1*190e92d8Sjoerg //===-- lib/divtf3.c - Quad-precision division --------------------*- C -*-===//
2*190e92d8Sjoerg //
3*190e92d8Sjoerg // The LLVM Compiler Infrastructure
4*190e92d8Sjoerg //
5*190e92d8Sjoerg // This file is dual licensed under the MIT and the University of Illinois Open
6*190e92d8Sjoerg // Source Licenses. See LICENSE.TXT for details.
7*190e92d8Sjoerg //
8*190e92d8Sjoerg //===----------------------------------------------------------------------===//
9*190e92d8Sjoerg //
10*190e92d8Sjoerg // This file implements quad-precision soft-float division
11*190e92d8Sjoerg // with the IEEE-754 default rounding (to nearest, ties to even).
12*190e92d8Sjoerg //
13*190e92d8Sjoerg // For simplicity, this implementation currently flushes denormals to zero.
14*190e92d8Sjoerg // It should be a fairly straightforward exercise to implement gradual
15*190e92d8Sjoerg // underflow with correct rounding.
16*190e92d8Sjoerg //
17*190e92d8Sjoerg //===----------------------------------------------------------------------===//
18*190e92d8Sjoerg
19*190e92d8Sjoerg #define QUAD_PRECISION
20*190e92d8Sjoerg #include "fp_lib.h"
21*190e92d8Sjoerg
22*190e92d8Sjoerg #if defined(CRT_HAS_128BIT) && defined(CRT_LDBL_128BIT)
__divtf3(fp_t a,fp_t b)23*190e92d8Sjoerg COMPILER_RT_ABI fp_t __divtf3(fp_t a, fp_t b) {
24*190e92d8Sjoerg
25*190e92d8Sjoerg const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
26*190e92d8Sjoerg const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
27*190e92d8Sjoerg const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
28*190e92d8Sjoerg
29*190e92d8Sjoerg rep_t aSignificand = toRep(a) & significandMask;
30*190e92d8Sjoerg rep_t bSignificand = toRep(b) & significandMask;
31*190e92d8Sjoerg int scale = 0;
32*190e92d8Sjoerg
33*190e92d8Sjoerg // Detect if a or b is zero, denormal, infinity, or NaN.
34*190e92d8Sjoerg if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
35*190e92d8Sjoerg
36*190e92d8Sjoerg const rep_t aAbs = toRep(a) & absMask;
37*190e92d8Sjoerg const rep_t bAbs = toRep(b) & absMask;
38*190e92d8Sjoerg
39*190e92d8Sjoerg // NaN / anything = qNaN
40*190e92d8Sjoerg if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
41*190e92d8Sjoerg // anything / NaN = qNaN
42*190e92d8Sjoerg if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
43*190e92d8Sjoerg
44*190e92d8Sjoerg if (aAbs == infRep) {
45*190e92d8Sjoerg // infinity / infinity = NaN
46*190e92d8Sjoerg if (bAbs == infRep) return fromRep(qnanRep);
47*190e92d8Sjoerg // infinity / anything else = +/- infinity
48*190e92d8Sjoerg else return fromRep(aAbs | quotientSign);
49*190e92d8Sjoerg }
50*190e92d8Sjoerg
51*190e92d8Sjoerg // anything else / infinity = +/- 0
52*190e92d8Sjoerg if (bAbs == infRep) return fromRep(quotientSign);
53*190e92d8Sjoerg
54*190e92d8Sjoerg if (!aAbs) {
55*190e92d8Sjoerg // zero / zero = NaN
56*190e92d8Sjoerg if (!bAbs) return fromRep(qnanRep);
57*190e92d8Sjoerg // zero / anything else = +/- zero
58*190e92d8Sjoerg else return fromRep(quotientSign);
59*190e92d8Sjoerg }
60*190e92d8Sjoerg // anything else / zero = +/- infinity
61*190e92d8Sjoerg if (!bAbs) return fromRep(infRep | quotientSign);
62*190e92d8Sjoerg
63*190e92d8Sjoerg // one or both of a or b is denormal, the other (if applicable) is a
64*190e92d8Sjoerg // normal number. Renormalize one or both of a and b, and set scale to
65*190e92d8Sjoerg // include the necessary exponent adjustment.
66*190e92d8Sjoerg if (aAbs < implicitBit) scale += normalize(&aSignificand);
67*190e92d8Sjoerg if (bAbs < implicitBit) scale -= normalize(&bSignificand);
68*190e92d8Sjoerg }
69*190e92d8Sjoerg
70*190e92d8Sjoerg // Or in the implicit significand bit. (If we fell through from the
71*190e92d8Sjoerg // denormal path it was already set by normalize( ), but setting it twice
72*190e92d8Sjoerg // won't hurt anything.)
73*190e92d8Sjoerg aSignificand |= implicitBit;
74*190e92d8Sjoerg bSignificand |= implicitBit;
75*190e92d8Sjoerg int quotientExponent = aExponent - bExponent + scale;
76*190e92d8Sjoerg
77*190e92d8Sjoerg // Align the significand of b as a Q63 fixed-point number in the range
78*190e92d8Sjoerg // [1, 2.0) and get a Q64 approximate reciprocal using a small minimax
79*190e92d8Sjoerg // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
80*190e92d8Sjoerg // is accurate to about 3.5 binary digits.
81*190e92d8Sjoerg const uint64_t q63b = bSignificand >> 49;
82*190e92d8Sjoerg uint64_t recip64 = UINT64_C(0x7504f333F9DE6484) - q63b;
83*190e92d8Sjoerg // 0x7504f333F9DE6484 / 2^64 + 1 = 3/4 + 1/sqrt(2)
84*190e92d8Sjoerg
85*190e92d8Sjoerg // Now refine the reciprocal estimate using a Newton-Raphson iteration:
86*190e92d8Sjoerg //
87*190e92d8Sjoerg // x1 = x0 * (2 - x0 * b)
88*190e92d8Sjoerg //
89*190e92d8Sjoerg // This doubles the number of correct binary digits in the approximation
90*190e92d8Sjoerg // with each iteration.
91*190e92d8Sjoerg uint64_t correction64;
92*190e92d8Sjoerg correction64 = -((rep_t)recip64 * q63b >> 64);
93*190e92d8Sjoerg recip64 = (rep_t)recip64 * correction64 >> 63;
94*190e92d8Sjoerg correction64 = -((rep_t)recip64 * q63b >> 64);
95*190e92d8Sjoerg recip64 = (rep_t)recip64 * correction64 >> 63;
96*190e92d8Sjoerg correction64 = -((rep_t)recip64 * q63b >> 64);
97*190e92d8Sjoerg recip64 = (rep_t)recip64 * correction64 >> 63;
98*190e92d8Sjoerg correction64 = -((rep_t)recip64 * q63b >> 64);
99*190e92d8Sjoerg recip64 = (rep_t)recip64 * correction64 >> 63;
100*190e92d8Sjoerg correction64 = -((rep_t)recip64 * q63b >> 64);
101*190e92d8Sjoerg recip64 = (rep_t)recip64 * correction64 >> 63;
102*190e92d8Sjoerg
103*190e92d8Sjoerg // recip64 might have overflowed to exactly zero in the preceeding
104*190e92d8Sjoerg // computation if the high word of b is exactly 1.0. This would sabotage
105*190e92d8Sjoerg // the full-width final stage of the computation that follows, so we adjust
106*190e92d8Sjoerg // recip64 downward by one bit.
107*190e92d8Sjoerg recip64--;
108*190e92d8Sjoerg
109*190e92d8Sjoerg // We need to perform one more iteration to get us to 112 binary digits;
110*190e92d8Sjoerg // The last iteration needs to happen with extra precision.
111*190e92d8Sjoerg const uint64_t q127blo = bSignificand << 15;
112*190e92d8Sjoerg rep_t correction, reciprocal;
113*190e92d8Sjoerg
114*190e92d8Sjoerg // NOTE: This operation is equivalent to __multi3, which is not implemented
115*190e92d8Sjoerg // in some architechure
116*190e92d8Sjoerg rep_t r64q63, r64q127, r64cH, r64cL, dummy;
117*190e92d8Sjoerg wideMultiply((rep_t)recip64, (rep_t)q63b, &dummy, &r64q63);
118*190e92d8Sjoerg wideMultiply((rep_t)recip64, (rep_t)q127blo, &dummy, &r64q127);
119*190e92d8Sjoerg
120*190e92d8Sjoerg correction = -(r64q63 + (r64q127 >> 64));
121*190e92d8Sjoerg
122*190e92d8Sjoerg uint64_t cHi = correction >> 64;
123*190e92d8Sjoerg uint64_t cLo = correction;
124*190e92d8Sjoerg
125*190e92d8Sjoerg wideMultiply((rep_t)recip64, (rep_t)cHi, &dummy, &r64cH);
126*190e92d8Sjoerg wideMultiply((rep_t)recip64, (rep_t)cLo, &dummy, &r64cL);
127*190e92d8Sjoerg
128*190e92d8Sjoerg reciprocal = r64cH + (r64cL >> 64);
129*190e92d8Sjoerg
130*190e92d8Sjoerg // We already adjusted the 64-bit estimate, now we need to adjust the final
131*190e92d8Sjoerg // 128-bit reciprocal estimate downward to ensure that it is strictly smaller
132*190e92d8Sjoerg // than the infinitely precise exact reciprocal. Because the computation
133*190e92d8Sjoerg // of the Newton-Raphson step is truncating at every step, this adjustment
134*190e92d8Sjoerg // is small; most of the work is already done.
135*190e92d8Sjoerg reciprocal -= 2;
136*190e92d8Sjoerg
137*190e92d8Sjoerg // The numerical reciprocal is accurate to within 2^-112, lies in the
138*190e92d8Sjoerg // interval [0.5, 1.0), and is strictly smaller than the true reciprocal
139*190e92d8Sjoerg // of b. Multiplying a by this reciprocal thus gives a numerical q = a/b
140*190e92d8Sjoerg // in Q127 with the following properties:
141*190e92d8Sjoerg //
142*190e92d8Sjoerg // 1. q < a/b
143*190e92d8Sjoerg // 2. q is in the interval [0.5, 2.0)
144*190e92d8Sjoerg // 3. the error in q is bounded away from 2^-113 (actually, we have a
145*190e92d8Sjoerg // couple of bits to spare, but this is all we need).
146*190e92d8Sjoerg
147*190e92d8Sjoerg // We need a 128 x 128 multiply high to compute q, which isn't a basic
148*190e92d8Sjoerg // operation in C, so we need to be a little bit fussy.
149*190e92d8Sjoerg rep_t quotient, quotientLo;
150*190e92d8Sjoerg wideMultiply(aSignificand << 2, reciprocal, "ient, "ientLo);
151*190e92d8Sjoerg
152*190e92d8Sjoerg // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
153*190e92d8Sjoerg // In either case, we are going to compute a residual of the form
154*190e92d8Sjoerg //
155*190e92d8Sjoerg // r = a - q*b
156*190e92d8Sjoerg //
157*190e92d8Sjoerg // We know from the construction of q that r satisfies:
158*190e92d8Sjoerg //
159*190e92d8Sjoerg // 0 <= r < ulp(q)*b
160*190e92d8Sjoerg //
161*190e92d8Sjoerg // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
162*190e92d8Sjoerg // already have the correct result. The exact halfway case cannot occur.
163*190e92d8Sjoerg // We also take this time to right shift quotient if it falls in the [1,2)
164*190e92d8Sjoerg // range and adjust the exponent accordingly.
165*190e92d8Sjoerg rep_t residual;
166*190e92d8Sjoerg rep_t qb;
167*190e92d8Sjoerg
168*190e92d8Sjoerg if (quotient < (implicitBit << 1)) {
169*190e92d8Sjoerg wideMultiply(quotient, bSignificand, &dummy, &qb);
170*190e92d8Sjoerg residual = (aSignificand << 113) - qb;
171*190e92d8Sjoerg quotientExponent--;
172*190e92d8Sjoerg } else {
173*190e92d8Sjoerg quotient >>= 1;
174*190e92d8Sjoerg wideMultiply(quotient, bSignificand, &dummy, &qb);
175*190e92d8Sjoerg residual = (aSignificand << 112) - qb;
176*190e92d8Sjoerg }
177*190e92d8Sjoerg
178*190e92d8Sjoerg const int writtenExponent = quotientExponent + exponentBias;
179*190e92d8Sjoerg
180*190e92d8Sjoerg if (writtenExponent >= maxExponent) {
181*190e92d8Sjoerg // If we have overflowed the exponent, return infinity.
182*190e92d8Sjoerg return fromRep(infRep | quotientSign);
183*190e92d8Sjoerg }
184*190e92d8Sjoerg else if (writtenExponent < 1) {
185*190e92d8Sjoerg // Flush denormals to zero. In the future, it would be nice to add
186*190e92d8Sjoerg // code to round them correctly.
187*190e92d8Sjoerg return fromRep(quotientSign);
188*190e92d8Sjoerg }
189*190e92d8Sjoerg else {
190*190e92d8Sjoerg const bool round = (residual << 1) >= bSignificand;
191*190e92d8Sjoerg // Clear the implicit bit
192*190e92d8Sjoerg rep_t absResult = quotient & significandMask;
193*190e92d8Sjoerg // Insert the exponent
194*190e92d8Sjoerg absResult |= (rep_t)writtenExponent << significandBits;
195*190e92d8Sjoerg // Round
196*190e92d8Sjoerg absResult += round;
197*190e92d8Sjoerg // Insert the sign and return
198*190e92d8Sjoerg const long double result = fromRep(absResult | quotientSign);
199*190e92d8Sjoerg return result;
200*190e92d8Sjoerg }
201*190e92d8Sjoerg }
202*190e92d8Sjoerg
203*190e92d8Sjoerg #endif
204