xref: /netbsd-src/sys/dev/raidframe/rf_reconstruct.c (revision aa73cae19608873cc4d1f712c4a0f8f8435f1ffa)
1 /*	$NetBSD: rf_reconstruct.c,v 1.87 2005/02/27 00:27:45 perry Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /************************************************************
30  *
31  * rf_reconstruct.c -- code to perform on-line reconstruction
32  *
33  ************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.87 2005/02/27 00:27:45 perry Exp $");
37 
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49 
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63 
64 #include "rf_kintf.h"
65 
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67 
68 #if RF_DEBUG_RECON
69 #define Dprintf(s)         if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c)     if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d)   if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77 
78 #define DDprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80 
81 #else /* RF_DEBUG_RECON */
82 
83 #define Dprintf(s) {}
84 #define Dprintf1(s,a) {}
85 #define Dprintf2(s,a,b) {}
86 #define Dprintf3(s,a,b,c) {}
87 #define Dprintf4(s,a,b,c,d) {}
88 #define Dprintf5(s,a,b,c,d,e) {}
89 #define Dprintf6(s,a,b,c,d,e,f) {}
90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
91 
92 #define DDprintf1(s,a) {}
93 #define DDprintf2(s,a,b) {}
94 
95 #endif /* RF_DEBUG_RECON */
96 
97 #define RF_RECON_DONE_READS   1
98 #define RF_RECON_READ_ERROR   2
99 #define RF_RECON_WRITE_ERROR  3
100 #define RF_RECON_READ_STOPPED 4
101 
102 #define RF_MAX_FREE_RECONBUFFER 32
103 #define RF_MIN_FREE_RECONBUFFER 16
104 
105 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
106 					      RF_RaidDisk_t *, int, RF_RowCol_t);
107 static void FreeReconDesc(RF_RaidReconDesc_t *);
108 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
109 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
110 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
111 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
112 				RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
113 				RF_SectorNum_t *);
114 static int IssueNextWriteRequest(RF_Raid_t *);
115 static int ReconReadDoneProc(void *, int);
116 static int ReconWriteDoneProc(void *, int);
117 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
118 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
119 			       RF_RowCol_t, RF_HeadSepLimit_t,
120 			       RF_ReconUnitNum_t);
121 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
122 					      RF_ReconParityStripeStatus_t *,
123 					      RF_PerDiskReconCtrl_t *,
124 					      RF_RowCol_t, RF_StripeNum_t,
125 					      RF_ReconUnitNum_t);
126 static void ForceReconReadDoneProc(void *, int);
127 static void rf_ShutdownReconstruction(void *);
128 
129 struct RF_ReconDoneProc_s {
130 	void    (*proc) (RF_Raid_t *, void *);
131 	void   *arg;
132 	RF_ReconDoneProc_t *next;
133 };
134 
135 /**************************************************************************
136  *
137  * sets up the parameters that will be used by the reconstruction process
138  * currently there are none, except for those that the layout-specific
139  * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
140  *
141  * in the kernel, we fire off the recon thread.
142  *
143  **************************************************************************/
144 static void
145 rf_ShutdownReconstruction(void *ignored)
146 {
147 	pool_destroy(&rf_pools.reconbuffer);
148 }
149 
150 int
151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
152 {
153 
154 	rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t),
155 		     "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
156 	rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
157 
158 	return (0);
159 }
160 
161 static RF_RaidReconDesc_t *
162 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
163 		   RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
164 		   RF_RowCol_t scol)
165 {
166 
167 	RF_RaidReconDesc_t *reconDesc;
168 
169 	RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t),
170 		  (RF_RaidReconDesc_t *));
171 	reconDesc->raidPtr = raidPtr;
172 	reconDesc->col = col;
173 	reconDesc->spareDiskPtr = spareDiskPtr;
174 	reconDesc->numDisksDone = numDisksDone;
175 	reconDesc->scol = scol;
176 	reconDesc->next = NULL;
177 
178 	return (reconDesc);
179 }
180 
181 static void
182 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
183 {
184 #if RF_RECON_STATS > 0
185 	printf("raid%d: %lu recon event waits, %lu recon delays\n",
186 	       reconDesc->raidPtr->raidid,
187 	       (long) reconDesc->numReconEventWaits,
188 	       (long) reconDesc->numReconExecDelays);
189 #endif				/* RF_RECON_STATS > 0 */
190 	printf("raid%d: %lu max exec ticks\n",
191 	       reconDesc->raidPtr->raidid,
192 	       (long) reconDesc->maxReconExecTicks);
193 #if (RF_RECON_STATS > 0) || defined(KERNEL)
194 	printf("\n");
195 #endif				/* (RF_RECON_STATS > 0) || KERNEL */
196 	RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t));
197 }
198 
199 
200 /*****************************************************************************
201  *
202  * primary routine to reconstruct a failed disk.  This should be called from
203  * within its own thread.  It won't return until reconstruction completes,
204  * fails, or is aborted.
205  *****************************************************************************/
206 int
207 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
208 {
209 	const RF_LayoutSW_t *lp;
210 	int     rc;
211 
212 	lp = raidPtr->Layout.map;
213 	if (lp->SubmitReconBuffer) {
214 		/*
215 	         * The current infrastructure only supports reconstructing one
216 	         * disk at a time for each array.
217 	         */
218 		RF_LOCK_MUTEX(raidPtr->mutex);
219 		while (raidPtr->reconInProgress) {
220 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
221 		}
222 		raidPtr->reconInProgress++;
223 		RF_UNLOCK_MUTEX(raidPtr->mutex);
224 		rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
225 		RF_LOCK_MUTEX(raidPtr->mutex);
226 		raidPtr->reconInProgress--;
227 		RF_UNLOCK_MUTEX(raidPtr->mutex);
228 	} else {
229 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
230 		    lp->parityConfig);
231 		rc = EIO;
232 	}
233 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
234 	return (rc);
235 }
236 
237 int
238 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
239 {
240 	RF_ComponentLabel_t c_label;
241 	RF_RaidDisk_t *spareDiskPtr = NULL;
242 	RF_RaidReconDesc_t *reconDesc;
243 	RF_RowCol_t scol;
244 	int     numDisksDone = 0, rc;
245 
246 	/* first look for a spare drive onto which to reconstruct the data */
247 	/* spare disk descriptors are stored in row 0.  This may have to
248 	 * change eventually */
249 
250 	RF_LOCK_MUTEX(raidPtr->mutex);
251 	RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
252 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
253 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
254 		if (raidPtr->status != rf_rs_degraded) {
255 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
256 			RF_UNLOCK_MUTEX(raidPtr->mutex);
257 			return (EINVAL);
258 		}
259 		scol = (-1);
260 	} else {
261 #endif
262 		for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
263 			if (raidPtr->Disks[scol].status == rf_ds_spare) {
264 				spareDiskPtr = &raidPtr->Disks[scol];
265 				spareDiskPtr->status = rf_ds_used_spare;
266 				break;
267 			}
268 		}
269 		if (!spareDiskPtr) {
270 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
271 			RF_UNLOCK_MUTEX(raidPtr->mutex);
272 			return (ENOSPC);
273 		}
274 		printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
275 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
276 	}
277 #endif
278 	RF_UNLOCK_MUTEX(raidPtr->mutex);
279 
280 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
281 	raidPtr->reconDesc = (void *) reconDesc;
282 #if RF_RECON_STATS > 0
283 	reconDesc->hsStallCount = 0;
284 	reconDesc->numReconExecDelays = 0;
285 	reconDesc->numReconEventWaits = 0;
286 #endif				/* RF_RECON_STATS > 0 */
287 	reconDesc->reconExecTimerRunning = 0;
288 	reconDesc->reconExecTicks = 0;
289 	reconDesc->maxReconExecTicks = 0;
290 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
291 
292 	if (!rc) {
293 		/* fix up the component label */
294 		/* Don't actually need the read here.. */
295 		raidread_component_label(
296                         raidPtr->raid_cinfo[scol].ci_dev,
297 			raidPtr->raid_cinfo[scol].ci_vp,
298 			&c_label);
299 
300 		raid_init_component_label( raidPtr, &c_label);
301 		c_label.row = 0;
302 		c_label.column = col;
303 		c_label.clean = RF_RAID_DIRTY;
304 		c_label.status = rf_ds_optimal;
305 		c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
306 
307 		/* We've just done a rebuild based on all the other
308 		   disks, so at this point the parity is known to be
309 		   clean, even if it wasn't before. */
310 
311 		/* XXX doesn't hold for RAID 6!!*/
312 
313 		RF_LOCK_MUTEX(raidPtr->mutex);
314 		raidPtr->parity_good = RF_RAID_CLEAN;
315 		RF_UNLOCK_MUTEX(raidPtr->mutex);
316 
317 		/* XXXX MORE NEEDED HERE */
318 
319 		raidwrite_component_label(
320                         raidPtr->raid_cinfo[scol].ci_dev,
321 			raidPtr->raid_cinfo[scol].ci_vp,
322 			&c_label);
323 
324 	} else {
325 		/* Reconstruct failed. */
326 
327 		RF_LOCK_MUTEX(raidPtr->mutex);
328 		/* Failed disk goes back to "failed" status */
329 		raidPtr->Disks[col].status = rf_ds_failed;
330 
331 		/* Spare disk goes back to "spare" status. */
332 		spareDiskPtr->status = rf_ds_spare;
333 		RF_UNLOCK_MUTEX(raidPtr->mutex);
334 
335 	}
336 	rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
337 	return (rc);
338 }
339 
340 /*
341 
342    Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
343    and you don't get a spare until the next Monday.  With this function
344    (and hot-swappable drives) you can now put your new disk containing
345    /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
346    rebuild the data "on the spot".
347 
348 */
349 
350 int
351 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
352 {
353 	RF_RaidDisk_t *spareDiskPtr = NULL;
354 	RF_RaidReconDesc_t *reconDesc;
355 	const RF_LayoutSW_t *lp;
356 	RF_ComponentLabel_t c_label;
357 	int     numDisksDone = 0, rc;
358 	struct partinfo dpart;
359 	struct vnode *vp;
360 	struct vattr va;
361 	struct proc *proc;
362 	int retcode;
363 	int ac;
364 
365 	lp = raidPtr->Layout.map;
366 	if (!lp->SubmitReconBuffer) {
367 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
368 			     lp->parityConfig);
369 		/* wakeup anyone who might be waiting to do a reconstruct */
370 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
371 		return(EIO);
372 	}
373 
374 	/*
375 	 * The current infrastructure only supports reconstructing one
376 	 * disk at a time for each array.
377 	 */
378 	RF_LOCK_MUTEX(raidPtr->mutex);
379 
380 	if (raidPtr->Disks[col].status != rf_ds_failed) {
381 		/* "It's gone..." */
382 		raidPtr->numFailures++;
383 		raidPtr->Disks[col].status = rf_ds_failed;
384 		raidPtr->status = rf_rs_degraded;
385 		RF_UNLOCK_MUTEX(raidPtr->mutex);
386 		rf_update_component_labels(raidPtr,
387 					   RF_NORMAL_COMPONENT_UPDATE);
388 		RF_LOCK_MUTEX(raidPtr->mutex);
389 	}
390 
391 	while (raidPtr->reconInProgress) {
392 		RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
393 	}
394 
395 	raidPtr->reconInProgress++;
396 
397 	/* first look for a spare drive onto which to reconstruct the
398 	   data.  spare disk descriptors are stored in row 0.  This
399 	   may have to change eventually */
400 
401 	/* Actually, we don't care if it's failed or not...  On a RAID
402 	   set with correct parity, this function should be callable
403 	   on any component without ill affects. */
404 	/* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
405 
406 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
407 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
408 		RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
409 
410 		raidPtr->reconInProgress--;
411 		RF_UNLOCK_MUTEX(raidPtr->mutex);
412 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
413 		return (EINVAL);
414 	}
415 #endif
416 	proc = raidPtr->engine_thread;
417 
418 	/* This device may have been opened successfully the
419 	   first time. Close it before trying to open it again.. */
420 
421 	if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
422 #if 0
423 		printf("Closed the open device: %s\n",
424 		       raidPtr->Disks[col].devname);
425 #endif
426 		vp = raidPtr->raid_cinfo[col].ci_vp;
427 		ac = raidPtr->Disks[col].auto_configured;
428 		RF_UNLOCK_MUTEX(raidPtr->mutex);
429 		rf_close_component(raidPtr, vp, ac);
430 		RF_LOCK_MUTEX(raidPtr->mutex);
431 		raidPtr->raid_cinfo[col].ci_vp = NULL;
432 	}
433 	/* note that this disk was *not* auto_configured (any longer)*/
434 	raidPtr->Disks[col].auto_configured = 0;
435 
436 #if 0
437 	printf("About to (re-)open the device for rebuilding: %s\n",
438 	       raidPtr->Disks[col].devname);
439 #endif
440 	RF_UNLOCK_MUTEX(raidPtr->mutex);
441 	retcode = raidlookup(raidPtr->Disks[col].devname, proc, &vp);
442 
443 	if (retcode) {
444 		printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
445 		       raidPtr->Disks[col].devname, retcode);
446 
447 		/* the component isn't responding properly...
448 		   must be still dead :-( */
449 		RF_LOCK_MUTEX(raidPtr->mutex);
450 		raidPtr->reconInProgress--;
451 		RF_UNLOCK_MUTEX(raidPtr->mutex);
452 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
453 		return(retcode);
454 	}
455 
456 	/* Ok, so we can at least do a lookup...
457 	   How about actually getting a vp for it? */
458 
459 	if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, proc)) != 0) {
460 		RF_LOCK_MUTEX(raidPtr->mutex);
461 		raidPtr->reconInProgress--;
462 		RF_UNLOCK_MUTEX(raidPtr->mutex);
463 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
464 		return(retcode);
465 	}
466 
467 	retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, proc->p_ucred, proc);
468 	if (retcode) {
469 		RF_LOCK_MUTEX(raidPtr->mutex);
470 		raidPtr->reconInProgress--;
471 		RF_UNLOCK_MUTEX(raidPtr->mutex);
472 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
473 		return(retcode);
474 	}
475 	RF_LOCK_MUTEX(raidPtr->mutex);
476 	raidPtr->Disks[col].blockSize =	dpart.disklab->d_secsize;
477 
478 	raidPtr->Disks[col].numBlocks = dpart.part->p_size -
479 		rf_protectedSectors;
480 
481 	raidPtr->raid_cinfo[col].ci_vp = vp;
482 	raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
483 
484 	raidPtr->Disks[col].dev = va.va_rdev;
485 
486 	/* we allow the user to specify that only a fraction
487 	   of the disks should be used this is just for debug:
488 	   it speeds up * the parity scan */
489 	raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
490 		rf_sizePercentage / 100;
491 	RF_UNLOCK_MUTEX(raidPtr->mutex);
492 
493 	spareDiskPtr = &raidPtr->Disks[col];
494 	spareDiskPtr->status = rf_ds_used_spare;
495 
496 	printf("raid%d: initiating in-place reconstruction on column %d\n",
497 	       raidPtr->raidid, col);
498 
499 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
500 				       numDisksDone, col);
501 	raidPtr->reconDesc = (void *) reconDesc;
502 #if RF_RECON_STATS > 0
503 	reconDesc->hsStallCount = 0;
504 	reconDesc->numReconExecDelays = 0;
505 	reconDesc->numReconEventWaits = 0;
506 #endif				/* RF_RECON_STATS > 0 */
507 	reconDesc->reconExecTimerRunning = 0;
508 	reconDesc->reconExecTicks = 0;
509 	reconDesc->maxReconExecTicks = 0;
510 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
511 
512 	if (!rc) {
513 		RF_LOCK_MUTEX(raidPtr->mutex);
514 		/* Need to set these here, as at this point it'll be claiming
515 		   that the disk is in rf_ds_spared!  But we know better :-) */
516 
517 		raidPtr->Disks[col].status = rf_ds_optimal;
518 		raidPtr->status = rf_rs_optimal;
519 		RF_UNLOCK_MUTEX(raidPtr->mutex);
520 
521 		/* fix up the component label */
522 		/* Don't actually need the read here.. */
523 		raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
524 					 raidPtr->raid_cinfo[col].ci_vp,
525 					 &c_label);
526 
527 		RF_LOCK_MUTEX(raidPtr->mutex);
528 		raid_init_component_label(raidPtr, &c_label);
529 
530 		c_label.row = 0;
531 		c_label.column = col;
532 
533 		/* We've just done a rebuild based on all the other
534 		   disks, so at this point the parity is known to be
535 		   clean, even if it wasn't before. */
536 
537 		/* XXX doesn't hold for RAID 6!!*/
538 
539 		raidPtr->parity_good = RF_RAID_CLEAN;
540 		RF_UNLOCK_MUTEX(raidPtr->mutex);
541 
542 		raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
543 					  raidPtr->raid_cinfo[col].ci_vp,
544 					  &c_label);
545 
546 	} else {
547 		/* Reconstruct-in-place failed.  Disk goes back to
548 		   "failed" status, regardless of what it was before.  */
549 		RF_LOCK_MUTEX(raidPtr->mutex);
550 		raidPtr->Disks[col].status = rf_ds_failed;
551 		RF_UNLOCK_MUTEX(raidPtr->mutex);
552 	}
553 
554 	rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
555 
556 	RF_LOCK_MUTEX(raidPtr->mutex);
557 	raidPtr->reconInProgress--;
558 	RF_UNLOCK_MUTEX(raidPtr->mutex);
559 
560 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
561 	return (rc);
562 }
563 
564 
565 int
566 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
567 {
568 	RF_Raid_t *raidPtr = reconDesc->raidPtr;
569 	RF_RowCol_t col = reconDesc->col;
570 	RF_RowCol_t scol = reconDesc->scol;
571 	RF_ReconMap_t *mapPtr;
572 	RF_ReconCtrl_t *tmp_reconctrl;
573 	RF_ReconEvent_t *event;
574 	RF_CallbackDesc_t *p;
575 	struct timeval etime, elpsd;
576 	unsigned long xor_s, xor_resid_us;
577 	int     i, ds;
578 	int status;
579 	int recon_error, write_error;
580 
581 	raidPtr->accumXorTimeUs = 0;
582 #if RF_ACC_TRACE > 0
583 	/* create one trace record per physical disk */
584 	RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
585 #endif
586 
587 	/* quiesce the array prior to starting recon.  this is needed
588 	 * to assure no nasty interactions with pending user writes.
589 	 * We need to do this before we change the disk or row status. */
590 
591 	Dprintf("RECON: begin request suspend\n");
592 	rf_SuspendNewRequestsAndWait(raidPtr);
593 	Dprintf("RECON: end request suspend\n");
594 
595 	/* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
596 	tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
597 
598 	RF_LOCK_MUTEX(raidPtr->mutex);
599 
600 	/* create the reconstruction control pointer and install it in
601 	 * the right slot */
602 	raidPtr->reconControl = tmp_reconctrl;
603 	mapPtr = raidPtr->reconControl->reconMap;
604 	raidPtr->status = rf_rs_reconstructing;
605 	raidPtr->Disks[col].status = rf_ds_reconstructing;
606 	raidPtr->Disks[col].spareCol = scol;
607 
608 	RF_UNLOCK_MUTEX(raidPtr->mutex);
609 
610 	RF_GETTIME(raidPtr->reconControl->starttime);
611 
612 	/* now start up the actual reconstruction: issue a read for
613 	 * each surviving disk */
614 
615 	reconDesc->numDisksDone = 0;
616 	for (i = 0; i < raidPtr->numCol; i++) {
617 		if (i != col) {
618 			/* find and issue the next I/O on the
619 			 * indicated disk */
620 			if (IssueNextReadRequest(raidPtr, i)) {
621 				Dprintf1("RECON: done issuing for c%d\n", i);
622 				reconDesc->numDisksDone++;
623 			}
624 		}
625 	}
626 
627 	Dprintf("RECON: resume requests\n");
628 	rf_ResumeNewRequests(raidPtr);
629 
630 	/* process reconstruction events until all disks report that
631 	 * they've completed all work */
632 
633 	mapPtr = raidPtr->reconControl->reconMap;
634 	recon_error = 0;
635 	write_error = 0;
636 
637 	while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
638 
639 		event = rf_GetNextReconEvent(reconDesc);
640 		status = ProcessReconEvent(raidPtr, event);
641 
642 		/* the normal case is that a read completes, and all is well. */
643 		if (status == RF_RECON_DONE_READS) {
644 			reconDesc->numDisksDone++;
645 		} else if ((status == RF_RECON_READ_ERROR) ||
646 			   (status == RF_RECON_WRITE_ERROR)) {
647 			/* an error was encountered while reconstructing...
648 			   Pretend we've finished this disk.
649 			*/
650 			recon_error = 1;
651 			raidPtr->reconControl->error = 1;
652 
653 			/* bump the numDisksDone count for reads,
654 			   but not for writes */
655 			if (status == RF_RECON_READ_ERROR)
656 				reconDesc->numDisksDone++;
657 
658 			/* write errors are special -- when we are
659 			   done dealing with the reads that are
660 			   finished, we don't want to wait for any
661 			   writes */
662 			if (status == RF_RECON_WRITE_ERROR)
663 				write_error = 1;
664 
665 		} else if (status == RF_RECON_READ_STOPPED) {
666 			/* count this component as being "done" */
667 			reconDesc->numDisksDone++;
668 		}
669 
670 		if (recon_error) {
671 
672 			/* make sure any stragglers are woken up so that
673 			   their theads will complete, and we can get out
674 			   of here with all IO processed */
675 
676 			while (raidPtr->reconControl->headSepCBList) {
677 				p = raidPtr->reconControl->headSepCBList;
678 				raidPtr->reconControl->headSepCBList = p->next;
679 				p->next = NULL;
680 				rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
681 				rf_FreeCallbackDesc(p);
682 			}
683 		}
684 
685 		raidPtr->reconControl->numRUsTotal =
686 			mapPtr->totalRUs;
687 		raidPtr->reconControl->numRUsComplete =
688 			mapPtr->totalRUs -
689 			rf_UnitsLeftToReconstruct(mapPtr);
690 
691 #if RF_DEBUG_RECON
692 		raidPtr->reconControl->percentComplete =
693 			(raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
694 		if (rf_prReconSched) {
695 			rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
696 		}
697 #endif
698 	}
699 
700 	mapPtr = raidPtr->reconControl->reconMap;
701 	if (rf_reconDebug) {
702 		printf("RECON: all reads completed\n");
703 	}
704 	/* at this point all the reads have completed.  We now wait
705 	 * for any pending writes to complete, and then we're done */
706 
707 	while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
708 
709 		event = rf_GetNextReconEvent(reconDesc);
710 		status = ProcessReconEvent(raidPtr, event);
711 
712 		if (status == RF_RECON_WRITE_ERROR) {
713 			recon_error = 1;
714 			raidPtr->reconControl->error = 1;
715 			/* an error was encountered at the very end... bail */
716 		} else {
717 #if RF_DEBUG_RECON
718 			raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
719 			if (rf_prReconSched) {
720 				rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
721 			}
722 #endif
723 		}
724 	}
725 
726 	if (recon_error) {
727 		/* we've encountered an error in reconstructing. */
728 		printf("raid%d: reconstruction failed.\n", raidPtr->raidid);
729 
730 		/* we start by blocking IO to the RAID set. */
731 		rf_SuspendNewRequestsAndWait(raidPtr);
732 
733 		RF_LOCK_MUTEX(raidPtr->mutex);
734 		/* mark set as being degraded, rather than
735 		   rf_rs_reconstructing as we were before the problem.
736 		   After this is done we can update status of the
737 		   component disks without worrying about someone
738 		   trying to read from a failed component.
739 		*/
740 		raidPtr->status = rf_rs_degraded;
741 		RF_UNLOCK_MUTEX(raidPtr->mutex);
742 
743 		/* resume IO */
744 		rf_ResumeNewRequests(raidPtr);
745 
746 		/* At this point there are two cases:
747 		   1) If we've experienced a read error, then we've
748 		   already waited for all the reads we're going to get,
749 		   and we just need to wait for the writes.
750 
751 		   2) If we've experienced a write error, we've also
752 		   already waited for all the reads to complete,
753 		   but there is little point in waiting for the writes --
754 		   when they do complete, they will just be ignored.
755 
756 		   So we just wait for writes to complete if we didn't have a
757 		   write error.
758 		*/
759 
760 		if (!write_error) {
761 			/* wait for writes to complete */
762 			while (raidPtr->reconControl->pending_writes > 0) {
763 
764 				event = rf_GetNextReconEvent(reconDesc);
765 				status = ProcessReconEvent(raidPtr, event);
766 
767 				if (status == RF_RECON_WRITE_ERROR) {
768 					raidPtr->reconControl->error = 1;
769 					/* an error was encountered at the very end... bail.
770 					   This will be very bad news for the user, since
771 					   at this point there will have been a read error
772 					   on one component, and a write error on another!
773 					*/
774 					break;
775 				}
776 			}
777 		}
778 
779 
780 		/* cleanup */
781 
782 		/* drain the event queue - after waiting for the writes above,
783 		   there shouldn't be much (if anything!) left in the queue. */
784 
785 		rf_DrainReconEventQueue(reconDesc);
786 
787 		/* XXX  As much as we'd like to free the recon control structure
788 		   and the reconDesc, we have no way of knowing if/when those will
789 		   be touched by IO that has yet to occur.  It is rather poor to be
790 		   basically causing a 'memory leak' here, but there doesn't seem to be
791 		   a cleaner alternative at this time.  Perhaps when the reconstruct code
792 		   gets a makeover this problem will go away.
793 		*/
794 #if 0
795 		rf_FreeReconControl(raidPtr);
796 #endif
797 
798 #if RF_ACC_TRACE > 0
799 		RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
800 #endif
801 		/* XXX see comment above */
802 #if 0
803 		FreeReconDesc(reconDesc);
804 #endif
805 
806 		return (1);
807 	}
808 
809 	/* Success:  mark the dead disk as reconstructed.  We quiesce
810 	 * the array here to assure no nasty interactions with pending
811 	 * user accesses when we free up the psstatus structure as
812 	 * part of FreeReconControl() */
813 
814 	rf_SuspendNewRequestsAndWait(raidPtr);
815 
816 	RF_LOCK_MUTEX(raidPtr->mutex);
817 	raidPtr->numFailures--;
818 	ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
819 	raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
820 	raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
821 	RF_UNLOCK_MUTEX(raidPtr->mutex);
822 	RF_GETTIME(etime);
823 	RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
824 
825 	rf_ResumeNewRequests(raidPtr);
826 
827 	printf("raid%d: Reconstruction of disk at col %d completed\n",
828 	       raidPtr->raidid, col);
829 	xor_s = raidPtr->accumXorTimeUs / 1000000;
830 	xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
831 	printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
832 	       raidPtr->raidid,
833 	       (int) elpsd.tv_sec, (int) elpsd.tv_usec,
834 	       raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
835 	printf("raid%d:  (start time %d sec %d usec, end time %d sec %d usec)\n",
836 	       raidPtr->raidid,
837 	       (int) raidPtr->reconControl->starttime.tv_sec,
838 	       (int) raidPtr->reconControl->starttime.tv_usec,
839 	       (int) etime.tv_sec, (int) etime.tv_usec);
840 #if RF_RECON_STATS > 0
841 	printf("raid%d: Total head-sep stall count was %d\n",
842 	       raidPtr->raidid, (int) reconDesc->hsStallCount);
843 #endif				/* RF_RECON_STATS > 0 */
844 	rf_FreeReconControl(raidPtr);
845 #if RF_ACC_TRACE > 0
846 	RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
847 #endif
848 	FreeReconDesc(reconDesc);
849 
850 	return (0);
851 
852 }
853 /*****************************************************************************
854  * do the right thing upon each reconstruction event.
855  *****************************************************************************/
856 static int
857 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
858 {
859 	int     retcode = 0, submitblocked;
860 	RF_ReconBuffer_t *rbuf;
861 	RF_SectorCount_t sectorsPerRU;
862 
863 	retcode = RF_RECON_READ_STOPPED;
864 
865 	Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
866 	switch (event->type) {
867 
868 		/* a read I/O has completed */
869 	case RF_REVENT_READDONE:
870 		rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
871 		Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
872 		    event->col, rbuf->parityStripeID);
873 		Dprintf7("RECON: done read  psid %ld buf %lx  %02x %02x %02x %02x %02x\n",
874 		    rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
875 		    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
876 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
877 		if (!raidPtr->reconControl->error) {
878 			submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
879 			Dprintf1("RECON: submitblocked=%d\n", submitblocked);
880 			if (!submitblocked)
881 				retcode = IssueNextReadRequest(raidPtr, event->col);
882 		}
883 		break;
884 
885 		/* a write I/O has completed */
886 	case RF_REVENT_WRITEDONE:
887 #if RF_DEBUG_RECON
888 		if (rf_floatingRbufDebug) {
889 			rf_CheckFloatingRbufCount(raidPtr, 1);
890 		}
891 #endif
892 		sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
893 		rbuf = (RF_ReconBuffer_t *) event->arg;
894 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
895 		Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
896 		    rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
897 		rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
898 		    rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
899 		rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
900 
901 		RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
902 		raidPtr->reconControl->pending_writes--;
903 		RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
904 
905 		if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
906 			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
907 			while(raidPtr->reconControl->rb_lock) {
908 				ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0,
909 					&raidPtr->reconControl->rb_mutex);
910 			}
911 			raidPtr->reconControl->rb_lock = 1;
912 			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
913 
914 			raidPtr->numFullReconBuffers--;
915 			rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
916 
917 			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
918 			raidPtr->reconControl->rb_lock = 0;
919 			wakeup(&raidPtr->reconControl->rb_lock);
920 			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
921 		} else
922 			if (rbuf->type == RF_RBUF_TYPE_FORCED)
923 				rf_FreeReconBuffer(rbuf);
924 			else
925 				RF_ASSERT(0);
926 		retcode = 0;
927 		break;
928 
929 	case RF_REVENT_BUFCLEAR:	/* A buffer-stall condition has been
930 					 * cleared */
931 		Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
932 		if (!raidPtr->reconControl->error) {
933 			submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf,
934 							     0, (int) (long) event->arg);
935 			RF_ASSERT(!submitblocked);	/* we wouldn't have gotten the
936 							 * BUFCLEAR event if we
937 							 * couldn't submit */
938 			retcode = IssueNextReadRequest(raidPtr, event->col);
939 		}
940 		break;
941 
942 	case RF_REVENT_BLOCKCLEAR:	/* A user-write reconstruction
943 					 * blockage has been cleared */
944 		DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
945 		if (!raidPtr->reconControl->error) {
946 			retcode = TryToRead(raidPtr, event->col);
947 		}
948 		break;
949 
950 	case RF_REVENT_HEADSEPCLEAR:	/* A max-head-separation
951 					 * reconstruction blockage has been
952 					 * cleared */
953 		Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
954 		if (!raidPtr->reconControl->error) {
955 			retcode = TryToRead(raidPtr, event->col);
956 		}
957 		break;
958 
959 		/* a buffer has become ready to write */
960 	case RF_REVENT_BUFREADY:
961 		Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
962 		if (!raidPtr->reconControl->error) {
963 			retcode = IssueNextWriteRequest(raidPtr);
964 #if RF_DEBUG_RECON
965 			if (rf_floatingRbufDebug) {
966 				rf_CheckFloatingRbufCount(raidPtr, 1);
967 			}
968 #endif
969 		}
970 		break;
971 
972 		/* we need to skip the current RU entirely because it got
973 		 * recon'd while we were waiting for something else to happen */
974 	case RF_REVENT_SKIP:
975 		DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
976 		if (!raidPtr->reconControl->error) {
977 			retcode = IssueNextReadRequest(raidPtr, event->col);
978 		}
979 		break;
980 
981 		/* a forced-reconstruction read access has completed.  Just
982 		 * submit the buffer */
983 	case RF_REVENT_FORCEDREADDONE:
984 		rbuf = (RF_ReconBuffer_t *) event->arg;
985 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
986 		DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
987 		if (!raidPtr->reconControl->error) {
988 			submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
989 			RF_ASSERT(!submitblocked);
990 		}
991 		break;
992 
993 		/* A read I/O failed to complete */
994 	case RF_REVENT_READ_FAILED:
995 		retcode = RF_RECON_READ_ERROR;
996 		break;
997 
998 		/* A write I/O failed to complete */
999 	case RF_REVENT_WRITE_FAILED:
1000 		retcode = RF_RECON_WRITE_ERROR;
1001 
1002 		rbuf = (RF_ReconBuffer_t *) event->arg;
1003 
1004 		/* cleanup the disk queue data */
1005 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1006 
1007 		/* At this point we're erroring out, badly, and floatingRbufs
1008 		   may not even be valid.  Rather than putting this back onto
1009 		   the floatingRbufs list, just arrange for its immediate
1010 		   destruction.
1011 		*/
1012 		rf_FreeReconBuffer(rbuf);
1013 		break;
1014 
1015 		/* a forced read I/O failed to complete */
1016 	case RF_REVENT_FORCEDREAD_FAILED:
1017 		retcode = RF_RECON_READ_ERROR;
1018 		break;
1019 
1020 	default:
1021 		RF_PANIC();
1022 	}
1023 	rf_FreeReconEventDesc(event);
1024 	return (retcode);
1025 }
1026 /*****************************************************************************
1027  *
1028  * find the next thing that's needed on the indicated disk, and issue
1029  * a read request for it.  We assume that the reconstruction buffer
1030  * associated with this process is free to receive the data.  If
1031  * reconstruction is blocked on the indicated RU, we issue a
1032  * blockage-release request instead of a physical disk read request.
1033  * If the current disk gets too far ahead of the others, we issue a
1034  * head-separation wait request and return.
1035  *
1036  * ctrl->{ru_count, curPSID, diskOffset} and
1037  * rbuf->failedDiskSectorOffset are maintained to point to the unit
1038  * we're currently accessing.  Note that this deviates from the
1039  * standard C idiom of having counters point to the next thing to be
1040  * accessed.  This allows us to easily retry when we're blocked by
1041  * head separation or reconstruction-blockage events.
1042  *
1043  *****************************************************************************/
1044 static int
1045 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
1046 {
1047 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1048 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1049 	RF_ReconBuffer_t *rbuf = ctrl->rbuf;
1050 	RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
1051 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1052 	int     do_new_check = 0, retcode = 0, status;
1053 
1054 	/* if we are currently the slowest disk, mark that we have to do a new
1055 	 * check */
1056 	if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
1057 		do_new_check = 1;
1058 
1059 	while (1) {
1060 
1061 		ctrl->ru_count++;
1062 		if (ctrl->ru_count < RUsPerPU) {
1063 			ctrl->diskOffset += sectorsPerRU;
1064 			rbuf->failedDiskSectorOffset += sectorsPerRU;
1065 		} else {
1066 			ctrl->curPSID++;
1067 			ctrl->ru_count = 0;
1068 			/* code left over from when head-sep was based on
1069 			 * parity stripe id */
1070 			if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
1071 				CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
1072 				return (RF_RECON_DONE_READS);	/* finito! */
1073 			}
1074 			/* find the disk offsets of the start of the parity
1075 			 * stripe on both the current disk and the failed
1076 			 * disk. skip this entire parity stripe if either disk
1077 			 * does not appear in the indicated PS */
1078 			status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1079 			    &rbuf->spCol, &rbuf->spOffset);
1080 			if (status) {
1081 				ctrl->ru_count = RUsPerPU - 1;
1082 				continue;
1083 			}
1084 		}
1085 		rbuf->which_ru = ctrl->ru_count;
1086 
1087 		/* skip this RU if it's already been reconstructed */
1088 		if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
1089 			Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1090 			continue;
1091 		}
1092 		break;
1093 	}
1094 	ctrl->headSepCounter++;
1095 	if (do_new_check)
1096 		CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter);	/* update min if needed */
1097 
1098 
1099 	/* at this point, we have definitely decided what to do, and we have
1100 	 * only to see if we can actually do it now */
1101 	rbuf->parityStripeID = ctrl->curPSID;
1102 	rbuf->which_ru = ctrl->ru_count;
1103 #if RF_ACC_TRACE > 0
1104 	memset((char *) &raidPtr->recon_tracerecs[col], 0,
1105 	    sizeof(raidPtr->recon_tracerecs[col]));
1106 	raidPtr->recon_tracerecs[col].reconacc = 1;
1107 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1108 #endif
1109 	retcode = TryToRead(raidPtr, col);
1110 	return (retcode);
1111 }
1112 
1113 /*
1114  * tries to issue the next read on the indicated disk.  We may be
1115  * blocked by (a) the heads being too far apart, or (b) recon on the
1116  * indicated RU being blocked due to a write by a user thread.  In
1117  * this case, we issue a head-sep or blockage wait request, which will
1118  * cause this same routine to be invoked again later when the blockage
1119  * has cleared.
1120  */
1121 
1122 static int
1123 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
1124 {
1125 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1126 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1127 	RF_StripeNum_t psid = ctrl->curPSID;
1128 	RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1129 	RF_DiskQueueData_t *req;
1130 	int     status;
1131 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
1132 
1133 	/* if the current disk is too far ahead of the others, issue a
1134 	 * head-separation wait and return */
1135 	if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
1136 		return (0);
1137 
1138 	/* allocate a new PSS in case we need it */
1139 	newpssPtr = rf_AllocPSStatus(raidPtr);
1140 
1141 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1142 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
1143 
1144 	if (pssPtr != newpssPtr) {
1145 		rf_FreePSStatus(raidPtr, newpssPtr);
1146 	}
1147 
1148 	/* if recon is blocked on the indicated parity stripe, issue a
1149 	 * block-wait request and return. this also must mark the indicated RU
1150 	 * in the stripe as under reconstruction if not blocked. */
1151 	status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
1152 	if (status == RF_PSS_RECON_BLOCKED) {
1153 		Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1154 		goto out;
1155 	} else
1156 		if (status == RF_PSS_FORCED_ON_WRITE) {
1157 			rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1158 			goto out;
1159 		}
1160 	/* make one last check to be sure that the indicated RU didn't get
1161 	 * reconstructed while we were waiting for something else to happen.
1162 	 * This is unfortunate in that it causes us to make this check twice
1163 	 * in the normal case.  Might want to make some attempt to re-work
1164 	 * this so that we only do this check if we've definitely blocked on
1165 	 * one of the above checks.  When this condition is detected, we may
1166 	 * have just created a bogus status entry, which we need to delete. */
1167 	if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1168 		Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1169 		if (pssPtr == newpssPtr)
1170 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1171 		rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1172 		goto out;
1173 	}
1174 	/* found something to read.  issue the I/O */
1175 	Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1176 	    psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1177 #if RF_ACC_TRACE > 0
1178 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1179 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1180 	raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1181 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1182 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1183 #endif
1184 	/* should be ok to use a NULL proc pointer here, all the bufs we use
1185 	 * should be in kernel space */
1186 	req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1187 	    ReconReadDoneProc, (void *) ctrl,
1188 #if RF_ACC_TRACE > 0
1189 				     &raidPtr->recon_tracerecs[col],
1190 #else
1191 				     NULL,
1192 #endif
1193 				     (void *) raidPtr, 0, NULL, PR_WAITOK);
1194 
1195 	ctrl->rbuf->arg = (void *) req;
1196 	rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1197 	pssPtr->issued[col] = 1;
1198 
1199 out:
1200 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1201 	return (0);
1202 }
1203 
1204 
1205 /*
1206  * given a parity stripe ID, we want to find out whether both the
1207  * current disk and the failed disk exist in that parity stripe.  If
1208  * not, we want to skip this whole PS.  If so, we want to find the
1209  * disk offset of the start of the PS on both the current disk and the
1210  * failed disk.
1211  *
1212  * this works by getting a list of disks comprising the indicated
1213  * parity stripe, and searching the list for the current and failed
1214  * disks.  Once we've decided they both exist in the parity stripe, we
1215  * need to decide whether each is data or parity, so that we'll know
1216  * which mapping function to call to get the corresponding disk
1217  * offsets.
1218  *
1219  * this is kind of unpleasant, but doing it this way allows the
1220  * reconstruction code to use parity stripe IDs rather than physical
1221  * disks address to march through the failed disk, which greatly
1222  * simplifies a lot of code, as well as eliminating the need for a
1223  * reverse-mapping function.  I also think it will execute faster,
1224  * since the calls to the mapping module are kept to a minimum.
1225  *
1226  * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1227  * THE STRIPE IN THE CORRECT ORDER
1228  *
1229  * raidPtr          - raid descriptor
1230  * psid             - parity stripe identifier
1231  * col              - column of disk to find the offsets for
1232  * spCol            - out: col of spare unit for failed unit
1233  * spOffset         - out: offset into disk containing spare unit
1234  *
1235  */
1236 
1237 
1238 static int
1239 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1240 		     RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1241 		     RF_SectorNum_t *outFailedDiskSectorOffset,
1242 		     RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1243 {
1244 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1245 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1246 	RF_RaidAddr_t sosRaidAddress;	/* start-of-stripe */
1247 	RF_RowCol_t *diskids;
1248 	u_int   i, j, k, i_offset, j_offset;
1249 	RF_RowCol_t pcol;
1250 	int     testcol;
1251 	RF_SectorNum_t poffset;
1252 	char    i_is_parity = 0, j_is_parity = 0;
1253 	RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1254 
1255 	/* get a listing of the disks comprising that stripe */
1256 	sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1257 	(layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1258 	RF_ASSERT(diskids);
1259 
1260 	/* reject this entire parity stripe if it does not contain the
1261 	 * indicated disk or it does not contain the failed disk */
1262 
1263 	for (i = 0; i < stripeWidth; i++) {
1264 		if (col == diskids[i])
1265 			break;
1266 	}
1267 	if (i == stripeWidth)
1268 		goto skipit;
1269 	for (j = 0; j < stripeWidth; j++) {
1270 		if (fcol == diskids[j])
1271 			break;
1272 	}
1273 	if (j == stripeWidth) {
1274 		goto skipit;
1275 	}
1276 	/* find out which disk the parity is on */
1277 	(layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1278 
1279 	/* find out if either the current RU or the failed RU is parity */
1280 	/* also, if the parity occurs in this stripe prior to the data and/or
1281 	 * failed col, we need to decrement i and/or j */
1282 	for (k = 0; k < stripeWidth; k++)
1283 		if (diskids[k] == pcol)
1284 			break;
1285 	RF_ASSERT(k < stripeWidth);
1286 	i_offset = i;
1287 	j_offset = j;
1288 	if (k < i)
1289 		i_offset--;
1290 	else
1291 		if (k == i) {
1292 			i_is_parity = 1;
1293 			i_offset = 0;
1294 		}		/* set offsets to zero to disable multiply
1295 				 * below */
1296 	if (k < j)
1297 		j_offset--;
1298 	else
1299 		if (k == j) {
1300 			j_is_parity = 1;
1301 			j_offset = 0;
1302 		}
1303 	/* at this point, [ij]_is_parity tells us whether the [current,failed]
1304 	 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1305 	 * tells us how far into the stripe the [current,failed] disk is. */
1306 
1307 	/* call the mapping routine to get the offset into the current disk,
1308 	 * repeat for failed disk. */
1309 	if (i_is_parity)
1310 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1311 	else
1312 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1313 
1314 	RF_ASSERT(col == testcol);
1315 
1316 	if (j_is_parity)
1317 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1318 	else
1319 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1320 	RF_ASSERT(fcol == testcol);
1321 
1322 	/* now locate the spare unit for the failed unit */
1323 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1324 	if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1325 		if (j_is_parity)
1326 			layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1327 		else
1328 			layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1329 	} else {
1330 #endif
1331 		*spCol = raidPtr->reconControl->spareCol;
1332 		*spOffset = *outFailedDiskSectorOffset;
1333 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1334 	}
1335 #endif
1336 	return (0);
1337 
1338 skipit:
1339 	Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1340 	    psid, col);
1341 	return (1);
1342 }
1343 /* this is called when a buffer has become ready to write to the replacement disk */
1344 static int
1345 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1346 {
1347 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1348 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1349 #if RF_ACC_TRACE > 0
1350 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1351 #endif
1352 	RF_ReconBuffer_t *rbuf;
1353 	RF_DiskQueueData_t *req;
1354 
1355 	rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1356 	RF_ASSERT(rbuf);	/* there must be one available, or we wouldn't
1357 				 * have gotten the event that sent us here */
1358 	RF_ASSERT(rbuf->pssPtr);
1359 
1360 	rbuf->pssPtr->writeRbuf = rbuf;
1361 	rbuf->pssPtr = NULL;
1362 
1363 	Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1364 	    rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1365 	    rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1366 	Dprintf6("RECON: new write psid %ld   %02x %02x %02x %02x %02x\n",
1367 	    rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1368 	    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1369 
1370 	/* should be ok to use a NULL b_proc here b/c all addrs should be in
1371 	 * kernel space */
1372 	req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1373 	    sectorsPerRU, rbuf->buffer,
1374 	    rbuf->parityStripeID, rbuf->which_ru,
1375 	    ReconWriteDoneProc, (void *) rbuf,
1376 #if RF_ACC_TRACE > 0
1377 	    &raidPtr->recon_tracerecs[fcol],
1378 #else
1379 				     NULL,
1380 #endif
1381 	    (void *) raidPtr, 0, NULL, PR_WAITOK);
1382 
1383 	rbuf->arg = (void *) req;
1384 	RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1385 	raidPtr->reconControl->pending_writes++;
1386 	RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1387 	rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1388 
1389 	return (0);
1390 }
1391 
1392 /*
1393  * this gets called upon the completion of a reconstruction read
1394  * operation the arg is a pointer to the per-disk reconstruction
1395  * control structure for the process that just finished a read.
1396  *
1397  * called at interrupt context in the kernel, so don't do anything
1398  * illegal here.
1399  */
1400 static int
1401 ReconReadDoneProc(void *arg, int status)
1402 {
1403 	RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1404 	RF_Raid_t *raidPtr;
1405 
1406 	/* Detect that reconCtrl is no longer valid, and if that
1407 	   is the case, bail without calling rf_CauseReconEvent().
1408 	   There won't be anyone listening for this event anyway */
1409 
1410 	if (ctrl->reconCtrl == NULL)
1411 		return(0);
1412 
1413 	raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1414 
1415 	if (status) {
1416 		printf("raid%d: Recon read failed!\n", raidPtr->raidid);
1417 		rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
1418 		return(0);
1419 	}
1420 #if RF_ACC_TRACE > 0
1421 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1422 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1423 	raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1424 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1425 	RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1426 #endif
1427 	rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1428 	return (0);
1429 }
1430 /* this gets called upon the completion of a reconstruction write operation.
1431  * the arg is a pointer to the rbuf that was just written
1432  *
1433  * called at interrupt context in the kernel, so don't do anything illegal here.
1434  */
1435 static int
1436 ReconWriteDoneProc(void *arg, int status)
1437 {
1438 	RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1439 
1440 	/* Detect that reconControl is no longer valid, and if that
1441 	   is the case, bail without calling rf_CauseReconEvent().
1442 	   There won't be anyone listening for this event anyway */
1443 
1444 	if (rbuf->raidPtr->reconControl == NULL)
1445 		return(0);
1446 
1447 	Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1448 	if (status) {
1449 		printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid);
1450 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
1451 		return(0);
1452 	}
1453 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1454 	return (0);
1455 }
1456 
1457 
1458 /*
1459  * computes a new minimum head sep, and wakes up anyone who needs to
1460  * be woken as a result
1461  */
1462 static void
1463 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1464 {
1465 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1466 	RF_HeadSepLimit_t new_min;
1467 	RF_RowCol_t i;
1468 	RF_CallbackDesc_t *p;
1469 	RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter);	/* from the definition
1470 								 * of a minimum */
1471 
1472 
1473 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1474 	while(reconCtrlPtr->rb_lock) {
1475 		ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex);
1476 	}
1477 	reconCtrlPtr->rb_lock = 1;
1478 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1479 
1480 	new_min = ~(1L << (8 * sizeof(long) - 1));	/* 0x7FFF....FFF */
1481 	for (i = 0; i < raidPtr->numCol; i++)
1482 		if (i != reconCtrlPtr->fcol) {
1483 			if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1484 				new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1485 		}
1486 	/* set the new minimum and wake up anyone who can now run again */
1487 	if (new_min != reconCtrlPtr->minHeadSepCounter) {
1488 		reconCtrlPtr->minHeadSepCounter = new_min;
1489 		Dprintf1("RECON:  new min head pos counter val is %ld\n", new_min);
1490 		while (reconCtrlPtr->headSepCBList) {
1491 			if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1492 				break;
1493 			p = reconCtrlPtr->headSepCBList;
1494 			reconCtrlPtr->headSepCBList = p->next;
1495 			p->next = NULL;
1496 			rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1497 			rf_FreeCallbackDesc(p);
1498 		}
1499 
1500 	}
1501 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1502 	reconCtrlPtr->rb_lock = 0;
1503 	wakeup(&reconCtrlPtr->rb_lock);
1504 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1505 }
1506 
1507 /*
1508  * checks to see that the maximum head separation will not be violated
1509  * if we initiate a reconstruction I/O on the indicated disk.
1510  * Limiting the maximum head separation between two disks eliminates
1511  * the nasty buffer-stall conditions that occur when one disk races
1512  * ahead of the others and consumes all of the floating recon buffers.
1513  * This code is complex and unpleasant but it's necessary to avoid
1514  * some very nasty, albeit fairly rare, reconstruction behavior.
1515  *
1516  * returns non-zero if and only if we have to stop working on the
1517  * indicated disk due to a head-separation delay.
1518  */
1519 static int
1520 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1521 		    RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1522 		    RF_ReconUnitNum_t which_ru)
1523 {
1524 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1525 	RF_CallbackDesc_t *cb, *p, *pt;
1526 	int     retval = 0;
1527 
1528 	/* if we're too far ahead of the slowest disk, stop working on this
1529 	 * disk until the slower ones catch up.  We do this by scheduling a
1530 	 * wakeup callback for the time when the slowest disk has caught up.
1531 	 * We define "caught up" with 20% hysteresis, i.e. the head separation
1532 	 * must have fallen to at most 80% of the max allowable head
1533 	 * separation before we'll wake up.
1534 	 *
1535 	 */
1536 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1537 	while(reconCtrlPtr->rb_lock) {
1538 		ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex);
1539 	}
1540 	reconCtrlPtr->rb_lock = 1;
1541 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1542 	if ((raidPtr->headSepLimit >= 0) &&
1543 	    ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1544 		Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1545 			 raidPtr->raidid, col, ctrl->headSepCounter,
1546 			 reconCtrlPtr->minHeadSepCounter,
1547 			 raidPtr->headSepLimit);
1548 		cb = rf_AllocCallbackDesc();
1549 		/* the minHeadSepCounter value we have to get to before we'll
1550 		 * wake up.  build in 20% hysteresis. */
1551 		cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1552 		cb->col = col;
1553 		cb->next = NULL;
1554 
1555 		/* insert this callback descriptor into the sorted list of
1556 		 * pending head-sep callbacks */
1557 		p = reconCtrlPtr->headSepCBList;
1558 		if (!p)
1559 			reconCtrlPtr->headSepCBList = cb;
1560 		else
1561 			if (cb->callbackArg.v < p->callbackArg.v) {
1562 				cb->next = reconCtrlPtr->headSepCBList;
1563 				reconCtrlPtr->headSepCBList = cb;
1564 			} else {
1565 				for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1566 				cb->next = p;
1567 				pt->next = cb;
1568 			}
1569 		retval = 1;
1570 #if RF_RECON_STATS > 0
1571 		ctrl->reconCtrl->reconDesc->hsStallCount++;
1572 #endif				/* RF_RECON_STATS > 0 */
1573 	}
1574 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1575 	reconCtrlPtr->rb_lock = 0;
1576 	wakeup(&reconCtrlPtr->rb_lock);
1577 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1578 
1579 	return (retval);
1580 }
1581 /*
1582  * checks to see if reconstruction has been either forced or blocked
1583  * by a user operation.  if forced, we skip this RU entirely.  else if
1584  * blocked, put ourselves on the wait list.  else return 0.
1585  *
1586  * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1587  */
1588 static int
1589 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1590 				   RF_ReconParityStripeStatus_t *pssPtr,
1591 				   RF_PerDiskReconCtrl_t *ctrl,
1592 				   RF_RowCol_t col, RF_StripeNum_t psid,
1593 				   RF_ReconUnitNum_t which_ru)
1594 {
1595 	RF_CallbackDesc_t *cb;
1596 	int     retcode = 0;
1597 
1598 	if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1599 		retcode = RF_PSS_FORCED_ON_WRITE;
1600 	else
1601 		if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1602 			Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1603 			cb = rf_AllocCallbackDesc();	/* append ourselves to
1604 							 * the blockage-wait
1605 							 * list */
1606 			cb->col = col;
1607 			cb->next = pssPtr->blockWaitList;
1608 			pssPtr->blockWaitList = cb;
1609 			retcode = RF_PSS_RECON_BLOCKED;
1610 		}
1611 	if (!retcode)
1612 		pssPtr->flags |= RF_PSS_UNDER_RECON;	/* mark this RU as under
1613 							 * reconstruction */
1614 
1615 	return (retcode);
1616 }
1617 /*
1618  * if reconstruction is currently ongoing for the indicated stripeID,
1619  * reconstruction is forced to completion and we return non-zero to
1620  * indicate that the caller must wait.  If not, then reconstruction is
1621  * blocked on the indicated stripe and the routine returns zero.  If
1622  * and only if we return non-zero, we'll cause the cbFunc to get
1623  * invoked with the cbArg when the reconstruction has completed.
1624  */
1625 int
1626 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1627 		     void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1628 {
1629 	RF_StripeNum_t stripeID = asmap->stripeID;	/* the stripe ID we're
1630 							 * forcing recon on */
1631 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;	/* num sects in one RU */
1632 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;	/* a pointer to the parity
1633 						 * stripe status structure */
1634 	RF_StripeNum_t psid;	/* parity stripe id */
1635 	RF_SectorNum_t offset, fd_offset;	/* disk offset, failed-disk
1636 						 * offset */
1637 	RF_RowCol_t *diskids;
1638 	RF_ReconUnitNum_t which_ru;	/* RU within parity stripe */
1639 	RF_RowCol_t fcol, diskno, i;
1640 	RF_ReconBuffer_t *new_rbuf;	/* ptr to newly allocated rbufs */
1641 	RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1642 	RF_CallbackDesc_t *cb;
1643 	int     nPromoted;
1644 
1645 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1646 
1647 	/* allocate a new PSS in case we need it */
1648         newpssPtr = rf_AllocPSStatus(raidPtr);
1649 
1650 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1651 
1652 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1653 
1654         if (pssPtr != newpssPtr) {
1655                 rf_FreePSStatus(raidPtr, newpssPtr);
1656         }
1657 
1658 	/* if recon is not ongoing on this PS, just return */
1659 	if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1660 		RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1661 		return (0);
1662 	}
1663 	/* otherwise, we have to wait for reconstruction to complete on this
1664 	 * RU. */
1665 	/* In order to avoid waiting for a potentially large number of
1666 	 * low-priority accesses to complete, we force a normal-priority (i.e.
1667 	 * not low-priority) reconstruction on this RU. */
1668 	if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1669 		DDprintf1("Forcing recon on psid %ld\n", psid);
1670 		pssPtr->flags |= RF_PSS_FORCED_ON_WRITE;	/* mark this RU as under
1671 								 * forced recon */
1672 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;	/* clear the blockage
1673 							 * that we just set */
1674 		fcol = raidPtr->reconControl->fcol;
1675 
1676 		/* get a listing of the disks comprising the indicated stripe */
1677 		(raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1678 
1679 		/* For previously issued reads, elevate them to normal
1680 		 * priority.  If the I/O has already completed, it won't be
1681 		 * found in the queue, and hence this will be a no-op. For
1682 		 * unissued reads, allocate buffers and issue new reads.  The
1683 		 * fact that we've set the FORCED bit means that the regular
1684 		 * recon procs will not re-issue these reqs */
1685 		for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1686 			if ((diskno = diskids[i]) != fcol) {
1687 				if (pssPtr->issued[diskno]) {
1688 					nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1689 					if (rf_reconDebug && nPromoted)
1690 						printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1691 				} else {
1692 					new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED);	/* create new buf */
1693 					ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1694 					    &new_rbuf->spCol, &new_rbuf->spOffset);	/* find offsets & spare
1695 													 * location */
1696 					new_rbuf->parityStripeID = psid;	/* fill in the buffer */
1697 					new_rbuf->which_ru = which_ru;
1698 					new_rbuf->failedDiskSectorOffset = fd_offset;
1699 					new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1700 
1701 					/* use NULL b_proc b/c all addrs
1702 					 * should be in kernel space */
1703 					req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1704 					    psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf,
1705 					    NULL, (void *) raidPtr, 0, NULL, PR_WAITOK);
1706 
1707 					new_rbuf->arg = req;
1708 					rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY);	/* enqueue the I/O */
1709 					Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1710 				}
1711 			}
1712 		/* if the write is sitting in the disk queue, elevate its
1713 		 * priority */
1714 		if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1715 			printf("raid%d: promoted write to col %d\n",
1716 			       raidPtr->raidid, fcol);
1717 	}
1718 	/* install a callback descriptor to be invoked when recon completes on
1719 	 * this parity stripe. */
1720 	cb = rf_AllocCallbackDesc();
1721 	/* XXX the following is bogus.. These functions don't really match!!
1722 	 * GO */
1723 	cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1724 	cb->callbackArg.p = (void *) cbArg;
1725 	cb->next = pssPtr->procWaitList;
1726 	pssPtr->procWaitList = cb;
1727 	DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1728 		  raidPtr->raidid, psid);
1729 
1730 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1731 	return (1);
1732 }
1733 /* called upon the completion of a forced reconstruction read.
1734  * all we do is schedule the FORCEDREADONE event.
1735  * called at interrupt context in the kernel, so don't do anything illegal here.
1736  */
1737 static void
1738 ForceReconReadDoneProc(void *arg, int status)
1739 {
1740 	RF_ReconBuffer_t *rbuf = arg;
1741 
1742 	/* Detect that reconControl is no longer valid, and if that
1743 	   is the case, bail without calling rf_CauseReconEvent().
1744 	   There won't be anyone listening for this event anyway */
1745 
1746 	if (rbuf->raidPtr->reconControl == NULL)
1747 		return;
1748 
1749 	if (status) {
1750 		printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
1751 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
1752 		return;
1753 	}
1754 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1755 }
1756 /* releases a block on the reconstruction of the indicated stripe */
1757 int
1758 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1759 {
1760 	RF_StripeNum_t stripeID = asmap->stripeID;
1761 	RF_ReconParityStripeStatus_t *pssPtr;
1762 	RF_ReconUnitNum_t which_ru;
1763 	RF_StripeNum_t psid;
1764 	RF_CallbackDesc_t *cb;
1765 
1766 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1767 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1768 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1769 
1770 	/* When recon is forced, the pss desc can get deleted before we get
1771 	 * back to unblock recon. But, this can _only_ happen when recon is
1772 	 * forced. It would be good to put some kind of sanity check here, but
1773 	 * how to decide if recon was just forced or not? */
1774 	if (!pssPtr) {
1775 		/* printf("Warning: no pss descriptor upon unblock on psid %ld
1776 		 * RU %d\n",psid,which_ru); */
1777 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1778 		if (rf_reconDebug || rf_pssDebug)
1779 			printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1780 #endif
1781 		goto out;
1782 	}
1783 	pssPtr->blockCount--;
1784 	Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1785 		 raidPtr->raidid, psid, pssPtr->blockCount);
1786 	if (pssPtr->blockCount == 0) {	/* if recon blockage has been released */
1787 
1788 		/* unblock recon before calling CauseReconEvent in case
1789 		 * CauseReconEvent causes us to try to issue a new read before
1790 		 * returning here. */
1791 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1792 
1793 
1794 		while (pssPtr->blockWaitList) {
1795 			/* spin through the block-wait list and
1796 			   release all the waiters */
1797 			cb = pssPtr->blockWaitList;
1798 			pssPtr->blockWaitList = cb->next;
1799 			cb->next = NULL;
1800 			rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1801 			rf_FreeCallbackDesc(cb);
1802 		}
1803 		if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1804 			/* if no recon was requested while recon was blocked */
1805 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1806 		}
1807 	}
1808 out:
1809 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1810 	return (0);
1811 }
1812