xref: /netbsd-src/sys/dev/sysmon/sysmon_envsys.c (revision aad9773e38ed2370a628a6416e098f9008fc10a7)
1 /*	$NetBSD: sysmon_envsys.c,v 1.128 2014/11/23 10:00:20 ozaki-r Exp $	*/
2 
3 /*-
4  * Copyright (c) 2007, 2008 Juan Romero Pardines.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /*-
29  * Copyright (c) 2000 Zembu Labs, Inc.
30  * All rights reserved.
31  *
32  * Author: Jason R. Thorpe <thorpej@zembu.com>
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 3. All advertising materials mentioning features or use of this software
43  *    must display the following acknowledgement:
44  *	This product includes software developed by Zembu Labs, Inc.
45  * 4. Neither the name of Zembu Labs nor the names of its employees may
46  *    be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY ZEMBU LABS, INC. ``AS IS'' AND ANY EXPRESS
50  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
51  * RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
52  * CLAIMED.  IN NO EVENT SHALL ZEMBU LABS BE LIABLE FOR ANY DIRECT, INDIRECT,
53  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
54  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
55  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
56  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
57  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
58  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 /*
62  * Environmental sensor framework for sysmon, exported to userland
63  * with proplib(3).
64  */
65 
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: sysmon_envsys.c,v 1.128 2014/11/23 10:00:20 ozaki-r Exp $");
68 
69 #include <sys/param.h>
70 #include <sys/types.h>
71 #include <sys/conf.h>
72 #include <sys/errno.h>
73 #include <sys/fcntl.h>
74 #include <sys/kernel.h>
75 #include <sys/systm.h>
76 #include <sys/proc.h>
77 #include <sys/mutex.h>
78 #include <sys/kmem.h>
79 #include <sys/rnd.h>
80 
81 #include <dev/sysmon/sysmonvar.h>
82 #include <dev/sysmon/sysmon_envsysvar.h>
83 #include <dev/sysmon/sysmon_taskq.h>
84 
85 kmutex_t sme_global_mtx;
86 
87 prop_dictionary_t sme_propd;
88 
89 struct sysmon_envsys_lh sysmon_envsys_list;
90 
91 static uint32_t sysmon_envsys_next_sensor_index;
92 static struct sysmon_envsys *sysmon_envsys_find_40(u_int);
93 
94 static void sysmon_envsys_destroy_plist(prop_array_t);
95 static void sme_remove_userprops(void);
96 static int sme_add_property_dictionary(struct sysmon_envsys *, prop_array_t,
97 				       prop_dictionary_t);
98 static sme_event_drv_t * sme_add_sensor_dictionary(struct sysmon_envsys *,
99 	prop_array_t, prop_dictionary_t, envsys_data_t *);
100 static void sme_initial_refresh(void *);
101 static uint32_t sme_get_max_value(struct sysmon_envsys *,
102      bool (*)(const envsys_data_t*), bool);
103 
104 /*
105  * sysmon_envsys_init:
106  *
107  * 	+ Initialize global mutex, dictionary and the linked list.
108  */
109 void
110 sysmon_envsys_init(void)
111 {
112 	LIST_INIT(&sysmon_envsys_list);
113 	mutex_init(&sme_global_mtx, MUTEX_DEFAULT, IPL_NONE);
114 	sme_propd = prop_dictionary_create();
115 }
116 
117 /*
118  * sysmonopen_envsys:
119  *
120  *	+ Open the system monitor device.
121  */
122 int
123 sysmonopen_envsys(dev_t dev, int flag, int mode, struct lwp *l)
124 {
125 	return 0;
126 }
127 
128 /*
129  * sysmonclose_envsys:
130  *
131  *	+ Close the system monitor device.
132  */
133 int
134 sysmonclose_envsys(dev_t dev, int flag, int mode, struct lwp *l)
135 {
136 	return 0;
137 }
138 
139 /*
140  * sysmonioctl_envsys:
141  *
142  *	+ Perform a sysmon envsys control request.
143  */
144 int
145 sysmonioctl_envsys(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
146 {
147 	struct sysmon_envsys *sme = NULL;
148 	int error = 0;
149 	u_int oidx;
150 
151 	switch (cmd) {
152 	/*
153 	 * To update the global dictionary with latest data from devices.
154 	 */
155 	case ENVSYS_GETDICTIONARY:
156 	    {
157 		struct plistref *plist = (struct plistref *)data;
158 
159 		/*
160 		 * Update dictionaries on all sysmon envsys devices
161 		 * registered.
162 		 */
163 		mutex_enter(&sme_global_mtx);
164 		LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
165 			sysmon_envsys_acquire(sme, false);
166 			error = sme_update_dictionary(sme);
167 			if (error) {
168 				DPRINTF(("%s: sme_update_dictionary, "
169 				    "error=%d\n", __func__, error));
170 				sysmon_envsys_release(sme, false);
171 				mutex_exit(&sme_global_mtx);
172 				return error;
173 			}
174 			sysmon_envsys_release(sme, false);
175 		}
176 		mutex_exit(&sme_global_mtx);
177 		/*
178 		 * Copy global dictionary to userland.
179 		 */
180 		error = prop_dictionary_copyout_ioctl(plist, cmd, sme_propd);
181 		break;
182 	    }
183 	/*
184 	 * To set properties on multiple devices.
185 	 */
186 	case ENVSYS_SETDICTIONARY:
187 	    {
188 		const struct plistref *plist = (const struct plistref *)data;
189 		prop_dictionary_t udict;
190 		prop_object_iterator_t iter, iter2;
191 		prop_object_t obj, obj2;
192 		prop_array_t array_u, array_k;
193 		const char *devname = NULL;
194 
195 		if ((flag & FWRITE) == 0)
196 			return EPERM;
197 
198 		/*
199 		 * Get dictionary from userland.
200 		 */
201 		error = prop_dictionary_copyin_ioctl(plist, cmd, &udict);
202 		if (error) {
203 			DPRINTF(("%s: copyin_ioctl error=%d\n",
204 			    __func__, error));
205 			break;
206 		}
207 
208 		iter = prop_dictionary_iterator(udict);
209 		if (!iter) {
210 			prop_object_release(udict);
211 			return ENOMEM;
212 		}
213 
214 		/*
215 		 * Iterate over the userland dictionary and process
216 		 * the list of devices.
217 		 */
218 		while ((obj = prop_object_iterator_next(iter))) {
219 			array_u = prop_dictionary_get_keysym(udict, obj);
220 			if (prop_object_type(array_u) != PROP_TYPE_ARRAY) {
221 				prop_object_iterator_release(iter);
222 				prop_object_release(udict);
223 				return EINVAL;
224 			}
225 
226 			devname = prop_dictionary_keysym_cstring_nocopy(obj);
227 			DPRINTF(("%s: processing the '%s' array requests\n",
228 			    __func__, devname));
229 
230 			/*
231 			 * find the correct sme device.
232 			 */
233 			sme = sysmon_envsys_find(devname);
234 			if (!sme) {
235 				DPRINTF(("%s: NULL sme\n", __func__));
236 				prop_object_iterator_release(iter);
237 				prop_object_release(udict);
238 				return EINVAL;
239 			}
240 
241 			/*
242 			 * Find the correct array object with the string
243 			 * supplied by the userland dictionary.
244 			 */
245 			array_k = prop_dictionary_get(sme_propd, devname);
246 			if (prop_object_type(array_k) != PROP_TYPE_ARRAY) {
247 				DPRINTF(("%s: array device failed\n",
248 				    __func__));
249 				sysmon_envsys_release(sme, false);
250 				prop_object_iterator_release(iter);
251 				prop_object_release(udict);
252 				return EINVAL;
253 			}
254 
255 			iter2 = prop_array_iterator(array_u);
256 			if (!iter2) {
257 				sysmon_envsys_release(sme, false);
258 				prop_object_iterator_release(iter);
259 				prop_object_release(udict);
260 				return ENOMEM;
261 			}
262 
263 			/*
264 			 * Iterate over the array of dictionaries to
265 			 * process the list of sensors and properties.
266 			 */
267 			while ((obj2 = prop_object_iterator_next(iter2))) {
268 				/*
269 				 * do the real work now.
270 				 */
271 				error = sme_userset_dictionary(sme,
272 							       obj2,
273 							       array_k);
274 				if (error) {
275 					sysmon_envsys_release(sme, false);
276 					prop_object_iterator_release(iter2);
277 					prop_object_iterator_release(iter);
278 					prop_object_release(udict);
279 					return error;
280 				}
281 			}
282 
283 			sysmon_envsys_release(sme, false);
284 			prop_object_iterator_release(iter2);
285 		}
286 
287 		prop_object_iterator_release(iter);
288 		prop_object_release(udict);
289 		break;
290 	    }
291 	/*
292 	 * To remove all properties from all devices registered.
293 	 */
294 	case ENVSYS_REMOVEPROPS:
295 	    {
296 		const struct plistref *plist = (const struct plistref *)data;
297 		prop_dictionary_t udict;
298 		prop_object_t obj;
299 
300 		if ((flag & FWRITE) == 0)
301 			return EPERM;
302 
303 		error = prop_dictionary_copyin_ioctl(plist, cmd, &udict);
304 		if (error) {
305 			DPRINTF(("%s: copyin_ioctl error=%d\n",
306 			    __func__, error));
307 			break;
308 		}
309 
310 		obj = prop_dictionary_get(udict, "envsys-remove-props");
311 		if (!obj || !prop_bool_true(obj)) {
312 			DPRINTF(("%s: invalid 'envsys-remove-props'\n",
313 			     __func__));
314 			return EINVAL;
315 		}
316 
317 		prop_object_release(udict);
318 		sme_remove_userprops();
319 
320 		break;
321 	    }
322 	/*
323 	 * Compatibility ioctls with the old interface, only implemented
324 	 * ENVSYS_GTREDATA and ENVSYS_GTREINFO; enough to make old
325 	 * applications work.
326 	 */
327 	case ENVSYS_GTREDATA:
328 	    {
329 		struct envsys_tre_data *tred = (void *)data;
330 		envsys_data_t *edata = NULL;
331 		bool found = false;
332 
333 		tred->validflags = 0;
334 
335 		sme = sysmon_envsys_find_40(tred->sensor);
336 		if (!sme)
337 			break;
338 
339 		oidx = tred->sensor;
340 		tred->sensor = SME_SENSOR_IDX(sme, tred->sensor);
341 
342 		DPRINTFOBJ(("%s: sensor=%d oidx=%d dev=%s nsensors=%d\n",
343 		    __func__, tred->sensor, oidx, sme->sme_name,
344 		    sme->sme_nsensors));
345 
346 		TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
347 			if (edata->sensor == tred->sensor) {
348 				found = true;
349 				break;
350 			}
351 		}
352 
353 		if (!found) {
354 			sysmon_envsys_release(sme, false);
355 			error = ENODEV;
356 			break;
357 		}
358 
359 		if (tred->sensor < sme->sme_nsensors) {
360 			if ((sme->sme_flags & SME_POLL_ONLY) == 0) {
361 				mutex_enter(&sme->sme_mtx);
362 				sysmon_envsys_refresh_sensor(sme, edata);
363 				mutex_exit(&sme->sme_mtx);
364 			}
365 
366 			/*
367 			 * copy required values to the old interface.
368 			 */
369 			tred->sensor = edata->sensor;
370 			tred->cur.data_us = edata->value_cur;
371 			tred->cur.data_s = edata->value_cur;
372 			tred->max.data_us = edata->value_max;
373 			tred->max.data_s = edata->value_max;
374 			tred->min.data_us = edata->value_min;
375 			tred->min.data_s = edata->value_min;
376 			tred->avg.data_us = 0;
377 			tred->avg.data_s = 0;
378 			if (edata->units == ENVSYS_BATTERY_CHARGE)
379 				tred->units = ENVSYS_INDICATOR;
380 			else
381 				tred->units = edata->units;
382 
383 			tred->validflags |= ENVSYS_FVALID;
384 			tred->validflags |= ENVSYS_FCURVALID;
385 
386 			if (edata->flags & ENVSYS_FPERCENT) {
387 				tred->validflags |= ENVSYS_FMAXVALID;
388 				tred->validflags |= ENVSYS_FFRACVALID;
389 			}
390 
391 			if (edata->state == ENVSYS_SINVALID) {
392 				tred->validflags &= ~ENVSYS_FCURVALID;
393 				tred->cur.data_us = tred->cur.data_s = 0;
394 			}
395 
396 			DPRINTFOBJ(("%s: sensor=%s tred->cur.data_s=%d\n",
397 			    __func__, edata->desc, tred->cur.data_s));
398 			DPRINTFOBJ(("%s: tred->validflags=%d tred->units=%d"
399 			    " tred->sensor=%d\n", __func__, tred->validflags,
400 			    tred->units, tred->sensor));
401 		}
402 		tred->sensor = oidx;
403 		sysmon_envsys_release(sme, false);
404 
405 		break;
406 	    }
407 	case ENVSYS_GTREINFO:
408 	    {
409 		struct envsys_basic_info *binfo = (void *)data;
410 		envsys_data_t *edata = NULL;
411 		bool found = false;
412 
413 		binfo->validflags = 0;
414 
415 		sme = sysmon_envsys_find_40(binfo->sensor);
416 		if (!sme)
417 			break;
418 
419 		oidx = binfo->sensor;
420 		binfo->sensor = SME_SENSOR_IDX(sme, binfo->sensor);
421 
422 		TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
423 			if (edata->sensor == binfo->sensor) {
424 				found = true;
425 				break;
426 			}
427 		}
428 
429 		if (!found) {
430 			sysmon_envsys_release(sme, false);
431 			error = ENODEV;
432 			break;
433 		}
434 
435 		binfo->validflags |= ENVSYS_FVALID;
436 
437 		if (binfo->sensor < sme->sme_nsensors) {
438 			if (edata->units == ENVSYS_BATTERY_CHARGE)
439 				binfo->units = ENVSYS_INDICATOR;
440 			else
441 				binfo->units = edata->units;
442 
443 			/*
444 			 * previously, the ACPI sensor names included the
445 			 * device name. Include that in compatibility code.
446 			 */
447 			if (strncmp(sme->sme_name, "acpi", 4) == 0)
448 				(void)snprintf(binfo->desc, sizeof(binfo->desc),
449 				    "%s %s", sme->sme_name, edata->desc);
450 			else
451 				(void)strlcpy(binfo->desc, edata->desc,
452 				    sizeof(binfo->desc));
453 		}
454 
455 		DPRINTFOBJ(("%s: binfo->units=%d binfo->validflags=%d\n",
456 		    __func__, binfo->units, binfo->validflags));
457 		DPRINTFOBJ(("%s: binfo->desc=%s binfo->sensor=%d\n",
458 		    __func__, binfo->desc, binfo->sensor));
459 
460 		binfo->sensor = oidx;
461 		sysmon_envsys_release(sme, false);
462 
463 		break;
464 	    }
465 	default:
466 		error = ENOTTY;
467 		break;
468 	}
469 
470 	return error;
471 }
472 
473 /*
474  * sysmon_envsys_create:
475  *
476  * 	+ Allocates a new sysmon_envsys object and initializes the
477  * 	  stuff for sensors and events.
478  */
479 struct sysmon_envsys *
480 sysmon_envsys_create(void)
481 {
482 	struct sysmon_envsys *sme;
483 
484 	sme = kmem_zalloc(sizeof(*sme), KM_SLEEP);
485 	TAILQ_INIT(&sme->sme_sensors_list);
486 	LIST_INIT(&sme->sme_events_list);
487 	mutex_init(&sme->sme_mtx, MUTEX_DEFAULT, IPL_NONE);
488 	cv_init(&sme->sme_condvar, "sme_wait");
489 
490 	return sme;
491 }
492 
493 /*
494  * sysmon_envsys_destroy:
495  *
496  * 	+ Removes all sensors from the tail queue, destroys the callout
497  * 	  and frees the sysmon_envsys object.
498  */
499 void
500 sysmon_envsys_destroy(struct sysmon_envsys *sme)
501 {
502 	envsys_data_t *edata;
503 
504 	KASSERT(sme != NULL);
505 
506 	while (!TAILQ_EMPTY(&sme->sme_sensors_list)) {
507 		edata = TAILQ_FIRST(&sme->sme_sensors_list);
508 		TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
509 	}
510 	mutex_destroy(&sme->sme_mtx);
511 	cv_destroy(&sme->sme_condvar);
512 	kmem_free(sme, sizeof(*sme));
513 }
514 
515 /*
516  * sysmon_envsys_sensor_attach:
517  *
518  * 	+ Attaches a sensor into a sysmon_envsys device checking that units
519  * 	  is set to a valid type and description is unique and not empty.
520  */
521 int
522 sysmon_envsys_sensor_attach(struct sysmon_envsys *sme, envsys_data_t *edata)
523 {
524 	const struct sme_descr_entry *sdt_units;
525 	envsys_data_t *oedata;
526 
527 	KASSERT(sme != NULL || edata != NULL);
528 
529 	/*
530 	 * Find the correct units for this sensor.
531 	 */
532 	sdt_units = sme_find_table_entry(SME_DESC_UNITS, edata->units);
533 	if (sdt_units->type == -1)
534 		return EINVAL;
535 
536 	/*
537 	 * Check that description is not empty or duplicate.
538 	 */
539 	if (strlen(edata->desc) == 0)
540 		return EINVAL;
541 
542 	mutex_enter(&sme->sme_mtx);
543 	sysmon_envsys_acquire(sme, true);
544 	TAILQ_FOREACH(oedata, &sme->sme_sensors_list, sensors_head) {
545 		if (strcmp(oedata->desc, edata->desc) == 0) {
546 			sysmon_envsys_release(sme, true);
547 			mutex_exit(&sme->sme_mtx);
548 			return EEXIST;
549 		}
550 	}
551 	/*
552 	 * Ok, the sensor has been added into the device queue.
553 	 */
554 	TAILQ_INSERT_TAIL(&sme->sme_sensors_list, edata, sensors_head);
555 
556 	/*
557 	 * Give the sensor an index position.
558 	 */
559 	edata->sensor = sme->sme_nsensors;
560 	sme->sme_nsensors++;
561 	sysmon_envsys_release(sme, true);
562 	mutex_exit(&sme->sme_mtx);
563 
564 	DPRINTF(("%s: attached #%d (%s), units=%d (%s)\n",
565 	    __func__, edata->sensor, edata->desc,
566 	    sdt_units->type, sdt_units->desc));
567 
568 	return 0;
569 }
570 
571 /*
572  * sysmon_envsys_sensor_detach:
573  *
574  * 	+ Detachs a sensor from a sysmon_envsys device and decrements the
575  * 	  sensors count on success.
576  */
577 int
578 sysmon_envsys_sensor_detach(struct sysmon_envsys *sme, envsys_data_t *edata)
579 {
580 	envsys_data_t *oedata;
581 	bool found = false;
582 	bool destroy = false;
583 
584 	KASSERT(sme != NULL || edata != NULL);
585 
586 	/*
587 	 * Check the sensor is already on the list.
588 	 */
589 	mutex_enter(&sme->sme_mtx);
590 	sysmon_envsys_acquire(sme, true);
591 	TAILQ_FOREACH(oedata, &sme->sme_sensors_list, sensors_head) {
592 		if (oedata->sensor == edata->sensor) {
593 			found = true;
594 			break;
595 		}
596 	}
597 
598 	if (!found) {
599 		sysmon_envsys_release(sme, true);
600 		mutex_exit(&sme->sme_mtx);
601 		return EINVAL;
602 	}
603 
604 	/*
605 	 * remove it, unhook from rnd(4), and decrement the sensors count.
606 	 */
607 	sme_event_unregister_sensor(sme, edata);
608 	if (LIST_EMPTY(&sme->sme_events_list)) {
609 		sme_events_halt_callout(sme);
610 		destroy = true;
611 	}
612 	TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
613 	sme->sme_nsensors--;
614 	sysmon_envsys_release(sme, true);
615 	mutex_exit(&sme->sme_mtx);
616 
617 	if (destroy)
618 		sme_events_destroy(sme);
619 
620 	return 0;
621 }
622 
623 
624 /*
625  * sysmon_envsys_register:
626  *
627  *	+ Register a sysmon envsys device.
628  *	+ Create array of dictionaries for a device.
629  */
630 int
631 sysmon_envsys_register(struct sysmon_envsys *sme)
632 {
633 	struct sme_evdrv {
634 		SLIST_ENTRY(sme_evdrv) evdrv_head;
635 		sme_event_drv_t *evdrv;
636 	};
637 	SLIST_HEAD(, sme_evdrv) sme_evdrv_list;
638 	struct sme_evdrv *evdv = NULL;
639 	struct sysmon_envsys *lsme;
640 	prop_array_t array = NULL;
641 	prop_dictionary_t dict, dict2;
642 	envsys_data_t *edata = NULL;
643 	sme_event_drv_t *this_evdrv;
644 	int nevent;
645 	int error = 0;
646 	char rnd_name[sizeof(edata->rnd_src.name)];
647 
648 	KASSERT(sme != NULL);
649 	KASSERT(sme->sme_name != NULL);
650 
651 	/*
652 	 * Check if requested sysmon_envsys device is valid
653 	 * and does not exist already in the list.
654 	 */
655 	mutex_enter(&sme_global_mtx);
656 	LIST_FOREACH(lsme, &sysmon_envsys_list, sme_list) {
657 	       if (strcmp(lsme->sme_name, sme->sme_name) == 0) {
658 		       mutex_exit(&sme_global_mtx);
659 		       return EEXIST;
660 	       }
661 	}
662 	mutex_exit(&sme_global_mtx);
663 
664 	/*
665 	 * sanity check: if SME_DISABLE_REFRESH is not set,
666 	 * the sme_refresh function callback must be non NULL.
667 	 */
668 	if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0)
669 		if (!sme->sme_refresh)
670 			return EINVAL;
671 
672 	/*
673 	 * If the list of sensors is empty, there's no point to continue...
674 	 */
675 	if (TAILQ_EMPTY(&sme->sme_sensors_list)) {
676 		DPRINTF(("%s: sensors list empty for %s\n", __func__,
677 		    sme->sme_name));
678 		return ENOTSUP;
679 	}
680 
681 	/*
682 	 * Initialize the singly linked list for driver events.
683 	 */
684 	SLIST_INIT(&sme_evdrv_list);
685 
686 	array = prop_array_create();
687 	if (!array)
688 		return ENOMEM;
689 
690 	/*
691 	 * Iterate over all sensors and create a dictionary per sensor.
692 	 * We must respect the order in which the sensors were added.
693 	 */
694 	TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
695 		dict = prop_dictionary_create();
696 		if (!dict) {
697 			error = ENOMEM;
698 			goto out2;
699 		}
700 
701 		/*
702 		 * Create all objects in sensor's dictionary.
703 		 */
704 		this_evdrv = sme_add_sensor_dictionary(sme, array,
705 						       dict, edata);
706 		if (this_evdrv) {
707 			evdv = kmem_zalloc(sizeof(*evdv), KM_SLEEP);
708 			evdv->evdrv = this_evdrv;
709 			SLIST_INSERT_HEAD(&sme_evdrv_list, evdv, evdrv_head);
710 		}
711 	}
712 
713 	/*
714 	 * If the array does not contain any object (sensor), there's
715 	 * no need to attach the driver.
716 	 */
717 	if (prop_array_count(array) == 0) {
718 		error = EINVAL;
719 		DPRINTF(("%s: empty array for '%s'\n", __func__,
720 		    sme->sme_name));
721 		goto out;
722 	}
723 
724 	/*
725 	 * Add the dictionary for the global properties of this device.
726 	 */
727 	dict2 = prop_dictionary_create();
728 	if (!dict2) {
729 		error = ENOMEM;
730 		goto out;
731 	}
732 
733 	error = sme_add_property_dictionary(sme, array, dict2);
734 	if (error) {
735 		prop_object_release(dict2);
736 		goto out;
737 	}
738 
739 	/*
740 	 * Add the array into the global dictionary for the driver.
741 	 *
742 	 * <dict>
743 	 * 	<key>foo0</key>
744 	 * 	<array>
745 	 * 		...
746 	 */
747 	mutex_enter(&sme_global_mtx);
748 	if (!prop_dictionary_set(sme_propd, sme->sme_name, array)) {
749 		error = EINVAL;
750 		DPRINTF(("%s: prop_dictionary_set for '%s'\n", __func__,
751 		    sme->sme_name));
752 		goto out;
753 	}
754 
755 	/*
756 	 * Add the device into the list.
757 	 */
758 	LIST_INSERT_HEAD(&sysmon_envsys_list, sme, sme_list);
759 	sme->sme_fsensor = sysmon_envsys_next_sensor_index;
760 	sysmon_envsys_next_sensor_index += sme->sme_nsensors;
761 	mutex_exit(&sme_global_mtx);
762 
763 out:
764 	/*
765 	 * No errors?  Make an initial data refresh if was requested,
766 	 * then register the events that were set in the driver.  Do
767 	 * the refresh first in case it is needed to establish the
768 	 * limits or max_value needed by some events.
769 	 */
770 	if (error == 0) {
771 		nevent = 0;
772 		sysmon_task_queue_init();
773 
774 		if (sme->sme_flags & SME_INIT_REFRESH) {
775 			sysmon_task_queue_sched(0, sme_initial_refresh, sme);
776 			DPRINTF(("%s: scheduled initial refresh for '%s'\n",
777 				__func__, sme->sme_name));
778 		}
779 		SLIST_FOREACH(evdv, &sme_evdrv_list, evdrv_head) {
780 			sysmon_task_queue_sched(0,
781 			    sme_event_drvadd, evdv->evdrv);
782 			nevent++;
783 		}
784 		/*
785 		 * Hook the sensor into rnd(4) entropy pool if requested
786 		 */
787 		TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
788 			if (edata->flags & ENVSYS_FHAS_ENTROPY) {
789 				uint32_t rnd_type, rnd_flag = 0;
790 				size_t n;
791 				int tail = 1;
792 
793 				snprintf(rnd_name, sizeof(rnd_name), "%s-%s",
794 				    sme->sme_name, edata->desc);
795 				n = strlen(rnd_name);
796 				/*
797 				 * 1) Remove trailing white space(s).
798 				 * 2) If space exist, replace it with '-'
799 				 */
800 				while (--n) {
801 					if (rnd_name[n] == ' ') {
802 						if (tail != 0)
803 							rnd_name[n] = '\0';
804 						else
805 							rnd_name[n] = '-';
806 					} else
807 						tail = 0;
808 				}
809 				rnd_flag |= RND_FLAG_COLLECT_TIME;
810 				rnd_flag |= RND_FLAG_ESTIMATE_TIME;
811 
812 				switch (edata->units) {
813 				    case ENVSYS_STEMP:
814 				    case ENVSYS_SFANRPM:
815 				    case ENVSYS_INTEGER:
816 					rnd_type = RND_TYPE_ENV;
817 					rnd_flag |= RND_FLAG_COLLECT_VALUE;
818 					rnd_flag |= RND_FLAG_ESTIMATE_VALUE;
819 					break;
820 				    case ENVSYS_SVOLTS_AC:
821 				    case ENVSYS_SVOLTS_DC:
822 				    case ENVSYS_SOHMS:
823 				    case ENVSYS_SWATTS:
824 				    case ENVSYS_SAMPS:
825 				    case ENVSYS_SWATTHOUR:
826 				    case ENVSYS_SAMPHOUR:
827 					rnd_type = RND_TYPE_POWER;
828 					rnd_flag |= RND_FLAG_COLLECT_VALUE;
829 					rnd_flag |= RND_FLAG_ESTIMATE_VALUE;
830 					break;
831 				    default:
832 					rnd_type = RND_TYPE_UNKNOWN;
833 					break;
834 				}
835 				rnd_attach_source(&edata->rnd_src, rnd_name,
836 				    rnd_type, rnd_flag);
837 			}
838 		}
839 		DPRINTF(("%s: driver '%s' registered (nsens=%d nevent=%d)\n",
840 		    __func__, sme->sme_name, sme->sme_nsensors, nevent));
841 	}
842 
843 out2:
844 	while (!SLIST_EMPTY(&sme_evdrv_list)) {
845 		evdv = SLIST_FIRST(&sme_evdrv_list);
846 		SLIST_REMOVE_HEAD(&sme_evdrv_list, evdrv_head);
847 		kmem_free(evdv, sizeof(*evdv));
848 	}
849 	if (!error)
850 		return 0;
851 
852 	/*
853 	 * Ugh... something wasn't right; unregister all events and sensors
854 	 * previously assigned and destroy the array with all its objects.
855 	 */
856 	DPRINTF(("%s: failed to register '%s' (%d)\n", __func__,
857 	    sme->sme_name, error));
858 
859 	sme_event_unregister_all(sme);
860 	while (!TAILQ_EMPTY(&sme->sme_sensors_list)) {
861 		edata = TAILQ_FIRST(&sme->sme_sensors_list);
862 		TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
863 	}
864 	sysmon_envsys_destroy_plist(array);
865 	return error;
866 }
867 
868 /*
869  * sysmon_envsys_destroy_plist:
870  *
871  * 	+ Remove all objects from the array of dictionaries that is
872  * 	  created in a sysmon envsys device.
873  */
874 static void
875 sysmon_envsys_destroy_plist(prop_array_t array)
876 {
877 	prop_object_iterator_t iter, iter2;
878 	prop_dictionary_t dict;
879 	prop_object_t obj;
880 
881 	KASSERT(array != NULL);
882 	KASSERT(prop_object_type(array) == PROP_TYPE_ARRAY);
883 
884 	DPRINTFOBJ(("%s: objects in array=%d\n", __func__,
885 	    prop_array_count(array)));
886 
887 	iter = prop_array_iterator(array);
888 	if (!iter)
889 		return;
890 
891 	while ((dict = prop_object_iterator_next(iter))) {
892 		KASSERT(prop_object_type(dict) == PROP_TYPE_DICTIONARY);
893 		iter2 = prop_dictionary_iterator(dict);
894 		if (!iter2)
895 			goto out;
896 		DPRINTFOBJ(("%s: iterating over dictionary\n", __func__));
897 		while ((obj = prop_object_iterator_next(iter2)) != NULL) {
898 			DPRINTFOBJ(("%s: obj=%s\n", __func__,
899 			    prop_dictionary_keysym_cstring_nocopy(obj)));
900 			prop_dictionary_remove(dict,
901 			    prop_dictionary_keysym_cstring_nocopy(obj));
902 			prop_object_iterator_reset(iter2);
903 		}
904 		prop_object_iterator_release(iter2);
905 		DPRINTFOBJ(("%s: objects in dictionary:%d\n",
906 		    __func__, prop_dictionary_count(dict)));
907 		prop_object_release(dict);
908 	}
909 
910 out:
911 	prop_object_iterator_release(iter);
912 	prop_object_release(array);
913 }
914 
915 /*
916  * sysmon_envsys_unregister:
917  *
918  *	+ Unregister a sysmon envsys device.
919  */
920 void
921 sysmon_envsys_unregister(struct sysmon_envsys *sme)
922 {
923 	prop_array_t array;
924 	struct sysmon_envsys *osme;
925 
926 	KASSERT(sme != NULL);
927 
928 	/*
929 	 * Decrement global sensors counter and the first_sensor index
930 	 * for remaining devices in the list (only used for compatibility
931 	 * with previous API), and remove the device from the list.
932 	 */
933 	mutex_enter(&sme_global_mtx);
934 	sysmon_envsys_next_sensor_index -= sme->sme_nsensors;
935 	LIST_FOREACH(osme, &sysmon_envsys_list, sme_list) {
936 		if (osme->sme_fsensor >= sme->sme_fsensor)
937 			osme->sme_fsensor -= sme->sme_nsensors;
938 	}
939 	LIST_REMOVE(sme, sme_list);
940 	mutex_exit(&sme_global_mtx);
941 
942 	/*
943 	 * Unregister all events associated with device.
944 	 */
945 	sme_event_unregister_all(sme);
946 
947 	/*
948 	 * Remove the device (and all its objects) from the global dictionary.
949 	 */
950 	array = prop_dictionary_get(sme_propd, sme->sme_name);
951 	if (array && prop_object_type(array) == PROP_TYPE_ARRAY) {
952 		mutex_enter(&sme_global_mtx);
953 		prop_dictionary_remove(sme_propd, sme->sme_name);
954 		mutex_exit(&sme_global_mtx);
955 		sysmon_envsys_destroy_plist(array);
956 	}
957 	/*
958 	 * And finally destroy the sysmon_envsys object.
959 	 */
960 	sysmon_envsys_destroy(sme);
961 }
962 
963 /*
964  * sysmon_envsys_find:
965  *
966  *	+ Find a sysmon envsys device and mark it as busy
967  *	  once it's available.
968  */
969 struct sysmon_envsys *
970 sysmon_envsys_find(const char *name)
971 {
972 	struct sysmon_envsys *sme;
973 
974 	mutex_enter(&sme_global_mtx);
975 	LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
976 		if (strcmp(sme->sme_name, name) == 0) {
977 			sysmon_envsys_acquire(sme, false);
978 			break;
979 		}
980 	}
981 	mutex_exit(&sme_global_mtx);
982 
983 	return sme;
984 }
985 
986 /*
987  * Compatibility function with the old API.
988  */
989 struct sysmon_envsys *
990 sysmon_envsys_find_40(u_int idx)
991 {
992 	struct sysmon_envsys *sme;
993 
994 	mutex_enter(&sme_global_mtx);
995 	LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
996 		if (idx >= sme->sme_fsensor &&
997 	    	    idx < (sme->sme_fsensor + sme->sme_nsensors)) {
998 			sysmon_envsys_acquire(sme, false);
999 			break;
1000 		}
1001 	}
1002 	mutex_exit(&sme_global_mtx);
1003 
1004 	return sme;
1005 }
1006 
1007 /*
1008  * sysmon_envsys_acquire:
1009  *
1010  * 	+ Wait until a sysmon envsys device is available and mark
1011  * 	  it as busy.
1012  */
1013 void
1014 sysmon_envsys_acquire(struct sysmon_envsys *sme, bool locked)
1015 {
1016 	KASSERT(sme != NULL);
1017 
1018 	if (locked) {
1019 		while (sme->sme_flags & SME_FLAG_BUSY)
1020 			cv_wait(&sme->sme_condvar, &sme->sme_mtx);
1021 		sme->sme_flags |= SME_FLAG_BUSY;
1022 	} else {
1023 		mutex_enter(&sme->sme_mtx);
1024 		while (sme->sme_flags & SME_FLAG_BUSY)
1025 			cv_wait(&sme->sme_condvar, &sme->sme_mtx);
1026 		sme->sme_flags |= SME_FLAG_BUSY;
1027 		mutex_exit(&sme->sme_mtx);
1028 	}
1029 }
1030 
1031 /*
1032  * sysmon_envsys_release:
1033  *
1034  * 	+ Unmark a sysmon envsys device as busy, and notify
1035  * 	  waiters.
1036  */
1037 void
1038 sysmon_envsys_release(struct sysmon_envsys *sme, bool locked)
1039 {
1040 	KASSERT(sme != NULL);
1041 
1042 	if (locked) {
1043 		sme->sme_flags &= ~SME_FLAG_BUSY;
1044 		cv_broadcast(&sme->sme_condvar);
1045 	} else {
1046 		mutex_enter(&sme->sme_mtx);
1047 		sme->sme_flags &= ~SME_FLAG_BUSY;
1048 		cv_broadcast(&sme->sme_condvar);
1049 		mutex_exit(&sme->sme_mtx);
1050 	}
1051 }
1052 
1053 /*
1054  * sme_initial_refresh:
1055  *
1056  * 	+ Do an initial refresh of the sensors in a device just after
1057  * 	  interrupts are enabled in the autoconf(9) process.
1058  *
1059  */
1060 static void
1061 sme_initial_refresh(void *arg)
1062 {
1063 	struct sysmon_envsys *sme = arg;
1064 	envsys_data_t *edata;
1065 
1066 	mutex_enter(&sme->sme_mtx);
1067 	sysmon_envsys_acquire(sme, true);
1068 	TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head)
1069 		sysmon_envsys_refresh_sensor(sme, edata);
1070 	sysmon_envsys_release(sme, true);
1071 	mutex_exit(&sme->sme_mtx);
1072 }
1073 
1074 /*
1075  * sme_sensor_dictionary_get:
1076  *
1077  * 	+ Returns a dictionary of a device specified by its index
1078  * 	  position.
1079  */
1080 prop_dictionary_t
1081 sme_sensor_dictionary_get(prop_array_t array, const char *index)
1082 {
1083 	prop_object_iterator_t iter;
1084 	prop_dictionary_t dict;
1085 	prop_object_t obj;
1086 
1087 	KASSERT(array != NULL || index != NULL);
1088 
1089 	iter = prop_array_iterator(array);
1090 	if (!iter)
1091 		return NULL;
1092 
1093 	while ((dict = prop_object_iterator_next(iter))) {
1094 		obj = prop_dictionary_get(dict, "index");
1095 		if (prop_string_equals_cstring(obj, index))
1096 			break;
1097 	}
1098 
1099 	prop_object_iterator_release(iter);
1100 	return dict;
1101 }
1102 
1103 /*
1104  * sme_remove_userprops:
1105  *
1106  * 	+ Remove all properties from all devices that were set by
1107  * 	  the ENVSYS_SETDICTIONARY ioctl.
1108  */
1109 static void
1110 sme_remove_userprops(void)
1111 {
1112 	struct sysmon_envsys *sme;
1113 	prop_array_t array;
1114 	prop_dictionary_t sdict;
1115 	envsys_data_t *edata = NULL;
1116 	char tmp[ENVSYS_DESCLEN];
1117 	char rnd_name[sizeof(edata->rnd_src.name)];
1118 	sysmon_envsys_lim_t lims;
1119 	const struct sme_descr_entry *sdt_units;
1120 	uint32_t props;
1121 	int ptype;
1122 
1123 	mutex_enter(&sme_global_mtx);
1124 	LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1125 		sysmon_envsys_acquire(sme, false);
1126 		array = prop_dictionary_get(sme_propd, sme->sme_name);
1127 
1128 		TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1129 			(void)snprintf(tmp, sizeof(tmp), "sensor%d",
1130 				       edata->sensor);
1131 			sdict = sme_sensor_dictionary_get(array, tmp);
1132 			KASSERT(sdict != NULL);
1133 
1134 			ptype = 0;
1135 			if (edata->upropset & PROP_BATTCAP) {
1136 				prop_dictionary_remove(sdict,
1137 				    "critical-capacity");
1138 				ptype = PENVSYS_EVENT_CAPACITY;
1139 			}
1140 
1141 			if (edata->upropset & PROP_BATTWARN) {
1142 				prop_dictionary_remove(sdict,
1143 				    "warning-capacity");
1144 				ptype = PENVSYS_EVENT_CAPACITY;
1145 			}
1146 
1147 			if (edata->upropset & PROP_BATTHIGH) {
1148 				prop_dictionary_remove(sdict,
1149 				    "high-capacity");
1150 				ptype = PENVSYS_EVENT_CAPACITY;
1151 			}
1152 
1153 			if (edata->upropset & PROP_BATTMAX) {
1154 				prop_dictionary_remove(sdict,
1155 				    "maximum-capacity");
1156 				ptype = PENVSYS_EVENT_CAPACITY;
1157 			}
1158 			if (edata->upropset & PROP_WARNMAX) {
1159 				prop_dictionary_remove(sdict, "warning-max");
1160 				ptype = PENVSYS_EVENT_LIMITS;
1161 			}
1162 
1163 			if (edata->upropset & PROP_WARNMIN) {
1164 				prop_dictionary_remove(sdict, "warning-min");
1165 				ptype = PENVSYS_EVENT_LIMITS;
1166 			}
1167 
1168 			if (edata->upropset & PROP_CRITMAX) {
1169 				prop_dictionary_remove(sdict, "critical-max");
1170 				ptype = PENVSYS_EVENT_LIMITS;
1171 			}
1172 
1173 			if (edata->upropset & PROP_CRITMIN) {
1174 				prop_dictionary_remove(sdict, "critical-min");
1175 				ptype = PENVSYS_EVENT_LIMITS;
1176 			}
1177 			if (edata->upropset & PROP_RFACT) {
1178 				(void)sme_sensor_upint32(sdict, "rfact", 0);
1179 				edata->rfact = 0;
1180 			}
1181 
1182 			if (edata->upropset & PROP_DESC)
1183 				(void)sme_sensor_upstring(sdict,
1184 			  	    "description", edata->desc);
1185 
1186 			if (ptype == 0)
1187 				continue;
1188 
1189 			/*
1190 			 * If there were any limit values removed, we
1191 			 * need to revert to initial limits.
1192 			 *
1193 			 * First, tell the driver that we need it to
1194 			 * restore any h/w limits which may have been
1195 			 * changed to stored, boot-time values.
1196 			 */
1197 			if (sme->sme_set_limits) {
1198 				DPRINTF(("%s: reset limits for %s %s\n",
1199 					__func__, sme->sme_name, edata->desc));
1200 				(*sme->sme_set_limits)(sme, edata, NULL, NULL);
1201 			}
1202 
1203 			/*
1204 			 * Next, we need to retrieve those initial limits.
1205 			 */
1206 			props = 0;
1207 			edata->upropset &= ~PROP_LIMITS;
1208 			if (sme->sme_get_limits) {
1209 				DPRINTF(("%s: retrieve limits for %s %s\n",
1210 					__func__, sme->sme_name, edata->desc));
1211 				lims = edata->limits;
1212 				(*sme->sme_get_limits)(sme, edata, &lims,
1213 						       &props);
1214 			}
1215 
1216 			/*
1217 			 * Finally, remove any old limits event, then
1218 			 * install a new event (which will update the
1219 			 * dictionary)
1220 			 */
1221 			sme_event_unregister(sme, edata->desc,
1222 			    PENVSYS_EVENT_LIMITS);
1223 
1224 			/*
1225 			 * Find the correct units for this sensor.
1226 			 */
1227 			sdt_units = sme_find_table_entry(SME_DESC_UNITS,
1228 			    edata->units);
1229 
1230 			if (props & PROP_LIMITS) {
1231 				DPRINTF(("%s: install limits for %s %s\n",
1232 					__func__, sme->sme_name, edata->desc));
1233 
1234 				sme_event_register(sdict, edata, sme,
1235 				    &lims, props, PENVSYS_EVENT_LIMITS,
1236 				    sdt_units->crittype);
1237 			}
1238 			if (edata->flags & ENVSYS_FHAS_ENTROPY) {
1239 				sme_event_register(sdict, edata, sme,
1240 				    &lims, props, PENVSYS_EVENT_NULL,
1241 				    sdt_units->crittype);
1242 				snprintf(rnd_name, sizeof(rnd_name), "%s-%s",
1243 				    sme->sme_name, edata->desc);
1244 				rnd_attach_source(&edata->rnd_src, rnd_name,
1245 				    RND_TYPE_ENV, RND_FLAG_COLLECT_VALUE|
1246 						  RND_FLAG_COLLECT_TIME|
1247 						  RND_FLAG_ESTIMATE_VALUE|
1248 						  RND_FLAG_ESTIMATE_TIME);
1249 			}
1250 		}
1251 
1252 		/*
1253 		 * Restore default timeout value.
1254 		 */
1255 		sme->sme_events_timeout = SME_EVENTS_DEFTIMEOUT;
1256 		sme_schedule_callout(sme);
1257 		sysmon_envsys_release(sme, false);
1258 	}
1259 	mutex_exit(&sme_global_mtx);
1260 }
1261 
1262 /*
1263  * sme_add_property_dictionary:
1264  *
1265  * 	+ Add global properties into a device.
1266  */
1267 static int
1268 sme_add_property_dictionary(struct sysmon_envsys *sme, prop_array_t array,
1269 			    prop_dictionary_t dict)
1270 {
1271 	prop_dictionary_t pdict;
1272 	const char *class;
1273 	int error = 0;
1274 
1275 	pdict = prop_dictionary_create();
1276 	if (!pdict)
1277 		return EINVAL;
1278 
1279 	/*
1280 	 * Add the 'refresh-timeout' and 'dev-class' objects into the
1281 	 * 'device-properties' dictionary.
1282 	 *
1283 	 * 	...
1284 	 * 	<dict>
1285 	 * 		<key>device-properties</key>
1286 	 * 		<dict>
1287 	 * 			<key>refresh-timeout</key>
1288 	 * 			<integer>120</integer<
1289 	 *			<key>device-class</key>
1290 	 *			<string>class_name</string>
1291 	 * 		</dict>
1292 	 * 	</dict>
1293 	 * 	...
1294 	 *
1295 	 */
1296 	if (sme->sme_events_timeout == 0) {
1297 		sme->sme_events_timeout = SME_EVENTS_DEFTIMEOUT;
1298 		sme_schedule_callout(sme);
1299 	}
1300 
1301 	if (!prop_dictionary_set_uint64(pdict, "refresh-timeout",
1302 					sme->sme_events_timeout)) {
1303 		error = EINVAL;
1304 		goto out;
1305 	}
1306 	if (sme->sme_class == SME_CLASS_BATTERY)
1307 		class = "battery";
1308 	else if (sme->sme_class == SME_CLASS_ACADAPTER)
1309 		class = "ac-adapter";
1310 	else
1311 		class = "other";
1312 	if (!prop_dictionary_set_cstring_nocopy(pdict, "device-class", class)) {
1313 		error = EINVAL;
1314 		goto out;
1315 	}
1316 
1317 	if (!prop_dictionary_set(dict, "device-properties", pdict)) {
1318 		error = EINVAL;
1319 		goto out;
1320 	}
1321 
1322 	/*
1323 	 * Add the device dictionary into the sysmon envsys array.
1324 	 */
1325 	if (!prop_array_add(array, dict))
1326 		error = EINVAL;
1327 
1328 out:
1329 	prop_object_release(pdict);
1330 	return error;
1331 }
1332 
1333 /*
1334  * sme_add_sensor_dictionary:
1335  *
1336  * 	+ Adds the sensor objects into the dictionary and returns a pointer
1337  * 	  to a sme_event_drv_t object if a monitoring flag was set
1338  * 	  (or NULL otherwise).
1339  */
1340 static sme_event_drv_t *
1341 sme_add_sensor_dictionary(struct sysmon_envsys *sme, prop_array_t array,
1342 		    	  prop_dictionary_t dict, envsys_data_t *edata)
1343 {
1344 	const struct sme_descr_entry *sdt;
1345 	int error;
1346 	sme_event_drv_t *sme_evdrv_t = NULL;
1347 	char indexstr[ENVSYS_DESCLEN];
1348 	bool mon_supported, allow_rfact;
1349 
1350 	/*
1351 	 * Add the index sensor string.
1352 	 *
1353 	 * 		...
1354 	 * 		<key>index</eyr
1355 	 * 		<string>sensor0</string>
1356 	 * 		...
1357 	 */
1358 	(void)snprintf(indexstr, sizeof(indexstr), "sensor%d", edata->sensor);
1359 	if (sme_sensor_upstring(dict, "index", indexstr))
1360 		goto bad;
1361 
1362 	/*
1363 	 * 		...
1364 	 * 		<key>description</key>
1365 	 * 		<string>blah blah</string>
1366 	 * 		...
1367 	 */
1368 	if (sme_sensor_upstring(dict, "description", edata->desc))
1369 		goto bad;
1370 
1371 	/*
1372 	 * Add the monitoring boolean object:
1373 	 *
1374 	 * 		...
1375 	 * 		<key>monitoring-supported</key>
1376 	 * 		<true/>
1377 	 *		...
1378 	 *
1379 	 * always false on Battery {capacity,charge}, Drive and Indicator types.
1380 	 * They cannot be monitored.
1381 	 *
1382 	 */
1383 	if ((edata->flags & ENVSYS_FMONNOTSUPP) ||
1384 	    (edata->units == ENVSYS_INDICATOR) ||
1385 	    (edata->units == ENVSYS_DRIVE) ||
1386 	    (edata->units == ENVSYS_BATTERY_CAPACITY) ||
1387 	    (edata->units == ENVSYS_BATTERY_CHARGE))
1388 		mon_supported = false;
1389 	else
1390 		mon_supported = true;
1391 	if (sme_sensor_upbool(dict, "monitoring-supported", mon_supported))
1392 		goto out;
1393 
1394 	/*
1395 	 * Add the allow-rfact boolean object, true if
1396 	 * ENVSYS_FCHANGERFACT is set, false otherwise.
1397 	 *
1398 	 * 		...
1399 	 * 		<key>allow-rfact</key>
1400 	 * 		<true/>
1401 	 * 		...
1402 	 */
1403 	if (edata->units == ENVSYS_SVOLTS_DC ||
1404 	    edata->units == ENVSYS_SVOLTS_AC) {
1405 		if (edata->flags & ENVSYS_FCHANGERFACT)
1406 			allow_rfact = true;
1407 		else
1408 			allow_rfact = false;
1409 		if (sme_sensor_upbool(dict, "allow-rfact", allow_rfact))
1410 			goto out;
1411 	}
1412 
1413 	error = sme_update_sensor_dictionary(dict, edata,
1414 			(edata->state == ENVSYS_SVALID));
1415 	if (error < 0)
1416 		goto bad;
1417 	else if (error)
1418 		goto out;
1419 
1420 	/*
1421 	 * 	...
1422 	 * </dict>
1423 	 *
1424 	 * Add the dictionary into the array.
1425 	 *
1426 	 */
1427 	if (!prop_array_add(array, dict)) {
1428 		DPRINTF(("%s: prop_array_add\n", __func__));
1429 		goto bad;
1430 	}
1431 
1432 	/*
1433 	 * Register new event(s) if any monitoring flag was set or if
1434 	 * the sensor provides entropy for rnd(4).
1435 	 */
1436 	if (edata->flags & (ENVSYS_FMONANY | ENVSYS_FHAS_ENTROPY)) {
1437 		sme_evdrv_t = kmem_zalloc(sizeof(*sme_evdrv_t), KM_SLEEP);
1438 		sme_evdrv_t->sed_sdict = dict;
1439 		sme_evdrv_t->sed_edata = edata;
1440 		sme_evdrv_t->sed_sme = sme;
1441 		sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units);
1442 		sme_evdrv_t->sed_powertype = sdt->crittype;
1443 	}
1444 
1445 out:
1446 	return sme_evdrv_t;
1447 
1448 bad:
1449 	prop_object_release(dict);
1450 	return NULL;
1451 }
1452 
1453 /*
1454  * Find the maximum of all currently reported values.
1455  * The provided callback decides whether a sensor is part of the
1456  * maximum calculation (by returning true) or ignored (callback
1457  * returns false). Example usage: callback selects temperature
1458  * sensors in a given thermal zone, the function calculates the
1459  * maximum currently reported temperature in this zone.
1460  * If the parameter "refresh" is true, new values will be aquired
1461  * from the hardware, if not, the last reported value will be used.
1462  */
1463 uint32_t
1464 sysmon_envsys_get_max_value(bool (*predicate)(const envsys_data_t*),
1465 	bool refresh)
1466 {
1467 	struct sysmon_envsys *sme;
1468 	uint32_t maxv, v;
1469 
1470 	maxv = 0;
1471 	mutex_enter(&sme_global_mtx);
1472 	LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1473 		sysmon_envsys_acquire(sme, false);
1474 		v = sme_get_max_value(sme, predicate, refresh);
1475 		sysmon_envsys_release(sme, false);
1476 		if (v > maxv)
1477 			maxv = v;
1478 	}
1479 	mutex_exit(&sme_global_mtx);
1480 	return maxv;
1481 }
1482 
1483 static uint32_t
1484 sme_get_max_value(struct sysmon_envsys *sme,
1485     bool (*predicate)(const envsys_data_t*),
1486     bool refresh)
1487 {
1488 	envsys_data_t *edata;
1489 	uint32_t maxv, v;
1490 
1491 	/*
1492 	 * Iterate over all sensors that match the predicate
1493 	 */
1494 	maxv = 0;
1495 	TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1496 		if (!(*predicate)(edata))
1497 			continue;
1498 
1499 		/*
1500 		 * refresh sensor data
1501 		 */
1502 		mutex_enter(&sme->sme_mtx);
1503 		sysmon_envsys_refresh_sensor(sme, edata);
1504 		mutex_exit(&sme->sme_mtx);
1505 
1506 		v = edata->value_cur;
1507 		if (v > maxv)
1508 			maxv = v;
1509 
1510 	}
1511 
1512 	return maxv;
1513 }
1514 
1515 /*
1516  * sme_update_dictionary:
1517  *
1518  * 	+ Update per-sensor dictionaries with new values if there were
1519  * 	  changes, otherwise the object in dictionary is untouched.
1520  */
1521 int
1522 sme_update_dictionary(struct sysmon_envsys *sme)
1523 {
1524 	envsys_data_t *edata;
1525 	prop_object_t array, dict, obj, obj2;
1526 	int error = 0;
1527 
1528 	/*
1529 	 * Retrieve the array of dictionaries in device.
1530 	 */
1531 	array = prop_dictionary_get(sme_propd, sme->sme_name);
1532 	if (prop_object_type(array) != PROP_TYPE_ARRAY) {
1533 		DPRINTF(("%s: not an array (%s)\n", __func__, sme->sme_name));
1534 		return EINVAL;
1535 	}
1536 
1537 	/*
1538 	 * Get the last dictionary on the array, this contains the
1539 	 * 'device-properties' sub-dictionary.
1540 	 */
1541 	obj = prop_array_get(array, prop_array_count(array) - 1);
1542 	if (!obj || prop_object_type(obj) != PROP_TYPE_DICTIONARY) {
1543 		DPRINTF(("%s: not a device-properties dictionary\n", __func__));
1544 		return EINVAL;
1545 	}
1546 
1547 	obj2 = prop_dictionary_get(obj, "device-properties");
1548 	if (!obj2)
1549 		return EINVAL;
1550 
1551 	/*
1552 	 * Update the 'refresh-timeout' property.
1553 	 */
1554 	if (!prop_dictionary_set_uint64(obj2, "refresh-timeout",
1555 					sme->sme_events_timeout))
1556 		return EINVAL;
1557 
1558 	/*
1559 	 * - iterate over all sensors.
1560 	 * - fetch new data.
1561 	 * - check if data in dictionary is different than new data.
1562 	 * - update dictionary if there were changes.
1563 	 */
1564 	DPRINTF(("%s: updating '%s' with nsensors=%d\n", __func__,
1565 	    sme->sme_name, sme->sme_nsensors));
1566 
1567 	/*
1568 	 * Don't bother with locking when traversing the queue,
1569 	 * the device is already marked as busy; if a sensor
1570 	 * is going to be removed or added it will have to wait.
1571 	 */
1572 	TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1573 		/*
1574 		 * refresh sensor data via sme_envsys_refresh_sensor
1575 		 */
1576 		mutex_enter(&sme->sme_mtx);
1577 		sysmon_envsys_refresh_sensor(sme, edata);
1578 		mutex_exit(&sme->sme_mtx);
1579 
1580 		/*
1581 		 * retrieve sensor's dictionary.
1582 		 */
1583 		dict = prop_array_get(array, edata->sensor);
1584 		if (prop_object_type(dict) != PROP_TYPE_DICTIONARY) {
1585 			DPRINTF(("%s: not a dictionary (%d:%s)\n",
1586 			    __func__, edata->sensor, sme->sme_name));
1587 			return EINVAL;
1588 		}
1589 
1590 		/*
1591 		 * update sensor's state.
1592 		 */
1593 		error = sme_update_sensor_dictionary(dict, edata, true);
1594 
1595 		if (error)
1596 			break;
1597 	}
1598 
1599 	return error;
1600 }
1601 
1602 int
1603 sme_update_sensor_dictionary(prop_object_t dict, envsys_data_t *edata,
1604 	bool value_update)
1605 {
1606 	const struct sme_descr_entry *sdt;
1607 	int error = 0;
1608 
1609 	sdt = sme_find_table_entry(SME_DESC_STATES, edata->state);
1610 	if (sdt == NULL) {
1611 		printf("sme_update_sensor_dictionary: can not update sensor "
1612 		    "state %d unknown\n", edata->state);
1613 		return EINVAL;
1614 	}
1615 
1616 	DPRINTFOBJ(("%s: sensor #%d type=%d (%s) flags=%d\n", __func__,
1617 	    edata->sensor, sdt->type, sdt->desc, edata->flags));
1618 
1619 	error = sme_sensor_upstring(dict, "state", sdt->desc);
1620 	if (error)
1621 		return (-error);
1622 
1623 	/*
1624 	 * update sensor's type.
1625 	 */
1626 	sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units);
1627 
1628 	DPRINTFOBJ(("%s: sensor #%d units=%d (%s)\n", __func__, edata->sensor,
1629 	    sdt->type, sdt->desc));
1630 
1631 	error = sme_sensor_upstring(dict, "type", sdt->desc);
1632 	if (error)
1633 		return (-error);
1634 
1635 	if (value_update) {
1636 		/*
1637 		 * update sensor's current value.
1638 		 */
1639 		error = sme_sensor_upint32(dict, "cur-value", edata->value_cur);
1640 		if (error)
1641 			return error;
1642 	}
1643 
1644 	/*
1645 	 * Battery charge and Indicator types do not
1646 	 * need the remaining objects, so skip them.
1647 	 */
1648 	if (edata->units == ENVSYS_INDICATOR ||
1649 	    edata->units == ENVSYS_BATTERY_CHARGE)
1650 		return error;
1651 
1652 	/*
1653 	 * update sensor flags.
1654 	 */
1655 	if (edata->flags & ENVSYS_FPERCENT) {
1656 		error = sme_sensor_upbool(dict, "want-percentage", true);
1657 		if (error)
1658 			return error;
1659 	}
1660 
1661 	if (value_update) {
1662 		/*
1663 		 * update sensor's {max,min}-value.
1664 		 */
1665 		if (edata->flags & ENVSYS_FVALID_MAX) {
1666 			error = sme_sensor_upint32(dict, "max-value",
1667 						   edata->value_max);
1668 			if (error)
1669 				return error;
1670 		}
1671 
1672 		if (edata->flags & ENVSYS_FVALID_MIN) {
1673 			error = sme_sensor_upint32(dict, "min-value",
1674 						   edata->value_min);
1675 			if (error)
1676 				return error;
1677 		}
1678 
1679 		/*
1680 		 * update 'rpms' only for ENVSYS_SFANRPM sensors.
1681 		 */
1682 		if (edata->units == ENVSYS_SFANRPM) {
1683 			error = sme_sensor_upuint32(dict, "rpms", edata->rpms);
1684 			if (error)
1685 				return error;
1686 		}
1687 
1688 		/*
1689 		 * update 'rfact' only for ENVSYS_SVOLTS_[AD]C sensors.
1690 		 */
1691 		if (edata->units == ENVSYS_SVOLTS_AC ||
1692 		    edata->units == ENVSYS_SVOLTS_DC) {
1693 			error = sme_sensor_upint32(dict, "rfact", edata->rfact);
1694 			if (error)
1695 				return error;
1696 		}
1697 	}
1698 
1699 	/*
1700 	 * update 'drive-state' only for ENVSYS_DRIVE sensors.
1701 	 */
1702 	if (edata->units == ENVSYS_DRIVE) {
1703 		sdt = sme_find_table_entry(SME_DESC_DRIVE_STATES,
1704 					   edata->value_cur);
1705 		error = sme_sensor_upstring(dict, "drive-state", sdt->desc);
1706 		if (error)
1707 			return error;
1708 	}
1709 
1710 	/*
1711 	 * update 'battery-capacity' only for ENVSYS_BATTERY_CAPACITY
1712 	 * sensors.
1713 	 */
1714 	if (edata->units == ENVSYS_BATTERY_CAPACITY) {
1715 		sdt = sme_find_table_entry(SME_DESC_BATTERY_CAPACITY,
1716 		    edata->value_cur);
1717 		error = sme_sensor_upstring(dict, "battery-capacity",
1718 					    sdt->desc);
1719 		if (error)
1720 			return error;
1721 	}
1722 
1723 	return error;
1724 }
1725 
1726 /*
1727  * sme_userset_dictionary:
1728  *
1729  * 	+ Parse the userland dictionary and run the appropiate tasks
1730  * 	  that were specified.
1731  */
1732 int
1733 sme_userset_dictionary(struct sysmon_envsys *sme, prop_dictionary_t udict,
1734 		       prop_array_t array)
1735 {
1736 	const struct sme_descr_entry *sdt;
1737 	envsys_data_t *edata;
1738 	prop_dictionary_t dict, tdict = NULL;
1739 	prop_object_t obj, obj1, obj2, tobj = NULL;
1740 	uint32_t props;
1741 	uint64_t refresh_timo = 0;
1742 	sysmon_envsys_lim_t lims;
1743 	int i, error = 0;
1744 	const char *blah;
1745 	bool targetfound = false;
1746 
1747 	/*
1748 	 * The user wanted to change the refresh timeout value for this
1749 	 * device.
1750 	 *
1751 	 * Get the 'device-properties' object from the userland dictionary.
1752 	 */
1753 	obj = prop_dictionary_get(udict, "device-properties");
1754 	if (obj && prop_object_type(obj) == PROP_TYPE_DICTIONARY) {
1755 		/*
1756 		 * Get the 'refresh-timeout' property for this device.
1757 		 */
1758 		obj1 = prop_dictionary_get(obj, "refresh-timeout");
1759 		if (obj1 && prop_object_type(obj1) == PROP_TYPE_NUMBER) {
1760 			targetfound = true;
1761 			refresh_timo =
1762 			    prop_number_unsigned_integer_value(obj1);
1763 			if (refresh_timo < 1)
1764 				error = EINVAL;
1765 			else {
1766 				mutex_enter(&sme->sme_mtx);
1767 				if (sme->sme_events_timeout != refresh_timo) {
1768 					sme->sme_events_timeout = refresh_timo;
1769 					sme_schedule_callout(sme);
1770 				}
1771 				mutex_exit(&sme->sme_mtx);
1772 		}
1773 		}
1774 		return error;
1775 
1776 	} else if (!obj) {
1777 		/*
1778 		 * Get sensor's index from userland dictionary.
1779 		 */
1780 		obj = prop_dictionary_get(udict, "index");
1781 		if (!obj)
1782 			return EINVAL;
1783 		if (prop_object_type(obj) != PROP_TYPE_STRING) {
1784 			DPRINTF(("%s: 'index' not a string\n", __func__));
1785 			return EINVAL;
1786 		}
1787 	} else
1788 		return EINVAL;
1789 
1790 	/*
1791 	 * Don't bother with locking when traversing the queue,
1792 	 * the device is already marked as busy; if a sensor
1793 	 * is going to be removed or added it will have to wait.
1794 	 */
1795 	TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1796 		/*
1797 		 * Get a dictionary and check if it's our sensor by checking
1798 		 * at its index position.
1799 		 */
1800 		dict = prop_array_get(array, edata->sensor);
1801 		obj1 = prop_dictionary_get(dict, "index");
1802 
1803 		/*
1804 		 * is it our sensor?
1805 		 */
1806 		if (!prop_string_equals(obj1, obj))
1807 			continue;
1808 
1809 		props = 0;
1810 
1811 		/*
1812 		 * Check if a new description operation was
1813 		 * requested by the user and set new description.
1814 		 */
1815 		obj2 = prop_dictionary_get(udict, "description");
1816 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_STRING) {
1817 			targetfound = true;
1818 			blah = prop_string_cstring_nocopy(obj2);
1819 
1820 			/*
1821 			 * Check for duplicate description.
1822 			 */
1823 			for (i = 0; i < sme->sme_nsensors; i++) {
1824 				if (i == edata->sensor)
1825 					continue;
1826 				tdict = prop_array_get(array, i);
1827 				tobj =
1828 				    prop_dictionary_get(tdict, "description");
1829 				if (prop_string_equals(obj2, tobj)) {
1830 					error = EEXIST;
1831 					goto out;
1832 				}
1833 			}
1834 
1835 			/*
1836 			 * Update the object in dictionary.
1837 			 */
1838 			mutex_enter(&sme->sme_mtx);
1839 			error = sme_sensor_upstring(dict,
1840 						    "description",
1841 						    blah);
1842 			if (error) {
1843 				mutex_exit(&sme->sme_mtx);
1844 				goto out;
1845 			}
1846 
1847 			DPRINTF(("%s: sensor%d changed desc to: %s\n",
1848 			    __func__, edata->sensor, blah));
1849 			edata->upropset |= PROP_DESC;
1850 			mutex_exit(&sme->sme_mtx);
1851 		}
1852 
1853 		/*
1854 		 * did the user want to change the rfact?
1855 		 */
1856 		obj2 = prop_dictionary_get(udict, "rfact");
1857 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1858 			targetfound = true;
1859 			if (edata->flags & ENVSYS_FCHANGERFACT) {
1860 				mutex_enter(&sme->sme_mtx);
1861 				edata->rfact = prop_number_integer_value(obj2);
1862 				edata->upropset |= PROP_RFACT;
1863 				mutex_exit(&sme->sme_mtx);
1864 				DPRINTF(("%s: sensor%d changed rfact to %d\n",
1865 				    __func__, edata->sensor, edata->rfact));
1866 			} else {
1867 				error = ENOTSUP;
1868 				goto out;
1869 			}
1870 		}
1871 
1872 		sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units);
1873 
1874 		/*
1875 		 * did the user want to set a critical capacity event?
1876 		 */
1877 		obj2 = prop_dictionary_get(udict, "critical-capacity");
1878 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1879 			targetfound = true;
1880 			lims.sel_critmin = prop_number_integer_value(obj2);
1881 			props |= PROP_BATTCAP;
1882 		}
1883 
1884 		/*
1885 		 * did the user want to set a warning capacity event?
1886 		 */
1887 		obj2 = prop_dictionary_get(udict, "warning-capacity");
1888 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1889 			targetfound = true;
1890 			lims.sel_warnmin = prop_number_integer_value(obj2);
1891 			props |= PROP_BATTWARN;
1892 		}
1893 
1894 		/*
1895 		 * did the user want to set a high capacity event?
1896 		 */
1897 		obj2 = prop_dictionary_get(udict, "high-capacity");
1898 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1899 			targetfound = true;
1900 			lims.sel_warnmin = prop_number_integer_value(obj2);
1901 			props |= PROP_BATTHIGH;
1902 		}
1903 
1904 		/*
1905 		 * did the user want to set a maximum capacity event?
1906 		 */
1907 		obj2 = prop_dictionary_get(udict, "maximum-capacity");
1908 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1909 			targetfound = true;
1910 			lims.sel_warnmin = prop_number_integer_value(obj2);
1911 			props |= PROP_BATTMAX;
1912 		}
1913 
1914 		/*
1915 		 * did the user want to set a critical max event?
1916 		 */
1917 		obj2 = prop_dictionary_get(udict, "critical-max");
1918 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1919 			targetfound = true;
1920 			lims.sel_critmax = prop_number_integer_value(obj2);
1921 			props |= PROP_CRITMAX;
1922 		}
1923 
1924 		/*
1925 		 * did the user want to set a warning max event?
1926 		 */
1927 		obj2 = prop_dictionary_get(udict, "warning-max");
1928 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1929 			targetfound = true;
1930 			lims.sel_warnmax = prop_number_integer_value(obj2);
1931 			props |= PROP_WARNMAX;
1932 		}
1933 
1934 		/*
1935 		 * did the user want to set a critical min event?
1936 		 */
1937 		obj2 = prop_dictionary_get(udict, "critical-min");
1938 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1939 			targetfound = true;
1940 			lims.sel_critmin = prop_number_integer_value(obj2);
1941 			props |= PROP_CRITMIN;
1942 		}
1943 
1944 		/*
1945 		 * did the user want to set a warning min event?
1946 		 */
1947 		obj2 = prop_dictionary_get(udict, "warning-min");
1948 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1949 			targetfound = true;
1950 			lims.sel_warnmin = prop_number_integer_value(obj2);
1951 			props |= PROP_WARNMIN;
1952 		}
1953 
1954 		if (props && (edata->flags & ENVSYS_FMONNOTSUPP) != 0) {
1955 			error = ENOTSUP;
1956 			goto out;
1957 		}
1958 		if (props || (edata->flags & ENVSYS_FHAS_ENTROPY) != 0) {
1959 			error = sme_event_register(dict, edata, sme, &lims,
1960 					props,
1961 					(edata->flags & ENVSYS_FPERCENT)?
1962 						PENVSYS_EVENT_CAPACITY:
1963 						PENVSYS_EVENT_LIMITS,
1964 					sdt->crittype);
1965 			if (error == EEXIST)
1966 				error = 0;
1967 			if (error)
1968 				goto out;
1969 		}
1970 
1971 		/*
1972 		 * All objects in dictionary were processed.
1973 		 */
1974 		break;
1975 	}
1976 
1977 out:
1978 	/*
1979 	 * invalid target? return the error.
1980 	 */
1981 	if (!targetfound)
1982 		error = EINVAL;
1983 
1984 	return error;
1985 }
1986 
1987 /*
1988  * + sysmon_envsys_foreach_sensor
1989  *
1990  *	Walk through the devices' sensor lists and execute the callback.
1991  *	If the callback returns false, the remainder of the current
1992  *	device's sensors are skipped.
1993  */
1994 void
1995 sysmon_envsys_foreach_sensor(sysmon_envsys_callback_t func, void *arg,
1996 			     bool refresh)
1997 {
1998 	struct sysmon_envsys *sme;
1999 	envsys_data_t *sensor;
2000 
2001 	mutex_enter(&sme_global_mtx);
2002 	LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
2003 
2004 		sysmon_envsys_acquire(sme, false);
2005 		TAILQ_FOREACH(sensor, &sme->sme_sensors_list, sensors_head) {
2006 			if (refresh) {
2007 				mutex_enter(&sme->sme_mtx);
2008 				sysmon_envsys_refresh_sensor(sme, sensor);
2009 				mutex_exit(&sme->sme_mtx);
2010 			}
2011 			if (!(*func)(sme, sensor, arg))
2012 				break;
2013 		}
2014 		sysmon_envsys_release(sme, false);
2015 	}
2016 	mutex_exit(&sme_global_mtx);
2017 }
2018 
2019 /*
2020  * Call the sensor's refresh function, and collect/stir entropy
2021  */
2022 void
2023 sysmon_envsys_refresh_sensor(struct sysmon_envsys *sme, envsys_data_t *edata)
2024 {
2025 
2026 	if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0)
2027 		(*sme->sme_refresh)(sme, edata);
2028 
2029 	if (edata->flags & ENVSYS_FHAS_ENTROPY &&
2030 	    edata->state != ENVSYS_SINVALID &&
2031 	    edata->value_prev != edata->value_cur)
2032 		rnd_add_uint32(&edata->rnd_src, edata->value_cur);
2033 	edata->value_prev = edata->value_cur;
2034 }
2035