xref: /netbsd-src/sys/dev/scsipi/ses.c (revision deb6f0161a9109e7de9b519dc8dfb9478668dcdd)
1 /*	$NetBSD: ses.c,v 1.50 2016/11/20 15:37:19 mlelstv Exp $ */
2 /*
3  * Copyright (C) 2000 National Aeronautics & Space Administration
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. The name of the author may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * Author:	mjacob@nas.nasa.gov
26  */
27 
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.50 2016/11/20 15:37:19 mlelstv Exp $");
30 
31 #ifdef _KERNEL_OPT
32 #include "opt_scsi.h"
33 #endif
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/ioctl.h>
41 #include <sys/scsiio.h>
42 #include <sys/buf.h>
43 #include <sys/uio.h>
44 #include <sys/malloc.h>
45 #include <sys/errno.h>
46 #include <sys/device.h>
47 #include <sys/disklabel.h>
48 #include <sys/disk.h>
49 #include <sys/proc.h>
50 #include <sys/conf.h>
51 #include <sys/vnode.h>
52 
53 #include <dev/scsipi/scsipi_all.h>
54 #include <dev/scsipi/scsipi_disk.h>
55 #include <dev/scsipi/scsi_all.h>
56 #include <dev/scsipi/scsi_disk.h>
57 #include <dev/scsipi/scsipiconf.h>
58 #include <dev/scsipi/scsipi_base.h>
59 #include <dev/scsipi/ses.h>
60 
61 /*
62  * Platform Independent Driver Internal Definitions for SES devices.
63  */
64 typedef enum {
65 	SES_NONE,
66 	SES_SES_SCSI2,
67 	SES_SES,
68 	SES_SES_PASSTHROUGH,
69 	SES_SEN,
70 	SES_SAFT
71 } enctyp;
72 
73 struct ses_softc;
74 typedef struct ses_softc ses_softc_t;
75 typedef struct {
76 	int (*softc_init)(ses_softc_t *, int);
77 	int (*init_enc)(ses_softc_t *);
78 	int (*get_encstat)(ses_softc_t *, int);
79 	int (*set_encstat)(ses_softc_t *, ses_encstat, int);
80 	int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
81 	int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
82 } encvec;
83 
84 #define	ENCI_SVALID	0x80
85 
86 typedef struct {
87 	uint32_t
88 		enctype	: 8,		/* enclosure type */
89 		subenclosure : 8,	/* subenclosure id */
90 		svalid	: 1,		/* enclosure information valid */
91 		priv	: 15;		/* private data, per object */
92 	uint8_t	encstat[4];	/* state && stats */
93 } encobj;
94 
95 #define	SEN_ID		"UNISYS           SUN_SEN"
96 #define	SEN_ID_LEN	24
97 
98 static enctyp ses_type(struct scsipi_inquiry_data *);
99 
100 
101 /* Forward reference to Enclosure Functions */
102 static int ses_softc_init(ses_softc_t *, int);
103 static int ses_init_enc(ses_softc_t *);
104 static int ses_get_encstat(ses_softc_t *, int);
105 static int ses_set_encstat(ses_softc_t *, uint8_t, int);
106 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
107 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
108 
109 static int safte_softc_init(ses_softc_t *, int);
110 static int safte_init_enc(ses_softc_t *);
111 static int safte_get_encstat(ses_softc_t *, int);
112 static int safte_set_encstat(ses_softc_t *, uint8_t, int);
113 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
114 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
115 
116 /*
117  * Platform implementation defines/functions for SES internal kernel stuff
118  */
119 
120 #define	STRNCMP			strncmp
121 #define	PRINTF			printf
122 #define	SES_LOG			ses_log
123 #if	defined(DEBUG) || defined(SCSIDEBUG)
124 #define	SES_VLOG		ses_log
125 #else
126 #define	SES_VLOG		if (0) ses_log
127 #endif
128 #define	SES_MALLOC(amt)		malloc(amt, M_DEVBUF, M_NOWAIT)
129 #define	SES_FREE(ptr, amt)	free(ptr, M_DEVBUF)
130 #define	MEMZERO(dest, amt)	memset(dest, 0, amt)
131 #define	MEMCPY(dest, src, amt)	memcpy(dest, src, amt)
132 #define	RECEIVE_DIAGNOSTIC	0x1c
133 #define	SEND_DIAGNOSTIC		0x1d
134 #define	WRITE_BUFFER		0x3b
135 #define	READ_BUFFER		0x3c
136 
137 static dev_type_open(sesopen);
138 static dev_type_close(sesclose);
139 static dev_type_ioctl(sesioctl);
140 
141 const struct cdevsw ses_cdevsw = {
142 	.d_open = sesopen,
143 	.d_close = sesclose,
144 	.d_read = noread,
145 	.d_write = nowrite,
146 	.d_ioctl = sesioctl,
147 	.d_stop = nostop,
148 	.d_tty = notty,
149 	.d_poll = nopoll,
150 	.d_mmap = nommap,
151 	.d_kqfilter = nokqfilter,
152 	.d_discard = nodiscard,
153 	.d_flag = D_OTHER | D_MPSAFE
154 };
155 
156 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
157 static void ses_log(struct ses_softc *, const char *, ...)
158      __attribute__((__format__(__printf__, 2, 3)));
159 
160 /*
161  * General NetBSD kernel stuff.
162  */
163 
164 struct ses_softc {
165 	device_t	sc_dev;
166 	struct scsipi_periph *sc_periph;
167 	enctyp		ses_type;	/* type of enclosure */
168 	encvec		ses_vec;	/* vector to handlers */
169 	void *		ses_private;	/* per-type private data */
170 	encobj *	ses_objmap;	/* objects */
171 	u_int32_t	ses_nobjects;	/* number of objects */
172 	ses_encstat	ses_encstat;	/* overall status */
173 	u_int8_t	ses_flags;
174 };
175 #define	SES_FLAG_INVALID	0x01
176 #define	SES_FLAG_OPEN		0x02
177 #define	SES_FLAG_INITIALIZED	0x04
178 
179 #define SESUNIT(x)       (minor((x)))
180 
181 static int ses_match(device_t, cfdata_t, void *);
182 static void ses_attach(device_t, device_t, void *);
183 static int ses_detach(device_t, int);
184 static enctyp ses_device_type(struct scsipibus_attach_args *);
185 
186 CFATTACH_DECL_NEW(ses, sizeof (struct ses_softc),
187     ses_match, ses_attach, ses_detach, NULL);
188 
189 extern struct cfdriver ses_cd;
190 
191 static const struct scsipi_periphsw ses_switch = {
192 	NULL,
193 	NULL,
194 	NULL,
195 	NULL
196 };
197 
198 static int
199 ses_match(device_t parent, cfdata_t match, void *aux)
200 {
201 	struct scsipibus_attach_args *sa = aux;
202 
203 	switch (ses_device_type(sa)) {
204 	case SES_SES:
205 	case SES_SES_SCSI2:
206 	case SES_SEN:
207 	case SES_SAFT:
208 	case SES_SES_PASSTHROUGH:
209 		/*
210 		 * For these devices, it's a perfect match.
211 		 */
212 		return (24);
213 	default:
214 		return (0);
215 	}
216 }
217 
218 
219 /*
220  * Complete the attachment.
221  *
222  * We have to repeat the rerun of INQUIRY data as above because
223  * it's not until the return from the match routine that we have
224  * the softc available to set stuff in.
225  */
226 static void
227 ses_attach(device_t parent, device_t self, void *aux)
228 {
229 	const char *tname;
230 	struct ses_softc *softc = device_private(self);
231 	struct scsipibus_attach_args *sa = aux;
232 	struct scsipi_periph *periph = sa->sa_periph;
233 
234 	softc->sc_dev = self;
235 	SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
236 	softc->sc_periph = periph;
237 	periph->periph_dev = self;
238 	periph->periph_switch = &ses_switch;
239 	periph->periph_openings = 1;
240 
241 	softc->ses_type = ses_device_type(sa);
242 	switch (softc->ses_type) {
243 	case SES_SES:
244 	case SES_SES_SCSI2:
245         case SES_SES_PASSTHROUGH:
246 		softc->ses_vec.softc_init = ses_softc_init;
247 		softc->ses_vec.init_enc = ses_init_enc;
248 		softc->ses_vec.get_encstat = ses_get_encstat;
249 		softc->ses_vec.set_encstat = ses_set_encstat;
250 		softc->ses_vec.get_objstat = ses_get_objstat;
251 		softc->ses_vec.set_objstat = ses_set_objstat;
252 		break;
253         case SES_SAFT:
254 		softc->ses_vec.softc_init = safte_softc_init;
255 		softc->ses_vec.init_enc = safte_init_enc;
256 		softc->ses_vec.get_encstat = safte_get_encstat;
257 		softc->ses_vec.set_encstat = safte_set_encstat;
258 		softc->ses_vec.get_objstat = safte_get_objstat;
259 		softc->ses_vec.set_objstat = safte_set_objstat;
260 		break;
261         case SES_SEN:
262 		break;
263 	case SES_NONE:
264 	default:
265 		break;
266 	}
267 
268 	switch (softc->ses_type) {
269 	default:
270 	case SES_NONE:
271 		tname = "No SES device";
272 		break;
273 	case SES_SES_SCSI2:
274 		tname = "SCSI-2 SES Device";
275 		break;
276 	case SES_SES:
277 		tname = "SCSI-3 SES Device";
278 		break;
279         case SES_SES_PASSTHROUGH:
280 		tname = "SES Passthrough Device";
281 		break;
282         case SES_SEN:
283 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
284 		break;
285         case SES_SAFT:
286 		tname = "SAF-TE Compliant Device";
287 		break;
288 	}
289 	aprint_naive("\n");
290 	aprint_normal("\n%s: %s\n", device_xname(softc->sc_dev), tname);
291 }
292 
293 static enctyp
294 ses_device_type(struct scsipibus_attach_args *sa)
295 {
296 	struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
297 
298 	if (inqp == NULL)
299 		return (SES_NONE);
300 
301 	return (ses_type(inqp));
302 }
303 
304 static int
305 sesopen(dev_t dev, int flags, int fmt, struct lwp *l)
306 {
307 	struct ses_softc *softc;
308 	int error, unit;
309 
310 	unit = SESUNIT(dev);
311 	softc = device_lookup_private(&ses_cd, unit);
312 	if (softc == NULL)
313 		return (ENXIO);
314 
315 	if (softc->ses_flags & SES_FLAG_INVALID) {
316 		error = ENXIO;
317 		goto out;
318 	}
319 	if (softc->ses_flags & SES_FLAG_OPEN) {
320 		error = EBUSY;
321 		goto out;
322 	}
323 	if (softc->ses_vec.softc_init == NULL) {
324 		error = ENXIO;
325 		goto out;
326 	}
327 	error = scsipi_adapter_addref(
328 	    softc->sc_periph->periph_channel->chan_adapter);
329 	if (error != 0)
330                 goto out;
331 
332 
333 	softc->ses_flags |= SES_FLAG_OPEN;
334 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
335 		error = (*softc->ses_vec.softc_init)(softc, 1);
336 		if (error)
337 			softc->ses_flags &= ~SES_FLAG_OPEN;
338 		else
339 			softc->ses_flags |= SES_FLAG_INITIALIZED;
340 	}
341 
342 out:
343 	return (error);
344 }
345 
346 static int
347 sesclose(dev_t dev, int flags, int fmt,
348     struct lwp *l)
349 {
350 	struct ses_softc *softc;
351 	int unit;
352 
353 	unit = SESUNIT(dev);
354 	softc = device_lookup_private(&ses_cd, unit);
355 	if (softc == NULL)
356 		return (ENXIO);
357 
358 	scsipi_wait_drain(softc->sc_periph);
359 	scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
360 	softc->ses_flags &= ~SES_FLAG_OPEN;
361 	return (0);
362 }
363 
364 static int
365 sesioctl(dev_t dev, u_long cmd, void *arg_addr, int flag, struct lwp *l)
366 {
367 	ses_encstat tmp;
368 	ses_objstat objs;
369 	ses_object obj, *uobj;
370 	struct ses_softc *ssc = device_lookup_private(&ses_cd, SESUNIT(dev));
371 	void *addr;
372 	int error, i;
373 
374 
375 	if (arg_addr)
376 		addr = *((void **) arg_addr);
377 	else
378 		addr = NULL;
379 
380 	SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
381 
382 	/*
383 	 * Now check to see whether we're initialized or not.
384 	 */
385 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
386 		return (ENODEV);
387 	}
388 
389 	error = 0;
390 
391 	/*
392 	 * If this command can change the device's state,
393 	 * we must have the device open for writing.
394 	 */
395 	switch (cmd) {
396 	case SESIOC_GETNOBJ:
397 	case SESIOC_GETOBJMAP:
398 	case SESIOC_GETENCSTAT:
399 	case SESIOC_GETOBJSTAT:
400 		break;
401 	default:
402 		if ((flag & FWRITE) == 0) {
403 			return (EBADF);
404 		}
405 	}
406 
407 	switch (cmd) {
408 	case SESIOC_GETNOBJ:
409 		if (addr == NULL)
410 			return EINVAL;
411 		error = copyout(&ssc->ses_nobjects, addr,
412 		    sizeof (ssc->ses_nobjects));
413 		break;
414 
415 	case SESIOC_GETOBJMAP:
416 		if (addr == NULL)
417 			return EINVAL;
418 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
419 			obj.obj_id = i;
420 			obj.subencid = ssc->ses_objmap[i].subenclosure;
421 			obj.object_type = ssc->ses_objmap[i].enctype;
422 			error = copyout(&obj, uobj, sizeof (ses_object));
423 			if (error) {
424 				break;
425 			}
426 		}
427 		break;
428 
429 	case SESIOC_GETENCSTAT:
430 		if (addr == NULL)
431 			return EINVAL;
432 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
433 		if (error)
434 			break;
435 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
436 		error = copyout(&tmp, addr, sizeof (ses_encstat));
437 		ssc->ses_encstat = tmp;
438 		break;
439 
440 	case SESIOC_SETENCSTAT:
441 		if (addr == NULL)
442 			return EINVAL;
443 		error = copyin(addr, &tmp, sizeof (ses_encstat));
444 		if (error)
445 			break;
446 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
447 		break;
448 
449 	case SESIOC_GETOBJSTAT:
450 		if (addr == NULL)
451 			return EINVAL;
452 		error = copyin(addr, &objs, sizeof (ses_objstat));
453 		if (error)
454 			break;
455 		if (objs.obj_id >= ssc->ses_nobjects) {
456 			error = EINVAL;
457 			break;
458 		}
459 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
460 		if (error)
461 			break;
462 		error = copyout(&objs, addr, sizeof (ses_objstat));
463 		/*
464 		 * Always (for now) invalidate entry.
465 		 */
466 		ssc->ses_objmap[objs.obj_id].svalid = 0;
467 		break;
468 
469 	case SESIOC_SETOBJSTAT:
470 		if (addr == NULL)
471 			return EINVAL;
472 		error = copyin(addr, &objs, sizeof (ses_objstat));
473 		if (error)
474 			break;
475 
476 		if (objs.obj_id >= ssc->ses_nobjects) {
477 			error = EINVAL;
478 			break;
479 		}
480 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
481 
482 		/*
483 		 * Always (for now) invalidate entry.
484 		 */
485 		ssc->ses_objmap[objs.obj_id].svalid = 0;
486 		break;
487 
488 	case SESIOC_INIT:
489 
490 		error = (*ssc->ses_vec.init_enc)(ssc);
491 		break;
492 
493 	default:
494 		error = scsipi_do_ioctl(ssc->sc_periph,
495 			    dev, cmd, arg_addr, flag, l);
496 		break;
497 	}
498 	return (error);
499 }
500 
501 static int
502 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
503 {
504 	struct scsipi_generic sgen;
505 	int dl, flg, error;
506 
507 	if (dptr) {
508 		if ((dl = *dlenp) < 0) {
509 			dl = -dl;
510 			flg = XS_CTL_DATA_OUT;
511 		} else {
512 			flg = XS_CTL_DATA_IN;
513 		}
514 	} else {
515 		dl = 0;
516 		flg = 0;
517 	}
518 
519 	if (cdbl > sizeof (struct scsipi_generic)) {
520 		cdbl = sizeof (struct scsipi_generic);
521 	}
522 	memcpy(&sgen, cdb, cdbl);
523 #ifndef	SCSIDEBUG
524 	flg |= XS_CTL_SILENT;
525 #endif
526 	error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
527 	    (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
528 
529 	if (error == 0 && dptr)
530 		*dlenp = 0;
531 
532 	return (error);
533 }
534 
535 static void
536 ses_log(struct ses_softc *ssc, const char *fmt, ...)
537 {
538 	va_list ap;
539 
540 	printf("%s: ", device_xname(ssc->sc_dev));
541 	va_start(ap, fmt);
542 	vprintf(fmt, ap);
543 	va_end(ap);
544 }
545 
546 /*
547  * The code after this point runs on many platforms,
548  * so forgive the slightly awkward and nonconforming
549  * appearance.
550  */
551 
552 /*
553  * Is this a device that supports enclosure services?
554  *
555  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
556  * an SES device. If it happens to be an old UNISYS SEN device, we can
557  * handle that too.
558  */
559 
560 #define	SAFTE_START	44
561 #define	SAFTE_END	50
562 #define	SAFTE_LEN	SAFTE_END-SAFTE_START
563 
564 static enctyp
565 ses_type(struct scsipi_inquiry_data *inqp)
566 {
567 	size_t	given_len = inqp->additional_length + 4;
568 
569 	if (given_len < 8+SEN_ID_LEN)
570 		return (SES_NONE);
571 
572 	if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
573 		if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
574 			return (SES_SEN);
575 		} else if ((inqp->version & SID_ANSII) > 2) {
576 			return (SES_SES);
577 		} else {
578 			return (SES_SES_SCSI2);
579 		}
580 		return (SES_NONE);
581 	}
582 
583 #ifdef	SES_ENABLE_PASSTHROUGH
584 	if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
585 		/*
586 		 * PassThrough Device.
587 		 */
588 		return (SES_SES_PASSTHROUGH);
589 	}
590 #endif
591 
592 	/*
593 	 * The comparison is short for a reason-
594 	 * some vendors were chopping it short.
595 	 */
596 
597 	if (given_len < SAFTE_END - 2) {
598 		return (SES_NONE);
599 	}
600 
601 	if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
602 			SAFTE_LEN - 2) == 0) {
603 		return (SES_SAFT);
604 	}
605 
606 	return (SES_NONE);
607 }
608 
609 /*
610  * SES Native Type Device Support
611  */
612 
613 /*
614  * SES Diagnostic Page Codes
615  */
616 
617 typedef enum {
618 	SesConfigPage = 0x1,
619 	SesControlPage,
620 #define	SesStatusPage SesControlPage
621 	SesHelpTxt,
622 	SesStringOut,
623 #define	SesStringIn	SesStringOut
624 	SesThresholdOut,
625 #define	SesThresholdIn SesThresholdOut
626 	SesArrayControl,
627 #define	SesArrayStatus	SesArrayControl
628 	SesElementDescriptor,
629 	SesShortStatus
630 } SesDiagPageCodes;
631 
632 /*
633  * minimal amounts
634  */
635 
636 /*
637  * Minimum amount of data, starting from byte 0, to have
638  * the config header.
639  */
640 #define	SES_CFGHDR_MINLEN	12
641 
642 /*
643  * Minimum amount of data, starting from byte 0, to have
644  * the config header and one enclosure header.
645  */
646 #define	SES_ENCHDR_MINLEN	48
647 
648 /*
649  * Take this value, subtract it from VEnclen and you know
650  * the length of the vendor unique bytes.
651  */
652 #define	SES_ENCHDR_VMIN		36
653 
654 /*
655  * SES Data Structures
656  */
657 
658 typedef struct {
659 	uint32_t GenCode;	/* Generation Code */
660 	uint8_t	Nsubenc;	/* Number of Subenclosures */
661 } SesCfgHdr;
662 
663 typedef struct {
664 	uint8_t	Subencid;	/* SubEnclosure Identifier */
665 	uint8_t	Ntypes;		/* # of supported types */
666 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
667 } SesEncHdr;
668 
669 typedef struct {
670 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
671 	uint8_t	encVid[8];
672 	uint8_t	encPid[16];
673 	uint8_t	encRev[4];
674 	uint8_t	encVen[1];
675 } SesEncDesc;
676 
677 typedef struct {
678 	uint8_t	enc_type;		/* type of element */
679 	uint8_t	enc_maxelt;		/* maximum supported */
680 	uint8_t	enc_subenc;		/* in SubEnc # N */
681 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
682 } SesThdr;
683 
684 typedef struct {
685 	uint8_t	comstatus;
686 	uint8_t	comstat[3];
687 } SesComStat;
688 
689 struct typidx {
690 	int ses_tidx;
691 	int ses_oidx;
692 };
693 
694 struct sscfg {
695 	uint8_t ses_ntypes;	/* total number of types supported */
696 
697 	/*
698 	 * We need to keep a type index as well as an
699 	 * object index for each object in an enclosure.
700 	 */
701 	struct typidx *ses_typidx;
702 
703 	/*
704 	 * We also need to keep track of the number of elements
705 	 * per type of element. This is needed later so that we
706 	 * can find precisely in the returned status data the
707 	 * status for the Nth element of the Kth type.
708 	 */
709 	uint8_t *	ses_eltmap;
710 };
711 
712 
713 /*
714  * (de)canonicalization defines
715  */
716 #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
717 #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
718 #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
719 
720 #define	sset16(outp, idx, sval)	\
721 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
722 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
723 
724 
725 #define	sset24(outp, idx, sval)	\
726 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
727 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
728 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
729 
730 
731 #define	sset32(outp, idx, sval)	\
732 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
733 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
734 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
735 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
736 
737 #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
738 #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
739 #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
740 #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
741 
742 #define	sget16(inp, idx, lval)	\
743 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
744 		(((uint8_t *)(inp))[idx+1]), idx += 2
745 
746 #define	gget16(inp, idx, lval)	\
747 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
748 		(((uint8_t *)(inp))[idx+1])
749 
750 #define	sget24(inp, idx, lval)	\
751 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
752 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
753 			(((uint8_t *)(inp))[idx+2]), idx += 3
754 
755 #define	gget24(inp, idx, lval)	\
756 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
757 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
758 			(((uint8_t *)(inp))[idx+2])
759 
760 #define	sget32(inp, idx, lval)	\
761 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
762 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
763 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
764 			(((uint8_t *)(inp))[idx+3]), idx += 4
765 
766 #define	gget32(inp, idx, lval)	\
767 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
768 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
769 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
770 			(((uint8_t *)(inp))[idx+3])
771 
772 #define	SCSZ	0x2000
773 #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
774 
775 /*
776  * Routines specific && private to SES only
777  */
778 
779 static int ses_getconfig(ses_softc_t *);
780 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
781 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
782 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
783 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
784 static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
785 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
786 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
787 
788 static int
789 ses_softc_init(ses_softc_t *ssc, int doinit)
790 {
791 	if (doinit == 0) {
792 		struct sscfg *cc;
793 		if (ssc->ses_nobjects) {
794 			SES_FREE(ssc->ses_objmap,
795 			    ssc->ses_nobjects * sizeof (encobj));
796 			ssc->ses_objmap = NULL;
797 		}
798 		if ((cc = ssc->ses_private) != NULL) {
799 			if (cc->ses_eltmap && cc->ses_ntypes) {
800 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
801 				cc->ses_eltmap = NULL;
802 				cc->ses_ntypes = 0;
803 			}
804 			if (cc->ses_typidx && ssc->ses_nobjects) {
805 				SES_FREE(cc->ses_typidx,
806 				    ssc->ses_nobjects * sizeof (struct typidx));
807 				cc->ses_typidx = NULL;
808 			}
809 			SES_FREE(cc, sizeof (struct sscfg));
810 			ssc->ses_private = NULL;
811 		}
812 		ssc->ses_nobjects = 0;
813 		return (0);
814 	}
815 	if (ssc->ses_private == NULL) {
816 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
817 	}
818 	if (ssc->ses_private == NULL) {
819 		return (ENOMEM);
820 	}
821 	ssc->ses_nobjects = 0;
822 	ssc->ses_encstat = 0;
823 	return (ses_getconfig(ssc));
824 }
825 
826 static int
827 ses_detach(device_t self, int flags)
828 {
829 	struct ses_softc *ssc = device_private(self);
830 	struct sscfg *cc = ssc->ses_private;
831 
832 	if (ssc->ses_objmap) {
833 		SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
834 	}
835 	if (cc != NULL) {
836 		if (cc->ses_typidx) {
837 			SES_FREE(cc->ses_typidx,
838 			    (nobj * sizeof (struct typidx)));
839 		}
840 		if (cc->ses_eltmap) {
841 			SES_FREE(cc->ses_eltmap, ntype);
842 		}
843 		SES_FREE(cc, sizeof (struct sscfg));
844 	}
845 
846 	return 0;
847 }
848 
849 static int
850 ses_init_enc(ses_softc_t *ssc)
851 {
852 	return (0);
853 }
854 
855 static int
856 ses_get_encstat(ses_softc_t *ssc, int slpflag)
857 {
858 	SesComStat ComStat;
859 	int status;
860 
861 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
862 		return (status);
863 	}
864 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
865 	return (0);
866 }
867 
868 static int
869 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
870 {
871 	SesComStat ComStat;
872 	int status;
873 
874 	ComStat.comstatus = encstat & 0xf;
875 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
876 		return (status);
877 	}
878 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
879 	return (0);
880 }
881 
882 static int
883 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
884 {
885 	int i = (int)obp->obj_id;
886 
887 	if (ssc->ses_objmap[i].svalid == 0) {
888 		SesComStat ComStat;
889 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
890 		if (err)
891 			return (err);
892 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
893 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
894 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
895 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
896 		ssc->ses_objmap[i].svalid = 1;
897 	}
898 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
899 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
900 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
901 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
902 	return (0);
903 }
904 
905 static int
906 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
907 {
908 	SesComStat ComStat;
909 	int err;
910 	/*
911 	 * If this is clear, we don't do diddly.
912 	 */
913 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
914 		return (0);
915 	}
916 	ComStat.comstatus = obp->cstat[0];
917 	ComStat.comstat[0] = obp->cstat[1];
918 	ComStat.comstat[1] = obp->cstat[2];
919 	ComStat.comstat[2] = obp->cstat[3];
920 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
921 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
922 	return (err);
923 }
924 
925 static int
926 ses_getconfig(ses_softc_t *ssc)
927 {
928 	struct sscfg *cc;
929 	SesCfgHdr cf;
930 	SesEncHdr hd;
931 	SesEncDesc *cdp;
932 	SesThdr thdr;
933 	int err, amt, i, nobj, ntype, maxima;
934 	char storage[CFLEN], *sdata;
935 	static char cdb[6] = {
936 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
937 	};
938 
939 	cc = ssc->ses_private;
940 	if (cc == NULL) {
941 		return (ENXIO);
942 	}
943 
944 	sdata = SES_MALLOC(SCSZ);
945 	if (sdata == NULL)
946 		return (ENOMEM);
947 
948 	amt = SCSZ;
949 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
950 	if (err) {
951 		SES_FREE(sdata, SCSZ);
952 		return (err);
953 	}
954 	amt = SCSZ - amt;
955 
956 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
957 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
958 		SES_FREE(sdata, SCSZ);
959 		return (EIO);
960 	}
961 	if (amt < SES_ENCHDR_MINLEN) {
962 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
963 		SES_FREE(sdata, SCSZ);
964 		return (EIO);
965 	}
966 
967 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
968 
969 	/*
970 	 * Now waltz through all the subenclosures toting up the
971 	 * number of types available in each. For this, we only
972 	 * really need the enclosure header. However, we get the
973 	 * enclosure descriptor for debug purposes, as well
974 	 * as self-consistency checking purposes.
975 	 */
976 
977 	maxima = cf.Nsubenc + 1;
978 	cdp = (SesEncDesc *) storage;
979 	for (ntype = i = 0; i < maxima; i++) {
980 		MEMZERO((void *)cdp, sizeof (*cdp));
981 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
982 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
983 			SES_FREE(sdata, SCSZ);
984 			return (EIO);
985 		}
986 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
987 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
988 
989 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
990 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
991 			SES_FREE(sdata, SCSZ);
992 			return (EIO);
993 		}
994 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
995 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
996 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
997 		    cdp->encWWN[6], cdp->encWWN[7]);
998 		ntype += hd.Ntypes;
999 	}
1000 
1001 	/*
1002 	 * Now waltz through all the types that are available, getting
1003 	 * the type header so we can start adding up the number of
1004 	 * objects available.
1005 	 */
1006 	for (nobj = i = 0; i < ntype; i++) {
1007 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1008 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
1009 			SES_FREE(sdata, SCSZ);
1010 			return (EIO);
1011 		}
1012 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1013 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1014 		    thdr.enc_subenc, thdr.enc_tlen);
1015 		nobj += thdr.enc_maxelt;
1016 	}
1017 
1018 
1019 	/*
1020 	 * Now allocate the object array and type map.
1021 	 */
1022 
1023 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1024 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1025 	cc->ses_eltmap = SES_MALLOC(ntype);
1026 
1027 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1028 	    cc->ses_eltmap == NULL) {
1029 		if (ssc->ses_objmap) {
1030 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1031 			ssc->ses_objmap = NULL;
1032 		}
1033 		if (cc->ses_typidx) {
1034 			SES_FREE(cc->ses_typidx,
1035 			    (nobj * sizeof (struct typidx)));
1036 			cc->ses_typidx = NULL;
1037 		}
1038 		if (cc->ses_eltmap) {
1039 			SES_FREE(cc->ses_eltmap, ntype);
1040 			cc->ses_eltmap = NULL;
1041 		}
1042 		SES_FREE(sdata, SCSZ);
1043 		return (ENOMEM);
1044 	}
1045 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1046 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1047 	MEMZERO(cc->ses_eltmap, ntype);
1048 	cc->ses_ntypes = (uint8_t) ntype;
1049 	ssc->ses_nobjects = nobj;
1050 
1051 	/*
1052 	 * Now waltz through the # of types again to fill in the types
1053 	 * (and subenclosure ids) of the allocated objects.
1054 	 */
1055 	nobj = 0;
1056 	for (i = 0; i < ntype; i++) {
1057 		int j;
1058 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1059 			continue;
1060 		}
1061 		cc->ses_eltmap[i] = thdr.enc_maxelt;
1062 		for (j = 0; j < thdr.enc_maxelt; j++) {
1063 			cc->ses_typidx[nobj].ses_tidx = i;
1064 			cc->ses_typidx[nobj].ses_oidx = j;
1065 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1066 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1067 		}
1068 	}
1069 	SES_FREE(sdata, SCSZ);
1070 	return (0);
1071 }
1072 
1073 static int
1074 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp,
1075     int in)
1076 {
1077 	struct sscfg *cc;
1078 	int err, amt, bufsiz, tidx, oidx;
1079 	char cdb[6], *sdata;
1080 
1081 	cc = ssc->ses_private;
1082 	if (cc == NULL) {
1083 		return (ENXIO);
1084 	}
1085 
1086 	/*
1087 	 * If we're just getting overall enclosure status,
1088 	 * we only need 2 bytes of data storage.
1089 	 *
1090 	 * If we're getting anything else, we know how much
1091 	 * storage we need by noting that starting at offset
1092 	 * 8 in returned data, all object status bytes are 4
1093 	 * bytes long, and are stored in chunks of types(M)
1094 	 * and nth+1 instances of type M.
1095 	 */
1096 	if (objid == -1) {
1097 		bufsiz = 2;
1098 	} else {
1099 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1100 	}
1101 	sdata = SES_MALLOC(bufsiz);
1102 	if (sdata == NULL)
1103 		return (ENOMEM);
1104 
1105 	cdb[0] = RECEIVE_DIAGNOSTIC;
1106 	cdb[1] = 1;
1107 	cdb[2] = SesStatusPage;
1108 	cdb[3] = bufsiz >> 8;
1109 	cdb[4] = bufsiz & 0xff;
1110 	cdb[5] = 0;
1111 	amt = bufsiz;
1112 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1113 	if (err) {
1114 		SES_FREE(sdata, bufsiz);
1115 		return (err);
1116 	}
1117 	amt = bufsiz - amt;
1118 
1119 	if (objid == -1) {
1120 		tidx = -1;
1121 		oidx = -1;
1122 	} else {
1123 		tidx = cc->ses_typidx[objid].ses_tidx;
1124 		oidx = cc->ses_typidx[objid].ses_oidx;
1125 	}
1126 	if (in) {
1127 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1128 			err = ENODEV;
1129 		}
1130 	} else {
1131 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1132 			err = ENODEV;
1133 		} else {
1134 			cdb[0] = SEND_DIAGNOSTIC;
1135 			cdb[1] = 0x10;
1136 			cdb[2] = 0;
1137 			cdb[3] = bufsiz >> 8;
1138 			cdb[4] = bufsiz & 0xff;
1139 			cdb[5] = 0;
1140 			amt = -bufsiz;
1141 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1142 		}
1143 	}
1144 	SES_FREE(sdata, bufsiz);
1145 	return (0);
1146 }
1147 
1148 
1149 /*
1150  * Routines to parse returned SES data structures.
1151  * Architecture and compiler independent.
1152  */
1153 
1154 static int
1155 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1156 {
1157 	if (buflen < SES_CFGHDR_MINLEN) {
1158 		return (-1);
1159 	}
1160 	gget8(buffer, 1, cfp->Nsubenc);
1161 	gget32(buffer, 4, cfp->GenCode);
1162 	return (0);
1163 }
1164 
1165 static int
1166 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1167 {
1168 	int s, off = 8;
1169 	for (s = 0; s < SubEncId; s++) {
1170 		if (off + 3 > amt)
1171 			return (-1);
1172 		off += buffer[off+3] + 4;
1173 	}
1174 	if (off + 3 > amt) {
1175 		return (-1);
1176 	}
1177 	gget8(buffer, off+1, chp->Subencid);
1178 	gget8(buffer, off+2, chp->Ntypes);
1179 	gget8(buffer, off+3, chp->VEnclen);
1180 	return (0);
1181 }
1182 
1183 static int
1184 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1185 {
1186 	int s, e, enclen, off = 8;
1187 	for (s = 0; s < SubEncId; s++) {
1188 		if (off + 3 > amt)
1189 			return (-1);
1190 		off += buffer[off+3] + 4;
1191 	}
1192 	if (off + 3 > amt) {
1193 		return (-1);
1194 	}
1195 	gget8(buffer, off+3, enclen);
1196 	off += 4;
1197 	if (off  >= amt)
1198 		return (-1);
1199 
1200 	e = off + enclen;
1201 	if (e > amt) {
1202 		e = amt;
1203 	}
1204 	MEMCPY(cdp, &buffer[off], e - off);
1205 	return (0);
1206 }
1207 
1208 static int
1209 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1210 {
1211 	int s, off = 8;
1212 
1213 	if (amt < SES_CFGHDR_MINLEN) {
1214 		return (-1);
1215 	}
1216 	for (s = 0; s < buffer[1]; s++) {
1217 		if (off + 3 > amt)
1218 			return (-1);
1219 		off += buffer[off+3] + 4;
1220 	}
1221 	if (off + 3 > amt) {
1222 		return (-1);
1223 	}
1224 	off += buffer[off+3] + 4 + (nth * 4);
1225 	if (amt < (off + 4))
1226 		return (-1);
1227 
1228 	gget8(buffer, off++, thp->enc_type);
1229 	gget8(buffer, off++, thp->enc_maxelt);
1230 	gget8(buffer, off++, thp->enc_subenc);
1231 	gget8(buffer, off, thp->enc_tlen);
1232 	return (0);
1233 }
1234 
1235 /*
1236  * This function needs a little explanation.
1237  *
1238  * The arguments are:
1239  *
1240  *
1241  *	char *b, int amt
1242  *
1243  *		These describes the raw input SES status data and length.
1244  *
1245  *	uint8_t *ep
1246  *
1247  *		This is a map of the number of types for each element type
1248  *		in the enclosure.
1249  *
1250  *	int elt
1251  *
1252  *		This is the element type being sought. If elt is -1,
1253  *		then overall enclosure status is being sought.
1254  *
1255  *	int elm
1256  *
1257  *		This is the ordinal Mth element of type elt being sought.
1258  *
1259  *	SesComStat *sp
1260  *
1261  *		This is the output area to store the status for
1262  *		the Mth element of type Elt.
1263  */
1264 
1265 static int
1266 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1267 {
1268 	int idx, i;
1269 
1270 	/*
1271 	 * If it's overall enclosure status being sought, get that.
1272 	 * We need at least 2 bytes of status data to get that.
1273 	 */
1274 	if (elt == -1) {
1275 		if (amt < 2)
1276 			return (-1);
1277 		gget8(b, 1, sp->comstatus);
1278 		sp->comstat[0] = 0;
1279 		sp->comstat[1] = 0;
1280 		sp->comstat[2] = 0;
1281 		return (0);
1282 	}
1283 
1284 	/*
1285 	 * Check to make sure that the Mth element is legal for type Elt.
1286 	 */
1287 
1288 	if (elm >= ep[elt])
1289 		return (-1);
1290 
1291 	/*
1292 	 * Starting at offset 8, start skipping over the storage
1293 	 * for the element types we're not interested in.
1294 	 */
1295 	for (idx = 8, i = 0; i < elt; i++) {
1296 		idx += ((ep[i] + 1) * 4);
1297 	}
1298 
1299 	/*
1300 	 * Skip over Overall status for this element type.
1301 	 */
1302 	idx += 4;
1303 
1304 	/*
1305 	 * And skip to the index for the Mth element that we're going for.
1306 	 */
1307 	idx += (4 * elm);
1308 
1309 	/*
1310 	 * Make sure we haven't overflowed the buffer.
1311 	 */
1312 	if (idx+4 > amt)
1313 		return (-1);
1314 
1315 	/*
1316 	 * Retrieve the status.
1317 	 */
1318 	gget8(b, idx++, sp->comstatus);
1319 	gget8(b, idx++, sp->comstat[0]);
1320 	gget8(b, idx++, sp->comstat[1]);
1321 	gget8(b, idx++, sp->comstat[2]);
1322 #if	0
1323 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1324 #endif
1325 	return (0);
1326 }
1327 
1328 /*
1329  * This is the mirror function to ses_decode, but we set the 'select'
1330  * bit for the object which we're interested in. All other objects,
1331  * after a status fetch, should have that bit off. Hmm. It'd be easy
1332  * enough to ensure this, so we will.
1333  */
1334 
1335 static int
1336 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1337 {
1338 	int idx, i;
1339 
1340 	/*
1341 	 * If it's overall enclosure status being sought, get that.
1342 	 * We need at least 2 bytes of status data to get that.
1343 	 */
1344 	if (elt == -1) {
1345 		if (amt < 2)
1346 			return (-1);
1347 		i = 0;
1348 		sset8(b, i, 0);
1349 		sset8(b, i, sp->comstatus & 0xf);
1350 #if	0
1351 		PRINTF("set EncStat %x\n", sp->comstatus);
1352 #endif
1353 		return (0);
1354 	}
1355 
1356 	/*
1357 	 * Check to make sure that the Mth element is legal for type Elt.
1358 	 */
1359 
1360 	if (elm >= ep[elt])
1361 		return (-1);
1362 
1363 	/*
1364 	 * Starting at offset 8, start skipping over the storage
1365 	 * for the element types we're not interested in.
1366 	 */
1367 	for (idx = 8, i = 0; i < elt; i++) {
1368 		idx += ((ep[i] + 1) * 4);
1369 	}
1370 
1371 	/*
1372 	 * Skip over Overall status for this element type.
1373 	 */
1374 	idx += 4;
1375 
1376 	/*
1377 	 * And skip to the index for the Mth element that we're going for.
1378 	 */
1379 	idx += (4 * elm);
1380 
1381 	/*
1382 	 * Make sure we haven't overflowed the buffer.
1383 	 */
1384 	if (idx+4 > amt)
1385 		return (-1);
1386 
1387 	/*
1388 	 * Set the status.
1389 	 */
1390 	sset8(b, idx, sp->comstatus);
1391 	sset8(b, idx, sp->comstat[0]);
1392 	sset8(b, idx, sp->comstat[1]);
1393 	sset8(b, idx, sp->comstat[2]);
1394 	idx -= 4;
1395 
1396 #if	0
1397 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1398 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
1399 	    sp->comstat[1], sp->comstat[2]);
1400 #endif
1401 
1402 	/*
1403 	 * Now make sure all other 'Select' bits are off.
1404 	 */
1405 	for (i = 8; i < amt; i += 4) {
1406 		if (i != idx)
1407 			b[i] &= ~0x80;
1408 	}
1409 	/*
1410 	 * And make sure the INVOP bit is clear.
1411 	 */
1412 	b[2] &= ~0x10;
1413 
1414 	return (0);
1415 }
1416 
1417 /*
1418  * SAF-TE Type Device Emulation
1419  */
1420 
1421 static int safte_getconfig(ses_softc_t *);
1422 static int safte_rdstat(ses_softc_t *, int);
1423 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1424 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1425 static void wrslot_stat(ses_softc_t *, int);
1426 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1427 
1428 #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1429 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1430 /*
1431  * SAF-TE specific defines- Mandatory ones only...
1432  */
1433 
1434 /*
1435  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1436  */
1437 #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
1438 #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
1439 #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
1440 
1441 /*
1442  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1443  */
1444 #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
1445 #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
1446 #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
1447 #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
1448 #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
1449 
1450 
1451 #define	SAFT_SCRATCH	64
1452 #define	NPSEUDO_THERM	16
1453 #define	NPSEUDO_ALARM	1
1454 struct scfg {
1455 	/*
1456 	 * Cached Configuration
1457 	 */
1458 	uint8_t	Nfans;		/* Number of Fans */
1459 	uint8_t	Npwr;		/* Number of Power Supplies */
1460 	uint8_t	Nslots;		/* Number of Device Slots */
1461 	uint8_t	DoorLock;	/* Door Lock Installed */
1462 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
1463 	uint8_t	Nspkrs;		/* Number of Speakers */
1464 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
1465 	/*
1466 	 * Cached Flag Bytes for Global Status
1467 	 */
1468 	uint8_t	flag1;
1469 	uint8_t	flag2;
1470 	/*
1471 	 * What object index ID is where various slots start.
1472 	 */
1473 	uint8_t	pwroff;
1474 	uint8_t	slotoff;
1475 #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
1476 };
1477 
1478 #define	SAFT_FLG1_ALARM		0x1
1479 #define	SAFT_FLG1_GLOBFAIL	0x2
1480 #define	SAFT_FLG1_GLOBWARN	0x4
1481 #define	SAFT_FLG1_ENCPWROFF	0x8
1482 #define	SAFT_FLG1_ENCFANFAIL	0x10
1483 #define	SAFT_FLG1_ENCPWRFAIL	0x20
1484 #define	SAFT_FLG1_ENCDRVFAIL	0x40
1485 #define	SAFT_FLG1_ENCDRVWARN	0x80
1486 
1487 #define	SAFT_FLG2_LOCKDOOR	0x4
1488 #define	SAFT_PRIVATE		sizeof (struct scfg)
1489 
1490 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1491 #define	SAFT_BAIL(r, x, k, l)	\
1492 	if (r >= x) { \
1493 		SES_LOG(ssc, safte_2little, x, __LINE__);\
1494 		SES_FREE(k, l); \
1495 		return (EIO); \
1496 	}
1497 
1498 
1499 static int
1500 safte_softc_init(ses_softc_t *ssc, int doinit)
1501 {
1502 	int err, i, r;
1503 	struct scfg *cc;
1504 
1505 	if (doinit == 0) {
1506 		if (ssc->ses_nobjects) {
1507 			if (ssc->ses_objmap) {
1508 				SES_FREE(ssc->ses_objmap,
1509 				    ssc->ses_nobjects * sizeof (encobj));
1510 				ssc->ses_objmap = NULL;
1511 			}
1512 			ssc->ses_nobjects = 0;
1513 		}
1514 		if (ssc->ses_private) {
1515 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1516 			ssc->ses_private = NULL;
1517 		}
1518 		return (0);
1519 	}
1520 
1521 	if (ssc->ses_private == NULL) {
1522 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1523 		if (ssc->ses_private == NULL) {
1524 			return (ENOMEM);
1525 		}
1526 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1527 	}
1528 
1529 	ssc->ses_nobjects = 0;
1530 	ssc->ses_encstat = 0;
1531 
1532 	if ((err = safte_getconfig(ssc)) != 0) {
1533 		return (err);
1534 	}
1535 
1536 	/*
1537 	 * The number of objects here, as well as that reported by the
1538 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1539 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1540 	 */
1541 	cc = ssc->ses_private;
1542 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1543 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1544 	ssc->ses_objmap = (encobj *)
1545 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1546 	if (ssc->ses_objmap == NULL) {
1547 		return (ENOMEM);
1548 	}
1549 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1550 
1551 	r = 0;
1552 	/*
1553 	 * Note that this is all arranged for the convenience
1554 	 * in later fetches of status.
1555 	 */
1556 	for (i = 0; i < cc->Nfans; i++)
1557 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1558 	cc->pwroff = (uint8_t) r;
1559 	for (i = 0; i < cc->Npwr; i++)
1560 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1561 	for (i = 0; i < cc->DoorLock; i++)
1562 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1563 	for (i = 0; i < cc->Nspkrs; i++)
1564 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1565 	for (i = 0; i < cc->Ntherm; i++)
1566 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1567 	for (i = 0; i < NPSEUDO_THERM; i++)
1568 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1569 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1570 	cc->slotoff = (uint8_t) r;
1571 	for (i = 0; i < cc->Nslots; i++)
1572 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1573 	return (0);
1574 }
1575 
1576 static int
1577 safte_init_enc(ses_softc_t *ssc)
1578 {
1579 	int err, amt;
1580 	char *sdata;
1581 	static char cdb0[6] = { SEND_DIAGNOSTIC };
1582 	static char cdb[10] =
1583 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1584 
1585 	sdata = SES_MALLOC(SAFT_SCRATCH);
1586 	if (sdata == NULL)
1587 		return (ENOMEM);
1588 
1589 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1590 	if (err) {
1591 		SES_FREE(sdata, SAFT_SCRATCH);
1592 		return (err);
1593 	}
1594 	sdata[0] = SAFTE_WT_GLOBAL;
1595 	MEMZERO(&sdata[1], 15);
1596 	amt = -SAFT_SCRATCH;
1597 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1598 	SES_FREE(sdata, SAFT_SCRATCH);
1599 	return (err);
1600 }
1601 
1602 static int
1603 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1604 {
1605 	return (safte_rdstat(ssc, slpflg));
1606 }
1607 
1608 static int
1609 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1610 {
1611 	struct scfg *cc = ssc->ses_private;
1612 	if (cc == NULL)
1613 		return (0);
1614 	/*
1615 	 * Since SAF-TE devices aren't necessarily sticky in terms
1616 	 * of state, make our soft copy of enclosure status 'sticky'-
1617 	 * that is, things set in enclosure status stay set (as implied
1618 	 * by conditions set in reading object status) until cleared.
1619 	 */
1620 	ssc->ses_encstat &= ~ALL_ENC_STAT;
1621 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1622 	ssc->ses_encstat |= ENCI_SVALID;
1623 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1624 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1625 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1626 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1627 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
1628 	}
1629 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1630 }
1631 
1632 static int
1633 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1634 {
1635 	int i = (int)obp->obj_id;
1636 
1637 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1638 	    (ssc->ses_objmap[i].svalid) == 0) {
1639 		int err = safte_rdstat(ssc, slpflg);
1640 		if (err)
1641 			return (err);
1642 	}
1643 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1644 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1645 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1646 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1647 	return (0);
1648 }
1649 
1650 
1651 static int
1652 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1653 {
1654 	int idx, err;
1655 	encobj *ep;
1656 	struct scfg *cc;
1657 
1658 
1659 	SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1660 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1661 	    obp->cstat[3]);
1662 
1663 	/*
1664 	 * If this is clear, we don't do diddly.
1665 	 */
1666 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1667 		return (0);
1668 	}
1669 
1670 	err = 0;
1671 	/*
1672 	 * Check to see if the common bits are set and do them first.
1673 	 */
1674 	if (obp->cstat[0] & ~SESCTL_CSEL) {
1675 		err = set_objstat_sel(ssc, obp, slp);
1676 		if (err)
1677 			return (err);
1678 	}
1679 
1680 	cc = ssc->ses_private;
1681 	if (cc == NULL)
1682 		return (0);
1683 
1684 	idx = (int)obp->obj_id;
1685 	ep = &ssc->ses_objmap[idx];
1686 
1687 	switch (ep->enctype) {
1688 	case SESTYP_DEVICE:
1689 	{
1690 		uint8_t slotop = 0;
1691 		/*
1692 		 * XXX: I should probably cache the previous state
1693 		 * XXX: of SESCTL_DEVOFF so that when it goes from
1694 		 * XXX: true to false I can then set PREPARE FOR OPERATION
1695 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1696 		 */
1697 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1698 			slotop |= 0x2;
1699 		}
1700 		if (obp->cstat[2] & SESCTL_RQSID) {
1701 			slotop |= 0x4;
1702 		}
1703 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1704 		    slotop, slp);
1705 		if (err)
1706 			return (err);
1707 		if (obp->cstat[3] & SESCTL_RQSFLT) {
1708 			ep->priv |= 0x2;
1709 		} else {
1710 			ep->priv &= ~0x2;
1711 		}
1712 		if (ep->priv & 0xc6) {
1713 			ep->priv &= ~0x1;
1714 		} else {
1715 			ep->priv |= 0x1;	/* no errors */
1716 		}
1717 		wrslot_stat(ssc, slp);
1718 		break;
1719 	}
1720 	case SESTYP_POWER:
1721 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1722 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1723 		} else {
1724 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1725 		}
1726 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1727 		    cc->flag2, 0, slp);
1728 		if (err)
1729 			return (err);
1730 		if (obp->cstat[3] & SESCTL_RQSTON) {
1731 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1732 				idx - cc->pwroff, 0, 0, slp);
1733 		} else {
1734 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1735 				idx - cc->pwroff, 0, 1, slp);
1736 		}
1737 		break;
1738 	case SESTYP_FAN:
1739 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1740 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1741 		} else {
1742 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1743 		}
1744 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1745 		    cc->flag2, 0, slp);
1746 		if (err)
1747 			return (err);
1748 		if (obp->cstat[3] & SESCTL_RQSTON) {
1749 			uint8_t fsp;
1750 			if ((obp->cstat[3] & 0x7) == 7) {
1751 				fsp = 4;
1752 			} else if ((obp->cstat[3] & 0x7) == 6) {
1753 				fsp = 3;
1754 			} else if ((obp->cstat[3] & 0x7) == 4) {
1755 				fsp = 2;
1756 			} else {
1757 				fsp = 1;
1758 			}
1759 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1760 		} else {
1761 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1762 		}
1763 		break;
1764 	case SESTYP_DOORLOCK:
1765 		if (obp->cstat[3] & 0x1) {
1766 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1767 		} else {
1768 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1769 		}
1770 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1771 		    cc->flag2, 0, slp);
1772 		break;
1773 	case SESTYP_ALARM:
1774 		/*
1775 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
1776 		 */
1777 		obp->cstat[3] &= ~0xa;
1778 		if (obp->cstat[3] & 0x40) {
1779 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1780 		} else if (obp->cstat[3] != 0) {
1781 			cc->flag2 |= SAFT_FLG1_ALARM;
1782 		} else {
1783 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1784 		}
1785 		ep->priv = obp->cstat[3];
1786 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1787 			cc->flag2, 0, slp);
1788 		break;
1789 	default:
1790 		break;
1791 	}
1792 	ep->svalid = 0;
1793 	return (0);
1794 }
1795 
1796 static int
1797 safte_getconfig(ses_softc_t *ssc)
1798 {
1799 	struct scfg *cfg;
1800 	int err, amt;
1801 	char *sdata;
1802 	static char cdb[10] =
1803 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1804 
1805 	cfg = ssc->ses_private;
1806 	if (cfg == NULL)
1807 		return (ENXIO);
1808 
1809 	sdata = SES_MALLOC(SAFT_SCRATCH);
1810 	if (sdata == NULL)
1811 		return (ENOMEM);
1812 
1813 	amt = SAFT_SCRATCH;
1814 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1815 	if (err) {
1816 		SES_FREE(sdata, SAFT_SCRATCH);
1817 		return (err);
1818 	}
1819 	amt = SAFT_SCRATCH - amt;
1820 	if (amt < 6) {
1821 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1822 		SES_FREE(sdata, SAFT_SCRATCH);
1823 		return (EIO);
1824 	}
1825 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1826 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1827 	cfg->Nfans = sdata[0];
1828 	cfg->Npwr = sdata[1];
1829 	cfg->Nslots = sdata[2];
1830 	cfg->DoorLock = sdata[3];
1831 	cfg->Ntherm = sdata[4];
1832 	cfg->Nspkrs = sdata[5];
1833 	cfg->Nalarm = NPSEUDO_ALARM;
1834 	SES_FREE(sdata, SAFT_SCRATCH);
1835 	return (0);
1836 }
1837 
1838 static int
1839 safte_rdstat(ses_softc_t *ssc, int slpflg)
1840 {
1841 	int err, oid, r, i, hiwater, nitems, amt;
1842 	uint16_t tempflags;
1843 	size_t buflen;
1844 	uint8_t status, oencstat;
1845 	char *sdata, cdb[10];
1846 	struct scfg *cc = ssc->ses_private;
1847 
1848 
1849 	/*
1850 	 * The number of objects overstates things a bit,
1851 	 * both for the bogus 'thermometer' entries and
1852 	 * the drive status (which isn't read at the same
1853 	 * time as the enclosure status), but that's okay.
1854 	 */
1855 	buflen = 4 * cc->Nslots;
1856 	if (ssc->ses_nobjects > buflen)
1857 		buflen = ssc->ses_nobjects;
1858 	sdata = SES_MALLOC(buflen);
1859 	if (sdata == NULL)
1860 		return (ENOMEM);
1861 
1862 	cdb[0] = READ_BUFFER;
1863 	cdb[1] = 1;
1864 	cdb[2] = SAFTE_RD_RDESTS;
1865 	cdb[3] = 0;
1866 	cdb[4] = 0;
1867 	cdb[5] = 0;
1868 	cdb[6] = 0;
1869 	cdb[7] = (buflen >> 8) & 0xff;
1870 	cdb[8] = buflen & 0xff;
1871 	cdb[9] = 0;
1872 	amt = buflen;
1873 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1874 	if (err) {
1875 		SES_FREE(sdata, buflen);
1876 		return (err);
1877 	}
1878 	hiwater = buflen - amt;
1879 
1880 
1881 	/*
1882 	 * invalidate all status bits.
1883 	 */
1884 	for (i = 0; i < ssc->ses_nobjects; i++)
1885 		ssc->ses_objmap[i].svalid = 0;
1886 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1887 	ssc->ses_encstat = 0;
1888 
1889 
1890 	/*
1891 	 * Now parse returned buffer.
1892 	 * If we didn't get enough data back,
1893 	 * that's considered a fatal error.
1894 	 */
1895 	oid = r = 0;
1896 
1897 	for (nitems = i = 0; i < cc->Nfans; i++) {
1898 		SAFT_BAIL(r, hiwater, sdata, buflen);
1899 		/*
1900 		 * 0 = Fan Operational
1901 		 * 1 = Fan is malfunctioning
1902 		 * 2 = Fan is not present
1903 		 * 0x80 = Unknown or Not Reportable Status
1904 		 */
1905 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1906 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1907 		switch ((int)(uint8_t)sdata[r]) {
1908 		case 0:
1909 			nitems++;
1910 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1911 			/*
1912 			 * We could get fancier and cache
1913 			 * fan speeds that we have set, but
1914 			 * that isn't done now.
1915 			 */
1916 			ssc->ses_objmap[oid].encstat[3] = 7;
1917 			break;
1918 
1919 		case 1:
1920 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1921 			/*
1922 			 * FAIL and FAN STOPPED synthesized
1923 			 */
1924 			ssc->ses_objmap[oid].encstat[3] = 0x40;
1925 			/*
1926 			 * Enclosure marked with CRITICAL error
1927 			 * if only one fan or no thermometers,
1928 			 * else the NONCRITICAL error is set.
1929 			 */
1930 			if (cc->Nfans == 1 || cc->Ntherm == 0)
1931 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1932 			else
1933 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1934 			break;
1935 		case 2:
1936 			ssc->ses_objmap[oid].encstat[0] =
1937 			    SES_OBJSTAT_NOTINSTALLED;
1938 			ssc->ses_objmap[oid].encstat[3] = 0;
1939 			/*
1940 			 * Enclosure marked with CRITICAL error
1941 			 * if only one fan or no thermometers,
1942 			 * else the NONCRITICAL error is set.
1943 			 */
1944 			if (cc->Nfans == 1)
1945 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1946 			else
1947 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1948 			break;
1949 		case 0x80:
1950 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1951 			ssc->ses_objmap[oid].encstat[3] = 0;
1952 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1953 			break;
1954 		default:
1955 			ssc->ses_objmap[oid].encstat[0] =
1956 			    SES_OBJSTAT_UNSUPPORTED;
1957 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1958 			    sdata[r] & 0xff);
1959 			break;
1960 		}
1961 		ssc->ses_objmap[oid++].svalid = 1;
1962 		r++;
1963 	}
1964 
1965 	/*
1966 	 * No matter how you cut it, no cooling elements when there
1967 	 * should be some there is critical.
1968 	 */
1969 	if (cc->Nfans && nitems == 0) {
1970 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1971 	}
1972 
1973 
1974 	for (i = 0; i < cc->Npwr; i++) {
1975 		SAFT_BAIL(r, hiwater, sdata, buflen);
1976 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1977 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1978 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1979 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
1980 		switch ((uint8_t)sdata[r]) {
1981 		case 0x00:	/* pws operational and on */
1982 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1983 			break;
1984 		case 0x01:	/* pws operational and off */
1985 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1986 			ssc->ses_objmap[oid].encstat[3] = 0x10;
1987 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1988 			break;
1989 		case 0x10:	/* pws is malfunctioning and commanded on */
1990 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1991 			ssc->ses_objmap[oid].encstat[3] = 0x61;
1992 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1993 			break;
1994 
1995 		case 0x11:	/* pws is malfunctioning and commanded off */
1996 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1997 			ssc->ses_objmap[oid].encstat[3] = 0x51;
1998 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1999 			break;
2000 		case 0x20:	/* pws is not present */
2001 			ssc->ses_objmap[oid].encstat[0] =
2002 			    SES_OBJSTAT_NOTINSTALLED;
2003 			ssc->ses_objmap[oid].encstat[3] = 0;
2004 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2005 			break;
2006 		case 0x21:	/* pws is present */
2007 			/*
2008 			 * This is for enclosures that cannot tell whether the
2009 			 * device is on or malfunctioning, but know that it is
2010 			 * present. Just fall through.
2011 			 */
2012 			/* FALLTHROUGH */
2013 		case 0x80:	/* Unknown or Not Reportable Status */
2014 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2015 			ssc->ses_objmap[oid].encstat[3] = 0;
2016 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2017 			break;
2018 		default:
2019 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2020 			    i, sdata[r] & 0xff);
2021 			break;
2022 		}
2023 		ssc->ses_objmap[oid++].svalid = 1;
2024 		r++;
2025 	}
2026 
2027 	/*
2028 	 * Skip over Slot SCSI IDs
2029 	 */
2030 	r += cc->Nslots;
2031 
2032 	/*
2033 	 * We always have doorlock status, no matter what,
2034 	 * but we only save the status if we have one.
2035 	 */
2036 	SAFT_BAIL(r, hiwater, sdata, buflen);
2037 	if (cc->DoorLock) {
2038 		/*
2039 		 * 0 = Door Locked
2040 		 * 1 = Door Unlocked, or no Lock Installed
2041 		 * 0x80 = Unknown or Not Reportable Status
2042 		 */
2043 		ssc->ses_objmap[oid].encstat[1] = 0;
2044 		ssc->ses_objmap[oid].encstat[2] = 0;
2045 		switch ((uint8_t)sdata[r]) {
2046 		case 0:
2047 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2048 			ssc->ses_objmap[oid].encstat[3] = 0;
2049 			break;
2050 		case 1:
2051 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2052 			ssc->ses_objmap[oid].encstat[3] = 1;
2053 			break;
2054 		case 0x80:
2055 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2056 			ssc->ses_objmap[oid].encstat[3] = 0;
2057 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2058 			break;
2059 		default:
2060 			ssc->ses_objmap[oid].encstat[0] =
2061 			    SES_OBJSTAT_UNSUPPORTED;
2062 			SES_LOG(ssc, "unknown lock status 0x%x\n",
2063 			    sdata[r] & 0xff);
2064 			break;
2065 		}
2066 		ssc->ses_objmap[oid++].svalid = 1;
2067 	}
2068 	r++;
2069 
2070 	/*
2071 	 * We always have speaker status, no matter what,
2072 	 * but we only save the status if we have one.
2073 	 */
2074 	SAFT_BAIL(r, hiwater, sdata, buflen);
2075 	if (cc->Nspkrs) {
2076 		ssc->ses_objmap[oid].encstat[1] = 0;
2077 		ssc->ses_objmap[oid].encstat[2] = 0;
2078 		if (sdata[r] == 1) {
2079 			/*
2080 			 * We need to cache tone urgency indicators.
2081 			 * Someday.
2082 			 */
2083 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2084 			ssc->ses_objmap[oid].encstat[3] = 0x8;
2085 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2086 		} else if (sdata[r] == 0) {
2087 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2088 			ssc->ses_objmap[oid].encstat[3] = 0;
2089 		} else {
2090 			ssc->ses_objmap[oid].encstat[0] =
2091 			    SES_OBJSTAT_UNSUPPORTED;
2092 			ssc->ses_objmap[oid].encstat[3] = 0;
2093 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
2094 			    sdata[r] & 0xff);
2095 		}
2096 		ssc->ses_objmap[oid++].svalid = 1;
2097 	}
2098 	r++;
2099 
2100 	for (i = 0; i < cc->Ntherm; i++) {
2101 		SAFT_BAIL(r, hiwater, sdata, buflen);
2102 		/*
2103 		 * Status is a range from -10 to 245 deg Celsius,
2104 		 * which we need to normalize to -20 to -245 according
2105 		 * to the latest SCSI spec, which makes little
2106 		 * sense since this would overflow an 8bit value.
2107 		 * Well, still, the base normalization is -20,
2108 		 * not -10, so we have to adjust.
2109 		 *
2110 		 * So what's over and under temperature?
2111 		 * Hmm- we'll state that 'normal' operating
2112 		 * is 10 to 40 deg Celsius.
2113 		 */
2114 
2115 		/*
2116 		 * Actually.... All of the units that people out in the world
2117 		 * seem to have do not come even close to setting a value that
2118 		 * complies with this spec.
2119 		 *
2120 		 * The closest explanation I could find was in an
2121 		 * LSI-Logic manual, which seemed to indicate that
2122 		 * this value would be set by whatever the I2C code
2123 		 * would interpolate from the output of an LM75
2124 		 * temperature sensor.
2125 		 *
2126 		 * This means that it is impossible to use the actual
2127 		 * numeric value to predict anything. But we don't want
2128 		 * to lose the value. So, we'll propagate the *uncorrected*
2129 		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2130 		 * temperature flags for warnings.
2131 		 */
2132 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2133 		ssc->ses_objmap[oid].encstat[1] = 0;
2134 		ssc->ses_objmap[oid].encstat[2] = sdata[r];
2135 		ssc->ses_objmap[oid].encstat[3] = 0;
2136 		ssc->ses_objmap[oid++].svalid = 1;
2137 		r++;
2138 	}
2139 
2140 	/*
2141 	 * Now, for "pseudo" thermometers, we have two bytes
2142 	 * of information in enclosure status- 16 bits. Actually,
2143 	 * the MSB is a single TEMP ALERT flag indicating whether
2144 	 * any other bits are set, but, thanks to fuzzy thinking,
2145 	 * in the SAF-TE spec, this can also be set even if no
2146 	 * other bits are set, thus making this really another
2147 	 * binary temperature sensor.
2148 	 */
2149 
2150 	SAFT_BAIL(r, hiwater, sdata, buflen);
2151 	tempflags = sdata[r++];
2152 	SAFT_BAIL(r, hiwater, sdata, buflen);
2153 	tempflags |= (tempflags << 8) | sdata[r++];
2154 
2155 	for (i = 0; i < NPSEUDO_THERM; i++) {
2156 		ssc->ses_objmap[oid].encstat[1] = 0;
2157 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2158 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2159 			ssc->ses_objmap[4].encstat[2] = 0xff;
2160 			/*
2161 			 * Set 'over temperature' failure.
2162 			 */
2163 			ssc->ses_objmap[oid].encstat[3] = 8;
2164 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2165 		} else {
2166 			/*
2167 			 * We used to say 'not available' and synthesize a
2168 			 * nominal 30 deg (C)- that was wrong. Actually,
2169 			 * Just say 'OK', and use the reserved value of
2170 			 * zero.
2171 			 */
2172 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2173 			ssc->ses_objmap[oid].encstat[2] = 0;
2174 			ssc->ses_objmap[oid].encstat[3] = 0;
2175 		}
2176 		ssc->ses_objmap[oid++].svalid = 1;
2177 	}
2178 
2179 	/*
2180 	 * Get alarm status.
2181 	 */
2182 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2183 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2184 	ssc->ses_objmap[oid++].svalid = 1;
2185 
2186 	/*
2187 	 * Now get drive slot status
2188 	 */
2189 	cdb[2] = SAFTE_RD_RDDSTS;
2190 	amt = buflen;
2191 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2192 	if (err) {
2193 		SES_FREE(sdata, buflen);
2194 		return (err);
2195 	}
2196 	hiwater = buflen - amt;
2197 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2198 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
2199 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2200 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2201 		ssc->ses_objmap[oid].encstat[2] = 0;
2202 		ssc->ses_objmap[oid].encstat[3] = 0;
2203 		status = sdata[r+3];
2204 		if ((status & 0x1) == 0) {	/* no device */
2205 			ssc->ses_objmap[oid].encstat[0] =
2206 			    SES_OBJSTAT_NOTINSTALLED;
2207 		} else {
2208 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2209 		}
2210 		if (status & 0x2) {
2211 			ssc->ses_objmap[oid].encstat[2] = 0x8;
2212 		}
2213 		if ((status & 0x4) == 0) {
2214 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2215 		}
2216 		ssc->ses_objmap[oid++].svalid = 1;
2217 	}
2218 	/* see comment below about sticky enclosure status */
2219 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
2220 	SES_FREE(sdata, buflen);
2221 	return (0);
2222 }
2223 
2224 static int
2225 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2226 {
2227 	int idx;
2228 	encobj *ep;
2229 	struct scfg *cc = ssc->ses_private;
2230 
2231 	if (cc == NULL)
2232 		return (0);
2233 
2234 	idx = (int)obp->obj_id;
2235 	ep = &ssc->ses_objmap[idx];
2236 
2237 	switch (ep->enctype) {
2238 	case SESTYP_DEVICE:
2239 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
2240 			ep->priv |= 0x40;
2241 		}
2242 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2243 		if (obp->cstat[0] & SESCTL_DISABLE) {
2244 			ep->priv |= 0x80;
2245 			/*
2246 			 * Hmm. Try to set the 'No Drive' flag.
2247 			 * Maybe that will count as a 'disable'.
2248 			 */
2249 		}
2250 		if (ep->priv & 0xc6) {
2251 			ep->priv &= ~0x1;
2252 		} else {
2253 			ep->priv |= 0x1;	/* no errors */
2254 		}
2255 		wrslot_stat(ssc, slp);
2256 		break;
2257 	case SESTYP_POWER:
2258 		/*
2259 		 * Okay- the only one that makes sense here is to
2260 		 * do the 'disable' for a power supply.
2261 		 */
2262 		if (obp->cstat[0] & SESCTL_DISABLE) {
2263 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2264 				idx - cc->pwroff, 0, 0, slp);
2265 		}
2266 		break;
2267 	case SESTYP_FAN:
2268 		/*
2269 		 * Okay- the only one that makes sense here is to
2270 		 * set fan speed to zero on disable.
2271 		 */
2272 		if (obp->cstat[0] & SESCTL_DISABLE) {
2273 			/* remember- fans are the first items, so idx works */
2274 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2275 		}
2276 		break;
2277 	case SESTYP_DOORLOCK:
2278 		/*
2279 		 * Well, we can 'disable' the lock.
2280 		 */
2281 		if (obp->cstat[0] & SESCTL_DISABLE) {
2282 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2283 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2284 				cc->flag2, 0, slp);
2285 		}
2286 		break;
2287 	case SESTYP_ALARM:
2288 		/*
2289 		 * Well, we can 'disable' the alarm.
2290 		 */
2291 		if (obp->cstat[0] & SESCTL_DISABLE) {
2292 			cc->flag2 &= ~SAFT_FLG1_ALARM;
2293 			ep->priv |= 0x40;	/* Muted */
2294 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2295 				cc->flag2, 0, slp);
2296 		}
2297 		break;
2298 	default:
2299 		break;
2300 	}
2301 	ep->svalid = 0;
2302 	return (0);
2303 }
2304 
2305 /*
2306  * This function handles all of the 16 byte WRITE BUFFER commands.
2307  */
2308 static int
2309 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2310     uint8_t b3, int slp)
2311 {
2312 	int err, amt;
2313 	char *sdata;
2314 	struct scfg *cc = ssc->ses_private;
2315 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2316 
2317 	if (cc == NULL)
2318 		return (0);
2319 
2320 	sdata = SES_MALLOC(16);
2321 	if (sdata == NULL)
2322 		return (ENOMEM);
2323 
2324 	SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2325 
2326 	sdata[0] = op;
2327 	sdata[1] = b1;
2328 	sdata[2] = b2;
2329 	sdata[3] = b3;
2330 	MEMZERO(&sdata[4], 12);
2331 	amt = -16;
2332 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2333 	SES_FREE(sdata, 16);
2334 	return (err);
2335 }
2336 
2337 /*
2338  * This function updates the status byte for the device slot described.
2339  *
2340  * Since this is an optional SAF-TE command, there's no point in
2341  * returning an error.
2342  */
2343 static void
2344 wrslot_stat(ses_softc_t *ssc, int slp)
2345 {
2346 	int i, amt;
2347 	encobj *ep;
2348 	char cdb[10], *sdata;
2349 	struct scfg *cc = ssc->ses_private;
2350 
2351 	if (cc == NULL)
2352 		return;
2353 
2354 	SES_VLOG(ssc, "saf_wrslot\n");
2355 	cdb[0] = WRITE_BUFFER;
2356 	cdb[1] = 1;
2357 	cdb[2] = 0;
2358 	cdb[3] = 0;
2359 	cdb[4] = 0;
2360 	cdb[5] = 0;
2361 	cdb[6] = 0;
2362 	cdb[7] = 0;
2363 	cdb[8] = cc->Nslots * 3 + 1;
2364 	cdb[9] = 0;
2365 
2366 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2367 	if (sdata == NULL)
2368 		return;
2369 	MEMZERO(sdata, cc->Nslots * 3 + 1);
2370 
2371 	sdata[0] = SAFTE_WT_DSTAT;
2372 	for (i = 0; i < cc->Nslots; i++) {
2373 		ep = &ssc->ses_objmap[cc->slotoff + i];
2374 		SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2375 		sdata[1 + (3 * i)] = ep->priv & 0xff;
2376 	}
2377 	amt = -(cc->Nslots * 3 + 1);
2378 	(void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2379 	SES_FREE(sdata, cc->Nslots * 3 + 1);
2380 }
2381 
2382 /*
2383  * This function issues the "PERFORM SLOT OPERATION" command.
2384  */
2385 static int
2386 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2387 {
2388 	int err, amt;
2389 	char *sdata;
2390 	struct scfg *cc = ssc->ses_private;
2391 	static char cdb[10] =
2392 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2393 
2394 	if (cc == NULL)
2395 		return (0);
2396 
2397 	sdata = SES_MALLOC(SAFT_SCRATCH);
2398 	if (sdata == NULL)
2399 		return (ENOMEM);
2400 	MEMZERO(sdata, SAFT_SCRATCH);
2401 
2402 	sdata[0] = SAFTE_WT_SLTOP;
2403 	sdata[1] = slot;
2404 	sdata[2] = opflag;
2405 	SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2406 	amt = -SAFT_SCRATCH;
2407 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2408 	SES_FREE(sdata, SAFT_SCRATCH);
2409 	return (err);
2410 }
2411