1 /* $NetBSD: udf_strat_sequential.c,v 1.15 2016/05/24 09:55:57 reinoud Exp $ */ 2 3 /* 4 * Copyright (c) 2006, 2008 Reinoud Zandijk 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * 27 */ 28 29 #include <sys/cdefs.h> 30 #ifndef lint 31 __KERNEL_RCSID(0, "$NetBSD: udf_strat_sequential.c,v 1.15 2016/05/24 09:55:57 reinoud Exp $"); 32 #endif /* not lint */ 33 34 35 #if defined(_KERNEL_OPT) 36 #include "opt_compat_netbsd.h" 37 #endif 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/sysctl.h> 42 #include <sys/namei.h> 43 #include <sys/proc.h> 44 #include <sys/kernel.h> 45 #include <sys/vnode.h> 46 #include <miscfs/genfs/genfs_node.h> 47 #include <sys/mount.h> 48 #include <sys/buf.h> 49 #include <sys/file.h> 50 #include <sys/device.h> 51 #include <sys/disklabel.h> 52 #include <sys/ioctl.h> 53 #include <sys/malloc.h> 54 #include <sys/dirent.h> 55 #include <sys/stat.h> 56 #include <sys/conf.h> 57 #include <sys/kauth.h> 58 #include <sys/kthread.h> 59 #include <dev/clock_subr.h> 60 61 #include <fs/udf/ecma167-udf.h> 62 #include <fs/udf/udf_mount.h> 63 64 #include "udf.h" 65 #include "udf_subr.h" 66 #include "udf_bswap.h" 67 68 69 #define VTOI(vnode) ((struct udf_node *) vnode->v_data) 70 #define PRIV(ump) ((struct strat_private *) ump->strategy_private) 71 72 /* --------------------------------------------------------------------- */ 73 74 /* BUFQ's */ 75 #define UDF_SHED_MAX 3 76 77 #define UDF_SHED_READING 0 78 #define UDF_SHED_WRITING 1 79 #define UDF_SHED_SEQWRITING 2 80 81 struct strat_private { 82 struct pool desc_pool; /* node descriptors */ 83 84 lwp_t *queue_lwp; 85 kcondvar_t discstrat_cv; /* to wait on */ 86 kmutex_t discstrat_mutex; /* disc strategy */ 87 88 int run_thread; /* thread control */ 89 int sync_req; /* thread control */ 90 int cur_queue; 91 92 struct disk_strategy old_strategy_setting; 93 struct bufq_state *queues[UDF_SHED_MAX]; 94 struct timespec last_queued[UDF_SHED_MAX]; 95 }; 96 97 98 /* --------------------------------------------------------------------- */ 99 100 static void 101 udf_wr_nodedscr_callback(struct buf *buf) 102 { 103 struct udf_node *udf_node; 104 105 KASSERT(buf); 106 KASSERT(buf->b_data); 107 108 /* called when write action is done */ 109 DPRINTF(WRITE, ("udf_wr_nodedscr_callback(): node written out\n")); 110 111 udf_node = VTOI(buf->b_vp); 112 if (udf_node == NULL) { 113 putiobuf(buf); 114 printf("udf_wr_node_callback: NULL node?\n"); 115 return; 116 } 117 118 /* XXX right flags to mark dirty again on error? */ 119 if (buf->b_error) { 120 udf_node->i_flags |= IN_MODIFIED | IN_ACCESSED; 121 /* XXX TODO reshedule on error */ 122 } 123 124 /* decrement outstanding_nodedscr */ 125 KASSERT(udf_node->outstanding_nodedscr >= 1); 126 udf_node->outstanding_nodedscr--; 127 if (udf_node->outstanding_nodedscr == 0) { 128 /* first unlock the node */ 129 UDF_UNLOCK_NODE(udf_node, 0); 130 wakeup(&udf_node->outstanding_nodedscr); 131 } 132 133 putiobuf(buf); 134 } 135 136 /* --------------------------------------------------------------------- */ 137 138 static int 139 udf_create_logvol_dscr_seq(struct udf_strat_args *args) 140 { 141 union dscrptr **dscrptr = &args->dscr; 142 struct udf_mount *ump = args->ump; 143 struct strat_private *priv = PRIV(ump); 144 uint32_t lb_size; 145 146 lb_size = udf_rw32(ump->logical_vol->lb_size); 147 *dscrptr = pool_get(&priv->desc_pool, PR_WAITOK); 148 memset(*dscrptr, 0, lb_size); 149 150 return 0; 151 } 152 153 154 static void 155 udf_free_logvol_dscr_seq(struct udf_strat_args *args) 156 { 157 union dscrptr *dscr = args->dscr; 158 struct udf_mount *ump = args->ump; 159 struct strat_private *priv = PRIV(ump); 160 161 pool_put(&priv->desc_pool, dscr); 162 } 163 164 165 static int 166 udf_read_logvol_dscr_seq(struct udf_strat_args *args) 167 { 168 union dscrptr **dscrptr = &args->dscr; 169 union dscrptr *tmpdscr; 170 struct udf_mount *ump = args->ump; 171 struct long_ad *icb = args->icb; 172 struct strat_private *priv = PRIV(ump); 173 uint32_t lb_size; 174 uint32_t sector, dummy; 175 int error; 176 177 lb_size = udf_rw32(ump->logical_vol->lb_size); 178 179 error = udf_translate_vtop(ump, icb, §or, &dummy); 180 if (error) 181 return error; 182 183 /* try to read in fe/efe */ 184 error = udf_read_phys_dscr(ump, sector, M_UDFTEMP, &tmpdscr); 185 if (error) 186 return error; 187 188 *dscrptr = pool_get(&priv->desc_pool, PR_WAITOK); 189 memcpy(*dscrptr, tmpdscr, lb_size); 190 free(tmpdscr, M_UDFTEMP); 191 192 return 0; 193 } 194 195 196 static int 197 udf_write_logvol_dscr_seq(struct udf_strat_args *args) 198 { 199 union dscrptr *dscr = args->dscr; 200 struct udf_mount *ump = args->ump; 201 struct udf_node *udf_node = args->udf_node; 202 struct long_ad *icb = args->icb; 203 int waitfor = args->waitfor; 204 uint32_t logsectornr, sectornr, dummy; 205 int error, vpart; 206 207 /* 208 * we have to decide if we write it out sequential or at its fixed 209 * position by examining the partition its (to be) written on. 210 */ 211 vpart = udf_rw16(udf_node->loc.loc.part_num); 212 logsectornr = udf_rw32(icb->loc.lb_num); 213 sectornr = 0; 214 if (ump->vtop_tp[vpart] != UDF_VTOP_TYPE_VIRT) { 215 error = udf_translate_vtop(ump, icb, §ornr, &dummy); 216 if (error) 217 goto out; 218 } 219 220 if (waitfor) { 221 DPRINTF(WRITE, ("udf_write_logvol_dscr: sync write\n")); 222 223 error = udf_write_phys_dscr_sync(ump, udf_node, UDF_C_NODE, 224 dscr, sectornr, logsectornr); 225 } else { 226 DPRINTF(WRITE, ("udf_write_logvol_dscr: no wait, async write\n")); 227 228 error = udf_write_phys_dscr_async(ump, udf_node, UDF_C_NODE, 229 dscr, sectornr, logsectornr, udf_wr_nodedscr_callback); 230 /* will be UNLOCKED in call back */ 231 return error; 232 } 233 out: 234 udf_node->outstanding_nodedscr--; 235 if (udf_node->outstanding_nodedscr == 0) { 236 UDF_UNLOCK_NODE(udf_node, 0); 237 wakeup(&udf_node->outstanding_nodedscr); 238 } 239 240 return error; 241 } 242 243 /* --------------------------------------------------------------------- */ 244 245 /* 246 * Main file-system specific sheduler. Due to the nature of optical media 247 * sheduling can't be performed in the traditional way. Most OS 248 * implementations i've seen thus read or write a file atomically giving all 249 * kinds of side effects. 250 * 251 * This implementation uses a kernel thread to shedule the queued requests in 252 * such a way that is semi-optimal for optical media; this means aproximately 253 * (R*|(Wr*|Ws*))* since switching between reading and writing is expensive in 254 * time. 255 */ 256 257 static void 258 udf_queuebuf_seq(struct udf_strat_args *args) 259 { 260 struct udf_mount *ump = args->ump; 261 struct buf *nestbuf = args->nestbuf; 262 struct strat_private *priv = PRIV(ump); 263 int queue; 264 int what; 265 266 KASSERT(ump); 267 KASSERT(nestbuf); 268 KASSERT(nestbuf->b_iodone == nestiobuf_iodone); 269 270 what = nestbuf->b_udf_c_type; 271 queue = UDF_SHED_READING; 272 if ((nestbuf->b_flags & B_READ) == 0) { 273 /* writing */ 274 queue = UDF_SHED_SEQWRITING; 275 if (what == UDF_C_ABSOLUTE) 276 queue = UDF_SHED_WRITING; 277 } 278 279 /* use our own sheduler lists for more complex sheduling */ 280 mutex_enter(&priv->discstrat_mutex); 281 bufq_put(priv->queues[queue], nestbuf); 282 vfs_timestamp(&priv->last_queued[queue]); 283 mutex_exit(&priv->discstrat_mutex); 284 285 /* signal our thread that there might be something to do */ 286 cv_signal(&priv->discstrat_cv); 287 } 288 289 /* --------------------------------------------------------------------- */ 290 291 static void 292 udf_sync_caches_seq(struct udf_strat_args *args) 293 { 294 struct udf_mount *ump = args->ump; 295 struct strat_private *priv = PRIV(ump); 296 297 /* we might be called during unmount inadvertedly, be on safe side */ 298 if (!priv) 299 return; 300 301 /* signal our thread that there might be something to do */ 302 priv->sync_req = 1; 303 cv_signal(&priv->discstrat_cv); 304 305 mutex_enter(&priv->discstrat_mutex); 306 while (priv->sync_req) { 307 cv_timedwait(&priv->discstrat_cv, 308 &priv->discstrat_mutex, hz/8); 309 } 310 mutex_exit(&priv->discstrat_mutex); 311 } 312 313 /* --------------------------------------------------------------------- */ 314 315 /* TODO convert to lb_size */ 316 static void 317 udf_VAT_mapping_update(struct udf_mount *ump, struct buf *buf, uint32_t lb_map) 318 { 319 union dscrptr *fdscr = (union dscrptr *) buf->b_data; 320 struct vnode *vp = buf->b_vp; 321 struct udf_node *udf_node = VTOI(vp); 322 uint32_t lb_num; 323 uint32_t udf_rw32_lbmap; 324 int c_type = buf->b_udf_c_type; 325 int error; 326 327 /* only interested when we're using a VAT */ 328 KASSERT(ump->vat_node); 329 KASSERT(ump->vtop_alloc[ump->node_part] == UDF_ALLOC_VAT); 330 331 /* only nodes are recorded in the VAT */ 332 /* NOTE: and the fileset descriptor (FIXME ?) */ 333 if (c_type != UDF_C_NODE) 334 return; 335 336 udf_rw32_lbmap = udf_rw32(lb_map); 337 338 /* if we're the VAT itself, only update our assigned sector number */ 339 if (udf_node == ump->vat_node) { 340 fdscr->tag.tag_loc = udf_rw32_lbmap; 341 udf_validate_tag_sum(fdscr); 342 DPRINTF(TRANSLATE, ("VAT assigned to sector %u\n", 343 udf_rw32(udf_rw32_lbmap))); 344 /* no use mapping the VAT node in the VAT */ 345 return; 346 } 347 348 /* record new position in VAT file */ 349 lb_num = udf_rw32(fdscr->tag.tag_loc); 350 351 /* lb_num = udf_rw32(udf_node->write_loc.loc.lb_num); */ 352 353 DPRINTF(TRANSLATE, ("VAT entry change (log %u -> phys %u)\n", 354 lb_num, lb_map)); 355 356 /* VAT should be the longer than this write, can't go wrong */ 357 KASSERT(lb_num <= ump->vat_entries); 358 359 mutex_enter(&ump->allocate_mutex); 360 error = udf_vat_write(ump->vat_node, 361 (uint8_t *) &udf_rw32_lbmap, 4, 362 ump->vat_offset + lb_num * 4); 363 mutex_exit(&ump->allocate_mutex); 364 365 if (error) 366 panic( "udf_VAT_mapping_update: HELP! i couldn't " 367 "write in the VAT file ?\n"); 368 } 369 370 371 static void 372 udf_issue_buf(struct udf_mount *ump, int queue, struct buf *buf) 373 { 374 union dscrptr *dscr; 375 struct long_ad *node_ad_cpy; 376 struct part_desc *pdesc; 377 uint64_t *lmapping, *lmappos; 378 uint32_t sectornr, bpos; 379 uint32_t ptov; 380 uint16_t vpart_num; 381 uint8_t *fidblk; 382 int sector_size = ump->discinfo.sector_size; 383 int blks = sector_size / DEV_BSIZE; 384 int len, buf_len; 385 386 /* if reading, just pass to the device's STRATEGY */ 387 if (queue == UDF_SHED_READING) { 388 DPRINTF(SHEDULE, ("\nudf_issue_buf READ %p : sector %d type %d," 389 "b_resid %d, b_bcount %d, b_bufsize %d\n", 390 buf, (uint32_t) buf->b_blkno / blks, buf->b_udf_c_type, 391 buf->b_resid, buf->b_bcount, buf->b_bufsize)); 392 VOP_STRATEGY(ump->devvp, buf); 393 return; 394 } 395 396 if (queue == UDF_SHED_WRITING) { 397 DPRINTF(SHEDULE, ("\nudf_issue_buf WRITE %p : sector %d " 398 "type %d, b_resid %d, b_bcount %d, b_bufsize %d\n", 399 buf, (uint32_t) buf->b_blkno / blks, buf->b_udf_c_type, 400 buf->b_resid, buf->b_bcount, buf->b_bufsize)); 401 KASSERT(buf->b_udf_c_type == UDF_C_ABSOLUTE); 402 403 // udf_fixup_node_internals(ump, buf->b_data, buf->b_udf_c_type); 404 VOP_STRATEGY(ump->devvp, buf); 405 return; 406 } 407 408 KASSERT(queue == UDF_SHED_SEQWRITING); 409 DPRINTF(SHEDULE, ("\nudf_issue_buf SEQWRITE %p : sector XXXX " 410 "type %d, b_resid %d, b_bcount %d, b_bufsize %d\n", 411 buf, buf->b_udf_c_type, buf->b_resid, buf->b_bcount, 412 buf->b_bufsize)); 413 414 /* 415 * Buffers should not have been allocated to disc addresses yet on 416 * this queue. Note that a buffer can get multiple extents allocated. 417 * 418 * lmapping contains lb_num relative to base partition. 419 */ 420 lmapping = ump->la_lmapping; 421 node_ad_cpy = ump->la_node_ad_cpy; 422 423 /* logically allocate buf and map it in the file */ 424 udf_late_allocate_buf(ump, buf, lmapping, node_ad_cpy, &vpart_num); 425 426 /* 427 * NOTE We are using the knowledge here that sequential media will 428 * always be mapped linearly. Thus no use to explicitly translate the 429 * lmapping list. 430 */ 431 432 /* calculate offset from physical base partition */ 433 pdesc = ump->partitions[ump->vtop[vpart_num]]; 434 ptov = udf_rw32(pdesc->start_loc); 435 436 /* set buffers blkno to the physical block number */ 437 buf->b_blkno = (*lmapping + ptov) * blks; 438 439 /* fixate floating descriptors */ 440 if (buf->b_udf_c_type == UDF_C_FLOAT_DSCR) { 441 /* set our tag location to the absolute position */ 442 dscr = (union dscrptr *) buf->b_data; 443 dscr->tag.tag_loc = udf_rw32(*lmapping + ptov); 444 udf_validate_tag_and_crc_sums(dscr); 445 } 446 447 /* update mapping in the VAT */ 448 if (buf->b_udf_c_type == UDF_C_NODE) { 449 udf_VAT_mapping_update(ump, buf, *lmapping); 450 udf_fixup_node_internals(ump, buf->b_data, buf->b_udf_c_type); 451 } 452 453 /* if we have FIDs, fixup using the new allocation table */ 454 if (buf->b_udf_c_type == UDF_C_FIDS) { 455 buf_len = buf->b_bcount; 456 bpos = 0; 457 lmappos = lmapping; 458 while (buf_len) { 459 sectornr = *lmappos++; 460 len = MIN(buf_len, sector_size); 461 fidblk = (uint8_t *) buf->b_data + bpos; 462 udf_fixup_fid_block(fidblk, sector_size, 463 0, len, sectornr); 464 bpos += len; 465 buf_len -= len; 466 } 467 } 468 469 VOP_STRATEGY(ump->devvp, buf); 470 } 471 472 473 static void 474 udf_doshedule(struct udf_mount *ump) 475 { 476 struct buf *buf; 477 struct timespec now, *last; 478 struct strat_private *priv = PRIV(ump); 479 void (*b_callback)(struct buf *); 480 int new_queue; 481 int error; 482 483 buf = bufq_get(priv->queues[priv->cur_queue]); 484 if (buf) { 485 /* transfer from the current queue to the device queue */ 486 mutex_exit(&priv->discstrat_mutex); 487 488 /* transform buffer to synchronous; XXX needed? */ 489 b_callback = buf->b_iodone; 490 buf->b_iodone = NULL; 491 CLR(buf->b_flags, B_ASYNC); 492 493 /* issue and wait on completion */ 494 udf_issue_buf(ump, priv->cur_queue, buf); 495 biowait(buf); 496 497 mutex_enter(&priv->discstrat_mutex); 498 499 /* if there is an error, repair this error, otherwise propagate */ 500 if (buf->b_error && ((buf->b_flags & B_READ) == 0)) { 501 /* check what we need to do */ 502 panic("UDF write error, can't handle yet!\n"); 503 } 504 505 /* propagate result to higher layers */ 506 if (b_callback) { 507 buf->b_iodone = b_callback; 508 (*buf->b_iodone)(buf); 509 } 510 511 return; 512 } 513 514 /* Check if we're idling in this state */ 515 vfs_timestamp(&now); 516 last = &priv->last_queued[priv->cur_queue]; 517 if (ump->discinfo.mmc_class == MMC_CLASS_CD) { 518 /* dont switch too fast for CD media; its expensive in time */ 519 if (now.tv_sec - last->tv_sec < 3) 520 return; 521 } 522 523 /* check if we can/should switch */ 524 new_queue = priv->cur_queue; 525 526 if (bufq_peek(priv->queues[UDF_SHED_READING])) 527 new_queue = UDF_SHED_READING; 528 if (bufq_peek(priv->queues[UDF_SHED_WRITING])) /* only for unmount */ 529 new_queue = UDF_SHED_WRITING; 530 if (bufq_peek(priv->queues[UDF_SHED_SEQWRITING])) 531 new_queue = UDF_SHED_SEQWRITING; 532 if (priv->cur_queue == UDF_SHED_READING) { 533 if (new_queue == UDF_SHED_SEQWRITING) { 534 /* TODO use flag to signal if this is needed */ 535 mutex_exit(&priv->discstrat_mutex); 536 537 /* update trackinfo for data and metadata */ 538 error = udf_update_trackinfo(ump, 539 &ump->data_track); 540 assert(error == 0); 541 error = udf_update_trackinfo(ump, 542 &ump->metadata_track); 543 assert(error == 0); 544 mutex_enter(&priv->discstrat_mutex); 545 __USE(error); 546 } 547 } 548 549 if (new_queue != priv->cur_queue) { 550 DPRINTF(SHEDULE, ("switching from %d to %d\n", 551 priv->cur_queue, new_queue)); 552 } 553 554 priv->cur_queue = new_queue; 555 } 556 557 558 static void 559 udf_discstrat_thread(void *arg) 560 { 561 struct udf_mount *ump = (struct udf_mount *) arg; 562 struct strat_private *priv = PRIV(ump); 563 int empty; 564 565 empty = 1; 566 mutex_enter(&priv->discstrat_mutex); 567 while (priv->run_thread || !empty || priv->sync_req) { 568 /* process the current selected queue */ 569 udf_doshedule(ump); 570 empty = (bufq_peek(priv->queues[UDF_SHED_READING]) == NULL); 571 empty &= (bufq_peek(priv->queues[UDF_SHED_WRITING]) == NULL); 572 empty &= (bufq_peek(priv->queues[UDF_SHED_SEQWRITING]) == NULL); 573 574 /* wait for more if needed */ 575 if (empty) { 576 if (priv->sync_req) { 577 /* on sync, we need to simulate a read->write transition */ 578 udf_mmc_synchronise_caches(ump); 579 priv->cur_queue = UDF_SHED_READING; 580 priv->sync_req = 0; 581 } 582 cv_timedwait(&priv->discstrat_cv, 583 &priv->discstrat_mutex, hz/8); 584 } 585 } 586 mutex_exit(&priv->discstrat_mutex); 587 588 wakeup(&priv->run_thread); 589 kthread_exit(0); 590 /* not reached */ 591 } 592 593 /* --------------------------------------------------------------------- */ 594 595 static void 596 udf_discstrat_init_seq(struct udf_strat_args *args) 597 { 598 struct udf_mount *ump = args->ump; 599 struct strat_private *priv = PRIV(ump); 600 struct disk_strategy dkstrat; 601 uint32_t lb_size; 602 603 KASSERT(ump); 604 KASSERT(ump->logical_vol); 605 KASSERT(priv == NULL); 606 607 lb_size = udf_rw32(ump->logical_vol->lb_size); 608 KASSERT(lb_size > 0); 609 610 /* initialise our memory space */ 611 ump->strategy_private = malloc(sizeof(struct strat_private), 612 M_UDFTEMP, M_WAITOK); 613 priv = ump->strategy_private; 614 memset(priv, 0 , sizeof(struct strat_private)); 615 616 /* initialise locks */ 617 cv_init(&priv->discstrat_cv, "udfstrat"); 618 mutex_init(&priv->discstrat_mutex, MUTEX_DEFAULT, IPL_NONE); 619 620 /* 621 * Initialise pool for descriptors associated with nodes. This is done 622 * in lb_size units though currently lb_size is dictated to be 623 * sector_size. 624 */ 625 pool_init(&priv->desc_pool, lb_size, 0, 0, 0, "udf_desc_pool", NULL, 626 IPL_NONE); 627 628 /* 629 * remember old device strategy method and explicit set method 630 * `discsort' since we have our own more complex strategy that is not 631 * implementable on the CD device and other strategies will get in the 632 * way. 633 */ 634 memset(&priv->old_strategy_setting, 0, 635 sizeof(struct disk_strategy)); 636 VOP_IOCTL(ump->devvp, DIOCGSTRATEGY, &priv->old_strategy_setting, 637 FREAD | FKIOCTL, NOCRED); 638 memset(&dkstrat, 0, sizeof(struct disk_strategy)); 639 strcpy(dkstrat.dks_name, "discsort"); 640 VOP_IOCTL(ump->devvp, DIOCSSTRATEGY, &dkstrat, FWRITE | FKIOCTL, 641 NOCRED); 642 643 /* initialise our internal sheduler */ 644 priv->cur_queue = UDF_SHED_READING; 645 bufq_alloc(&priv->queues[UDF_SHED_READING], "disksort", 646 BUFQ_SORT_RAWBLOCK); 647 bufq_alloc(&priv->queues[UDF_SHED_WRITING], "disksort", 648 BUFQ_SORT_RAWBLOCK); 649 bufq_alloc(&priv->queues[UDF_SHED_SEQWRITING], "fcfs", 0); 650 vfs_timestamp(&priv->last_queued[UDF_SHED_READING]); 651 vfs_timestamp(&priv->last_queued[UDF_SHED_WRITING]); 652 vfs_timestamp(&priv->last_queued[UDF_SHED_SEQWRITING]); 653 654 /* create our disk strategy thread */ 655 priv->run_thread = 1; 656 priv->sync_req = 0; 657 if (kthread_create(PRI_NONE, 0 /* KTHREAD_MPSAFE*/, NULL /* cpu_info*/, 658 udf_discstrat_thread, ump, &priv->queue_lwp, 659 "%s", "udf_rw")) { 660 panic("fork udf_rw"); 661 } 662 } 663 664 665 static void 666 udf_discstrat_finish_seq(struct udf_strat_args *args) 667 { 668 struct udf_mount *ump = args->ump; 669 struct strat_private *priv = PRIV(ump); 670 int error; 671 672 if (ump == NULL) 673 return; 674 675 /* stop our sheduling thread */ 676 KASSERT(priv->run_thread == 1); 677 priv->run_thread = 0; 678 wakeup(priv->queue_lwp); 679 do { 680 error = tsleep(&priv->run_thread, PRIBIO+1, 681 "udfshedfin", hz); 682 } while (error); 683 /* kthread should be finished now */ 684 685 /* set back old device strategy method */ 686 VOP_IOCTL(ump->devvp, DIOCSSTRATEGY, &priv->old_strategy_setting, 687 FWRITE, NOCRED); 688 689 /* destroy our pool */ 690 pool_destroy(&priv->desc_pool); 691 692 mutex_destroy(&priv->discstrat_mutex); 693 cv_destroy(&priv->discstrat_cv); 694 695 /* free our private space */ 696 free(ump->strategy_private, M_UDFTEMP); 697 ump->strategy_private = NULL; 698 } 699 700 /* --------------------------------------------------------------------- */ 701 702 struct udf_strategy udf_strat_sequential = 703 { 704 udf_create_logvol_dscr_seq, 705 udf_free_logvol_dscr_seq, 706 udf_read_logvol_dscr_seq, 707 udf_write_logvol_dscr_seq, 708 udf_queuebuf_seq, 709 udf_sync_caches_seq, 710 udf_discstrat_init_seq, 711 udf_discstrat_finish_seq 712 }; 713 714 715