1 /* $NetBSD: rf_reconstruct.c,v 1.87 2005/02/27 00:27:45 perry Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.87 2005/02/27 00:27:45 perry Exp $"); 37 38 #include <sys/time.h> 39 #include <sys/buf.h> 40 #include <sys/errno.h> 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/proc.h> 45 #include <sys/ioctl.h> 46 #include <sys/fcntl.h> 47 #include <sys/vnode.h> 48 #include <dev/raidframe/raidframevar.h> 49 50 #include "rf_raid.h" 51 #include "rf_reconutil.h" 52 #include "rf_revent.h" 53 #include "rf_reconbuffer.h" 54 #include "rf_acctrace.h" 55 #include "rf_etimer.h" 56 #include "rf_dag.h" 57 #include "rf_desc.h" 58 #include "rf_debugprint.h" 59 #include "rf_general.h" 60 #include "rf_driver.h" 61 #include "rf_utils.h" 62 #include "rf_shutdown.h" 63 64 #include "rf_kintf.h" 65 66 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 67 68 #if RF_DEBUG_RECON 69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 77 78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 80 81 #else /* RF_DEBUG_RECON */ 82 83 #define Dprintf(s) {} 84 #define Dprintf1(s,a) {} 85 #define Dprintf2(s,a,b) {} 86 #define Dprintf3(s,a,b,c) {} 87 #define Dprintf4(s,a,b,c,d) {} 88 #define Dprintf5(s,a,b,c,d,e) {} 89 #define Dprintf6(s,a,b,c,d,e,f) {} 90 #define Dprintf7(s,a,b,c,d,e,f,g) {} 91 92 #define DDprintf1(s,a) {} 93 #define DDprintf2(s,a,b) {} 94 95 #endif /* RF_DEBUG_RECON */ 96 97 #define RF_RECON_DONE_READS 1 98 #define RF_RECON_READ_ERROR 2 99 #define RF_RECON_WRITE_ERROR 3 100 #define RF_RECON_READ_STOPPED 4 101 102 #define RF_MAX_FREE_RECONBUFFER 32 103 #define RF_MIN_FREE_RECONBUFFER 16 104 105 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t, 106 RF_RaidDisk_t *, int, RF_RowCol_t); 107 static void FreeReconDesc(RF_RaidReconDesc_t *); 108 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *); 109 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t); 110 static int TryToRead(RF_Raid_t *, RF_RowCol_t); 111 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t, 112 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *, 113 RF_SectorNum_t *); 114 static int IssueNextWriteRequest(RF_Raid_t *); 115 static int ReconReadDoneProc(void *, int); 116 static int ReconWriteDoneProc(void *, int); 117 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t); 118 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *, 119 RF_RowCol_t, RF_HeadSepLimit_t, 120 RF_ReconUnitNum_t); 121 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *, 122 RF_ReconParityStripeStatus_t *, 123 RF_PerDiskReconCtrl_t *, 124 RF_RowCol_t, RF_StripeNum_t, 125 RF_ReconUnitNum_t); 126 static void ForceReconReadDoneProc(void *, int); 127 static void rf_ShutdownReconstruction(void *); 128 129 struct RF_ReconDoneProc_s { 130 void (*proc) (RF_Raid_t *, void *); 131 void *arg; 132 RF_ReconDoneProc_t *next; 133 }; 134 135 /************************************************************************** 136 * 137 * sets up the parameters that will be used by the reconstruction process 138 * currently there are none, except for those that the layout-specific 139 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 140 * 141 * in the kernel, we fire off the recon thread. 142 * 143 **************************************************************************/ 144 static void 145 rf_ShutdownReconstruction(void *ignored) 146 { 147 pool_destroy(&rf_pools.reconbuffer); 148 } 149 150 int 151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp) 152 { 153 154 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t), 155 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER); 156 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 157 158 return (0); 159 } 160 161 static RF_RaidReconDesc_t * 162 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col, 163 RF_RaidDisk_t *spareDiskPtr, int numDisksDone, 164 RF_RowCol_t scol) 165 { 166 167 RF_RaidReconDesc_t *reconDesc; 168 169 RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t), 170 (RF_RaidReconDesc_t *)); 171 reconDesc->raidPtr = raidPtr; 172 reconDesc->col = col; 173 reconDesc->spareDiskPtr = spareDiskPtr; 174 reconDesc->numDisksDone = numDisksDone; 175 reconDesc->scol = scol; 176 reconDesc->next = NULL; 177 178 return (reconDesc); 179 } 180 181 static void 182 FreeReconDesc(RF_RaidReconDesc_t *reconDesc) 183 { 184 #if RF_RECON_STATS > 0 185 printf("raid%d: %lu recon event waits, %lu recon delays\n", 186 reconDesc->raidPtr->raidid, 187 (long) reconDesc->numReconEventWaits, 188 (long) reconDesc->numReconExecDelays); 189 #endif /* RF_RECON_STATS > 0 */ 190 printf("raid%d: %lu max exec ticks\n", 191 reconDesc->raidPtr->raidid, 192 (long) reconDesc->maxReconExecTicks); 193 #if (RF_RECON_STATS > 0) || defined(KERNEL) 194 printf("\n"); 195 #endif /* (RF_RECON_STATS > 0) || KERNEL */ 196 RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t)); 197 } 198 199 200 /***************************************************************************** 201 * 202 * primary routine to reconstruct a failed disk. This should be called from 203 * within its own thread. It won't return until reconstruction completes, 204 * fails, or is aborted. 205 *****************************************************************************/ 206 int 207 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col) 208 { 209 const RF_LayoutSW_t *lp; 210 int rc; 211 212 lp = raidPtr->Layout.map; 213 if (lp->SubmitReconBuffer) { 214 /* 215 * The current infrastructure only supports reconstructing one 216 * disk at a time for each array. 217 */ 218 RF_LOCK_MUTEX(raidPtr->mutex); 219 while (raidPtr->reconInProgress) { 220 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 221 } 222 raidPtr->reconInProgress++; 223 RF_UNLOCK_MUTEX(raidPtr->mutex); 224 rc = rf_ReconstructFailedDiskBasic(raidPtr, col); 225 RF_LOCK_MUTEX(raidPtr->mutex); 226 raidPtr->reconInProgress--; 227 RF_UNLOCK_MUTEX(raidPtr->mutex); 228 } else { 229 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 230 lp->parityConfig); 231 rc = EIO; 232 } 233 RF_SIGNAL_COND(raidPtr->waitForReconCond); 234 return (rc); 235 } 236 237 int 238 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col) 239 { 240 RF_ComponentLabel_t c_label; 241 RF_RaidDisk_t *spareDiskPtr = NULL; 242 RF_RaidReconDesc_t *reconDesc; 243 RF_RowCol_t scol; 244 int numDisksDone = 0, rc; 245 246 /* first look for a spare drive onto which to reconstruct the data */ 247 /* spare disk descriptors are stored in row 0. This may have to 248 * change eventually */ 249 250 RF_LOCK_MUTEX(raidPtr->mutex); 251 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); 252 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 253 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 254 if (raidPtr->status != rf_rs_degraded) { 255 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col); 256 RF_UNLOCK_MUTEX(raidPtr->mutex); 257 return (EINVAL); 258 } 259 scol = (-1); 260 } else { 261 #endif 262 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 263 if (raidPtr->Disks[scol].status == rf_ds_spare) { 264 spareDiskPtr = &raidPtr->Disks[scol]; 265 spareDiskPtr->status = rf_ds_used_spare; 266 break; 267 } 268 } 269 if (!spareDiskPtr) { 270 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col); 271 RF_UNLOCK_MUTEX(raidPtr->mutex); 272 return (ENOSPC); 273 } 274 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol); 275 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 276 } 277 #endif 278 RF_UNLOCK_MUTEX(raidPtr->mutex); 279 280 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol); 281 raidPtr->reconDesc = (void *) reconDesc; 282 #if RF_RECON_STATS > 0 283 reconDesc->hsStallCount = 0; 284 reconDesc->numReconExecDelays = 0; 285 reconDesc->numReconEventWaits = 0; 286 #endif /* RF_RECON_STATS > 0 */ 287 reconDesc->reconExecTimerRunning = 0; 288 reconDesc->reconExecTicks = 0; 289 reconDesc->maxReconExecTicks = 0; 290 rc = rf_ContinueReconstructFailedDisk(reconDesc); 291 292 if (!rc) { 293 /* fix up the component label */ 294 /* Don't actually need the read here.. */ 295 raidread_component_label( 296 raidPtr->raid_cinfo[scol].ci_dev, 297 raidPtr->raid_cinfo[scol].ci_vp, 298 &c_label); 299 300 raid_init_component_label( raidPtr, &c_label); 301 c_label.row = 0; 302 c_label.column = col; 303 c_label.clean = RF_RAID_DIRTY; 304 c_label.status = rf_ds_optimal; 305 c_label.partitionSize = raidPtr->Disks[scol].partitionSize; 306 307 /* We've just done a rebuild based on all the other 308 disks, so at this point the parity is known to be 309 clean, even if it wasn't before. */ 310 311 /* XXX doesn't hold for RAID 6!!*/ 312 313 RF_LOCK_MUTEX(raidPtr->mutex); 314 raidPtr->parity_good = RF_RAID_CLEAN; 315 RF_UNLOCK_MUTEX(raidPtr->mutex); 316 317 /* XXXX MORE NEEDED HERE */ 318 319 raidwrite_component_label( 320 raidPtr->raid_cinfo[scol].ci_dev, 321 raidPtr->raid_cinfo[scol].ci_vp, 322 &c_label); 323 324 } else { 325 /* Reconstruct failed. */ 326 327 RF_LOCK_MUTEX(raidPtr->mutex); 328 /* Failed disk goes back to "failed" status */ 329 raidPtr->Disks[col].status = rf_ds_failed; 330 331 /* Spare disk goes back to "spare" status. */ 332 spareDiskPtr->status = rf_ds_spare; 333 RF_UNLOCK_MUTEX(raidPtr->mutex); 334 335 } 336 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); 337 return (rc); 338 } 339 340 /* 341 342 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 343 and you don't get a spare until the next Monday. With this function 344 (and hot-swappable drives) you can now put your new disk containing 345 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 346 rebuild the data "on the spot". 347 348 */ 349 350 int 351 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col) 352 { 353 RF_RaidDisk_t *spareDiskPtr = NULL; 354 RF_RaidReconDesc_t *reconDesc; 355 const RF_LayoutSW_t *lp; 356 RF_ComponentLabel_t c_label; 357 int numDisksDone = 0, rc; 358 struct partinfo dpart; 359 struct vnode *vp; 360 struct vattr va; 361 struct proc *proc; 362 int retcode; 363 int ac; 364 365 lp = raidPtr->Layout.map; 366 if (!lp->SubmitReconBuffer) { 367 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 368 lp->parityConfig); 369 /* wakeup anyone who might be waiting to do a reconstruct */ 370 RF_SIGNAL_COND(raidPtr->waitForReconCond); 371 return(EIO); 372 } 373 374 /* 375 * The current infrastructure only supports reconstructing one 376 * disk at a time for each array. 377 */ 378 RF_LOCK_MUTEX(raidPtr->mutex); 379 380 if (raidPtr->Disks[col].status != rf_ds_failed) { 381 /* "It's gone..." */ 382 raidPtr->numFailures++; 383 raidPtr->Disks[col].status = rf_ds_failed; 384 raidPtr->status = rf_rs_degraded; 385 RF_UNLOCK_MUTEX(raidPtr->mutex); 386 rf_update_component_labels(raidPtr, 387 RF_NORMAL_COMPONENT_UPDATE); 388 RF_LOCK_MUTEX(raidPtr->mutex); 389 } 390 391 while (raidPtr->reconInProgress) { 392 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 393 } 394 395 raidPtr->reconInProgress++; 396 397 /* first look for a spare drive onto which to reconstruct the 398 data. spare disk descriptors are stored in row 0. This 399 may have to change eventually */ 400 401 /* Actually, we don't care if it's failed or not... On a RAID 402 set with correct parity, this function should be callable 403 on any component without ill affects. */ 404 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */ 405 406 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 407 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 408 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col); 409 410 raidPtr->reconInProgress--; 411 RF_UNLOCK_MUTEX(raidPtr->mutex); 412 RF_SIGNAL_COND(raidPtr->waitForReconCond); 413 return (EINVAL); 414 } 415 #endif 416 proc = raidPtr->engine_thread; 417 418 /* This device may have been opened successfully the 419 first time. Close it before trying to open it again.. */ 420 421 if (raidPtr->raid_cinfo[col].ci_vp != NULL) { 422 #if 0 423 printf("Closed the open device: %s\n", 424 raidPtr->Disks[col].devname); 425 #endif 426 vp = raidPtr->raid_cinfo[col].ci_vp; 427 ac = raidPtr->Disks[col].auto_configured; 428 RF_UNLOCK_MUTEX(raidPtr->mutex); 429 rf_close_component(raidPtr, vp, ac); 430 RF_LOCK_MUTEX(raidPtr->mutex); 431 raidPtr->raid_cinfo[col].ci_vp = NULL; 432 } 433 /* note that this disk was *not* auto_configured (any longer)*/ 434 raidPtr->Disks[col].auto_configured = 0; 435 436 #if 0 437 printf("About to (re-)open the device for rebuilding: %s\n", 438 raidPtr->Disks[col].devname); 439 #endif 440 RF_UNLOCK_MUTEX(raidPtr->mutex); 441 retcode = raidlookup(raidPtr->Disks[col].devname, proc, &vp); 442 443 if (retcode) { 444 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid, 445 raidPtr->Disks[col].devname, retcode); 446 447 /* the component isn't responding properly... 448 must be still dead :-( */ 449 RF_LOCK_MUTEX(raidPtr->mutex); 450 raidPtr->reconInProgress--; 451 RF_UNLOCK_MUTEX(raidPtr->mutex); 452 RF_SIGNAL_COND(raidPtr->waitForReconCond); 453 return(retcode); 454 } 455 456 /* Ok, so we can at least do a lookup... 457 How about actually getting a vp for it? */ 458 459 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, proc)) != 0) { 460 RF_LOCK_MUTEX(raidPtr->mutex); 461 raidPtr->reconInProgress--; 462 RF_UNLOCK_MUTEX(raidPtr->mutex); 463 RF_SIGNAL_COND(raidPtr->waitForReconCond); 464 return(retcode); 465 } 466 467 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, proc->p_ucred, proc); 468 if (retcode) { 469 RF_LOCK_MUTEX(raidPtr->mutex); 470 raidPtr->reconInProgress--; 471 RF_UNLOCK_MUTEX(raidPtr->mutex); 472 RF_SIGNAL_COND(raidPtr->waitForReconCond); 473 return(retcode); 474 } 475 RF_LOCK_MUTEX(raidPtr->mutex); 476 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize; 477 478 raidPtr->Disks[col].numBlocks = dpart.part->p_size - 479 rf_protectedSectors; 480 481 raidPtr->raid_cinfo[col].ci_vp = vp; 482 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev; 483 484 raidPtr->Disks[col].dev = va.va_rdev; 485 486 /* we allow the user to specify that only a fraction 487 of the disks should be used this is just for debug: 488 it speeds up * the parity scan */ 489 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks * 490 rf_sizePercentage / 100; 491 RF_UNLOCK_MUTEX(raidPtr->mutex); 492 493 spareDiskPtr = &raidPtr->Disks[col]; 494 spareDiskPtr->status = rf_ds_used_spare; 495 496 printf("raid%d: initiating in-place reconstruction on column %d\n", 497 raidPtr->raidid, col); 498 499 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, 500 numDisksDone, col); 501 raidPtr->reconDesc = (void *) reconDesc; 502 #if RF_RECON_STATS > 0 503 reconDesc->hsStallCount = 0; 504 reconDesc->numReconExecDelays = 0; 505 reconDesc->numReconEventWaits = 0; 506 #endif /* RF_RECON_STATS > 0 */ 507 reconDesc->reconExecTimerRunning = 0; 508 reconDesc->reconExecTicks = 0; 509 reconDesc->maxReconExecTicks = 0; 510 rc = rf_ContinueReconstructFailedDisk(reconDesc); 511 512 if (!rc) { 513 RF_LOCK_MUTEX(raidPtr->mutex); 514 /* Need to set these here, as at this point it'll be claiming 515 that the disk is in rf_ds_spared! But we know better :-) */ 516 517 raidPtr->Disks[col].status = rf_ds_optimal; 518 raidPtr->status = rf_rs_optimal; 519 RF_UNLOCK_MUTEX(raidPtr->mutex); 520 521 /* fix up the component label */ 522 /* Don't actually need the read here.. */ 523 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev, 524 raidPtr->raid_cinfo[col].ci_vp, 525 &c_label); 526 527 RF_LOCK_MUTEX(raidPtr->mutex); 528 raid_init_component_label(raidPtr, &c_label); 529 530 c_label.row = 0; 531 c_label.column = col; 532 533 /* We've just done a rebuild based on all the other 534 disks, so at this point the parity is known to be 535 clean, even if it wasn't before. */ 536 537 /* XXX doesn't hold for RAID 6!!*/ 538 539 raidPtr->parity_good = RF_RAID_CLEAN; 540 RF_UNLOCK_MUTEX(raidPtr->mutex); 541 542 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev, 543 raidPtr->raid_cinfo[col].ci_vp, 544 &c_label); 545 546 } else { 547 /* Reconstruct-in-place failed. Disk goes back to 548 "failed" status, regardless of what it was before. */ 549 RF_LOCK_MUTEX(raidPtr->mutex); 550 raidPtr->Disks[col].status = rf_ds_failed; 551 RF_UNLOCK_MUTEX(raidPtr->mutex); 552 } 553 554 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); 555 556 RF_LOCK_MUTEX(raidPtr->mutex); 557 raidPtr->reconInProgress--; 558 RF_UNLOCK_MUTEX(raidPtr->mutex); 559 560 RF_SIGNAL_COND(raidPtr->waitForReconCond); 561 return (rc); 562 } 563 564 565 int 566 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc) 567 { 568 RF_Raid_t *raidPtr = reconDesc->raidPtr; 569 RF_RowCol_t col = reconDesc->col; 570 RF_RowCol_t scol = reconDesc->scol; 571 RF_ReconMap_t *mapPtr; 572 RF_ReconCtrl_t *tmp_reconctrl; 573 RF_ReconEvent_t *event; 574 RF_CallbackDesc_t *p; 575 struct timeval etime, elpsd; 576 unsigned long xor_s, xor_resid_us; 577 int i, ds; 578 int status; 579 int recon_error, write_error; 580 581 raidPtr->accumXorTimeUs = 0; 582 #if RF_ACC_TRACE > 0 583 /* create one trace record per physical disk */ 584 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 585 #endif 586 587 /* quiesce the array prior to starting recon. this is needed 588 * to assure no nasty interactions with pending user writes. 589 * We need to do this before we change the disk or row status. */ 590 591 Dprintf("RECON: begin request suspend\n"); 592 rf_SuspendNewRequestsAndWait(raidPtr); 593 Dprintf("RECON: end request suspend\n"); 594 595 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */ 596 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol); 597 598 RF_LOCK_MUTEX(raidPtr->mutex); 599 600 /* create the reconstruction control pointer and install it in 601 * the right slot */ 602 raidPtr->reconControl = tmp_reconctrl; 603 mapPtr = raidPtr->reconControl->reconMap; 604 raidPtr->status = rf_rs_reconstructing; 605 raidPtr->Disks[col].status = rf_ds_reconstructing; 606 raidPtr->Disks[col].spareCol = scol; 607 608 RF_UNLOCK_MUTEX(raidPtr->mutex); 609 610 RF_GETTIME(raidPtr->reconControl->starttime); 611 612 /* now start up the actual reconstruction: issue a read for 613 * each surviving disk */ 614 615 reconDesc->numDisksDone = 0; 616 for (i = 0; i < raidPtr->numCol; i++) { 617 if (i != col) { 618 /* find and issue the next I/O on the 619 * indicated disk */ 620 if (IssueNextReadRequest(raidPtr, i)) { 621 Dprintf1("RECON: done issuing for c%d\n", i); 622 reconDesc->numDisksDone++; 623 } 624 } 625 } 626 627 Dprintf("RECON: resume requests\n"); 628 rf_ResumeNewRequests(raidPtr); 629 630 /* process reconstruction events until all disks report that 631 * they've completed all work */ 632 633 mapPtr = raidPtr->reconControl->reconMap; 634 recon_error = 0; 635 write_error = 0; 636 637 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 638 639 event = rf_GetNextReconEvent(reconDesc); 640 status = ProcessReconEvent(raidPtr, event); 641 642 /* the normal case is that a read completes, and all is well. */ 643 if (status == RF_RECON_DONE_READS) { 644 reconDesc->numDisksDone++; 645 } else if ((status == RF_RECON_READ_ERROR) || 646 (status == RF_RECON_WRITE_ERROR)) { 647 /* an error was encountered while reconstructing... 648 Pretend we've finished this disk. 649 */ 650 recon_error = 1; 651 raidPtr->reconControl->error = 1; 652 653 /* bump the numDisksDone count for reads, 654 but not for writes */ 655 if (status == RF_RECON_READ_ERROR) 656 reconDesc->numDisksDone++; 657 658 /* write errors are special -- when we are 659 done dealing with the reads that are 660 finished, we don't want to wait for any 661 writes */ 662 if (status == RF_RECON_WRITE_ERROR) 663 write_error = 1; 664 665 } else if (status == RF_RECON_READ_STOPPED) { 666 /* count this component as being "done" */ 667 reconDesc->numDisksDone++; 668 } 669 670 if (recon_error) { 671 672 /* make sure any stragglers are woken up so that 673 their theads will complete, and we can get out 674 of here with all IO processed */ 675 676 while (raidPtr->reconControl->headSepCBList) { 677 p = raidPtr->reconControl->headSepCBList; 678 raidPtr->reconControl->headSepCBList = p->next; 679 p->next = NULL; 680 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 681 rf_FreeCallbackDesc(p); 682 } 683 } 684 685 raidPtr->reconControl->numRUsTotal = 686 mapPtr->totalRUs; 687 raidPtr->reconControl->numRUsComplete = 688 mapPtr->totalRUs - 689 rf_UnitsLeftToReconstruct(mapPtr); 690 691 #if RF_DEBUG_RECON 692 raidPtr->reconControl->percentComplete = 693 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal); 694 if (rf_prReconSched) { 695 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 696 } 697 #endif 698 } 699 700 mapPtr = raidPtr->reconControl->reconMap; 701 if (rf_reconDebug) { 702 printf("RECON: all reads completed\n"); 703 } 704 /* at this point all the reads have completed. We now wait 705 * for any pending writes to complete, and then we're done */ 706 707 while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) { 708 709 event = rf_GetNextReconEvent(reconDesc); 710 status = ProcessReconEvent(raidPtr, event); 711 712 if (status == RF_RECON_WRITE_ERROR) { 713 recon_error = 1; 714 raidPtr->reconControl->error = 1; 715 /* an error was encountered at the very end... bail */ 716 } else { 717 #if RF_DEBUG_RECON 718 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 719 if (rf_prReconSched) { 720 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 721 } 722 #endif 723 } 724 } 725 726 if (recon_error) { 727 /* we've encountered an error in reconstructing. */ 728 printf("raid%d: reconstruction failed.\n", raidPtr->raidid); 729 730 /* we start by blocking IO to the RAID set. */ 731 rf_SuspendNewRequestsAndWait(raidPtr); 732 733 RF_LOCK_MUTEX(raidPtr->mutex); 734 /* mark set as being degraded, rather than 735 rf_rs_reconstructing as we were before the problem. 736 After this is done we can update status of the 737 component disks without worrying about someone 738 trying to read from a failed component. 739 */ 740 raidPtr->status = rf_rs_degraded; 741 RF_UNLOCK_MUTEX(raidPtr->mutex); 742 743 /* resume IO */ 744 rf_ResumeNewRequests(raidPtr); 745 746 /* At this point there are two cases: 747 1) If we've experienced a read error, then we've 748 already waited for all the reads we're going to get, 749 and we just need to wait for the writes. 750 751 2) If we've experienced a write error, we've also 752 already waited for all the reads to complete, 753 but there is little point in waiting for the writes -- 754 when they do complete, they will just be ignored. 755 756 So we just wait for writes to complete if we didn't have a 757 write error. 758 */ 759 760 if (!write_error) { 761 /* wait for writes to complete */ 762 while (raidPtr->reconControl->pending_writes > 0) { 763 764 event = rf_GetNextReconEvent(reconDesc); 765 status = ProcessReconEvent(raidPtr, event); 766 767 if (status == RF_RECON_WRITE_ERROR) { 768 raidPtr->reconControl->error = 1; 769 /* an error was encountered at the very end... bail. 770 This will be very bad news for the user, since 771 at this point there will have been a read error 772 on one component, and a write error on another! 773 */ 774 break; 775 } 776 } 777 } 778 779 780 /* cleanup */ 781 782 /* drain the event queue - after waiting for the writes above, 783 there shouldn't be much (if anything!) left in the queue. */ 784 785 rf_DrainReconEventQueue(reconDesc); 786 787 /* XXX As much as we'd like to free the recon control structure 788 and the reconDesc, we have no way of knowing if/when those will 789 be touched by IO that has yet to occur. It is rather poor to be 790 basically causing a 'memory leak' here, but there doesn't seem to be 791 a cleaner alternative at this time. Perhaps when the reconstruct code 792 gets a makeover this problem will go away. 793 */ 794 #if 0 795 rf_FreeReconControl(raidPtr); 796 #endif 797 798 #if RF_ACC_TRACE > 0 799 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 800 #endif 801 /* XXX see comment above */ 802 #if 0 803 FreeReconDesc(reconDesc); 804 #endif 805 806 return (1); 807 } 808 809 /* Success: mark the dead disk as reconstructed. We quiesce 810 * the array here to assure no nasty interactions with pending 811 * user accesses when we free up the psstatus structure as 812 * part of FreeReconControl() */ 813 814 rf_SuspendNewRequestsAndWait(raidPtr); 815 816 RF_LOCK_MUTEX(raidPtr->mutex); 817 raidPtr->numFailures--; 818 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 819 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 820 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 821 RF_UNLOCK_MUTEX(raidPtr->mutex); 822 RF_GETTIME(etime); 823 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd); 824 825 rf_ResumeNewRequests(raidPtr); 826 827 printf("raid%d: Reconstruction of disk at col %d completed\n", 828 raidPtr->raidid, col); 829 xor_s = raidPtr->accumXorTimeUs / 1000000; 830 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 831 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 832 raidPtr->raidid, 833 (int) elpsd.tv_sec, (int) elpsd.tv_usec, 834 raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 835 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n", 836 raidPtr->raidid, 837 (int) raidPtr->reconControl->starttime.tv_sec, 838 (int) raidPtr->reconControl->starttime.tv_usec, 839 (int) etime.tv_sec, (int) etime.tv_usec); 840 #if RF_RECON_STATS > 0 841 printf("raid%d: Total head-sep stall count was %d\n", 842 raidPtr->raidid, (int) reconDesc->hsStallCount); 843 #endif /* RF_RECON_STATS > 0 */ 844 rf_FreeReconControl(raidPtr); 845 #if RF_ACC_TRACE > 0 846 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 847 #endif 848 FreeReconDesc(reconDesc); 849 850 return (0); 851 852 } 853 /***************************************************************************** 854 * do the right thing upon each reconstruction event. 855 *****************************************************************************/ 856 static int 857 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event) 858 { 859 int retcode = 0, submitblocked; 860 RF_ReconBuffer_t *rbuf; 861 RF_SectorCount_t sectorsPerRU; 862 863 retcode = RF_RECON_READ_STOPPED; 864 865 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 866 switch (event->type) { 867 868 /* a read I/O has completed */ 869 case RF_REVENT_READDONE: 870 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf; 871 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n", 872 event->col, rbuf->parityStripeID); 873 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 874 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 875 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 876 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 877 if (!raidPtr->reconControl->error) { 878 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 879 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 880 if (!submitblocked) 881 retcode = IssueNextReadRequest(raidPtr, event->col); 882 } 883 break; 884 885 /* a write I/O has completed */ 886 case RF_REVENT_WRITEDONE: 887 #if RF_DEBUG_RECON 888 if (rf_floatingRbufDebug) { 889 rf_CheckFloatingRbufCount(raidPtr, 1); 890 } 891 #endif 892 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 893 rbuf = (RF_ReconBuffer_t *) event->arg; 894 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 895 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 896 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete); 897 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap, 898 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 899 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru); 900 901 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 902 raidPtr->reconControl->pending_writes--; 903 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 904 905 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 906 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 907 while(raidPtr->reconControl->rb_lock) { 908 ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0, 909 &raidPtr->reconControl->rb_mutex); 910 } 911 raidPtr->reconControl->rb_lock = 1; 912 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 913 914 raidPtr->numFullReconBuffers--; 915 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf); 916 917 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 918 raidPtr->reconControl->rb_lock = 0; 919 wakeup(&raidPtr->reconControl->rb_lock); 920 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 921 } else 922 if (rbuf->type == RF_RBUF_TYPE_FORCED) 923 rf_FreeReconBuffer(rbuf); 924 else 925 RF_ASSERT(0); 926 retcode = 0; 927 break; 928 929 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 930 * cleared */ 931 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col); 932 if (!raidPtr->reconControl->error) { 933 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 934 0, (int) (long) event->arg); 935 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 936 * BUFCLEAR event if we 937 * couldn't submit */ 938 retcode = IssueNextReadRequest(raidPtr, event->col); 939 } 940 break; 941 942 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 943 * blockage has been cleared */ 944 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col); 945 if (!raidPtr->reconControl->error) { 946 retcode = TryToRead(raidPtr, event->col); 947 } 948 break; 949 950 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 951 * reconstruction blockage has been 952 * cleared */ 953 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col); 954 if (!raidPtr->reconControl->error) { 955 retcode = TryToRead(raidPtr, event->col); 956 } 957 break; 958 959 /* a buffer has become ready to write */ 960 case RF_REVENT_BUFREADY: 961 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col); 962 if (!raidPtr->reconControl->error) { 963 retcode = IssueNextWriteRequest(raidPtr); 964 #if RF_DEBUG_RECON 965 if (rf_floatingRbufDebug) { 966 rf_CheckFloatingRbufCount(raidPtr, 1); 967 } 968 #endif 969 } 970 break; 971 972 /* we need to skip the current RU entirely because it got 973 * recon'd while we were waiting for something else to happen */ 974 case RF_REVENT_SKIP: 975 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col); 976 if (!raidPtr->reconControl->error) { 977 retcode = IssueNextReadRequest(raidPtr, event->col); 978 } 979 break; 980 981 /* a forced-reconstruction read access has completed. Just 982 * submit the buffer */ 983 case RF_REVENT_FORCEDREADDONE: 984 rbuf = (RF_ReconBuffer_t *) event->arg; 985 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 986 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col); 987 if (!raidPtr->reconControl->error) { 988 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 989 RF_ASSERT(!submitblocked); 990 } 991 break; 992 993 /* A read I/O failed to complete */ 994 case RF_REVENT_READ_FAILED: 995 retcode = RF_RECON_READ_ERROR; 996 break; 997 998 /* A write I/O failed to complete */ 999 case RF_REVENT_WRITE_FAILED: 1000 retcode = RF_RECON_WRITE_ERROR; 1001 1002 rbuf = (RF_ReconBuffer_t *) event->arg; 1003 1004 /* cleanup the disk queue data */ 1005 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 1006 1007 /* At this point we're erroring out, badly, and floatingRbufs 1008 may not even be valid. Rather than putting this back onto 1009 the floatingRbufs list, just arrange for its immediate 1010 destruction. 1011 */ 1012 rf_FreeReconBuffer(rbuf); 1013 break; 1014 1015 /* a forced read I/O failed to complete */ 1016 case RF_REVENT_FORCEDREAD_FAILED: 1017 retcode = RF_RECON_READ_ERROR; 1018 break; 1019 1020 default: 1021 RF_PANIC(); 1022 } 1023 rf_FreeReconEventDesc(event); 1024 return (retcode); 1025 } 1026 /***************************************************************************** 1027 * 1028 * find the next thing that's needed on the indicated disk, and issue 1029 * a read request for it. We assume that the reconstruction buffer 1030 * associated with this process is free to receive the data. If 1031 * reconstruction is blocked on the indicated RU, we issue a 1032 * blockage-release request instead of a physical disk read request. 1033 * If the current disk gets too far ahead of the others, we issue a 1034 * head-separation wait request and return. 1035 * 1036 * ctrl->{ru_count, curPSID, diskOffset} and 1037 * rbuf->failedDiskSectorOffset are maintained to point to the unit 1038 * we're currently accessing. Note that this deviates from the 1039 * standard C idiom of having counters point to the next thing to be 1040 * accessed. This allows us to easily retry when we're blocked by 1041 * head separation or reconstruction-blockage events. 1042 * 1043 *****************************************************************************/ 1044 static int 1045 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col) 1046 { 1047 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 1048 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1049 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 1050 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 1051 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1052 int do_new_check = 0, retcode = 0, status; 1053 1054 /* if we are currently the slowest disk, mark that we have to do a new 1055 * check */ 1056 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter) 1057 do_new_check = 1; 1058 1059 while (1) { 1060 1061 ctrl->ru_count++; 1062 if (ctrl->ru_count < RUsPerPU) { 1063 ctrl->diskOffset += sectorsPerRU; 1064 rbuf->failedDiskSectorOffset += sectorsPerRU; 1065 } else { 1066 ctrl->curPSID++; 1067 ctrl->ru_count = 0; 1068 /* code left over from when head-sep was based on 1069 * parity stripe id */ 1070 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) { 1071 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter)); 1072 return (RF_RECON_DONE_READS); /* finito! */ 1073 } 1074 /* find the disk offsets of the start of the parity 1075 * stripe on both the current disk and the failed 1076 * disk. skip this entire parity stripe if either disk 1077 * does not appear in the indicated PS */ 1078 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 1079 &rbuf->spCol, &rbuf->spOffset); 1080 if (status) { 1081 ctrl->ru_count = RUsPerPU - 1; 1082 continue; 1083 } 1084 } 1085 rbuf->which_ru = ctrl->ru_count; 1086 1087 /* skip this RU if it's already been reconstructed */ 1088 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) { 1089 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 1090 continue; 1091 } 1092 break; 1093 } 1094 ctrl->headSepCounter++; 1095 if (do_new_check) 1096 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */ 1097 1098 1099 /* at this point, we have definitely decided what to do, and we have 1100 * only to see if we can actually do it now */ 1101 rbuf->parityStripeID = ctrl->curPSID; 1102 rbuf->which_ru = ctrl->ru_count; 1103 #if RF_ACC_TRACE > 0 1104 memset((char *) &raidPtr->recon_tracerecs[col], 0, 1105 sizeof(raidPtr->recon_tracerecs[col])); 1106 raidPtr->recon_tracerecs[col].reconacc = 1; 1107 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1108 #endif 1109 retcode = TryToRead(raidPtr, col); 1110 return (retcode); 1111 } 1112 1113 /* 1114 * tries to issue the next read on the indicated disk. We may be 1115 * blocked by (a) the heads being too far apart, or (b) recon on the 1116 * indicated RU being blocked due to a write by a user thread. In 1117 * this case, we issue a head-sep or blockage wait request, which will 1118 * cause this same routine to be invoked again later when the blockage 1119 * has cleared. 1120 */ 1121 1122 static int 1123 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col) 1124 { 1125 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 1126 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1127 RF_StripeNum_t psid = ctrl->curPSID; 1128 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1129 RF_DiskQueueData_t *req; 1130 int status; 1131 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; 1132 1133 /* if the current disk is too far ahead of the others, issue a 1134 * head-separation wait and return */ 1135 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru)) 1136 return (0); 1137 1138 /* allocate a new PSS in case we need it */ 1139 newpssPtr = rf_AllocPSStatus(raidPtr); 1140 1141 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1142 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr); 1143 1144 if (pssPtr != newpssPtr) { 1145 rf_FreePSStatus(raidPtr, newpssPtr); 1146 } 1147 1148 /* if recon is blocked on the indicated parity stripe, issue a 1149 * block-wait request and return. this also must mark the indicated RU 1150 * in the stripe as under reconstruction if not blocked. */ 1151 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru); 1152 if (status == RF_PSS_RECON_BLOCKED) { 1153 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1154 goto out; 1155 } else 1156 if (status == RF_PSS_FORCED_ON_WRITE) { 1157 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1158 goto out; 1159 } 1160 /* make one last check to be sure that the indicated RU didn't get 1161 * reconstructed while we were waiting for something else to happen. 1162 * This is unfortunate in that it causes us to make this check twice 1163 * in the normal case. Might want to make some attempt to re-work 1164 * this so that we only do this check if we've definitely blocked on 1165 * one of the above checks. When this condition is detected, we may 1166 * have just created a bogus status entry, which we need to delete. */ 1167 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1168 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1169 if (pssPtr == newpssPtr) 1170 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1171 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1172 goto out; 1173 } 1174 /* found something to read. issue the I/O */ 1175 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n", 1176 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1177 #if RF_ACC_TRACE > 0 1178 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1179 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1180 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1181 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1182 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1183 #endif 1184 /* should be ok to use a NULL proc pointer here, all the bufs we use 1185 * should be in kernel space */ 1186 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1187 ReconReadDoneProc, (void *) ctrl, 1188 #if RF_ACC_TRACE > 0 1189 &raidPtr->recon_tracerecs[col], 1190 #else 1191 NULL, 1192 #endif 1193 (void *) raidPtr, 0, NULL, PR_WAITOK); 1194 1195 ctrl->rbuf->arg = (void *) req; 1196 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY); 1197 pssPtr->issued[col] = 1; 1198 1199 out: 1200 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1201 return (0); 1202 } 1203 1204 1205 /* 1206 * given a parity stripe ID, we want to find out whether both the 1207 * current disk and the failed disk exist in that parity stripe. If 1208 * not, we want to skip this whole PS. If so, we want to find the 1209 * disk offset of the start of the PS on both the current disk and the 1210 * failed disk. 1211 * 1212 * this works by getting a list of disks comprising the indicated 1213 * parity stripe, and searching the list for the current and failed 1214 * disks. Once we've decided they both exist in the parity stripe, we 1215 * need to decide whether each is data or parity, so that we'll know 1216 * which mapping function to call to get the corresponding disk 1217 * offsets. 1218 * 1219 * this is kind of unpleasant, but doing it this way allows the 1220 * reconstruction code to use parity stripe IDs rather than physical 1221 * disks address to march through the failed disk, which greatly 1222 * simplifies a lot of code, as well as eliminating the need for a 1223 * reverse-mapping function. I also think it will execute faster, 1224 * since the calls to the mapping module are kept to a minimum. 1225 * 1226 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1227 * THE STRIPE IN THE CORRECT ORDER 1228 * 1229 * raidPtr - raid descriptor 1230 * psid - parity stripe identifier 1231 * col - column of disk to find the offsets for 1232 * spCol - out: col of spare unit for failed unit 1233 * spOffset - out: offset into disk containing spare unit 1234 * 1235 */ 1236 1237 1238 static int 1239 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid, 1240 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset, 1241 RF_SectorNum_t *outFailedDiskSectorOffset, 1242 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset) 1243 { 1244 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1245 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1246 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1247 RF_RowCol_t *diskids; 1248 u_int i, j, k, i_offset, j_offset; 1249 RF_RowCol_t pcol; 1250 int testcol; 1251 RF_SectorNum_t poffset; 1252 char i_is_parity = 0, j_is_parity = 0; 1253 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1254 1255 /* get a listing of the disks comprising that stripe */ 1256 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1257 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids); 1258 RF_ASSERT(diskids); 1259 1260 /* reject this entire parity stripe if it does not contain the 1261 * indicated disk or it does not contain the failed disk */ 1262 1263 for (i = 0; i < stripeWidth; i++) { 1264 if (col == diskids[i]) 1265 break; 1266 } 1267 if (i == stripeWidth) 1268 goto skipit; 1269 for (j = 0; j < stripeWidth; j++) { 1270 if (fcol == diskids[j]) 1271 break; 1272 } 1273 if (j == stripeWidth) { 1274 goto skipit; 1275 } 1276 /* find out which disk the parity is on */ 1277 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP); 1278 1279 /* find out if either the current RU or the failed RU is parity */ 1280 /* also, if the parity occurs in this stripe prior to the data and/or 1281 * failed col, we need to decrement i and/or j */ 1282 for (k = 0; k < stripeWidth; k++) 1283 if (diskids[k] == pcol) 1284 break; 1285 RF_ASSERT(k < stripeWidth); 1286 i_offset = i; 1287 j_offset = j; 1288 if (k < i) 1289 i_offset--; 1290 else 1291 if (k == i) { 1292 i_is_parity = 1; 1293 i_offset = 0; 1294 } /* set offsets to zero to disable multiply 1295 * below */ 1296 if (k < j) 1297 j_offset--; 1298 else 1299 if (k == j) { 1300 j_is_parity = 1; 1301 j_offset = 0; 1302 } 1303 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1304 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1305 * tells us how far into the stripe the [current,failed] disk is. */ 1306 1307 /* call the mapping routine to get the offset into the current disk, 1308 * repeat for failed disk. */ 1309 if (i_is_parity) 1310 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1311 else 1312 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1313 1314 RF_ASSERT(col == testcol); 1315 1316 if (j_is_parity) 1317 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1318 else 1319 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1320 RF_ASSERT(fcol == testcol); 1321 1322 /* now locate the spare unit for the failed unit */ 1323 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1324 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1325 if (j_is_parity) 1326 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1327 else 1328 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1329 } else { 1330 #endif 1331 *spCol = raidPtr->reconControl->spareCol; 1332 *spOffset = *outFailedDiskSectorOffset; 1333 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1334 } 1335 #endif 1336 return (0); 1337 1338 skipit: 1339 Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n", 1340 psid, col); 1341 return (1); 1342 } 1343 /* this is called when a buffer has become ready to write to the replacement disk */ 1344 static int 1345 IssueNextWriteRequest(RF_Raid_t *raidPtr) 1346 { 1347 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1348 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1349 #if RF_ACC_TRACE > 0 1350 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1351 #endif 1352 RF_ReconBuffer_t *rbuf; 1353 RF_DiskQueueData_t *req; 1354 1355 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl); 1356 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1357 * have gotten the event that sent us here */ 1358 RF_ASSERT(rbuf->pssPtr); 1359 1360 rbuf->pssPtr->writeRbuf = rbuf; 1361 rbuf->pssPtr = NULL; 1362 1363 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1364 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1365 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1366 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1367 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1368 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1369 1370 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1371 * kernel space */ 1372 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1373 sectorsPerRU, rbuf->buffer, 1374 rbuf->parityStripeID, rbuf->which_ru, 1375 ReconWriteDoneProc, (void *) rbuf, 1376 #if RF_ACC_TRACE > 0 1377 &raidPtr->recon_tracerecs[fcol], 1378 #else 1379 NULL, 1380 #endif 1381 (void *) raidPtr, 0, NULL, PR_WAITOK); 1382 1383 rbuf->arg = (void *) req; 1384 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1385 raidPtr->reconControl->pending_writes++; 1386 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1387 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1388 1389 return (0); 1390 } 1391 1392 /* 1393 * this gets called upon the completion of a reconstruction read 1394 * operation the arg is a pointer to the per-disk reconstruction 1395 * control structure for the process that just finished a read. 1396 * 1397 * called at interrupt context in the kernel, so don't do anything 1398 * illegal here. 1399 */ 1400 static int 1401 ReconReadDoneProc(void *arg, int status) 1402 { 1403 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1404 RF_Raid_t *raidPtr; 1405 1406 /* Detect that reconCtrl is no longer valid, and if that 1407 is the case, bail without calling rf_CauseReconEvent(). 1408 There won't be anyone listening for this event anyway */ 1409 1410 if (ctrl->reconCtrl == NULL) 1411 return(0); 1412 1413 raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1414 1415 if (status) { 1416 printf("raid%d: Recon read failed!\n", raidPtr->raidid); 1417 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED); 1418 return(0); 1419 } 1420 #if RF_ACC_TRACE > 0 1421 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1422 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1423 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1424 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1425 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1426 #endif 1427 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE); 1428 return (0); 1429 } 1430 /* this gets called upon the completion of a reconstruction write operation. 1431 * the arg is a pointer to the rbuf that was just written 1432 * 1433 * called at interrupt context in the kernel, so don't do anything illegal here. 1434 */ 1435 static int 1436 ReconWriteDoneProc(void *arg, int status) 1437 { 1438 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1439 1440 /* Detect that reconControl is no longer valid, and if that 1441 is the case, bail without calling rf_CauseReconEvent(). 1442 There won't be anyone listening for this event anyway */ 1443 1444 if (rbuf->raidPtr->reconControl == NULL) 1445 return(0); 1446 1447 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1448 if (status) { 1449 printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid); 1450 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED); 1451 return(0); 1452 } 1453 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE); 1454 return (0); 1455 } 1456 1457 1458 /* 1459 * computes a new minimum head sep, and wakes up anyone who needs to 1460 * be woken as a result 1461 */ 1462 static void 1463 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr) 1464 { 1465 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1466 RF_HeadSepLimit_t new_min; 1467 RF_RowCol_t i; 1468 RF_CallbackDesc_t *p; 1469 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1470 * of a minimum */ 1471 1472 1473 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1474 while(reconCtrlPtr->rb_lock) { 1475 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex); 1476 } 1477 reconCtrlPtr->rb_lock = 1; 1478 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1479 1480 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1481 for (i = 0; i < raidPtr->numCol; i++) 1482 if (i != reconCtrlPtr->fcol) { 1483 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1484 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1485 } 1486 /* set the new minimum and wake up anyone who can now run again */ 1487 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1488 reconCtrlPtr->minHeadSepCounter = new_min; 1489 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1490 while (reconCtrlPtr->headSepCBList) { 1491 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1492 break; 1493 p = reconCtrlPtr->headSepCBList; 1494 reconCtrlPtr->headSepCBList = p->next; 1495 p->next = NULL; 1496 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1497 rf_FreeCallbackDesc(p); 1498 } 1499 1500 } 1501 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1502 reconCtrlPtr->rb_lock = 0; 1503 wakeup(&reconCtrlPtr->rb_lock); 1504 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1505 } 1506 1507 /* 1508 * checks to see that the maximum head separation will not be violated 1509 * if we initiate a reconstruction I/O on the indicated disk. 1510 * Limiting the maximum head separation between two disks eliminates 1511 * the nasty buffer-stall conditions that occur when one disk races 1512 * ahead of the others and consumes all of the floating recon buffers. 1513 * This code is complex and unpleasant but it's necessary to avoid 1514 * some very nasty, albeit fairly rare, reconstruction behavior. 1515 * 1516 * returns non-zero if and only if we have to stop working on the 1517 * indicated disk due to a head-separation delay. 1518 */ 1519 static int 1520 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl, 1521 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 1522 RF_ReconUnitNum_t which_ru) 1523 { 1524 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1525 RF_CallbackDesc_t *cb, *p, *pt; 1526 int retval = 0; 1527 1528 /* if we're too far ahead of the slowest disk, stop working on this 1529 * disk until the slower ones catch up. We do this by scheduling a 1530 * wakeup callback for the time when the slowest disk has caught up. 1531 * We define "caught up" with 20% hysteresis, i.e. the head separation 1532 * must have fallen to at most 80% of the max allowable head 1533 * separation before we'll wake up. 1534 * 1535 */ 1536 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1537 while(reconCtrlPtr->rb_lock) { 1538 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex); 1539 } 1540 reconCtrlPtr->rb_lock = 1; 1541 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1542 if ((raidPtr->headSepLimit >= 0) && 1543 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1544 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1545 raidPtr->raidid, col, ctrl->headSepCounter, 1546 reconCtrlPtr->minHeadSepCounter, 1547 raidPtr->headSepLimit); 1548 cb = rf_AllocCallbackDesc(); 1549 /* the minHeadSepCounter value we have to get to before we'll 1550 * wake up. build in 20% hysteresis. */ 1551 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1552 cb->col = col; 1553 cb->next = NULL; 1554 1555 /* insert this callback descriptor into the sorted list of 1556 * pending head-sep callbacks */ 1557 p = reconCtrlPtr->headSepCBList; 1558 if (!p) 1559 reconCtrlPtr->headSepCBList = cb; 1560 else 1561 if (cb->callbackArg.v < p->callbackArg.v) { 1562 cb->next = reconCtrlPtr->headSepCBList; 1563 reconCtrlPtr->headSepCBList = cb; 1564 } else { 1565 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1566 cb->next = p; 1567 pt->next = cb; 1568 } 1569 retval = 1; 1570 #if RF_RECON_STATS > 0 1571 ctrl->reconCtrl->reconDesc->hsStallCount++; 1572 #endif /* RF_RECON_STATS > 0 */ 1573 } 1574 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1575 reconCtrlPtr->rb_lock = 0; 1576 wakeup(&reconCtrlPtr->rb_lock); 1577 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1578 1579 return (retval); 1580 } 1581 /* 1582 * checks to see if reconstruction has been either forced or blocked 1583 * by a user operation. if forced, we skip this RU entirely. else if 1584 * blocked, put ourselves on the wait list. else return 0. 1585 * 1586 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1587 */ 1588 static int 1589 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr, 1590 RF_ReconParityStripeStatus_t *pssPtr, 1591 RF_PerDiskReconCtrl_t *ctrl, 1592 RF_RowCol_t col, RF_StripeNum_t psid, 1593 RF_ReconUnitNum_t which_ru) 1594 { 1595 RF_CallbackDesc_t *cb; 1596 int retcode = 0; 1597 1598 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1599 retcode = RF_PSS_FORCED_ON_WRITE; 1600 else 1601 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1602 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru); 1603 cb = rf_AllocCallbackDesc(); /* append ourselves to 1604 * the blockage-wait 1605 * list */ 1606 cb->col = col; 1607 cb->next = pssPtr->blockWaitList; 1608 pssPtr->blockWaitList = cb; 1609 retcode = RF_PSS_RECON_BLOCKED; 1610 } 1611 if (!retcode) 1612 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1613 * reconstruction */ 1614 1615 return (retcode); 1616 } 1617 /* 1618 * if reconstruction is currently ongoing for the indicated stripeID, 1619 * reconstruction is forced to completion and we return non-zero to 1620 * indicate that the caller must wait. If not, then reconstruction is 1621 * blocked on the indicated stripe and the routine returns zero. If 1622 * and only if we return non-zero, we'll cause the cbFunc to get 1623 * invoked with the cbArg when the reconstruction has completed. 1624 */ 1625 int 1626 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, 1627 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg) 1628 { 1629 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1630 * forcing recon on */ 1631 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1632 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity 1633 * stripe status structure */ 1634 RF_StripeNum_t psid; /* parity stripe id */ 1635 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1636 * offset */ 1637 RF_RowCol_t *diskids; 1638 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1639 RF_RowCol_t fcol, diskno, i; 1640 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1641 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1642 RF_CallbackDesc_t *cb; 1643 int nPromoted; 1644 1645 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1646 1647 /* allocate a new PSS in case we need it */ 1648 newpssPtr = rf_AllocPSStatus(raidPtr); 1649 1650 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1651 1652 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr); 1653 1654 if (pssPtr != newpssPtr) { 1655 rf_FreePSStatus(raidPtr, newpssPtr); 1656 } 1657 1658 /* if recon is not ongoing on this PS, just return */ 1659 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1660 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1661 return (0); 1662 } 1663 /* otherwise, we have to wait for reconstruction to complete on this 1664 * RU. */ 1665 /* In order to avoid waiting for a potentially large number of 1666 * low-priority accesses to complete, we force a normal-priority (i.e. 1667 * not low-priority) reconstruction on this RU. */ 1668 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1669 DDprintf1("Forcing recon on psid %ld\n", psid); 1670 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1671 * forced recon */ 1672 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1673 * that we just set */ 1674 fcol = raidPtr->reconControl->fcol; 1675 1676 /* get a listing of the disks comprising the indicated stripe */ 1677 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids); 1678 1679 /* For previously issued reads, elevate them to normal 1680 * priority. If the I/O has already completed, it won't be 1681 * found in the queue, and hence this will be a no-op. For 1682 * unissued reads, allocate buffers and issue new reads. The 1683 * fact that we've set the FORCED bit means that the regular 1684 * recon procs will not re-issue these reqs */ 1685 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1686 if ((diskno = diskids[i]) != fcol) { 1687 if (pssPtr->issued[diskno]) { 1688 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru); 1689 if (rf_reconDebug && nPromoted) 1690 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno); 1691 } else { 1692 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1693 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset, 1694 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1695 * location */ 1696 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1697 new_rbuf->which_ru = which_ru; 1698 new_rbuf->failedDiskSectorOffset = fd_offset; 1699 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1700 1701 /* use NULL b_proc b/c all addrs 1702 * should be in kernel space */ 1703 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1704 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, 1705 NULL, (void *) raidPtr, 0, NULL, PR_WAITOK); 1706 1707 new_rbuf->arg = req; 1708 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1709 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno); 1710 } 1711 } 1712 /* if the write is sitting in the disk queue, elevate its 1713 * priority */ 1714 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru)) 1715 printf("raid%d: promoted write to col %d\n", 1716 raidPtr->raidid, fcol); 1717 } 1718 /* install a callback descriptor to be invoked when recon completes on 1719 * this parity stripe. */ 1720 cb = rf_AllocCallbackDesc(); 1721 /* XXX the following is bogus.. These functions don't really match!! 1722 * GO */ 1723 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1724 cb->callbackArg.p = (void *) cbArg; 1725 cb->next = pssPtr->procWaitList; 1726 pssPtr->procWaitList = cb; 1727 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1728 raidPtr->raidid, psid); 1729 1730 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1731 return (1); 1732 } 1733 /* called upon the completion of a forced reconstruction read. 1734 * all we do is schedule the FORCEDREADONE event. 1735 * called at interrupt context in the kernel, so don't do anything illegal here. 1736 */ 1737 static void 1738 ForceReconReadDoneProc(void *arg, int status) 1739 { 1740 RF_ReconBuffer_t *rbuf = arg; 1741 1742 /* Detect that reconControl is no longer valid, and if that 1743 is the case, bail without calling rf_CauseReconEvent(). 1744 There won't be anyone listening for this event anyway */ 1745 1746 if (rbuf->raidPtr->reconControl == NULL) 1747 return; 1748 1749 if (status) { 1750 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid); 1751 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED); 1752 return; 1753 } 1754 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1755 } 1756 /* releases a block on the reconstruction of the indicated stripe */ 1757 int 1758 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap) 1759 { 1760 RF_StripeNum_t stripeID = asmap->stripeID; 1761 RF_ReconParityStripeStatus_t *pssPtr; 1762 RF_ReconUnitNum_t which_ru; 1763 RF_StripeNum_t psid; 1764 RF_CallbackDesc_t *cb; 1765 1766 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1767 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1768 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL); 1769 1770 /* When recon is forced, the pss desc can get deleted before we get 1771 * back to unblock recon. But, this can _only_ happen when recon is 1772 * forced. It would be good to put some kind of sanity check here, but 1773 * how to decide if recon was just forced or not? */ 1774 if (!pssPtr) { 1775 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1776 * RU %d\n",psid,which_ru); */ 1777 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0) 1778 if (rf_reconDebug || rf_pssDebug) 1779 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1780 #endif 1781 goto out; 1782 } 1783 pssPtr->blockCount--; 1784 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1785 raidPtr->raidid, psid, pssPtr->blockCount); 1786 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1787 1788 /* unblock recon before calling CauseReconEvent in case 1789 * CauseReconEvent causes us to try to issue a new read before 1790 * returning here. */ 1791 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1792 1793 1794 while (pssPtr->blockWaitList) { 1795 /* spin through the block-wait list and 1796 release all the waiters */ 1797 cb = pssPtr->blockWaitList; 1798 pssPtr->blockWaitList = cb->next; 1799 cb->next = NULL; 1800 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1801 rf_FreeCallbackDesc(cb); 1802 } 1803 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1804 /* if no recon was requested while recon was blocked */ 1805 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1806 } 1807 } 1808 out: 1809 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1810 return (0); 1811 } 1812