1 /* $NetBSD: rf_reconstruct.c,v 1.5 1999/03/02 03:18:49 oster Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include "rf_types.h" 36 #include <sys/time.h> 37 #include <sys/buf.h> 38 #include <sys/errno.h> 39 40 #include <sys/types.h> 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/proc.h> 44 #include <sys/ioctl.h> 45 #include <sys/fcntl.h> 46 #include <sys/vnode.h> 47 48 49 #include "rf_raid.h" 50 #include "rf_reconutil.h" 51 #include "rf_revent.h" 52 #include "rf_reconbuffer.h" 53 #include "rf_threadid.h" 54 #include "rf_acctrace.h" 55 #include "rf_etimer.h" 56 #include "rf_dag.h" 57 #include "rf_desc.h" 58 #include "rf_general.h" 59 #include "rf_freelist.h" 60 #include "rf_debugprint.h" 61 #include "rf_driver.h" 62 #include "rf_utils.h" 63 #include "rf_cpuutil.h" 64 #include "rf_shutdown.h" 65 #include "rf_sys.h" 66 67 #include "rf_kintf.h" 68 69 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 70 71 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 73 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 74 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 75 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 76 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 77 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 78 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 79 #define Dprintf8(s,a,b,c,d,e,f,g,h) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),(void *)((unsigned long)h)) 80 81 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 82 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 83 #define DDprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 84 #define DDprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 85 #define DDprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 86 #define DDprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 87 #define DDprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 88 #define DDprintf8(s,a,b,c,d,e,f,g,h) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),(void *)((unsigned long)h)) 89 90 static RF_Thread_t recon_thr_handle; 91 static int recon_thread_initialized = 0; 92 93 static RF_FreeList_t *rf_recond_freelist; 94 #define RF_MAX_FREE_RECOND 4 95 #define RF_RECOND_INC 1 96 97 static RF_RaidReconDesc_t * 98 AllocRaidReconDesc(RF_Raid_t * raidPtr, 99 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr, 100 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol); 101 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc); 102 static int 103 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow, 104 RF_ReconEvent_t * event); 105 static int 106 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row, 107 RF_RowCol_t col); 108 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col); 109 static int 110 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid, 111 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset, 112 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow, 113 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset); 114 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row); 115 static int ReconReadDoneProc(void *arg, int status); 116 static int ReconWriteDoneProc(void *arg, int status); 117 static void 118 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row, 119 RF_HeadSepLimit_t hsCtr); 120 static int 121 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl, 122 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 123 RF_ReconUnitNum_t which_ru); 124 static int 125 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr, 126 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl, 127 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid, 128 RF_ReconUnitNum_t which_ru); 129 static void ForceReconReadDoneProc(void *arg, int status); 130 131 static void rf_ShutdownReconstruction(void *); 132 133 /* XXX these should be in a .h file somewhere */ 134 int raidlookup __P((char *, struct proc *, struct vnode **)); 135 int raidwrite_component_label(dev_t, struct vnode *, RF_ComponentLabel_t *); 136 int raidread_component_label(dev_t, struct vnode *, RF_ComponentLabel_t *); 137 138 struct RF_ReconDoneProc_s { 139 void (*proc) (RF_Raid_t *, void *); 140 void *arg; 141 RF_ReconDoneProc_t *next; 142 }; 143 144 static RF_FreeList_t *rf_rdp_freelist; 145 #define RF_MAX_FREE_RDP 4 146 #define RF_RDP_INC 1 147 148 static void 149 SignalReconDone(RF_Raid_t * raidPtr) 150 { 151 RF_ReconDoneProc_t *p; 152 153 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); 154 for (p = raidPtr->recon_done_procs; p; p = p->next) { 155 p->proc(raidPtr, p->arg); 156 } 157 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); 158 } 159 160 int 161 rf_RegisterReconDoneProc( 162 RF_Raid_t * raidPtr, 163 void (*proc) (RF_Raid_t *, void *), 164 void *arg, 165 RF_ReconDoneProc_t ** handlep) 166 { 167 RF_ReconDoneProc_t *p; 168 169 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *)); 170 if (p == NULL) 171 return (ENOMEM); 172 p->proc = proc; 173 p->arg = arg; 174 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); 175 p->next = raidPtr->recon_done_procs; 176 raidPtr->recon_done_procs = p; 177 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); 178 if (handlep) 179 *handlep = p; 180 return (0); 181 } 182 /***************************************************************************************** 183 * 184 * sets up the parameters that will be used by the reconstruction process 185 * currently there are none, except for those that the layout-specific 186 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 187 * 188 * in the kernel, we fire off the recon thread. 189 * 190 ****************************************************************************************/ 191 static void 192 rf_ShutdownReconstruction(ignored) 193 void *ignored; 194 { 195 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 196 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *)); 197 } 198 199 int 200 rf_ConfigureReconstruction(listp) 201 RF_ShutdownList_t **listp; 202 { 203 int rc; 204 205 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND, 206 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t)); 207 if (rf_recond_freelist == NULL) 208 return (ENOMEM); 209 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP, 210 RF_RDP_INC, sizeof(RF_ReconDoneProc_t)); 211 if (rf_rdp_freelist == NULL) { 212 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 213 return (ENOMEM); 214 } 215 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 216 if (rc) { 217 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", 218 __FILE__, __LINE__, rc); 219 rf_ShutdownReconstruction(NULL); 220 return (rc); 221 } 222 if (!recon_thread_initialized) { 223 RF_CREATE_THREAD(recon_thr_handle, rf_ReconKernelThread, NULL); 224 recon_thread_initialized = 1; 225 } 226 return (0); 227 } 228 229 static RF_RaidReconDesc_t * 230 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol) 231 RF_Raid_t *raidPtr; 232 RF_RowCol_t row; 233 RF_RowCol_t col; 234 RF_RaidDisk_t *spareDiskPtr; 235 int numDisksDone; 236 RF_RowCol_t srow; 237 RF_RowCol_t scol; 238 { 239 240 RF_RaidReconDesc_t *reconDesc; 241 242 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *)); 243 244 reconDesc->raidPtr = raidPtr; 245 reconDesc->row = row; 246 reconDesc->col = col; 247 reconDesc->spareDiskPtr = spareDiskPtr; 248 reconDesc->numDisksDone = numDisksDone; 249 reconDesc->srow = srow; 250 reconDesc->scol = scol; 251 reconDesc->state = 0; 252 reconDesc->next = NULL; 253 254 return (reconDesc); 255 } 256 257 static void 258 FreeReconDesc(reconDesc) 259 RF_RaidReconDesc_t *reconDesc; 260 { 261 #if RF_RECON_STATS > 0 262 printf("RAIDframe: %lu recon event waits, %lu recon delays\n", 263 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays); 264 #endif /* RF_RECON_STATS > 0 */ 265 printf("RAIDframe: %lu max exec ticks\n", 266 (long) reconDesc->maxReconExecTicks); 267 #if (RF_RECON_STATS > 0) || defined(KERNEL) 268 printf("\n"); 269 #endif /* (RF_RECON_STATS > 0) || KERNEL */ 270 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next); 271 } 272 273 274 /***************************************************************************************** 275 * 276 * primary routine to reconstruct a failed disk. This should be called from 277 * within its own thread. It won't return until reconstruction completes, 278 * fails, or is aborted. 279 ****************************************************************************************/ 280 int 281 rf_ReconstructFailedDisk(raidPtr, row, col) 282 RF_Raid_t *raidPtr; 283 RF_RowCol_t row; 284 RF_RowCol_t col; 285 { 286 RF_LayoutSW_t *lp; 287 int rc; 288 289 lp = raidPtr->Layout.map; 290 if (lp->SubmitReconBuffer) { 291 /* 292 * The current infrastructure only supports reconstructing one 293 * disk at a time for each array. 294 */ 295 RF_LOCK_MUTEX(raidPtr->mutex); 296 while (raidPtr->reconInProgress) { 297 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 298 } 299 raidPtr->reconInProgress++; 300 RF_UNLOCK_MUTEX(raidPtr->mutex); 301 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col); 302 } else { 303 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 304 lp->parityConfig); 305 rc = EIO; 306 } 307 RF_LOCK_MUTEX(raidPtr->mutex); 308 raidPtr->reconInProgress--; 309 RF_UNLOCK_MUTEX(raidPtr->mutex); 310 RF_SIGNAL_COND(raidPtr->waitForReconCond); 311 wakeup(&raidPtr->waitForReconCond); /* XXX Methinks this will be 312 * needed at some point... GO */ 313 return (rc); 314 } 315 316 int 317 rf_ReconstructFailedDiskBasic(raidPtr, row, col) 318 RF_Raid_t *raidPtr; 319 RF_RowCol_t row; 320 RF_RowCol_t col; 321 { 322 RF_ComponentLabel_t c_label; 323 RF_RaidDisk_t *spareDiskPtr = NULL; 324 RF_RaidReconDesc_t *reconDesc; 325 RF_RowCol_t srow, scol; 326 int numDisksDone = 0, rc; 327 328 /* first look for a spare drive onto which to reconstruct the data */ 329 /* spare disk descriptors are stored in row 0. This may have to 330 * change eventually */ 331 332 RF_LOCK_MUTEX(raidPtr->mutex); 333 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 334 335 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 336 if (raidPtr->status[row] != rf_rs_degraded) { 337 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col); 338 RF_UNLOCK_MUTEX(raidPtr->mutex); 339 return (EINVAL); 340 } 341 srow = row; 342 scol = (-1); 343 } else { 344 srow = 0; 345 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 346 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) { 347 spareDiskPtr = &raidPtr->Disks[srow][scol]; 348 spareDiskPtr->status = rf_ds_used_spare; 349 break; 350 } 351 } 352 if (!spareDiskPtr) { 353 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col); 354 RF_UNLOCK_MUTEX(raidPtr->mutex); 355 return (ENOSPC); 356 } 357 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol); 358 } 359 RF_UNLOCK_MUTEX(raidPtr->mutex); 360 361 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol); 362 raidPtr->reconDesc = (void *) reconDesc; 363 #if RF_RECON_STATS > 0 364 reconDesc->hsStallCount = 0; 365 reconDesc->numReconExecDelays = 0; 366 reconDesc->numReconEventWaits = 0; 367 #endif /* RF_RECON_STATS > 0 */ 368 reconDesc->reconExecTimerRunning = 0; 369 reconDesc->reconExecTicks = 0; 370 reconDesc->maxReconExecTicks = 0; 371 rc = rf_ContinueReconstructFailedDisk(reconDesc); 372 373 if (!rc) { 374 /* fix up the component label */ 375 /* Don't actually need the read here.. */ 376 raidread_component_label( 377 raidPtr->raid_cinfo[srow][scol].ci_dev, 378 raidPtr->raid_cinfo[srow][scol].ci_vp, 379 &c_label); 380 381 c_label.version = RF_COMPONENT_LABEL_VERSION; 382 c_label.mod_counter = raidPtr->mod_counter; 383 c_label.serial_number = raidPtr->serial_number; 384 c_label.row = row; 385 c_label.column = col; 386 c_label.num_rows = raidPtr->numRow; 387 c_label.num_columns = raidPtr->numCol; 388 c_label.clean = RF_RAID_DIRTY; 389 c_label.status = rf_ds_optimal; 390 391 raidwrite_component_label( 392 raidPtr->raid_cinfo[srow][scol].ci_dev, 393 raidPtr->raid_cinfo[srow][scol].ci_vp, 394 &c_label); 395 396 } 397 return (rc); 398 } 399 400 /* 401 402 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 403 and you don't get a spare until the next Monday. With this function 404 (and hot-swappable drives) you can now put your new disk containing 405 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 406 rebuild the data "on the spot". 407 408 */ 409 410 int 411 rf_ReconstructInPlace(raidPtr, row, col) 412 RF_Raid_t *raidPtr; 413 RF_RowCol_t row; 414 RF_RowCol_t col; 415 { 416 RF_RaidDisk_t *spareDiskPtr = NULL; 417 RF_RaidReconDesc_t *reconDesc; 418 RF_LayoutSW_t *lp; 419 RF_RaidDisk_t *badDisk; 420 RF_ComponentLabel_t c_label; 421 int numDisksDone = 0, rc; 422 struct partinfo dpart; 423 struct vnode *vp; 424 struct vattr va; 425 struct proc *proc; 426 int retcode; 427 428 lp = raidPtr->Layout.map; 429 if (lp->SubmitReconBuffer) { 430 /* 431 * The current infrastructure only supports reconstructing one 432 * disk at a time for each array. 433 */ 434 RF_LOCK_MUTEX(raidPtr->mutex); 435 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) && 436 (raidPtr->numFailures > 0)) { 437 /* XXX 0 above shouldn't be constant!!! */ 438 /* some component other than this has failed. 439 Let's not make things worse than they already 440 are... */ 441 printf("RAIDFRAME: Unable to reconstruct to disk at:\n"); 442 printf(" Row: %d Col: %d Too many failures.\n", 443 row, col); 444 RF_UNLOCK_MUTEX(raidPtr->mutex); 445 return (EINVAL); 446 } 447 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) { 448 printf("RAIDFRAME: Unable to reconstruct to disk at:\n"); 449 printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col); 450 451 RF_UNLOCK_MUTEX(raidPtr->mutex); 452 return (EINVAL); 453 } 454 455 456 if (raidPtr->Disks[row][col].status != rf_ds_failed) { 457 /* "It's gone..." */ 458 raidPtr->numFailures++; 459 raidPtr->Disks[row][col].status = rf_ds_failed; 460 raidPtr->status[row] = rf_rs_degraded; 461 } 462 463 while (raidPtr->reconInProgress) { 464 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 465 } 466 467 468 /* first look for a spare drive onto which to reconstruct 469 the data. spare disk descriptors are stored in row 0. 470 This may have to change eventually */ 471 472 /* Actually, we don't care if it's failed or not... 473 On a RAID set with correct parity, this function 474 should be callable on any component without ill affects. */ 475 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 476 */ 477 478 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 479 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col); 480 481 RF_UNLOCK_MUTEX(raidPtr->mutex); 482 return (EINVAL); 483 } 484 485 /* XXX need goop here to see if the disk is alive, 486 and, if not, make it so... */ 487 488 489 490 badDisk = &raidPtr->Disks[row][col]; 491 492 proc = raidPtr->proc; /* XXX Yes, this is not nice.. */ 493 494 /* This device may have been opened successfully the 495 first time. Close it before trying to open it again.. */ 496 497 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) { 498 printf("Closed the open device: %s\n", 499 raidPtr->Disks[row][col].devname); 500 VOP_UNLOCK(raidPtr->raid_cinfo[row][col].ci_vp, 0); 501 (void) vn_close(raidPtr->raid_cinfo[row][col].ci_vp, 502 FREAD | FWRITE, proc->p_ucred, proc); 503 raidPtr->raid_cinfo[row][col].ci_vp = NULL; 504 } 505 printf("About to (re-)open the device for rebuilding: %s\n", 506 raidPtr->Disks[row][col].devname); 507 508 retcode = raidlookup(raidPtr->Disks[row][col].devname, 509 proc, &vp); 510 511 if (retcode) { 512 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid, 513 raidPtr->Disks[row][col].devname, retcode); 514 515 /* XXX the component isn't responding properly... 516 must be 517 * still dead :-( */ 518 RF_UNLOCK_MUTEX(raidPtr->mutex); 519 return(retcode); 520 521 } else { 522 523 /* Ok, so we can at least do a lookup... 524 How about actually getting a vp for it? */ 525 526 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, 527 proc)) != 0) { 528 RF_UNLOCK_MUTEX(raidPtr->mutex); 529 return(retcode); 530 } 531 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart, 532 FREAD, proc->p_ucred, proc); 533 if (retcode) { 534 RF_UNLOCK_MUTEX(raidPtr->mutex); 535 return(retcode); 536 } 537 raidPtr->Disks[row][col].blockSize = 538 dpart.disklab->d_secsize; 539 540 raidPtr->Disks[row][col].numBlocks = 541 dpart.part->p_size - rf_protectedSectors; 542 543 raidPtr->raid_cinfo[row][col].ci_vp = vp; 544 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev; 545 546 raidPtr->Disks[row][col].dev = va.va_rdev; 547 548 /* we allow the user to specify that only a 549 fraction of the disks should be used this is 550 just for debug: it speeds up 551 * the parity scan */ 552 raidPtr->Disks[row][col].numBlocks = 553 raidPtr->Disks[row][col].numBlocks * 554 rf_sizePercentage / 100; 555 } 556 557 558 559 spareDiskPtr = &raidPtr->Disks[row][col]; 560 spareDiskPtr->status = rf_ds_used_spare; 561 562 printf("RECON: initiating in-place reconstruction on\n"); 563 printf(" row %d col %d -> spare at row %d col %d\n", 564 row, col, row, col); 565 566 raidPtr->reconInProgress++; 567 568 RF_UNLOCK_MUTEX(raidPtr->mutex); 569 570 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, 571 spareDiskPtr, numDisksDone, 572 row, col); 573 raidPtr->reconDesc = (void *) reconDesc; 574 #if RF_RECON_STATS > 0 575 reconDesc->hsStallCount = 0; 576 reconDesc->numReconExecDelays = 0; 577 reconDesc->numReconEventWaits = 0; 578 #endif /* RF_RECON_STATS > 0 */ 579 reconDesc->reconExecTimerRunning = 0; 580 reconDesc->reconExecTicks = 0; 581 reconDesc->maxReconExecTicks = 0; 582 rc = rf_ContinueReconstructFailedDisk(reconDesc); 583 } else { 584 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 585 lp->parityConfig); 586 rc = EIO; 587 } 588 RF_LOCK_MUTEX(raidPtr->mutex); 589 raidPtr->reconInProgress--; 590 591 if (!rc) { 592 /* Need to set these here, as at this point it'll be claiming 593 that the disk is in rf_ds_spared! But we know better :-) */ 594 595 raidPtr->Disks[row][col].status = rf_ds_optimal; 596 raidPtr->status[row] = rf_rs_optimal; 597 598 /* fix up the component label */ 599 /* Don't actually need the read here.. */ 600 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 601 raidPtr->raid_cinfo[row][col].ci_vp, 602 &c_label); 603 604 c_label.version = RF_COMPONENT_LABEL_VERSION; 605 c_label.mod_counter = raidPtr->mod_counter; 606 c_label.serial_number = raidPtr->serial_number; 607 c_label.row = row; 608 c_label.column = col; 609 c_label.num_rows = raidPtr->numRow; 610 c_label.num_columns = raidPtr->numCol; 611 c_label.clean = RF_RAID_DIRTY; 612 c_label.status = rf_ds_optimal; 613 614 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 615 raidPtr->raid_cinfo[row][col].ci_vp, 616 &c_label); 617 618 } 619 RF_UNLOCK_MUTEX(raidPtr->mutex); 620 RF_SIGNAL_COND(raidPtr->waitForReconCond); 621 wakeup(&raidPtr->waitForReconCond); 622 return (rc); 623 } 624 625 626 int 627 rf_ContinueReconstructFailedDisk(reconDesc) 628 RF_RaidReconDesc_t *reconDesc; 629 { 630 RF_Raid_t *raidPtr = reconDesc->raidPtr; 631 RF_RowCol_t row = reconDesc->row; 632 RF_RowCol_t col = reconDesc->col; 633 RF_RowCol_t srow = reconDesc->srow; 634 RF_RowCol_t scol = reconDesc->scol; 635 RF_ReconMap_t *mapPtr; 636 637 RF_ReconEvent_t *event; 638 struct timeval etime, elpsd; 639 unsigned long xor_s, xor_resid_us; 640 int retcode, i, ds; 641 642 switch (reconDesc->state) { 643 644 645 case 0: 646 647 raidPtr->accumXorTimeUs = 0; 648 649 /* create one trace record per physical disk */ 650 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 651 652 /* quiesce the array prior to starting recon. this is needed 653 * to assure no nasty interactions with pending user writes. 654 * We need to do this before we change the disk or row status. */ 655 reconDesc->state = 1; 656 657 Dprintf("RECON: begin request suspend\n"); 658 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 659 Dprintf("RECON: end request suspend\n"); 660 rf_StartUserStats(raidPtr); /* zero out the stats kept on 661 * user accs */ 662 663 /* fall through to state 1 */ 664 665 case 1: 666 667 RF_LOCK_MUTEX(raidPtr->mutex); 668 669 /* create the reconstruction control pointer and install it in 670 * the right slot */ 671 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol); 672 mapPtr = raidPtr->reconControl[row]->reconMap; 673 raidPtr->status[row] = rf_rs_reconstructing; 674 raidPtr->Disks[row][col].status = rf_ds_reconstructing; 675 raidPtr->Disks[row][col].spareRow = srow; 676 raidPtr->Disks[row][col].spareCol = scol; 677 678 RF_UNLOCK_MUTEX(raidPtr->mutex); 679 680 RF_GETTIME(raidPtr->reconControl[row]->starttime); 681 682 /* now start up the actual reconstruction: issue a read for 683 * each surviving disk */ 684 rf_start_cpu_monitor(); 685 reconDesc->numDisksDone = 0; 686 for (i = 0; i < raidPtr->numCol; i++) { 687 if (i != col) { 688 /* find and issue the next I/O on the 689 * indicated disk */ 690 if (IssueNextReadRequest(raidPtr, row, i)) { 691 Dprintf2("RECON: done issuing for r%d c%d\n", row, i); 692 reconDesc->numDisksDone++; 693 } 694 } 695 } 696 697 case 2: 698 Dprintf("RECON: resume requests\n"); 699 rf_ResumeNewRequests(raidPtr); 700 701 702 reconDesc->state = 3; 703 704 case 3: 705 706 /* process reconstruction events until all disks report that 707 * they've completed all work */ 708 mapPtr = raidPtr->reconControl[row]->reconMap; 709 710 711 712 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 713 714 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 715 RF_ASSERT(event); 716 717 if (ProcessReconEvent(raidPtr, row, event)) 718 reconDesc->numDisksDone++; 719 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 720 if (rf_prReconSched) { 721 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 722 } 723 } 724 725 726 727 reconDesc->state = 4; 728 729 730 case 4: 731 mapPtr = raidPtr->reconControl[row]->reconMap; 732 if (rf_reconDebug) { 733 printf("RECON: all reads completed\n"); 734 } 735 /* at this point all the reads have completed. We now wait 736 * for any pending writes to complete, and then we're done */ 737 738 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) { 739 740 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 741 RF_ASSERT(event); 742 743 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */ 744 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 745 if (rf_prReconSched) { 746 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 747 } 748 } 749 reconDesc->state = 5; 750 751 case 5: 752 rf_stop_cpu_monitor(); 753 754 /* Success: mark the dead disk as reconstructed. We quiesce 755 * the array here to assure no nasty interactions with pending 756 * user accesses when we free up the psstatus structure as 757 * part of FreeReconControl() */ 758 759 760 761 reconDesc->state = 6; 762 763 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 764 rf_StopUserStats(raidPtr); 765 rf_PrintUserStats(raidPtr); /* print out the stats on user 766 * accs accumulated during 767 * recon */ 768 769 /* fall through to state 6 */ 770 case 6: 771 772 773 774 RF_LOCK_MUTEX(raidPtr->mutex); 775 raidPtr->numFailures--; 776 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 777 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 778 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 779 RF_UNLOCK_MUTEX(raidPtr->mutex); 780 RF_GETTIME(etime); 781 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd); 782 783 /* XXX -- why is state 7 different from state 6 if there is no 784 * return() here? -- XXX Note that I set elpsd above & use it 785 * below, so if you put a return here you'll have to fix this. 786 * (also, FreeReconControl is called below) */ 787 788 case 7: 789 790 rf_ResumeNewRequests(raidPtr); 791 792 printf("Reconstruction of disk at row %d col %d completed and spare disk reassigned\n", row, col); 793 xor_s = raidPtr->accumXorTimeUs / 1000000; 794 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 795 printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 796 (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 797 printf(" (start time %d sec %d usec, end time %d sec %d usec)\n", 798 (int) raidPtr->reconControl[row]->starttime.tv_sec, 799 (int) raidPtr->reconControl[row]->starttime.tv_usec, 800 (int) etime.tv_sec, (int) etime.tv_usec); 801 rf_print_cpu_util("reconstruction"); 802 #if RF_RECON_STATS > 0 803 printf("Total head-sep stall count was %d\n", 804 (int) reconDesc->hsStallCount); 805 #endif /* RF_RECON_STATS > 0 */ 806 rf_FreeReconControl(raidPtr, row); 807 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 808 FreeReconDesc(reconDesc); 809 810 } 811 812 SignalReconDone(raidPtr); 813 return (0); 814 } 815 /***************************************************************************************** 816 * do the right thing upon each reconstruction event. 817 * returns nonzero if and only if there is nothing left unread on the indicated disk 818 ****************************************************************************************/ 819 static int 820 ProcessReconEvent(raidPtr, frow, event) 821 RF_Raid_t *raidPtr; 822 RF_RowCol_t frow; 823 RF_ReconEvent_t *event; 824 { 825 int retcode = 0, submitblocked; 826 RF_ReconBuffer_t *rbuf; 827 RF_SectorCount_t sectorsPerRU; 828 829 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 830 switch (event->type) { 831 832 /* a read I/O has completed */ 833 case RF_REVENT_READDONE: 834 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf; 835 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n", 836 frow, event->col, rbuf->parityStripeID); 837 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 838 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 839 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 840 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 841 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 842 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 843 if (!submitblocked) 844 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 845 break; 846 847 /* a write I/O has completed */ 848 case RF_REVENT_WRITEDONE: 849 if (rf_floatingRbufDebug) { 850 rf_CheckFloatingRbufCount(raidPtr, 1); 851 } 852 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 853 rbuf = (RF_ReconBuffer_t *) event->arg; 854 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 855 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 856 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete); 857 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap, 858 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 859 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru); 860 861 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 862 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 863 raidPtr->numFullReconBuffers--; 864 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf); 865 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 866 } else 867 if (rbuf->type == RF_RBUF_TYPE_FORCED) 868 rf_FreeReconBuffer(rbuf); 869 else 870 RF_ASSERT(0); 871 break; 872 873 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 874 * cleared */ 875 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col); 876 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg); 877 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 878 * BUFCLEAR event if we 879 * couldn't submit */ 880 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 881 break; 882 883 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 884 * blockage has been cleared */ 885 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col); 886 retcode = TryToRead(raidPtr, frow, event->col); 887 break; 888 889 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 890 * reconstruction blockage has been 891 * cleared */ 892 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col); 893 retcode = TryToRead(raidPtr, frow, event->col); 894 break; 895 896 /* a buffer has become ready to write */ 897 case RF_REVENT_BUFREADY: 898 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col); 899 retcode = IssueNextWriteRequest(raidPtr, frow); 900 if (rf_floatingRbufDebug) { 901 rf_CheckFloatingRbufCount(raidPtr, 1); 902 } 903 break; 904 905 /* we need to skip the current RU entirely because it got 906 * recon'd while we were waiting for something else to happen */ 907 case RF_REVENT_SKIP: 908 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col); 909 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 910 break; 911 912 /* a forced-reconstruction read access has completed. Just 913 * submit the buffer */ 914 case RF_REVENT_FORCEDREADDONE: 915 rbuf = (RF_ReconBuffer_t *) event->arg; 916 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 917 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col); 918 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 919 RF_ASSERT(!submitblocked); 920 break; 921 922 default: 923 RF_PANIC(); 924 } 925 rf_FreeReconEventDesc(event); 926 return (retcode); 927 } 928 /***************************************************************************************** 929 * 930 * find the next thing that's needed on the indicated disk, and issue a read 931 * request for it. We assume that the reconstruction buffer associated with this 932 * process is free to receive the data. If reconstruction is blocked on the 933 * indicated RU, we issue a blockage-release request instead of a physical disk 934 * read request. If the current disk gets too far ahead of the others, we issue 935 * a head-separation wait request and return. 936 * 937 * ctrl->{ru_count, curPSID, diskOffset} and rbuf->failedDiskSectorOffset are 938 * maintained to point the the unit we're currently accessing. Note that this deviates 939 * from the standard C idiom of having counters point to the next thing to be 940 * accessed. This allows us to easily retry when we're blocked by head separation 941 * or reconstruction-blockage events. 942 * 943 * returns nonzero if and only if there is nothing left unread on the indicated disk 944 ****************************************************************************************/ 945 static int 946 IssueNextReadRequest(raidPtr, row, col) 947 RF_Raid_t *raidPtr; 948 RF_RowCol_t row; 949 RF_RowCol_t col; 950 { 951 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 952 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 953 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 954 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 955 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 956 int do_new_check = 0, retcode = 0, status; 957 958 /* if we are currently the slowest disk, mark that we have to do a new 959 * check */ 960 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter) 961 do_new_check = 1; 962 963 while (1) { 964 965 ctrl->ru_count++; 966 if (ctrl->ru_count < RUsPerPU) { 967 ctrl->diskOffset += sectorsPerRU; 968 rbuf->failedDiskSectorOffset += sectorsPerRU; 969 } else { 970 ctrl->curPSID++; 971 ctrl->ru_count = 0; 972 /* code left over from when head-sep was based on 973 * parity stripe id */ 974 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) { 975 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter)); 976 return (1); /* finito! */ 977 } 978 /* find the disk offsets of the start of the parity 979 * stripe on both the current disk and the failed 980 * disk. skip this entire parity stripe if either disk 981 * does not appear in the indicated PS */ 982 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 983 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset); 984 if (status) { 985 ctrl->ru_count = RUsPerPU - 1; 986 continue; 987 } 988 } 989 rbuf->which_ru = ctrl->ru_count; 990 991 /* skip this RU if it's already been reconstructed */ 992 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) { 993 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 994 continue; 995 } 996 break; 997 } 998 ctrl->headSepCounter++; 999 if (do_new_check) 1000 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */ 1001 1002 1003 /* at this point, we have definitely decided what to do, and we have 1004 * only to see if we can actually do it now */ 1005 rbuf->parityStripeID = ctrl->curPSID; 1006 rbuf->which_ru = ctrl->ru_count; 1007 bzero((char *) &raidPtr->recon_tracerecs[col], sizeof(raidPtr->recon_tracerecs[col])); 1008 raidPtr->recon_tracerecs[col].reconacc = 1; 1009 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1010 retcode = TryToRead(raidPtr, row, col); 1011 return (retcode); 1012 } 1013 /* tries to issue the next read on the indicated disk. We may be blocked by (a) the heads being too 1014 * far apart, or (b) recon on the indicated RU being blocked due to a write by a user thread. 1015 * In this case, we issue a head-sep or blockage wait request, which will cause this same routine 1016 * to be invoked again later when the blockage has cleared. 1017 */ 1018 static int 1019 TryToRead(raidPtr, row, col) 1020 RF_Raid_t *raidPtr; 1021 RF_RowCol_t row; 1022 RF_RowCol_t col; 1023 { 1024 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 1025 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1026 RF_StripeNum_t psid = ctrl->curPSID; 1027 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1028 RF_DiskQueueData_t *req; 1029 int status, created = 0; 1030 RF_ReconParityStripeStatus_t *pssPtr; 1031 1032 /* if the current disk is too far ahead of the others, issue a 1033 * head-separation wait and return */ 1034 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru)) 1035 return (0); 1036 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1037 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created); 1038 1039 /* if recon is blocked on the indicated parity stripe, issue a 1040 * block-wait request and return. this also must mark the indicated RU 1041 * in the stripe as under reconstruction if not blocked. */ 1042 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru); 1043 if (status == RF_PSS_RECON_BLOCKED) { 1044 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1045 goto out; 1046 } else 1047 if (status == RF_PSS_FORCED_ON_WRITE) { 1048 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1049 goto out; 1050 } 1051 /* make one last check to be sure that the indicated RU didn't get 1052 * reconstructed while we were waiting for something else to happen. 1053 * This is unfortunate in that it causes us to make this check twice 1054 * in the normal case. Might want to make some attempt to re-work 1055 * this so that we only do this check if we've definitely blocked on 1056 * one of the above checks. When this condition is detected, we may 1057 * have just created a bogus status entry, which we need to delete. */ 1058 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1059 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1060 if (created) 1061 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1062 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1063 goto out; 1064 } 1065 /* found something to read. issue the I/O */ 1066 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n", 1067 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1068 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1069 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1070 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1071 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1072 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1073 1074 /* should be ok to use a NULL proc pointer here, all the bufs we use 1075 * should be in kernel space */ 1076 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1077 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL); 1078 1079 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1080 1081 ctrl->rbuf->arg = (void *) req; 1082 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY); 1083 pssPtr->issued[col] = 1; 1084 1085 out: 1086 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1087 return (0); 1088 } 1089 1090 1091 /* given a parity stripe ID, we want to find out whether both the current disk and the 1092 * failed disk exist in that parity stripe. If not, we want to skip this whole PS. 1093 * If so, we want to find the disk offset of the start of the PS on both the current 1094 * disk and the failed disk. 1095 * 1096 * this works by getting a list of disks comprising the indicated parity stripe, and 1097 * searching the list for the current and failed disks. Once we've decided they both 1098 * exist in the parity stripe, we need to decide whether each is data or parity, 1099 * so that we'll know which mapping function to call to get the corresponding disk 1100 * offsets. 1101 * 1102 * this is kind of unpleasant, but doing it this way allows the reconstruction code 1103 * to use parity stripe IDs rather than physical disks address to march through the 1104 * failed disk, which greatly simplifies a lot of code, as well as eliminating the 1105 * need for a reverse-mapping function. I also think it will execute faster, since 1106 * the calls to the mapping module are kept to a minimum. 1107 * 1108 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING THE STRIPE 1109 * IN THE CORRECT ORDER 1110 */ 1111 static int 1112 ComputePSDiskOffsets( 1113 RF_Raid_t * raidPtr, /* raid descriptor */ 1114 RF_StripeNum_t psid, /* parity stripe identifier */ 1115 RF_RowCol_t row, /* row and column of disk to find the offsets 1116 * for */ 1117 RF_RowCol_t col, 1118 RF_SectorNum_t * outDiskOffset, 1119 RF_SectorNum_t * outFailedDiskSectorOffset, 1120 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */ 1121 RF_RowCol_t * spCol, 1122 RF_SectorNum_t * spOffset) 1123 { /* OUT: offset into disk containing spare unit */ 1124 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1125 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1126 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1127 RF_RowCol_t *diskids; 1128 u_int i, j, k, i_offset, j_offset; 1129 RF_RowCol_t prow, pcol; 1130 int testcol, testrow; 1131 RF_RowCol_t stripe; 1132 RF_SectorNum_t poffset; 1133 char i_is_parity = 0, j_is_parity = 0; 1134 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1135 1136 /* get a listing of the disks comprising that stripe */ 1137 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1138 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe); 1139 RF_ASSERT(diskids); 1140 1141 /* reject this entire parity stripe if it does not contain the 1142 * indicated disk or it does not contain the failed disk */ 1143 if (row != stripe) 1144 goto skipit; 1145 for (i = 0; i < stripeWidth; i++) { 1146 if (col == diskids[i]) 1147 break; 1148 } 1149 if (i == stripeWidth) 1150 goto skipit; 1151 for (j = 0; j < stripeWidth; j++) { 1152 if (fcol == diskids[j]) 1153 break; 1154 } 1155 if (j == stripeWidth) { 1156 goto skipit; 1157 } 1158 /* find out which disk the parity is on */ 1159 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP); 1160 1161 /* find out if either the current RU or the failed RU is parity */ 1162 /* also, if the parity occurs in this stripe prior to the data and/or 1163 * failed col, we need to decrement i and/or j */ 1164 for (k = 0; k < stripeWidth; k++) 1165 if (diskids[k] == pcol) 1166 break; 1167 RF_ASSERT(k < stripeWidth); 1168 i_offset = i; 1169 j_offset = j; 1170 if (k < i) 1171 i_offset--; 1172 else 1173 if (k == i) { 1174 i_is_parity = 1; 1175 i_offset = 0; 1176 } /* set offsets to zero to disable multiply 1177 * below */ 1178 if (k < j) 1179 j_offset--; 1180 else 1181 if (k == j) { 1182 j_is_parity = 1; 1183 j_offset = 0; 1184 } 1185 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1186 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1187 * tells us how far into the stripe the [current,failed] disk is. */ 1188 1189 /* call the mapping routine to get the offset into the current disk, 1190 * repeat for failed disk. */ 1191 if (i_is_parity) 1192 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1193 else 1194 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1195 1196 RF_ASSERT(row == testrow && col == testcol); 1197 1198 if (j_is_parity) 1199 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1200 else 1201 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1202 RF_ASSERT(row == testrow && fcol == testcol); 1203 1204 /* now locate the spare unit for the failed unit */ 1205 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1206 if (j_is_parity) 1207 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1208 else 1209 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1210 } else { 1211 *spRow = raidPtr->reconControl[row]->spareRow; 1212 *spCol = raidPtr->reconControl[row]->spareCol; 1213 *spOffset = *outFailedDiskSectorOffset; 1214 } 1215 1216 return (0); 1217 1218 skipit: 1219 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n", 1220 psid, row, col); 1221 return (1); 1222 } 1223 /* this is called when a buffer has become ready to write to the replacement disk */ 1224 static int 1225 IssueNextWriteRequest(raidPtr, row) 1226 RF_Raid_t *raidPtr; 1227 RF_RowCol_t row; 1228 { 1229 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1230 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1231 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1232 RF_ReconBuffer_t *rbuf; 1233 RF_DiskQueueData_t *req; 1234 1235 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]); 1236 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1237 * have gotten the event that sent us here */ 1238 RF_ASSERT(rbuf->pssPtr); 1239 1240 rbuf->pssPtr->writeRbuf = rbuf; 1241 rbuf->pssPtr = NULL; 1242 1243 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1244 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1245 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1246 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1247 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1248 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1249 1250 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1251 * kernel space */ 1252 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1253 sectorsPerRU, rbuf->buffer, 1254 rbuf->parityStripeID, rbuf->which_ru, 1255 ReconWriteDoneProc, (void *) rbuf, NULL, 1256 &raidPtr->recon_tracerecs[fcol], 1257 (void *) raidPtr, 0, NULL); 1258 1259 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1260 1261 rbuf->arg = (void *) req; 1262 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1263 1264 return (0); 1265 } 1266 /* this gets called upon the completion of a reconstruction read operation 1267 * the arg is a pointer to the per-disk reconstruction control structure 1268 * for the process that just finished a read. 1269 * 1270 * called at interrupt context in the kernel, so don't do anything illegal here. 1271 */ 1272 static int 1273 ReconReadDoneProc(arg, status) 1274 void *arg; 1275 int status; 1276 { 1277 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1278 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1279 1280 if (status) { 1281 /* 1282 * XXX 1283 */ 1284 printf("Recon read failed!\n"); 1285 RF_PANIC(); 1286 } 1287 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1288 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1289 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1290 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1291 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1292 1293 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE); 1294 return (0); 1295 } 1296 /* this gets called upon the completion of a reconstruction write operation. 1297 * the arg is a pointer to the rbuf that was just written 1298 * 1299 * called at interrupt context in the kernel, so don't do anything illegal here. 1300 */ 1301 static int 1302 ReconWriteDoneProc(arg, status) 1303 void *arg; 1304 int status; 1305 { 1306 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1307 1308 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1309 if (status) { 1310 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon 1311 * write failed!\n"); */ 1312 RF_PANIC(); 1313 } 1314 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE); 1315 return (0); 1316 } 1317 1318 1319 /* computes a new minimum head sep, and wakes up anyone who needs to be woken as a result */ 1320 static void 1321 CheckForNewMinHeadSep(raidPtr, row, hsCtr) 1322 RF_Raid_t *raidPtr; 1323 RF_RowCol_t row; 1324 RF_HeadSepLimit_t hsCtr; 1325 { 1326 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1327 RF_HeadSepLimit_t new_min; 1328 RF_RowCol_t i; 1329 RF_CallbackDesc_t *p; 1330 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1331 * of a minimum */ 1332 1333 1334 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1335 1336 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1337 for (i = 0; i < raidPtr->numCol; i++) 1338 if (i != reconCtrlPtr->fcol) { 1339 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1340 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1341 } 1342 /* set the new minimum and wake up anyone who can now run again */ 1343 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1344 reconCtrlPtr->minHeadSepCounter = new_min; 1345 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1346 while (reconCtrlPtr->headSepCBList) { 1347 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1348 break; 1349 p = reconCtrlPtr->headSepCBList; 1350 reconCtrlPtr->headSepCBList = p->next; 1351 p->next = NULL; 1352 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1353 rf_FreeCallbackDesc(p); 1354 } 1355 1356 } 1357 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1358 } 1359 /* checks to see that the maximum head separation will not be violated 1360 * if we initiate a reconstruction I/O on the indicated disk. Limiting the 1361 * maximum head separation between two disks eliminates the nasty buffer-stall 1362 * conditions that occur when one disk races ahead of the others and consumes 1363 * all of the floating recon buffers. This code is complex and unpleasant 1364 * but it's necessary to avoid some very nasty, albeit fairly rare, 1365 * reconstruction behavior. 1366 * 1367 * returns non-zero if and only if we have to stop working on the indicated disk 1368 * due to a head-separation delay. 1369 */ 1370 static int 1371 CheckHeadSeparation( 1372 RF_Raid_t * raidPtr, 1373 RF_PerDiskReconCtrl_t * ctrl, 1374 RF_RowCol_t row, 1375 RF_RowCol_t col, 1376 RF_HeadSepLimit_t hsCtr, 1377 RF_ReconUnitNum_t which_ru) 1378 { 1379 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1380 RF_CallbackDesc_t *cb, *p, *pt; 1381 int retval = 0, tid; 1382 1383 /* if we're too far ahead of the slowest disk, stop working on this 1384 * disk until the slower ones catch up. We do this by scheduling a 1385 * wakeup callback for the time when the slowest disk has caught up. 1386 * We define "caught up" with 20% hysteresis, i.e. the head separation 1387 * must have fallen to at most 80% of the max allowable head 1388 * separation before we'll wake up. 1389 * 1390 */ 1391 rf_get_threadid(tid); 1392 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1393 if ((raidPtr->headSepLimit >= 0) && 1394 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1395 Dprintf6("[%d] RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1396 tid, row, col, ctrl->headSepCounter, reconCtrlPtr->minHeadSepCounter, raidPtr->headSepLimit); 1397 cb = rf_AllocCallbackDesc(); 1398 /* the minHeadSepCounter value we have to get to before we'll 1399 * wake up. build in 20% hysteresis. */ 1400 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1401 cb->row = row; 1402 cb->col = col; 1403 cb->next = NULL; 1404 1405 /* insert this callback descriptor into the sorted list of 1406 * pending head-sep callbacks */ 1407 p = reconCtrlPtr->headSepCBList; 1408 if (!p) 1409 reconCtrlPtr->headSepCBList = cb; 1410 else 1411 if (cb->callbackArg.v < p->callbackArg.v) { 1412 cb->next = reconCtrlPtr->headSepCBList; 1413 reconCtrlPtr->headSepCBList = cb; 1414 } else { 1415 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1416 cb->next = p; 1417 pt->next = cb; 1418 } 1419 retval = 1; 1420 #if RF_RECON_STATS > 0 1421 ctrl->reconCtrl->reconDesc->hsStallCount++; 1422 #endif /* RF_RECON_STATS > 0 */ 1423 } 1424 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1425 1426 return (retval); 1427 } 1428 /* checks to see if reconstruction has been either forced or blocked by a user operation. 1429 * if forced, we skip this RU entirely. 1430 * else if blocked, put ourselves on the wait list. 1431 * else return 0. 1432 * 1433 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1434 */ 1435 static int 1436 CheckForcedOrBlockedReconstruction( 1437 RF_Raid_t * raidPtr, 1438 RF_ReconParityStripeStatus_t * pssPtr, 1439 RF_PerDiskReconCtrl_t * ctrl, 1440 RF_RowCol_t row, 1441 RF_RowCol_t col, 1442 RF_StripeNum_t psid, 1443 RF_ReconUnitNum_t which_ru) 1444 { 1445 RF_CallbackDesc_t *cb; 1446 int retcode = 0; 1447 1448 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1449 retcode = RF_PSS_FORCED_ON_WRITE; 1450 else 1451 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1452 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru); 1453 cb = rf_AllocCallbackDesc(); /* append ourselves to 1454 * the blockage-wait 1455 * list */ 1456 cb->row = row; 1457 cb->col = col; 1458 cb->next = pssPtr->blockWaitList; 1459 pssPtr->blockWaitList = cb; 1460 retcode = RF_PSS_RECON_BLOCKED; 1461 } 1462 if (!retcode) 1463 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1464 * reconstruction */ 1465 1466 return (retcode); 1467 } 1468 /* if reconstruction is currently ongoing for the indicated stripeID, reconstruction 1469 * is forced to completion and we return non-zero to indicate that the caller must 1470 * wait. If not, then reconstruction is blocked on the indicated stripe and the 1471 * routine returns zero. If and only if we return non-zero, we'll cause the cbFunc 1472 * to get invoked with the cbArg when the reconstruction has completed. 1473 */ 1474 int 1475 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg) 1476 RF_Raid_t *raidPtr; 1477 RF_AccessStripeMap_t *asmap; 1478 void (*cbFunc) (RF_Raid_t *, void *); 1479 void *cbArg; 1480 { 1481 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array 1482 * we're working on */ 1483 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1484 * forcing recon on */ 1485 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1486 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity 1487 * stripe status structure */ 1488 RF_StripeNum_t psid; /* parity stripe id */ 1489 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1490 * offset */ 1491 RF_RowCol_t *diskids; 1492 RF_RowCol_t stripe; 1493 int tid; 1494 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1495 RF_RowCol_t fcol, diskno, i; 1496 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1497 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1498 RF_CallbackDesc_t *cb; 1499 int created = 0, nPromoted; 1500 1501 rf_get_threadid(tid); 1502 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1503 1504 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1505 1506 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created); 1507 1508 /* if recon is not ongoing on this PS, just return */ 1509 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1510 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1511 return (0); 1512 } 1513 /* otherwise, we have to wait for reconstruction to complete on this 1514 * RU. */ 1515 /* In order to avoid waiting for a potentially large number of 1516 * low-priority accesses to complete, we force a normal-priority (i.e. 1517 * not low-priority) reconstruction on this RU. */ 1518 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1519 DDprintf1("Forcing recon on psid %ld\n", psid); 1520 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1521 * forced recon */ 1522 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1523 * that we just set */ 1524 fcol = raidPtr->reconControl[row]->fcol; 1525 1526 /* get a listing of the disks comprising the indicated stripe */ 1527 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe); 1528 RF_ASSERT(row == stripe); 1529 1530 /* For previously issued reads, elevate them to normal 1531 * priority. If the I/O has already completed, it won't be 1532 * found in the queue, and hence this will be a no-op. For 1533 * unissued reads, allocate buffers and issue new reads. The 1534 * fact that we've set the FORCED bit means that the regular 1535 * recon procs will not re-issue these reqs */ 1536 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1537 if ((diskno = diskids[i]) != fcol) { 1538 if (pssPtr->issued[diskno]) { 1539 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru); 1540 if (rf_reconDebug && nPromoted) 1541 printf("[%d] promoted read from row %d col %d\n", tid, row, diskno); 1542 } else { 1543 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1544 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset, 1545 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1546 * location */ 1547 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1548 new_rbuf->which_ru = which_ru; 1549 new_rbuf->failedDiskSectorOffset = fd_offset; 1550 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1551 1552 /* use NULL b_proc b/c all addrs 1553 * should be in kernel space */ 1554 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1555 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL, 1556 NULL, (void *) raidPtr, 0, NULL); 1557 1558 RF_ASSERT(req); /* XXX -- fix this -- 1559 * XXX */ 1560 1561 new_rbuf->arg = req; 1562 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1563 Dprintf3("[%d] Issued new read req on row %d col %d\n", tid, row, diskno); 1564 } 1565 } 1566 /* if the write is sitting in the disk queue, elevate its 1567 * priority */ 1568 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru)) 1569 printf("[%d] promoted write to row %d col %d\n", tid, row, fcol); 1570 } 1571 /* install a callback descriptor to be invoked when recon completes on 1572 * this parity stripe. */ 1573 cb = rf_AllocCallbackDesc(); 1574 /* XXX the following is bogus.. These functions don't really match!! 1575 * GO */ 1576 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1577 cb->callbackArg.p = (void *) cbArg; 1578 cb->next = pssPtr->procWaitList; 1579 pssPtr->procWaitList = cb; 1580 DDprintf2("[%d] Waiting for forced recon on psid %ld\n", tid, psid); 1581 1582 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1583 return (1); 1584 } 1585 /* called upon the completion of a forced reconstruction read. 1586 * all we do is schedule the FORCEDREADONE event. 1587 * called at interrupt context in the kernel, so don't do anything illegal here. 1588 */ 1589 static void 1590 ForceReconReadDoneProc(arg, status) 1591 void *arg; 1592 int status; 1593 { 1594 RF_ReconBuffer_t *rbuf = arg; 1595 1596 if (status) { 1597 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced 1598 * recon read 1599 * failed!\n"); */ 1600 RF_PANIC(); 1601 } 1602 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1603 } 1604 /* releases a block on the reconstruction of the indicated stripe */ 1605 int 1606 rf_UnblockRecon(raidPtr, asmap) 1607 RF_Raid_t *raidPtr; 1608 RF_AccessStripeMap_t *asmap; 1609 { 1610 RF_RowCol_t row = asmap->origRow; 1611 RF_StripeNum_t stripeID = asmap->stripeID; 1612 RF_ReconParityStripeStatus_t *pssPtr; 1613 RF_ReconUnitNum_t which_ru; 1614 RF_StripeNum_t psid; 1615 int tid, created = 0; 1616 RF_CallbackDesc_t *cb; 1617 1618 rf_get_threadid(tid); 1619 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1620 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1621 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created); 1622 1623 /* When recon is forced, the pss desc can get deleted before we get 1624 * back to unblock recon. But, this can _only_ happen when recon is 1625 * forced. It would be good to put some kind of sanity check here, but 1626 * how to decide if recon was just forced or not? */ 1627 if (!pssPtr) { 1628 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1629 * RU %d\n",psid,which_ru); */ 1630 if (rf_reconDebug || rf_pssDebug) 1631 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1632 goto out; 1633 } 1634 pssPtr->blockCount--; 1635 Dprintf3("[%d] unblocking recon on psid %ld: blockcount is %d\n", tid, psid, pssPtr->blockCount); 1636 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1637 1638 /* unblock recon before calling CauseReconEvent in case 1639 * CauseReconEvent causes us to try to issue a new read before 1640 * returning here. */ 1641 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1642 1643 1644 while (pssPtr->blockWaitList) { /* spin through the block-wait 1645 * list and release all the 1646 * waiters */ 1647 cb = pssPtr->blockWaitList; 1648 pssPtr->blockWaitList = cb->next; 1649 cb->next = NULL; 1650 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1651 rf_FreeCallbackDesc(cb); 1652 } 1653 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { /* if no recon was 1654 * requested while recon 1655 * was blocked */ 1656 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1657 } 1658 } 1659 out: 1660 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1661 return (0); 1662 } 1663