 
1221 	/* read it in! */
1222 	raw_vat = (uint32_t *) ump->vat_table;
1223 	error = udf_read_file_extent(vat_node, 0, sectors, (uint8_t *) raw_vat);
1224 	if (error) {
1225 		DPRINTF(VOLUMES, ("\tread failed : %d\n", error));
1226 		/* not completely readable... :( bomb out */
1227 		free(ump->vat_table, M_UDFVOLD);
1228 		ump->vat_table = NULL;
1229 		return error;
1230 	}
1231 	DPRINTF(VOLUMES, ("VAT read in fine!\n"));
1232 
1233 	/*
1234 	 * check contents of the file if its the old 1.50 VAT table format.
1235 	 * Its notoriously broken and allthough some implementations support an
1236 	 * extention as defined in the UDF 1.50 errata document, its doubtfull
1237 	 * to be useable since a lot of implementations don't maintain it.
1238 	 */
1239 	lvinfo = ump->logvol_info;
1240 
1241 	if (filetype == 0) {
1242 		/* definition */
1243 		vat_offset  = 0;
1244 		vat_entries = (vat_length-36)/4;
1245 
1246 		/* check 1.50 VAT */
1247 		regid = (struct regid *) (raw_vat + vat_entries);
1248 		regid_name = (char *) regid->id;
1249 		error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
1250 		if (error) {
1251 			DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
1252 			free(ump->vat_table, M_UDFVOLD);
1253 			ump->vat_table = NULL;
1254 			return ENOENT;
1255 		}
1256 		/* TODO update LVID from "*UDF VAT LVExtension" ext. attr. */
1257 	} else {
1258 		vat = (struct udf_vat *) raw_vat;
1259 
1260 		/* definition */
1261 		vat_offset  = vat->header_len;
1262 		vat_entries = (vat_length - vat_offset)/4;
1263 
1264 		assert(lvinfo);
1265 		lvinfo->num_files        = vat->num_files;
1266 		lvinfo->num_directories  = vat->num_directories;
1267 		lvinfo->min_udf_readver  = vat->min_udf_readver;
1268 		lvinfo->min_udf_writever = vat->min_udf_writever;
1269 		lvinfo->max_udf_writever = vat->max_udf_writever;
1270 	}
1271 
1272 	ump->vat_offset  = vat_offset;
1273 	ump->vat_entries = vat_entries;
1274 
1275 	DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
1276 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
1277 	ump->logvol_integrity->time           = *mtime;
1278 
1279 	return 0;	/* success! */
1280 }
1281 
1282 /* --------------------------------------------------------------------- */
1283 
1284 static int
1285 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
1286 {
1287 	struct udf_node *vat_node;
1288 	struct long_ad	 icb_loc;
1289 	uint32_t early_vat_loc, late_vat_loc, vat_loc;
1290 	int error;
1291 
1292 	/* mapping info not needed */
1293 	mapping = mapping;
1294 
1295 	vat_loc = ump->last_possible_vat_location;
1296 	early_vat_loc = vat_loc - 2 * ump->discinfo.blockingnr;
1297 	early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
1298 	late_vat_loc  = vat_loc + 1024;
1299 
1300 	/* TODO first search last sector? */
1301 	do {
1302 		DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
1303 		icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
1304 		icb_loc.loc.lb_num   = udf_rw32(vat_loc);
1305 
1306 		error = udf_get_node(ump, &icb_loc, &vat_node);
1307 		if (!error) error = udf_check_for_vat(vat_node);
1308 		if (!error) break;
1309 		if (vat_node) {
1310 			vput(vat_node->vnode);
1311 			udf_dispose_node(vat_node);
1312 		}
1313 		vat_loc--;	/* walk backwards */
1314 	} while (vat_loc >= early_vat_loc);
1315 
1316 	/* we don't need our VAT node anymore */
1317 	if (vat_node) {
1318 		vput(vat_node->vnode);
1319 		udf_dispose_node(vat_node);
1320 	}
1321 
1322 	return error;
1323 }
1324 
1325 /* --------------------------------------------------------------------- */
1326 
1327 static int
1328 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
1329 {
1330 	union dscrptr *dscr;
1331 	struct part_map_spare *pms = &mapping->pms;
1332 	uint32_t lb_num;
1333 	int spar, error;
1334 
1335 	/*
1336 	 * The partition mapping passed on to us specifies the information we
1337 	 * need to locate and initialise the sparable partition mapping
1338 	 * information we need.
1339 	 */
1340 
1341 	DPRINTF(VOLUMES, ("Read sparable table\n"));
1342 	ump->sparable_packet_len = udf_rw16(pms->packet_len);
1343 	for (spar = 0; spar < pms->n_st; spar++) {
1344 		lb_num = pms->st_loc[spar];
1345 		DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
1346 		error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
1347 		if (!error && dscr) {
1348 			if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
1349 				if (ump->sparing_table)
1350 					free(ump->sparing_table, M_UDFVOLD);
1351 				ump->sparing_table = &dscr->spt;
1352 				dscr = NULL;
1353 				DPRINTF(VOLUMES,
1354 				    ("Sparing table accepted (%d entries)\n",
1355 				     udf_rw16(ump->sparing_table->rt_l)));
1356 				break;	/* we're done */
1357 			}
1358 		}
1359 		if (dscr)
1360 			free(dscr, M_UDFVOLD);
1361 	}
1362 
1363 	if (ump->sparing_table)
1364 		return 0;
1365 
1366 	return ENOENT;
1367 }
1368 
1369 /* --------------------------------------------------------------------- */
1370 
1371 #define UDF_SET_SYSTEMFILE(vp) \
1372 	simple_lock(&(vp)->v_interlock);	\
1373 	(vp)->v_flag |= VSYSTEM;		\
1374 	simple_unlock(&(vp)->v_interlock);\
1375 	vref(vp);			\
1376 	vput(vp);			\
1377 
1378 static int
1379 udf_read_metadata_files(struct udf_mount *ump, union udf_pmap *mapping)
1380 {
1381 	struct part_map_meta *pmm = &mapping->pmm;
1382 	struct long_ad	 icb_loc;
1383 	struct vnode *vp;
1384 	int error;
1385 
1386 	DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
1387 	icb_loc.loc.part_num = pmm->part_num;
1388 	icb_loc.loc.lb_num   = pmm->meta_file_lbn;
1389 	DPRINTF(VOLUMES, ("Metadata file\n"));
1390 	error = udf_get_node(ump, &icb_loc, &ump->metadata_file);
1391 	if (ump->metadata_file) {
1392 		vp = ump->metadata_file->vnode;
1393 		UDF_SET_SYSTEMFILE(vp);
1394 	}
1395 
1396 	icb_loc.loc.lb_num   = pmm->meta_mirror_file_lbn;
1397 	if (icb_loc.loc.lb_num != -1) {
1398 		DPRINTF(VOLUMES, ("Metadata copy file\n"));
1399 		error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_file);
1400 		if (ump->metadatamirror_file) {
1401 			vp = ump->metadatamirror_file->vnode;
1402 			UDF_SET_SYSTEMFILE(vp);
1403 		}
1404 	}
1405 
1406 	icb_loc.loc.lb_num   = pmm->meta_bitmap_file_lbn;
1407 	if (icb_loc.loc.lb_num != -1) {
1408 		DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
1409 		error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_file);
1410 		if (ump->metadatabitmap_file) {
1411 			vp = ump->metadatabitmap_file->vnode;
1412 			UDF_SET_SYSTEMFILE(vp);
1413 		}
1414 	}
1415 
1416 	/* if we're mounting read-only we relax the requirements */
1417 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
1418 		error = EFAULT;
1419 		if (ump->metadata_file)
1420 			error = 0;
1421 		if ((ump->metadata_file == NULL) && (ump->metadatamirror_file)) {
1422 			printf( "udf mount: Metadata file not readable, "
1423 				"substituting Metadata copy file\n");
1424 			ump->metadata_file = ump->metadatamirror_file;
1425 			ump->metadatamirror_file = NULL;
1426 			error = 0;
1427 		}
1428 	} else {
1429 		/* mounting read/write */
1430 		DPRINTF(VOLUMES, ("udf mount: read only file system\n"));
1431 		error = EROFS;
1432 	}
1433 	DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
1434 				   "metadata files\n"));
1435 	return error;
1436 }
1437 #undef UDF_SET_SYSTEMFILE
1438 
1439 /* --------------------------------------------------------------------- */
1440 
1441 int
1442 udf_read_vds_tables(struct udf_mount *ump, struct udf_args *args)
1443 {
1444 	union udf_pmap *mapping;
1445 	uint32_t n_pm, mt_l;
1446 	uint32_t log_part;
1447 	uint8_t *pmap_pos;
1448 	int pmap_size;
1449 	int error;
1450 
1451 	/* We have to iterate again over the part mappings for locations   */
1452 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
1453 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
1454 	pmap_pos =  ump->logical_vol->maps;
1455 
1456 	for (log_part = 0; log_part < n_pm; log_part++) {
1457 		mapping = (union udf_pmap *) pmap_pos;
1458 		switch (ump->vtop_tp[log_part]) {
1459 		case UDF_VTOP_TYPE_PHYS :
1460 			/* nothing */
1461 			break;
1462 		case UDF_VTOP_TYPE_VIRT :
1463 			/* search and load VAT */
1464 			error = udf_search_vat(ump, mapping);
1465 			if (error)
1466 				return ENOENT;
1467 			break;
1468 		case UDF_VTOP_TYPE_SPARABLE :
1469 			/* load one of the sparable tables */
1470 			error = udf_read_sparables(ump, mapping);
1471 			if (error)
1472 				return ENOENT;
1473 			break;
1474 		case UDF_VTOP_TYPE_META :
1475 			/* load the associated file descriptors */
1476 			error = udf_read_metadata_files(ump, mapping);
1477 			if (error)
1478 				return ENOENT;
1479 			break;
1480 		default:
1481 			break;
1482 		}
1483 		pmap_size  = pmap_pos[1];
1484 		pmap_pos  += pmap_size;
1485 	}
1486 
1487 	return 0;
1488 }
1489 
1490 /* --------------------------------------------------------------------- */
1491 
1492 int
1493 udf_read_rootdirs(struct udf_mount *ump, struct udf_args *args)
1494 {
1495 	struct udf_node *rootdir_node, *streamdir_node;
1496 	union dscrptr *dscr;
1497 	struct long_ad  fsd_loc, *dir_loc;
1498 	uint32_t lb_num, dummy;
1499 	uint32_t fsd_len;
1500 	int dscr_type;
1501 	int error;
1502 
1503 	/* TODO implement FSD reading in separate function like integrity? */
1504 	/* get fileset descriptor sequence */
1505 	fsd_loc = ump->logical_vol->lv_fsd_loc;
1506 	fsd_len = udf_rw32(fsd_loc.len);
1507 
1508 	dscr  = NULL;
1509 	error = 0;
1510 	while (fsd_len || error) {
1511 		DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
1512 		/* translate fsd_loc to lb_num */
1513 		error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
1514 		if (error)
1515 			break;
1516 		DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
1517 		error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
1518 		/* end markers */
1519 		if (error || (dscr == NULL))
1520 			break;
1521 
1522 		/* analyse */
1523 		dscr_type = udf_rw16(dscr->tag.id);
1524 		if (dscr_type == TAGID_TERM)
1525 			break;
1526 		if (dscr_type != TAGID_FSD) {
1527 			free(dscr, M_UDFVOLD);
1528 			return ENOENT;
1529 		}
1530 
1531 		/*
1532 		 * TODO check for multiple fileset descriptors; its only
1533 		 * picking the last now. Also check for FSD
1534 		 * correctness/interpretability
1535 		 */
1536 
1537 		/* update */
1538 		if (ump->fileset_desc) {
1539 			free(ump->fileset_desc, M_UDFVOLD);
1540 		}
1541 		ump->fileset_desc = &dscr->fsd;
1542 		dscr = NULL;
1543 
1544 		/* continue to the next fsd */
1545 		fsd_len -= ump->discinfo.sector_size;
1546 		fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
1547 
1548 		/* follow up to fsd->next_ex (long_ad) if its not null */
1549 		if (udf_rw32(ump->fileset_desc->next_ex.len)) {
1550 			DPRINTF(VOLUMES, ("follow up FSD extent\n"));
1551 			fsd_loc = ump->fileset_desc->next_ex;
1552 			fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
1553 		}
1554 	}
1555 	if (dscr)
1556 		free(dscr, M_UDFVOLD);
1557 
1558 	/* there has to be one */
1559 	if (ump->fileset_desc == NULL)
1560 		return ENOENT;
1561 
1562 	DPRINTF(VOLUMES, ("FSD read in fine\n"));
1563 
1564 	/*
1565 	 * Now the FSD is known, read in the rootdirectory and if one exists,
1566 	 * the system stream dir. Some files in the system streamdir are not
1567 	 * wanted in this implementation since they are not maintained. If
1568 	 * writing is enabled we'll delete these files if they exist.
1569 	 */
1570 
1571 	rootdir_node = streamdir_node = NULL;
1572 	dir_loc = NULL;
1573 
1574 	/* try to read in the rootdir */
1575 	dir_loc = &ump->fileset_desc->rootdir_icb;
1576 	error = udf_get_node(ump, dir_loc, &rootdir_node);
1577 	if (error)
1578 		return ENOENT;
1579 
1580 	/* aparently it read in fine */
1581 
1582 	/*
1583 	 * Try the system stream directory; not very likely in the ones we
1584 	 * test, but for completeness.
1585 	 */
1586 	dir_loc = &ump->fileset_desc->streamdir_icb;
1587 	if (udf_rw32(dir_loc->len)) {
1588 		error = udf_get_node(ump, dir_loc, &streamdir_node);
1589 		if (error)
1590 			printf("udf mount: streamdir defined but ignored\n");
1591 		if (!error) {
1592 			/*
1593 			 * TODO process streamdir `baddies' i.e. files we dont
1594 			 * want if R/W
1595 			 */
1596 		}
1597 	}
1598 
1599 	DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
1600 
1601 	/* release the vnodes again; they'll be auto-recycled later */
1602 	if (streamdir_node) {
1603 		vput(streamdir_node->vnode);
1604 	}
1605 	if (rootdir_node) {
1606 		vput(rootdir_node->vnode);
1607 	}
1608 
1609 	return 0;
1610 }
1611 
1612 /* --------------------------------------------------------------------- */
1613 
1614 int
1615 udf_translate_vtop(struct udf_mount *ump, struct long_ad *icb_loc,
1616 		   uint32_t *lb_numres, uint32_t *extres)
1617 {
1618 	struct part_desc       *pdesc;
1619 	struct spare_map_entry *sme;
1620 	struct file_entry      *fe;
1621 	struct extfile_entry   *efe;
1622 	struct short_ad        *s_ad;
1623 	struct long_ad         *l_ad;
1624 	uint64_t  cur_offset;
1625 	uint32_t *trans;
1626 	uint32_t  lb_num, plb_num, lb_rel, lb_packet;
1627 	uint32_t  sector_size, len, alloclen;
1628 	uint8_t *pos;
1629 	int rel, vpart, part, addr_type, icblen, icbflags, flags;
1630 
1631 	assert(ump && icb_loc && lb_numres);
1632 
1633 	vpart  = udf_rw16(icb_loc->loc.part_num);
1634 	lb_num = udf_rw32(icb_loc->loc.lb_num);
1635 	if (vpart < 0 || vpart > UDF_VTOP_RAWPART)
1636 		return EINVAL;
1637 
1638 	part = ump->vtop[vpart];
1639 	pdesc = ump->partitions[part];
1640 
1641 	switch (ump->vtop_tp[vpart]) {
1642 	case UDF_VTOP_TYPE_RAW :
1643 		/* 1:1 to the end of the device */
1644 		*lb_numres = lb_num;
1645 		*extres = INT_MAX;
1646 		return 0;
1647 	case UDF_VTOP_TYPE_PHYS :
1648 		/* transform into its disc logical block */
1649 		if (lb_num > udf_rw32(pdesc->part_len))
1650 			return EINVAL;
1651 		*lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1652 
1653 		/* extent from here to the end of the partition */
1654 		*extres = udf_rw32(pdesc->part_len) - lb_num;
1655 		return 0;
1656 	case UDF_VTOP_TYPE_VIRT :
1657 		/* only maps one sector, lookup in VAT */
1658 		if (lb_num >= ump->vat_entries)		/* XXX > or >= ? */
1659 			return EINVAL;
1660 
1661 		/* lookup in virtual allocation table */
1662 		trans  = (uint32_t *) (ump->vat_table + ump->vat_offset);
1663 		lb_num = udf_rw32(trans[lb_num]);
1664 
1665 		/* transform into its disc logical block */
1666 		if (lb_num > udf_rw32(pdesc->part_len))
1667 			return EINVAL;
1668 		*lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1669 
1670 		/* just one logical block */
1671 		*extres = 1;
1672 		return 0;
1673 	case UDF_VTOP_TYPE_SPARABLE :
1674 		/* check if the packet containing the lb_num is remapped */
1675 		lb_packet = lb_num / ump->sparable_packet_len;
1676 		lb_rel    = lb_num % ump->sparable_packet_len;
1677 
1678 		for (rel = 0; rel < udf_rw16(ump->sparing_table->rt_l); rel++) {
1679 			sme = &ump->sparing_table->entries[rel];
1680 			if (lb_packet == udf_rw32(sme->org)) {
1681 				/* NOTE maps to absolute disc logical block! */
1682 				*lb_numres = udf_rw32(sme->map) + lb_rel;
1683 				*extres    = ump->sparable_packet_len - lb_rel;
1684 				return 0;
1685 			}
1686 		}
1687 
1688 		/* transform into its disc logical block */
1689 		if (lb_num > udf_rw32(pdesc->part_len))
1690 			return EINVAL;
1691 		*lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1692 
1693 		/* rest of block */
1694 		*extres = ump->sparable_packet_len - lb_rel;
1695 		return 0;
1696 	case UDF_VTOP_TYPE_META :
1697 		/* we have to look into the file's allocation descriptors */
1698 		/* free after udf_translate_file_extent() */
1699 		/* XXX sector size or lb_size? */
1700 		sector_size = ump->discinfo.sector_size;
1701 		/* XXX should we claim exclusive access to the metafile ? */
1702 		fe  = ump->metadata_file->fe;
1703 		efe = ump->metadata_file->efe;
1704 		if (fe) {
1705 			alloclen = udf_rw32(fe->l_ad);
1706 			pos      = &fe->data[0] + udf_rw32(fe->l_ea);
1707 			icbflags = udf_rw16(fe->icbtag.flags);
1708 		} else {
1709 			assert(efe);
1710 			alloclen = udf_rw32(efe->l_ad);
1711 			pos      = &efe->data[0] + udf_rw32(efe->l_ea);
1712 			icbflags = udf_rw16(efe->icbtag.flags);
1713 		}
1714 		addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
1715 
1716 		cur_offset = 0;
1717 		while (alloclen) {
1718 			if (addr_type == UDF_ICB_SHORT_ALLOC) {
1719 				icblen = sizeof(struct short_ad);
1720 				s_ad   = (struct short_ad *) pos;
1721 				len        = udf_rw32(s_ad->len);
1722 				plb_num    = udf_rw32(s_ad->lb_num);
1723 			} else {
1724 				/* should not be present, but why not */
1725 				icblen = sizeof(struct long_ad);
1726 				l_ad   = (struct long_ad *) pos;
1727 				len        = udf_rw32(l_ad->len);
1728 				plb_num    = udf_rw32(l_ad->loc.lb_num);
1729 				/* pvpart_num = udf_rw16(l_ad->loc.part_num); */
1730 			}
1731 			/* process extent */
1732 			flags   = UDF_EXT_FLAGS(len);
1733 			len     = UDF_EXT_LEN(len);
1734 
1735 			if (cur_offset + len > lb_num * sector_size) {
1736 				if (flags != UDF_EXT_ALLOCATED)
1737 					return EINVAL;
1738 				lb_rel = lb_num - cur_offset / sector_size;
1739 				/* remainder of this extent */
1740 				*lb_numres = plb_num + lb_rel +
1741 					udf_rw32(pdesc->start_loc);
1742 				*extres = (len / sector_size) - lb_rel;
1743 				return 0;
1744 			}
1745 			cur_offset += len;
1746 			pos        += icblen;
1747 			alloclen   -= icblen;
1748 		}
1749 		/* not found */
1750 		DPRINTF(TRANSLATE, ("Metadata partition translation failed\n"));
1751 		return EINVAL;
1752 	default:
1753 		printf("UDF vtop translation scheme %d unimplemented yet\n",
1754 			ump->vtop_tp[vpart]);
1755 	}
1756 
1757 	return EINVAL;
1758 }
1759 
1760 /* --------------------------------------------------------------------- */
1761 
1762 /* To make absolutely sure we are NOT returning zero, add one :) */
1763 
1764 long
1765 udf_calchash(struct long_ad *icbptr)
1766 {
1767 	/* ought to be enough since each mountpoint has its own chain */
1768 	return udf_rw32(icbptr->loc.lb_num) + 1;
1769 }
1770 
1771 /* --------------------------------------------------------------------- */
1772 
1773 static struct udf_node *
1774 udf_hashget(struct udf_mount *ump, struct long_ad *icbptr)
1775 {
1776 	struct udf_node *unp;
1777 	struct vnode *vp;
1778 	uint32_t hashline;
1779 
1780 loop:
1781 	simple_lock(&ump->ihash_slock);
1782 
1783 	hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
1784 	LIST_FOREACH(unp, &ump->udf_nodes[hashline], hashchain) {
1785 		assert(unp);
1786 		if (unp->loc.loc.lb_num   == icbptr->loc.lb_num &&
1787 		    unp->loc.loc.part_num == icbptr->loc.part_num) {
1788 			vp = unp->vnode;
1789 			assert(vp);
1790 			simple_lock(&vp->v_interlock);
1791 			simple_unlock(&ump->ihash_slock);
1792 			if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
1793 				goto loop;
1794 			return unp;
1795 		}
1796 	}
1797 	simple_unlock(&ump->ihash_slock);
1798 
1799 	return NULL;
1800 }
1801 
1802 /* --------------------------------------------------------------------- */
1803 
1804 static void
1805 udf_hashins(struct udf_node *unp)
1806 {
1807 	struct udf_mount *ump;
1808 	uint32_t hashline;
1809 
1810 	ump = unp->ump;
1811 	simple_lock(&ump->ihash_slock);
1812 
1813 	hashline = udf_calchash(&unp->loc) & UDF_INODE_HASHMASK;
1814 	LIST_INSERT_HEAD(&ump->udf_nodes[hashline], unp, hashchain);
1815 
1816 	simple_unlock(&ump->ihash_slock);
1817 }
1818 
1819 /* --------------------------------------------------------------------- */
1820 
1821 static void
1822 udf_hashrem(struct udf_node *unp)
1823 {
1824 	struct udf_mount *ump;
1825 
1826 	ump = unp->ump;
1827 	simple_lock(&ump->ihash_slock);
1828 
1829 	LIST_REMOVE(unp, hashchain);
1830 
1831 	simple_unlock(&ump->ihash_slock);
1832 }
1833 
1834 /* --------------------------------------------------------------------- */
1835 
1836 int
1837 udf_dispose_locked_node(struct udf_node *node)
1838 {
1839 	if (!node)
1840 		return 0;
1841 	if (node->vnode)
1842 		VOP_UNLOCK(node->vnode, 0);
1843 	return udf_dispose_node(node);
1844 }
1845 
1846 /* --------------------------------------------------------------------- */
1847 
1848 int
1849 udf_dispose_node(struct udf_node *node)
1850 {
1851 	struct vnode *vp;
1852 
1853 	DPRINTF(NODE, ("udf_dispose_node called on node %p\n", node));
1854 	if (!node) {
1855 		DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
1856 		return 0;
1857 	}
1858 
1859 	vp  = node->vnode;
1860 
1861 	/* TODO extended attributes and streamdir */
1862 
1863 	/* remove from our hash lookup table */
1864 	udf_hashrem(node);
1865 
1866 	/* destroy genfs structures */
1867 	genfs_node_destroy(vp);
1868 
1869 	/* dissociate our udf_node from the vnode */
1870 	vp->v_data = NULL;
1871 
1872 	/* free associated memory and the node itself */
1873 	if (node->fe)
1874 		pool_put(node->ump->desc_pool, node->fe);
1875 	if (node->efe)
1876 		pool_put(node->ump->desc_pool, node->efe);
1877 	pool_put(&udf_node_pool, node);
1878 
1879 	return 0;
1880 }
1881 
1882 /* --------------------------------------------------------------------- */
1883 
1884 /*
1885  * Genfs interfacing
1886  *
1887  * static const struct genfs_ops udffs_genfsops = {
1888  * 	.gop_size = genfs_size,
1889  * 		size of transfers
1890  * 	.gop_alloc = udf_gop_alloc,
1891  * 		unknown
1892  * 	.gop_write = genfs_gop_write,
1893  * 		putpages interface code
1894  * 	.gop_markupdate = udf_gop_markupdate,
1895  * 		set update/modify flags etc.
1896  * }
1897  */
1898 
1899 /*
1900  * Genfs interface. These four functions are the only ones defined though not
1901  * documented... great.... why is chosen for the `.' initialisers i dont know
1902  * but other filingsystems seem to use it this way.
1903  */
1904 
1905 static int
1906 udf_gop_alloc(struct vnode *vp, off_t off,
1907     off_t len, int flags, kauth_cred_t cred)
1908 {
1909 	return 0;
1910 }
1911 
1912 
1913 static void
1914 udf_gop_markupdate(struct vnode *vp, int flags)
1915 {
1916 	struct udf_node *udf_node = VTOI(vp);
1917 	u_long mask;
1918 
1919 	udf_node = udf_node;	/* shut up gcc */
1920 
1921 	mask = 0;
1922 #ifdef notyet
1923 	if ((flags & GOP_UPDATE_ACCESSED) != 0) {
1924 		mask = UDF_SET_ACCESS;
1925 	}
1926 	if ((flags & GOP_UPDATE_MODIFIED) != 0) {
1927 		mask |= UDF_SET_UPDATE;
1928 	}
1929 	if (mask) {
1930 		udf_node->update_flag |= mask;
1931 	}
1932 #endif
1933 	/* msdosfs doesn't do it, but shouldn't we update the times here? */
1934 }
1935 
1936 
1937 static const struct genfs_ops udf_genfsops = {
1938 	.gop_size = genfs_size,
1939 	.gop_alloc = udf_gop_alloc,
1940 	.gop_write = genfs_gop_write,
1941 	.gop_markupdate = udf_gop_markupdate,
1942 };
1943 
1944 /* --------------------------------------------------------------------- */
1945 
1946 /*
1947  * Each node can have an attached streamdir node though not
1948  * recursively. These are otherwise known as named substreams/named
1949  * extended attributes that have no size limitations.
1950  *
1951  * `Normal' extended attributes are indicated with a number and are recorded
1952  * in either the fe/efe descriptor itself for small descriptors or recorded in
1953  * the attached extended attribute file. Since this file can get fragmented,
1954  * care ought to be taken.
1955  */
1956 
1957 int
1958 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
1959 	     struct udf_node **noderes)
1960 {
1961 	union dscrptr   *dscr, *tmpdscr;
1962 	struct udf_node *node;
1963 	struct vnode    *nvp;
1964 	struct long_ad   icb_loc;
1965 	extern int (**udf_vnodeop_p)(void *);
1966 	uint64_t file_size;
1967 	uint32_t lb_size, sector, dummy;
1968 	int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
1969 	int error;
1970 
1971 	DPRINTF(NODE, ("udf_get_node called\n"));
1972 	*noderes = node = NULL;
1973 
1974 	/* lock to disallow simultanious creation of same node */
1975 	lockmgr(&ump->get_node_lock, LK_EXCLUSIVE, NULL);
1976 
1977 	DPRINTF(NODE, ("\tlookup in hash table\n"));
1978 	/* lookup in hash table */
1979 	assert(ump);
1980 	assert(node_icb_loc);
1981 	node = udf_hashget(ump, node_icb_loc);
1982 	if (node) {
1983 		DPRINTF(NODE, ("\tgot it from the hash!\n"));
1984 		/* vnode is returned locked */
1985 		*noderes = node;
1986 		lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1987 		return 0;
1988 	}
1989 
1990 	/* garbage check: translate node_icb_loc to sectornr */
1991 	error = udf_translate_vtop(ump, node_icb_loc, &sector, &dummy);
1992 	if (error) {
1993 		/* no use, this will fail anyway */
1994 		lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1995 		return EINVAL;
1996 	}
1997 
1998 	/* build node (do initialise!) */
1999 	node = pool_get(&udf_node_pool, PR_WAITOK);
2000 	memset(node, 0, sizeof(struct udf_node));
2001 
2002 	DPRINTF(NODE, ("\tget new vnode\n"));
2003 	/* give it a vnode */
2004 	error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
2005         if (error) {
2006 		pool_put(&udf_node_pool, node);
2007 		lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
2008 		return error;
2009 	}
2010 
2011 	/* always return locked vnode */
2012 	if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
2013 		/* recycle vnode and unlock; simultanious will fail too */
2014 		ungetnewvnode(nvp);
2015 		lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
2016 		return error;
2017 	}
2018 
2019 	/* initialise crosslinks, note location of fe/efe for hashing */
2020 	node->ump    =  ump;
2021 	node->vnode  =  nvp;
2022 	nvp->v_data  =  node;
2023 	node->loc    = *node_icb_loc;
2024 	node->lockf  =  0;
2025 
2026 	/* insert into the hash lookup */
2027 	udf_hashins(node);
2028 
2029 	/* safe to unlock, the entry is in the hash table, vnode is locked */
2030 	lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
2031 
2032 	icb_loc = *node_icb_loc;
2033 	needs_indirect = 0;
2034 	strat4096 = 0;
2035 	udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
2036 	file_size = 0;
2037 	lb_size = udf_rw32(ump->logical_vol->lb_size);
2038 
2039 	do {
2040 		error = udf_translate_vtop(ump, &icb_loc, &sector, &dummy);
2041 		if (error)
2042 			break;
2043 
2044 		/* try to read in fe/efe */
2045 		error = udf_read_descriptor(ump, sector, M_UDFTEMP, &tmpdscr);
2046 
2047 		/* blank sector marks end of sequence, check this */
2048 		if ((tmpdscr == NULL) &&  (!strat4096))
2049 			error = ENOENT;
2050 
2051 		/* break if read error or blank sector */
2052 		if (error || (tmpdscr == NULL))
2053 			break;
2054 
2055 		/* process descriptor based on the descriptor type */
2056 		dscr_type = udf_rw16(tmpdscr->tag.id);
2057 
2058 		/* if dealing with an indirect entry, follow the link */
2059 		if (dscr_type == TAGID_INDIRECT_ENTRY) {
2060 			needs_indirect = 0;
2061 			icb_loc = tmpdscr->inde.indirect_icb;
2062 			free(tmpdscr, M_UDFTEMP);
2063 			continue;
2064 		}
2065 
2066 		/* only file entries and extended file entries allowed here */
2067 		if ((dscr_type != TAGID_FENTRY) &&
2068 		    (dscr_type != TAGID_EXTFENTRY)) {
2069 			free(tmpdscr, M_UDFTEMP);
2070 			error = ENOENT;
2071 			break;
2072 		}
2073 
2074 		/* get descriptor space from our pool */
2075 		KASSERT(udf_tagsize(tmpdscr, lb_size) == lb_size);
2076 
2077 		dscr = pool_get(ump->desc_pool, PR_WAITOK);
2078 		memcpy(dscr, tmpdscr, lb_size);
2079 		free(tmpdscr, M_UDFTEMP);
2080 
2081 		/* record and process/update (ext)fentry */
2082 		if (dscr_type == TAGID_FENTRY) {
2083 			if (node->fe)
2084 				pool_put(ump->desc_pool, node->fe);
2085 			node->fe  = &dscr->fe;
2086 			strat = udf_rw16(node->fe->icbtag.strat_type);
2087 			udf_file_type = node->fe->icbtag.file_type;
2088 			file_size = udf_rw64(node->fe->inf_len);
2089 		} else {
2090 			if (node->efe)
2091 				pool_put(ump->desc_pool, node->efe);
2092 			node->efe = &dscr->efe;
2093 			strat = udf_rw16(node->efe->icbtag.strat_type);
2094 			udf_file_type = node->efe->icbtag.file_type;
2095 			file_size = udf_rw64(node->efe->inf_len);
2096 		}
2097 
2098 		/* check recording strategy (structure) */
2099 
2100 		/*
2101 		 * Strategy 4096 is a daisy linked chain terminating with an
2102 		 * unrecorded sector or a TERM descriptor. The next
2103 		 * descriptor is to be found in the sector that follows the
2104 		 * current sector.
2105 		 */
2106 		if (strat == 4096) {
2107 			strat4096 = 1;
2108 			needs_indirect = 1;
2109 
2110 			icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
2111 		}
2112 
2113 		/*
2114 		 * Strategy 4 is the normal strategy and terminates, but if
2115 		 * we're in strategy 4096, we can't have strategy 4 mixed in
2116 		 */
2117 
2118 		if (strat == 4) {
2119 			if (strat4096) {
2120 				error = EINVAL;
2121 				break;
2122 			}
2123 			break;		/* done */
2124 		}
2125 	} while (!error);
2126 
2127 	if (error) {
2128 		/* recycle udf_node */
2129 		udf_dispose_node(node);
2130 
2131 		/* recycle vnode */
2132 		nvp->v_data = NULL;
2133 		ungetnewvnode(nvp);
2134 
2135 		return EINVAL;		/* error code ok? */
2136 	}
2137 
2138 	/* post process and initialise node */
2139 
2140 	/* assert no references to dscr anymore beyong this point */
2141 	assert((node->fe) || (node->efe));
2142 	dscr = NULL;
2143 
2144 	/*
2145 	 * Record where to record an updated version of the descriptor. If
2146 	 * there is a sequence of indirect entries, icb_loc will have been
2147 	 * updated. Its the write disipline to allocate new space and to make
2148 	 * sure the chain is maintained.
2149 	 *
2150 	 * `needs_indirect' flags if the next location is to be filled with
2151 	 * with an indirect entry.
2152 	 */
2153 	node->next_loc = icb_loc;
2154 	node->needs_indirect = needs_indirect;
2155 
2156 	/*
2157 	 * Translate UDF filetypes into vnode types.
2158 	 *
2159 	 * Systemfiles like the meta main and mirror files are not treated as
2160 	 * normal files, so we type them as having no type. UDF dictates that
2161 	 * they are not allowed to be visible.
2162 	 */
2163 
2164 	/* TODO specfs, fifofs etc etc. vnops setting */
2165 	switch (udf_file_type) {
2166 	case UDF_ICB_FILETYPE_DIRECTORY :
2167 	case UDF_ICB_FILETYPE_STREAMDIR :
2168 		nvp->v_type = VDIR;
2169 		break;
2170 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
2171 		nvp->v_type = VBLK;
2172 		break;
2173 	case UDF_ICB_FILETYPE_CHARDEVICE :
2174 		nvp->v_type = VCHR;
2175 		break;
2176 	case UDF_ICB_FILETYPE_SYMLINK :
2177 		nvp->v_type = VLNK;
2178 		break;
2179 	case UDF_ICB_FILETYPE_VAT :
2180 	case UDF_ICB_FILETYPE_META_MAIN :
2181 	case UDF_ICB_FILETYPE_META_MIRROR :
2182 		nvp->v_type = VNON;
2183 		break;
2184 	case UDF_ICB_FILETYPE_RANDOMACCESS :
2185 	case UDF_ICB_FILETYPE_REALTIME :
2186 		nvp->v_type = VREG;
2187 		break;
2188 	default:
2189 		/* YIKES, either a block/char device, fifo or something else */
2190 		nvp->v_type = VNON;
2191 	}
2192 
2193 	/* initialise genfs */
2194 	genfs_node_init(nvp, &udf_genfsops);
2195 
2196 	/* don't forget to set vnode's v_size */
2197 	uvm_vnp_setsize(nvp, file_size);
2198 
2199 	/* TODO ext attr and streamdir nodes */
2200 
2201 	*noderes = node;
2202 
2203 	return 0;
2204 }
2205 
2206 /* --------------------------------------------------------------------- */
2207 
2208 /* UDF<->unix converters */
2209 
2210 /* --------------------------------------------------------------------- */
2211 
2212 static mode_t
2213 udf_perm_to_unix_mode(uint32_t perm)
2214 {
2215 	mode_t mode;
2216 
2217 	mode  = ((perm & UDF_FENTRY_PERM_USER_MASK)      );
2218 	mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK  ) >> 2);
2219 	mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
2220 
2221 	return mode;
2222 }
2223 
2224 /* --------------------------------------------------------------------- */
2225 
2226 #ifdef notyet
2227 static uint32_t
2228 unix_mode_to_udf_perm(mode_t mode)
2229 {
2230 	uint32_t perm;
2231 
2232 	perm  = ((mode & S_IRWXO)     );
2233 	perm |= ((mode & S_IRWXG) << 2);
2234 	perm |= ((mode & S_IRWXU) << 4);
2235 	perm |= ((mode & S_IWOTH) << 3);
2236 	perm |= ((mode & S_IWGRP) << 5);
2237 	perm |= ((mode & S_IWUSR) << 7);
2238 
2239 	return perm;
2240 }
2241 #endif
2242 
2243 /* --------------------------------------------------------------------- */
2244 
2245 static uint32_t
2246 udf_icb_to_unix_filetype(uint32_t icbftype)
2247 {
2248 	switch (icbftype) {
2249 	case UDF_ICB_FILETYPE_DIRECTORY :
2250 	case UDF_ICB_FILETYPE_STREAMDIR :
2251 		return S_IFDIR;
2252 	case UDF_ICB_FILETYPE_FIFO :
2253 		return S_IFIFO;
2254 	case UDF_ICB_FILETYPE_CHARDEVICE :
2255 		return S_IFCHR;
2256 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
2257 		return S_IFBLK;
2258 	case UDF_ICB_FILETYPE_RANDOMACCESS :
2259 	case UDF_ICB_FILETYPE_REALTIME :
2260 		return S_IFREG;
2261 	case UDF_ICB_FILETYPE_SYMLINK :
2262 		return S_IFLNK;
2263 	case UDF_ICB_FILETYPE_SOCKET :
2264 		return S_IFSOCK;
2265 	}
2266 	/* no idea what this is */
2267 	return 0;
2268 }
2269 
2270 /* --------------------------------------------------------------------- */
2271 
2272 /* TODO KNF-ify */
2273 
2274 void
2275 udf_to_unix_name(char *result, char *id, int len, struct charspec *chsp)
2276 {
2277 	uint16_t *raw_name, *unix_name;
2278 	uint16_t *inchp, ch;
2279 	uint8_t	 *outchp;
2280 	int       ucode_chars, nice_uchars;
2281 
2282 	raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
2283 	unix_name = raw_name + 1024;			/* split space in half */
2284 	assert(sizeof(char) == sizeof(uint8_t));
2285 	outchp = (uint8_t *) result;
2286 	if ((chsp->type == 0) && (strcmp((char*) chsp->inf, "OSTA Compressed Unicode") == 0)) {
2287 		*raw_name = *unix_name = 0;
2288 		ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
2289 		ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
2290 		nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
2291 		for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
2292 			ch = *inchp;
2293 			/* XXX sloppy unicode -> latin */
2294 			*outchp++ = ch & 255;
2295 			if (!ch) break;
2296 		}
2297 		*outchp++ = 0;
2298 	} else {
2299 		/* assume 8bit char length byte latin-1 */
2300 		assert(*id == 8);
2301 		strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
2302 	}
2303 	free(raw_name, M_UDFTEMP);
2304 }
2305 
2306 /* --------------------------------------------------------------------- */
2307 
2308 /* TODO KNF-ify */
2309 
2310 void
2311 unix_to_udf_name(char *result, char *name,
2312 		 uint8_t *result_len, struct charspec *chsp)
2313 {
2314 	uint16_t *raw_name;
2315 	int       udf_chars, name_len;
2316 	char     *inchp;
2317 	uint16_t *outchp;
2318 
2319 	raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
2320 	/* convert latin-1 or whatever to unicode-16 */
2321 	*raw_name = 0;
2322 	name_len  = 0;
2323 	inchp  = name;
2324 	outchp = raw_name;
2325 	while (*inchp) {
2326 		*outchp++ = (uint16_t) (*inchp++);
2327 		name_len++;
2328 	}
2329 
2330 	if ((chsp->type == 0) && (strcmp((char *) chsp->inf, "OSTA Compressed Unicode") == 0)) {
2331 		udf_chars = udf_CompressUnicode(name_len, 8, (unicode_t *) raw_name, (byte *) result);
2332 	} else {
2333 		/* XXX assume 8bit char length byte latin-1 */
2334 		*result++ = 8; udf_chars = 1;
2335 		strncpy(result, name + 1, strlen(name+1));
2336 		udf_chars += strlen(name);
2337 	}
2338 	*result_len = udf_chars;
2339 	free(raw_name, M_UDFTEMP);
2340 }
2341 
2342 /* --------------------------------------------------------------------- */
2343 
2344 void
2345 udf_timestamp_to_timespec(struct udf_mount *ump,
2346 			  struct timestamp *timestamp,
2347 			  struct timespec  *timespec)
2348 {
2349 	struct clock_ymdhms ymdhms;
2350 	uint32_t usecs, secs, nsecs;
2351 	uint16_t tz;
2352 
2353 	/* fill in ymdhms structure from timestamp */
2354 	memset(&ymdhms, 0, sizeof(ymdhms));
2355 	ymdhms.dt_year = udf_rw16(timestamp->year);
2356 	ymdhms.dt_mon  = timestamp->month;
2357 	ymdhms.dt_day  = timestamp->day;
2358 	ymdhms.dt_wday = 0; /* ? */
2359 	ymdhms.dt_hour = timestamp->hour;
2360 	ymdhms.dt_min  = timestamp->minute;
2361 	ymdhms.dt_sec  = timestamp->second;
2362 
2363 	secs = clock_ymdhms_to_secs(&ymdhms);
2364 	usecs = timestamp->usec +
2365 		100*timestamp->hund_usec + 10000*timestamp->centisec;
2366 	nsecs = usecs * 1000;
2367 
2368 	/*
2369 	 * Calculate the time zone.  The timezone is 12 bit signed 2's
2370 	 * compliment, so we gotta do some extra magic to handle it right.
2371 	 */
2372 	tz  = udf_rw16(timestamp->type_tz);
2373 	tz &= 0x0fff;			/* only lower 12 bits are significant */
2374 	if (tz & 0x0800)		/* sign extention */
2375 		tz |= 0xf000;
2376 
2377 	/* TODO check timezone conversion */
2378 	/* check if we are specified a timezone to convert */
2379 	if (udf_rw16(timestamp->type_tz) & 0x1000) {
2380 		if ((int16_t) tz != -2047)
2381 			secs -= (int16_t) tz * 60;
2382 	} else {
2383 		secs -= ump->mount_args.gmtoff;
2384 	}
2385 
2386 	timespec->tv_sec  = secs;
2387 	timespec->tv_nsec = nsecs;
2388 }
2389 
2390 /* --------------------------------------------------------------------- */
2391 
2392 /*
2393  * Attribute and filetypes converters with get/set pairs
2394  */
2395 
2396 uint32_t
2397 udf_getaccessmode(struct udf_node *udf_node)
2398 {
2399 	struct file_entry *fe;
2400 	struct extfile_entry *efe;
2401 	uint32_t udf_perm, icbftype;
2402 	uint32_t mode, ftype;
2403 	uint16_t icbflags;
2404 
2405 	if (udf_node->fe) {
2406 		fe = udf_node->fe;
2407 		udf_perm = udf_rw32(fe->perm);
2408 		icbftype = fe->icbtag.file_type;
2409 		icbflags = udf_rw16(fe->icbtag.flags);
2410 	} else {
2411 		assert(udf_node->efe);
2412 		efe = udf_node->efe;
2413 		udf_perm = udf_rw32(efe->perm);
2414 		icbftype = efe->icbtag.file_type;
2415 		icbflags = udf_rw16(efe->icbtag.flags);
2416 	}
2417 
2418 	mode  = udf_perm_to_unix_mode(udf_perm);
2419 	ftype = udf_icb_to_unix_filetype(icbftype);
2420 
2421 	/* set suid, sgid, sticky from flags in fe/efe */
2422 	if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
2423 		mode |= S_ISUID;
2424 	if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
2425 		mode |= S_ISGID;
2426 	if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
2427 		mode |= S_ISVTX;
2428 
2429 	return mode | ftype;
2430 }
2431 
2432 /* --------------------------------------------------------------------- */
2433 
2434 /*
2435  * Directory read and manipulation functions
2436  */
2437 
2438 int
2439 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
2440 		       struct long_ad *icb_loc)
2441 {
2442 	struct udf_node  *dir_node = VTOI(vp);
2443 	struct file_entry    *fe;
2444 	struct extfile_entry *efe;
2445 	struct fileid_desc *fid;
2446 	struct dirent dirent;
2447 	uint64_t file_size, diroffset;
2448 	uint32_t lb_size;
2449 	int found, error;
2450 
2451 	/* get directory filesize */
2452 	if (dir_node->fe) {
2453 		fe = dir_node->fe;
2454 		file_size = udf_rw64(fe->inf_len);
2455 	} else {
2456 		assert(dir_node->efe);
2457 		efe = dir_node->efe;
2458 		file_size = udf_rw64(efe->inf_len);
2459 	}
2460 
2461 	/* allocate temporary space for fid */
2462 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
2463 	fid = malloc(lb_size, M_TEMP, M_WAITOK);
2464 
2465 	found = 0;
2466 	diroffset = dir_node->last_diroffset;
2467 
2468 	/*
2469 	 * if the directory is trunced or if we have never visited it yet,
2470 	 * start at the end.
2471 	 */
2472 	if ((diroffset >= file_size) || (diroffset == 0)) {
2473 		diroffset = dir_node->last_diroffset = file_size;
2474 	}
2475 
2476 	while (!found) {
2477 		/* if at the end, go trough zero */
2478 		if (diroffset >= file_size)
2479 			diroffset = 0;
2480 
2481 		/* transfer a new fid/dirent */
2482 		error = udf_read_fid_stream(vp, &diroffset, fid, &dirent);
2483 		if (error)
2484 			break;
2485 
2486 		/* skip deleted entries */
2487 		if ((fid->file_char & UDF_FILE_CHAR_DEL) == 0) {
2488 			if ((strlen(dirent.d_name) == namelen) &&
2489 			    (strncmp(dirent.d_name, name, namelen) == 0)) {
2490 				found = 1;
2491 				*icb_loc = fid->icb;
2492 			}
2493 		}
2494 
2495 		if (diroffset == dir_node->last_diroffset) {
2496 			/* we have cycled */
2497 			break;
2498 		}
2499 	}
2500 	free(fid, M_TEMP);
2501 	dir_node->last_diroffset = diroffset;
2502 
2503 	return found;
2504 }
2505 
2506 /* --------------------------------------------------------------------- */
2507 
2508 /*
2509  * Read one fid and process it into a dirent and advance to the next (*fid)
2510  * has to be allocated a logical block in size, (*dirent) struct dirent length
2511  */
2512 
2513 int
2514 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
2515 		    struct fileid_desc *fid, struct dirent *dirent)
2516 {
2517 	struct udf_node  *dir_node = VTOI(vp);
2518 	struct udf_mount *ump = dir_node->ump;
2519 	struct file_entry    *fe;
2520 	struct extfile_entry *efe;
2521 	struct uio    dir_uio;
2522 	struct iovec  dir_iovec;
2523 	uint32_t      entry_length, lb_size;
2524 	uint64_t      file_size;
2525 	char         *fid_name;
2526 	int           enough, error;
2527 
2528 	assert(fid);
2529 	assert(dirent);
2530 	assert(dir_node);
2531 	assert(offset);
2532 	assert(*offset != 1);
2533 
2534 	DPRINTF(FIDS, ("read_fid_stream called\n"));
2535 	/* check if we're past the end of the directory */
2536 	if (dir_node->fe) {
2537 		fe = dir_node->fe;
2538 		file_size = udf_rw64(fe->inf_len);
2539 	} else {
2540 		assert(dir_node->efe);
2541 		efe = dir_node->efe;
2542 		file_size = udf_rw64(efe->inf_len);
2543 	}
2544 	if (*offset >= file_size)
2545 		return EINVAL;
2546 
2547 	/* get maximum length of FID descriptor */
2548 	lb_size = udf_rw32(ump->logical_vol->lb_size);
2549 
2550 	/* initialise return values */
2551 	entry_length = 0;
2552 	memset(dirent, 0, sizeof(struct dirent));
2553 	memset(fid, 0, lb_size);
2554 
2555 	/* TODO use vn_rdwr instead of creating our own uio */
2556 	/* read part of the directory */
2557 	memset(&dir_uio, 0, sizeof(struct uio));
2558 	dir_uio.uio_rw     = UIO_READ;	/* read into this space */
2559 	dir_uio.uio_iovcnt = 1;
2560 	dir_uio.uio_iov    = &dir_iovec;
2561 	UIO_SETUP_SYSSPACE(&dir_uio);
2562 	dir_iovec.iov_base = fid;
2563 	dir_iovec.iov_len  = lb_size;
2564 	dir_uio.uio_offset = *offset;
2565 
2566 	/* limit length of read in piece */
2567 	dir_uio.uio_resid  = MIN(file_size - (*offset), lb_size);
2568 
2569 	/* read the part into the fid space */
2570 	error = VOP_READ(vp, &dir_uio, IO_ALTSEMANTICS, NOCRED);
2571 	if (error)
2572 		return error;
2573 
2574 	/*
2575 	 * Check if we got a whole descriptor.
2576 	 * XXX Try to `resync' directory stream when something is very wrong.
2577 	 *
2578 	 */
2579 	enough = (dir_uio.uio_offset - (*offset) >= UDF_FID_SIZE);
2580 	if (!enough) {
2581 		/* short dir ... */
2582 		return EIO;
2583 	}
2584 
2585 	/* check if our FID header is OK */
2586 	error = udf_check_tag(fid);
2587 	DPRINTFIF(FIDS, error, ("read fids: tag check failed\n"));
2588 	if (!error) {
2589 		if (udf_rw16(fid->tag.id) != TAGID_FID)
2590 			error = ENOENT;
2591 	}
2592 	DPRINTFIF(FIDS, !error, ("\ttag checked ok: got TAGID_FID\n"));
2593 
2594 	/* check for length */
2595 	if (!error) {
2596 		entry_length = udf_fidsize(fid, lb_size);
2597 		enough = (dir_uio.uio_offset - (*offset) >= entry_length);
2598 	}
2599 	DPRINTFIF(FIDS, !error, ("\tentry_length = %d, enough = %s\n",
2600 	    entry_length, enough?"yes":"no"));
2601 
2602 	if (!enough) {
2603 		/* short dir ... bomb out */
2604 		return EIO;
2605 	}
2606 
2607 	/* check FID contents */
2608 	if (!error) {
2609 		error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
2610 		DPRINTF(FIDS, ("\tpayload checked ok\n"));
2611 	}
2612 	if (error) {
2613 		/* note that is sometimes a bit quick to report */
2614 		printf("BROKEN DIRECTORY ENTRY\n");
2615 		/* RESYNC? */
2616 		/* TODO: use udf_resync_fid_stream */
2617 		return EIO;
2618 	}
2619 	DPRINTF(FIDS, ("\tinterpret FID\n"));
2620 
2621 	/* we got a whole and valid descriptor! */
2622 
2623 	/* create resulting dirent structure */
2624 	fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
2625 	udf_to_unix_name(dirent->d_name,
2626 		fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
2627 
2628 	/* '..' has no name, so provide one */
2629 	if (fid->file_char & UDF_FILE_CHAR_PAR)
2630 		strcpy(dirent->d_name, "..");
2631 
2632 	dirent->d_fileno = udf_calchash(&fid->icb);	/* inode hash XXX */
2633 	dirent->d_namlen = strlen(dirent->d_name);
2634 	dirent->d_reclen = _DIRENT_SIZE(dirent);
2635 
2636 	/*
2637 	 * Note that its not worth trying to go for the filetypes now... its
2638 	 * too expensive too
2639 	 */
2640 	dirent->d_type = DT_UNKNOWN;
2641 
2642 	/* initial guess for filetype we can make */
2643 	if (fid->file_char & UDF_FILE_CHAR_DIR)
2644 		dirent->d_type = DT_DIR;
2645 
2646 	/* advance */
2647 	*offset += entry_length;
2648 
2649 	return error;
2650 }
2651 
2652 /* --------------------------------------------------------------------- */
2653 
2654 /*
2655  * block based file reading and writing
2656  */
2657 
2658 static int
2659 udf_read_internal(struct udf_node *node, uint8_t *blob)
2660 {
2661 	struct udf_mount *ump;
2662 	struct file_entry *fe;
2663 	struct extfile_entry *efe;
2664 	uint64_t inflen;
2665 	uint32_t sector_size;
2666 	uint8_t  *pos;
2667 	int icbflags, addr_type;
2668 
2669 	/* shut up gcc */
2670 	inflen = addr_type = icbflags = 0;
2671 	pos = NULL;
2672 
2673 	/* get extent and do some paranoia checks */
2674 	ump = node->ump;
2675 	sector_size = ump->discinfo.sector_size;
2676 
2677 	fe  = node->fe;
2678 	efe = node->efe;
2679 	if (fe) {
2680 		inflen   = udf_rw64(fe->inf_len);
2681 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
2682 		icbflags = udf_rw16(fe->icbtag.flags);
2683 	}
2684 	if (efe) {
2685 		inflen   = udf_rw64(efe->inf_len);
2686 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
2687 		icbflags = udf_rw16(efe->icbtag.flags);
2688 	}
2689 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
2690 
2691 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
2692 	assert(inflen < sector_size);
2693 
2694 	/* copy out info */
2695 	memset(blob, 0, sector_size);
2696 	memcpy(blob, pos, inflen);
2697 
2698 	return 0;
2699 }
2700 
2701 /* --------------------------------------------------------------------- */
2702 
2703 /*
2704  * Read file extent reads an extent specified in sectors from the file. It is
2705  * sector based; i.e. no `fancy' offsets.
2706  */
2707 
2708 int
2709 udf_read_file_extent(struct udf_node *node,
2710 		     uint32_t from, uint32_t sectors,
2711 		     uint8_t *blob)
2712 {
2713 	struct buf buf;
2714 	uint32_t sector_size;
2715 
2716 	BUF_INIT(&buf);
2717 
2718 	sector_size = node->ump->discinfo.sector_size;
2719 
2720 	buf.b_bufsize = sectors * sector_size;
2721 	buf.b_data    = blob;
2722 	buf.b_bcount  = buf.b_bufsize;
2723 	buf.b_resid   = buf.b_bcount;
2724 	buf.b_flags   = B_BUSY | B_READ;
2725 	buf.b_vp      = node->vnode;
2726 	buf.b_proc    = NULL;
2727 
2728 	buf.b_blkno  = from;
2729 	buf.b_lblkno = 0;
2730 	BIO_SETPRIO(&buf, BPRIO_TIMELIMITED);
2731 
2732 	udf_read_filebuf(node, &buf);
2733 	return biowait(&buf);
2734 }
2735 
2736 
2737 /* --------------------------------------------------------------------- */
2738 
2739 /*
2740  * Read file extent in the buffer.
2741  *
2742  * The splitup of the extent into separate request-buffers is to minimise
2743  * copying around as much as possible.
2744  */
2745 
2746 
2747 /* maximum of 128 translations (!) (64 kb in 512 byte sectors) */
2748 #define FILEBUFSECT 128
2749 
2750 void
2751 udf_read_filebuf(struct udf_node *node, struct buf *buf)
2752 {
2753 	struct buf *nestbuf;
2754 	uint64_t   *mapping;
2755 	uint64_t    run_start;
2756 	uint32_t    sector_size;
2757 	uint32_t    buf_offset, sector, rbuflen, rblk;
2758 	uint8_t    *buf_pos;
2759 	int error, run_length;
2760 
2761 	uint32_t  from;
2762 	uint32_t  sectors;
2763 
2764 	sector_size = node->ump->discinfo.sector_size;
2765 
2766 	from    = buf->b_blkno;
2767 	sectors = buf->b_bcount / sector_size;
2768 
2769 	/* assure we have enough translation slots */
2770 	KASSERT(buf->b_bcount / sector_size <= FILEBUFSECT);
2771 	KASSERT(MAXPHYS / sector_size <= FILEBUFSECT);
2772 
2773 	if (sectors > FILEBUFSECT) {
2774 		printf("udf_read_filebuf: implementation limit on bufsize\n");
2775 		buf->b_error  = EIO;
2776 		biodone(buf);
2777 		return;
2778 	}
2779 
2780 	mapping = malloc(sizeof(*mapping) * FILEBUFSECT, M_TEMP, M_WAITOK);
2781 
2782 	error = 0;
2783 	DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
2784 	error = udf_translate_file_extent(node, from, sectors, mapping);
2785 	if (error) {
2786 		buf->b_error  = error;
2787 		biodone(buf);
2788 		goto out;
2789 	}
2790 	DPRINTF(READ, ("\ttranslate extent went OK\n"));
2791 
2792 	/* pre-check if internal or parts are zero */
2793 	if (*mapping == UDF_TRANS_INTERN) {
2794 		error = udf_read_internal(node, (uint8_t *) buf->b_data);
2795 		if (error) {
2796 			buf->b_error  = error;
2797 		}
2798 		biodone(buf);
2799 		goto out;
2800 	}
2801 	DPRINTF(READ, ("\tnot intern\n"));
2802 
2803 	/* request read-in of data from disc scheduler */
2804 	buf->b_resid = buf->b_bcount;
2805 	for (sector = 0; sector < sectors; sector++) {
2806 		buf_offset = sector * sector_size;
2807 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
2808 		DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
2809 
2810 		switch (mapping[sector]) {
2811 		case UDF_TRANS_UNMAPPED:
2812 		case UDF_TRANS_ZERO:
2813 			/* copy zero sector */
2814 			memset(buf_pos, 0, sector_size);
2815 			DPRINTF(READ, ("\treturning zero sector\n"));
2816 			nestiobuf_done(buf, sector_size, 0);
2817 			break;
2818 		default :
2819 			DPRINTF(READ, ("\tread sector "
2820 			    "%"PRIu64"\n", mapping[sector]));
2821 
2822 			run_start  = mapping[sector];
2823 			run_length = 1;
2824 			while (sector < sectors-1) {
2825 				if (mapping[sector+1] != mapping[sector]+1)
2826 					break;
2827 				run_length++;
2828 				sector++;
2829 			}
2830 
2831 			/*
2832 			 * nest an iobuf and mark it for async reading. Since
2833 			 * we're using nested buffers, they can't be cached by
2834 			 * design.
2835 			 */
2836 			rbuflen = run_length * sector_size;
2837 			rblk    = run_start  * (sector_size/DEV_BSIZE);
2838 
2839 			nestbuf = getiobuf();
2840 			nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
2841 			/* nestbuf is B_ASYNC */
2842 
2843 			/* CD schedules on raw blkno */
2844 			nestbuf->b_blkno    = rblk;
2845 			nestbuf->b_proc     = NULL;
2846 			nestbuf->b_cylinder = 0;
2847 			nestbuf->b_rawblkno = rblk;
2848 			VOP_STRATEGY(node->ump->devvp, nestbuf);
2849 		}
2850 	}
2851 out:
2852 	DPRINTF(READ, ("\tend of read_filebuf\n"));
2853 	free(mapping, M_TEMP);
2854 	return;
2855 }
2856 #undef FILEBUFSECT
2857 
2858 
2859 /* --------------------------------------------------------------------- */
2860 
2861 /*
2862  * Translate an extent (in sectors) into sector numbers; used for read and
2863  * write operations. DOESNT't check extents.
2864  */
2865 
2866 int
2867 udf_translate_file_extent(struct udf_node *node,
2868 		          uint32_t from, uint32_t pages,
2869 			  uint64_t *map)
2870 {
2871 	struct udf_mount *ump;
2872 	struct file_entry *fe;
2873 	struct extfile_entry *efe;
2874 	struct short_ad *s_ad;
2875 	struct long_ad  *l_ad, t_ad;
2876 	uint64_t transsec;
2877 	uint32_t sector_size, transsec32;
2878 	uint32_t overlap, translen;
2879 	uint32_t vpart_num, lb_num, len, alloclen;
2880 	uint8_t *pos;
2881 	int error, flags, addr_type, icblen, icbflags;
2882 
2883 	if (!node)
2884 		return ENOENT;
2885 
2886 	/* shut up gcc */
2887 	alloclen = addr_type = icbflags = 0;
2888 	pos = NULL;
2889 
2890 	/* do the work */
2891 	ump = node->ump;
2892 	sector_size = ump->discinfo.sector_size;
2893 	fe  = node->fe;
2894 	efe = node->efe;
2895 	if (fe) {
2896 		alloclen = udf_rw32(fe->l_ad);
2897 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
2898 		icbflags = udf_rw16(fe->icbtag.flags);
2899 	}
2900 	if (efe) {
2901 		alloclen = udf_rw32(efe->l_ad);
2902 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
2903 		icbflags = udf_rw16(efe->icbtag.flags);
2904 	}
2905 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
2906 
2907 	DPRINTF(TRANSLATE, ("udf trans: alloc_len = %d, addr_type %d, "
2908 	    "fe %p, efe %p\n", alloclen, addr_type, fe, efe));
2909 
2910 	vpart_num = udf_rw16(node->loc.loc.part_num);
2911 	lb_num = len = icblen = 0;	/* shut up gcc */
2912 	while (pages && alloclen) {
2913 		DPRINTF(TRANSLATE, ("\taddr_type %d\n", addr_type));
2914 		switch (addr_type) {
2915 		case UDF_ICB_INTERN_ALLOC :
2916 			/* TODO check extents? */
2917 			*map = UDF_TRANS_INTERN;
2918 			return 0;
2919 		case UDF_ICB_SHORT_ALLOC :
2920 			icblen = sizeof(struct short_ad);
2921 			s_ad   = (struct short_ad *) pos;
2922 			len       = udf_rw32(s_ad->len);
2923 			lb_num    = udf_rw32(s_ad->lb_num);
2924 			break;
2925 		case UDF_ICB_LONG_ALLOC  :
2926 			icblen = sizeof(struct long_ad);
2927 			l_ad   = (struct long_ad *) pos;
2928 			len       = udf_rw32(l_ad->len);
2929 			lb_num    = udf_rw32(l_ad->loc.lb_num);
2930 			vpart_num = udf_rw16(l_ad->loc.part_num);
2931 			DPRINTFIF(TRANSLATE,
2932 			    (l_ad->impl.im_used.flags &
2933 			     UDF_ADIMP_FLAGS_EXTENT_ERASED),
2934 			    ("UDF: got an `extent erased' flag in long_ad\n"));
2935 			break;
2936 		default:
2937 			/* can't be here */
2938 			return EINVAL;	/* for sure */
2939 		}
2940 
2941 		/* process extent */
2942 		flags   = UDF_EXT_FLAGS(len);
2943 		len     = UDF_EXT_LEN(len);
2944 
2945 		overlap = (len + sector_size -1) / sector_size;
2946 		if (from) {
2947 			if (from > overlap) {
2948 				from -= overlap;
2949 				overlap = 0;
2950 			} else {
2951 				lb_num  += from;	/* advance in extent */
2952 				overlap -= from;
2953 				from = 0;
2954 			}
2955 		}
2956 
2957 		overlap = MIN(overlap, pages);
2958 		while (overlap) {
2959 			switch (flags) {
2960 			case UDF_EXT_REDIRECT :
2961 				/* no support for allocation extentions yet */
2962 				/* TODO support for allocation extention */
2963 				return ENOENT;
2964 			case UDF_EXT_FREED :
2965 			case UDF_EXT_FREE :
2966 				transsec = UDF_TRANS_ZERO;
2967 				translen = overlap;
2968 				while (overlap && pages && translen) {
2969 					*map++ = transsec;
2970 					lb_num++;
2971 					overlap--; pages--; translen--;
2972 				}
2973 				break;
2974 			case UDF_EXT_ALLOCATED :
2975 				t_ad.loc.lb_num   = udf_rw32(lb_num);
2976 				t_ad.loc.part_num = udf_rw16(vpart_num);
2977 				error = udf_translate_vtop(ump,
2978 						&t_ad, &transsec32, &translen);
2979 				transsec = transsec32;
2980 				if (error)
2981 					return error;
2982 				while (overlap && pages && translen) {
2983 					*map++ = transsec;
2984 					lb_num++; transsec++;
2985 					overlap--; pages--; translen--;
2986 				}
2987 				break;
2988 			}
2989 		}
2990 		pos      += icblen;
2991 		alloclen -= icblen;
2992 	}
2993 	return 0;
2994 }
2995 
2996 /* --------------------------------------------------------------------- */
2997 
2998