xref: /netbsd-src/sys/dev/raidframe/rf_reconstruct.c (revision 96230fab84e26a6435963032070e916a951a8b2e)
1 /*	$NetBSD: rf_reconstruct.c,v 1.105 2008/09/23 21:36:35 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /************************************************************
30  *
31  * rf_reconstruct.c -- code to perform on-line reconstruction
32  *
33  ************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.105 2008/09/23 21:36:35 oster Exp $");
37 
38 #include <sys/param.h>
39 #include <sys/time.h>
40 #include <sys/buf.h>
41 #include <sys/errno.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/ioctl.h>
45 #include <sys/fcntl.h>
46 #include <sys/vnode.h>
47 #include <dev/raidframe/raidframevar.h>
48 
49 #include "rf_raid.h"
50 #include "rf_reconutil.h"
51 #include "rf_revent.h"
52 #include "rf_reconbuffer.h"
53 #include "rf_acctrace.h"
54 #include "rf_etimer.h"
55 #include "rf_dag.h"
56 #include "rf_desc.h"
57 #include "rf_debugprint.h"
58 #include "rf_general.h"
59 #include "rf_driver.h"
60 #include "rf_utils.h"
61 #include "rf_shutdown.h"
62 
63 #include "rf_kintf.h"
64 
65 /* setting these to -1 causes them to be set to their default values if not set by debug options */
66 
67 #if RF_DEBUG_RECON
68 #define Dprintf(s)         if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
69 #define Dprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf3(s,a,b,c)     if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf4(s,a,b,c,d)   if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
73 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
74 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
75 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
76 
77 #define DDprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
78 #define DDprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
79 
80 #else /* RF_DEBUG_RECON */
81 
82 #define Dprintf(s) {}
83 #define Dprintf1(s,a) {}
84 #define Dprintf2(s,a,b) {}
85 #define Dprintf3(s,a,b,c) {}
86 #define Dprintf4(s,a,b,c,d) {}
87 #define Dprintf5(s,a,b,c,d,e) {}
88 #define Dprintf6(s,a,b,c,d,e,f) {}
89 #define Dprintf7(s,a,b,c,d,e,f,g) {}
90 
91 #define DDprintf1(s,a) {}
92 #define DDprintf2(s,a,b) {}
93 
94 #endif /* RF_DEBUG_RECON */
95 
96 #define RF_RECON_DONE_READS   1
97 #define RF_RECON_READ_ERROR   2
98 #define RF_RECON_WRITE_ERROR  3
99 #define RF_RECON_READ_STOPPED 4
100 #define RF_RECON_WRITE_DONE   5
101 
102 #define RF_MAX_FREE_RECONBUFFER 32
103 #define RF_MIN_FREE_RECONBUFFER 16
104 
105 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
106 					      RF_RaidDisk_t *, int, RF_RowCol_t);
107 static void FreeReconDesc(RF_RaidReconDesc_t *);
108 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
109 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
110 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
111 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
112 				RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
113 				RF_SectorNum_t *);
114 static int IssueNextWriteRequest(RF_Raid_t *);
115 static int ReconReadDoneProc(void *, int);
116 static int ReconWriteDoneProc(void *, int);
117 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
118 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
119 			       RF_RowCol_t, RF_HeadSepLimit_t,
120 			       RF_ReconUnitNum_t);
121 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
122 					      RF_ReconParityStripeStatus_t *,
123 					      RF_PerDiskReconCtrl_t *,
124 					      RF_RowCol_t, RF_StripeNum_t,
125 					      RF_ReconUnitNum_t);
126 static void ForceReconReadDoneProc(void *, int);
127 static void rf_ShutdownReconstruction(void *);
128 
129 struct RF_ReconDoneProc_s {
130 	void    (*proc) (RF_Raid_t *, void *);
131 	void   *arg;
132 	RF_ReconDoneProc_t *next;
133 };
134 
135 /**************************************************************************
136  *
137  * sets up the parameters that will be used by the reconstruction process
138  * currently there are none, except for those that the layout-specific
139  * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
140  *
141  * in the kernel, we fire off the recon thread.
142  *
143  **************************************************************************/
144 static void
145 rf_ShutdownReconstruction(void *ignored)
146 {
147 	pool_destroy(&rf_pools.reconbuffer);
148 }
149 
150 int
151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
152 {
153 
154 	rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t),
155 		     "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
156 	rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
157 
158 	return (0);
159 }
160 
161 static RF_RaidReconDesc_t *
162 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
163 		   RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
164 		   RF_RowCol_t scol)
165 {
166 
167 	RF_RaidReconDesc_t *reconDesc;
168 
169 	RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t),
170 		  (RF_RaidReconDesc_t *));
171 	reconDesc->raidPtr = raidPtr;
172 	reconDesc->col = col;
173 	reconDesc->spareDiskPtr = spareDiskPtr;
174 	reconDesc->numDisksDone = numDisksDone;
175 	reconDesc->scol = scol;
176 	reconDesc->next = NULL;
177 
178 	return (reconDesc);
179 }
180 
181 static void
182 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
183 {
184 #if RF_RECON_STATS > 0
185 	printf("raid%d: %lu recon event waits, %lu recon delays\n",
186 	       reconDesc->raidPtr->raidid,
187 	       (long) reconDesc->numReconEventWaits,
188 	       (long) reconDesc->numReconExecDelays);
189 #endif				/* RF_RECON_STATS > 0 */
190 	printf("raid%d: %lu max exec ticks\n",
191 	       reconDesc->raidPtr->raidid,
192 	       (long) reconDesc->maxReconExecTicks);
193 	RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t));
194 }
195 
196 
197 /*****************************************************************************
198  *
199  * primary routine to reconstruct a failed disk.  This should be called from
200  * within its own thread.  It won't return until reconstruction completes,
201  * fails, or is aborted.
202  *****************************************************************************/
203 int
204 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
205 {
206 	const RF_LayoutSW_t *lp;
207 	int     rc;
208 
209 	lp = raidPtr->Layout.map;
210 	if (lp->SubmitReconBuffer) {
211 		/*
212 	         * The current infrastructure only supports reconstructing one
213 	         * disk at a time for each array.
214 	         */
215 		RF_LOCK_MUTEX(raidPtr->mutex);
216 		while (raidPtr->reconInProgress) {
217 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
218 		}
219 		raidPtr->reconInProgress++;
220 		RF_UNLOCK_MUTEX(raidPtr->mutex);
221 		rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
222 		RF_LOCK_MUTEX(raidPtr->mutex);
223 		raidPtr->reconInProgress--;
224 		RF_UNLOCK_MUTEX(raidPtr->mutex);
225 	} else {
226 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
227 		    lp->parityConfig);
228 		rc = EIO;
229 	}
230 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
231 	return (rc);
232 }
233 
234 int
235 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
236 {
237 	RF_ComponentLabel_t c_label;
238 	RF_RaidDisk_t *spareDiskPtr = NULL;
239 	RF_RaidReconDesc_t *reconDesc;
240 	RF_RowCol_t scol;
241 	int     numDisksDone = 0, rc;
242 
243 	/* first look for a spare drive onto which to reconstruct the data */
244 	/* spare disk descriptors are stored in row 0.  This may have to
245 	 * change eventually */
246 
247 	RF_LOCK_MUTEX(raidPtr->mutex);
248 	RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
249 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
250 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
251 		if (raidPtr->status != rf_rs_degraded) {
252 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
253 			RF_UNLOCK_MUTEX(raidPtr->mutex);
254 			return (EINVAL);
255 		}
256 		scol = (-1);
257 	} else {
258 #endif
259 		for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
260 			if (raidPtr->Disks[scol].status == rf_ds_spare) {
261 				spareDiskPtr = &raidPtr->Disks[scol];
262 				spareDiskPtr->status = rf_ds_used_spare;
263 				break;
264 			}
265 		}
266 		if (!spareDiskPtr) {
267 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
268 			RF_UNLOCK_MUTEX(raidPtr->mutex);
269 			return (ENOSPC);
270 		}
271 		printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
272 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
273 	}
274 #endif
275 	RF_UNLOCK_MUTEX(raidPtr->mutex);
276 
277 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
278 	raidPtr->reconDesc = (void *) reconDesc;
279 #if RF_RECON_STATS > 0
280 	reconDesc->hsStallCount = 0;
281 	reconDesc->numReconExecDelays = 0;
282 	reconDesc->numReconEventWaits = 0;
283 #endif				/* RF_RECON_STATS > 0 */
284 	reconDesc->reconExecTimerRunning = 0;
285 	reconDesc->reconExecTicks = 0;
286 	reconDesc->maxReconExecTicks = 0;
287 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
288 
289 	if (!rc) {
290 		/* fix up the component label */
291 		/* Don't actually need the read here.. */
292 		raidread_component_label(
293                         raidPtr->raid_cinfo[scol].ci_dev,
294 			raidPtr->raid_cinfo[scol].ci_vp,
295 			&c_label);
296 
297 		raid_init_component_label( raidPtr, &c_label);
298 		c_label.row = 0;
299 		c_label.column = col;
300 		c_label.clean = RF_RAID_DIRTY;
301 		c_label.status = rf_ds_optimal;
302 		c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
303 
304 		/* We've just done a rebuild based on all the other
305 		   disks, so at this point the parity is known to be
306 		   clean, even if it wasn't before. */
307 
308 		/* XXX doesn't hold for RAID 6!!*/
309 
310 		RF_LOCK_MUTEX(raidPtr->mutex);
311 		raidPtr->parity_good = RF_RAID_CLEAN;
312 		RF_UNLOCK_MUTEX(raidPtr->mutex);
313 
314 		/* XXXX MORE NEEDED HERE */
315 
316 		raidwrite_component_label(
317                         raidPtr->raid_cinfo[scol].ci_dev,
318 			raidPtr->raid_cinfo[scol].ci_vp,
319 			&c_label);
320 
321 	} else {
322 		/* Reconstruct failed. */
323 
324 		RF_LOCK_MUTEX(raidPtr->mutex);
325 		/* Failed disk goes back to "failed" status */
326 		raidPtr->Disks[col].status = rf_ds_failed;
327 
328 		/* Spare disk goes back to "spare" status. */
329 		spareDiskPtr->status = rf_ds_spare;
330 		RF_UNLOCK_MUTEX(raidPtr->mutex);
331 
332 	}
333 	rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
334 	return (rc);
335 }
336 
337 /*
338 
339    Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
340    and you don't get a spare until the next Monday.  With this function
341    (and hot-swappable drives) you can now put your new disk containing
342    /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
343    rebuild the data "on the spot".
344 
345 */
346 
347 int
348 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
349 {
350 	RF_RaidDisk_t *spareDiskPtr = NULL;
351 	RF_RaidReconDesc_t *reconDesc;
352 	const RF_LayoutSW_t *lp;
353 	RF_ComponentLabel_t c_label;
354 	int     numDisksDone = 0, rc;
355 	struct partinfo dpart;
356 	struct vnode *vp;
357 	struct vattr va;
358 	int retcode;
359 	int ac;
360 
361 	lp = raidPtr->Layout.map;
362 	if (!lp->SubmitReconBuffer) {
363 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
364 			     lp->parityConfig);
365 		/* wakeup anyone who might be waiting to do a reconstruct */
366 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
367 		return(EIO);
368 	}
369 
370 	/*
371 	 * The current infrastructure only supports reconstructing one
372 	 * disk at a time for each array.
373 	 */
374 	RF_LOCK_MUTEX(raidPtr->mutex);
375 
376 	if (raidPtr->Disks[col].status != rf_ds_failed) {
377 		/* "It's gone..." */
378 		raidPtr->numFailures++;
379 		raidPtr->Disks[col].status = rf_ds_failed;
380 		raidPtr->status = rf_rs_degraded;
381 		RF_UNLOCK_MUTEX(raidPtr->mutex);
382 		rf_update_component_labels(raidPtr,
383 					   RF_NORMAL_COMPONENT_UPDATE);
384 		RF_LOCK_MUTEX(raidPtr->mutex);
385 	}
386 
387 	while (raidPtr->reconInProgress) {
388 		RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
389 	}
390 
391 	raidPtr->reconInProgress++;
392 
393 	/* first look for a spare drive onto which to reconstruct the
394 	   data.  spare disk descriptors are stored in row 0.  This
395 	   may have to change eventually */
396 
397 	/* Actually, we don't care if it's failed or not...  On a RAID
398 	   set with correct parity, this function should be callable
399 	   on any component without ill effects. */
400 	/* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
401 
402 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
403 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
404 		RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
405 
406 		raidPtr->reconInProgress--;
407 		RF_UNLOCK_MUTEX(raidPtr->mutex);
408 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
409 		return (EINVAL);
410 	}
411 #endif
412 
413 	/* This device may have been opened successfully the
414 	   first time. Close it before trying to open it again.. */
415 
416 	if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
417 #if 0
418 		printf("Closed the open device: %s\n",
419 		       raidPtr->Disks[col].devname);
420 #endif
421 		vp = raidPtr->raid_cinfo[col].ci_vp;
422 		ac = raidPtr->Disks[col].auto_configured;
423 		RF_UNLOCK_MUTEX(raidPtr->mutex);
424 		rf_close_component(raidPtr, vp, ac);
425 		RF_LOCK_MUTEX(raidPtr->mutex);
426 		raidPtr->raid_cinfo[col].ci_vp = NULL;
427 	}
428 	/* note that this disk was *not* auto_configured (any longer)*/
429 	raidPtr->Disks[col].auto_configured = 0;
430 
431 #if 0
432 	printf("About to (re-)open the device for rebuilding: %s\n",
433 	       raidPtr->Disks[col].devname);
434 #endif
435 	RF_UNLOCK_MUTEX(raidPtr->mutex);
436 	retcode = dk_lookup(raidPtr->Disks[col].devname, curlwp, &vp, UIO_SYSSPACE);
437 
438 	if (retcode) {
439 		printf("raid%d: rebuilding: dk_lookup on device: %s failed: %d!\n",raidPtr->raidid,
440 		       raidPtr->Disks[col].devname, retcode);
441 
442 		/* the component isn't responding properly...
443 		   must be still dead :-( */
444 		RF_LOCK_MUTEX(raidPtr->mutex);
445 		raidPtr->reconInProgress--;
446 		RF_UNLOCK_MUTEX(raidPtr->mutex);
447 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
448 		return(retcode);
449 	}
450 
451 	/* Ok, so we can at least do a lookup...
452 	   How about actually getting a vp for it? */
453 
454 	if ((retcode = VOP_GETATTR(vp, &va, curlwp->l_cred)) != 0) {
455 		RF_LOCK_MUTEX(raidPtr->mutex);
456 		raidPtr->reconInProgress--;
457 		RF_UNLOCK_MUTEX(raidPtr->mutex);
458 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
459 		return(retcode);
460 	}
461 
462 	retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, curlwp->l_cred);
463 	if (retcode) {
464 		RF_LOCK_MUTEX(raidPtr->mutex);
465 		raidPtr->reconInProgress--;
466 		RF_UNLOCK_MUTEX(raidPtr->mutex);
467 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
468 		return(retcode);
469 	}
470 	RF_LOCK_MUTEX(raidPtr->mutex);
471 	raidPtr->Disks[col].blockSize =	dpart.disklab->d_secsize;
472 
473 	raidPtr->Disks[col].numBlocks = dpart.part->p_size -
474 		rf_protectedSectors;
475 
476 	raidPtr->raid_cinfo[col].ci_vp = vp;
477 	raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
478 
479 	raidPtr->Disks[col].dev = va.va_rdev;
480 
481 	/* we allow the user to specify that only a fraction
482 	   of the disks should be used this is just for debug:
483 	   it speeds up * the parity scan */
484 	raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
485 		rf_sizePercentage / 100;
486 	RF_UNLOCK_MUTEX(raidPtr->mutex);
487 
488 	spareDiskPtr = &raidPtr->Disks[col];
489 	spareDiskPtr->status = rf_ds_used_spare;
490 
491 	printf("raid%d: initiating in-place reconstruction on column %d\n",
492 	       raidPtr->raidid, col);
493 
494 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
495 				       numDisksDone, col);
496 	raidPtr->reconDesc = (void *) reconDesc;
497 #if RF_RECON_STATS > 0
498 	reconDesc->hsStallCount = 0;
499 	reconDesc->numReconExecDelays = 0;
500 	reconDesc->numReconEventWaits = 0;
501 #endif				/* RF_RECON_STATS > 0 */
502 	reconDesc->reconExecTimerRunning = 0;
503 	reconDesc->reconExecTicks = 0;
504 	reconDesc->maxReconExecTicks = 0;
505 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
506 
507 	if (!rc) {
508 		RF_LOCK_MUTEX(raidPtr->mutex);
509 		/* Need to set these here, as at this point it'll be claiming
510 		   that the disk is in rf_ds_spared!  But we know better :-) */
511 
512 		raidPtr->Disks[col].status = rf_ds_optimal;
513 		raidPtr->status = rf_rs_optimal;
514 		RF_UNLOCK_MUTEX(raidPtr->mutex);
515 
516 		/* fix up the component label */
517 		/* Don't actually need the read here.. */
518 		raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
519 					 raidPtr->raid_cinfo[col].ci_vp,
520 					 &c_label);
521 
522 		RF_LOCK_MUTEX(raidPtr->mutex);
523 		raid_init_component_label(raidPtr, &c_label);
524 
525 		c_label.row = 0;
526 		c_label.column = col;
527 
528 		/* We've just done a rebuild based on all the other
529 		   disks, so at this point the parity is known to be
530 		   clean, even if it wasn't before. */
531 
532 		/* XXX doesn't hold for RAID 6!!*/
533 
534 		raidPtr->parity_good = RF_RAID_CLEAN;
535 		RF_UNLOCK_MUTEX(raidPtr->mutex);
536 
537 		raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
538 					  raidPtr->raid_cinfo[col].ci_vp,
539 					  &c_label);
540 
541 	} else {
542 		/* Reconstruct-in-place failed.  Disk goes back to
543 		   "failed" status, regardless of what it was before.  */
544 		RF_LOCK_MUTEX(raidPtr->mutex);
545 		raidPtr->Disks[col].status = rf_ds_failed;
546 		RF_UNLOCK_MUTEX(raidPtr->mutex);
547 	}
548 
549 	rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
550 
551 	RF_LOCK_MUTEX(raidPtr->mutex);
552 	raidPtr->reconInProgress--;
553 	RF_UNLOCK_MUTEX(raidPtr->mutex);
554 
555 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
556 	return (rc);
557 }
558 
559 
560 int
561 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
562 {
563 	RF_Raid_t *raidPtr = reconDesc->raidPtr;
564 	RF_RowCol_t col = reconDesc->col;
565 	RF_RowCol_t scol = reconDesc->scol;
566 	RF_ReconMap_t *mapPtr;
567 	RF_ReconCtrl_t *tmp_reconctrl;
568 	RF_ReconEvent_t *event;
569 	RF_StripeCount_t incPSID,lastPSID,num_writes,pending_writes,prev;
570 	RF_ReconUnitCount_t RUsPerPU;
571 	struct timeval etime, elpsd;
572 	unsigned long xor_s, xor_resid_us;
573 	int     i, ds;
574 	int status, done;
575 	int recon_error, write_error;
576 
577 	raidPtr->accumXorTimeUs = 0;
578 #if RF_ACC_TRACE > 0
579 	/* create one trace record per physical disk */
580 	RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
581 #endif
582 
583 	/* quiesce the array prior to starting recon.  this is needed
584 	 * to assure no nasty interactions with pending user writes.
585 	 * We need to do this before we change the disk or row status. */
586 
587 	Dprintf("RECON: begin request suspend\n");
588 	rf_SuspendNewRequestsAndWait(raidPtr);
589 	Dprintf("RECON: end request suspend\n");
590 
591 	/* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
592 	tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
593 
594 	RF_LOCK_MUTEX(raidPtr->mutex);
595 
596 	/* create the reconstruction control pointer and install it in
597 	 * the right slot */
598 	raidPtr->reconControl = tmp_reconctrl;
599 	mapPtr = raidPtr->reconControl->reconMap;
600 	raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs;
601 	raidPtr->reconControl->numRUsComplete =	0;
602 	raidPtr->status = rf_rs_reconstructing;
603 	raidPtr->Disks[col].status = rf_ds_reconstructing;
604 	raidPtr->Disks[col].spareCol = scol;
605 
606 	RF_UNLOCK_MUTEX(raidPtr->mutex);
607 
608 	RF_GETTIME(raidPtr->reconControl->starttime);
609 
610 	Dprintf("RECON: resume requests\n");
611 	rf_ResumeNewRequests(raidPtr);
612 
613 
614 	mapPtr = raidPtr->reconControl->reconMap;
615 
616 	incPSID = RF_RECONMAP_SIZE;
617 	lastPSID = raidPtr->Layout.numStripe / raidPtr->Layout.SUsPerPU;
618 	RUsPerPU = raidPtr->Layout.SUsPerPU / raidPtr->Layout.SUsPerRU;
619 	recon_error = 0;
620 	write_error = 0;
621 	pending_writes = incPSID;
622 	raidPtr->reconControl->lastPSID = incPSID;
623 
624 	/* start the actual reconstruction */
625 
626 	done = 0;
627 	while (!done) {
628 
629 		num_writes = 0;
630 
631 		/* issue a read for each surviving disk */
632 
633 		reconDesc->numDisksDone = 0;
634 		for (i = 0; i < raidPtr->numCol; i++) {
635 			if (i != col) {
636 				/* find and issue the next I/O on the
637 				 * indicated disk */
638 				if (IssueNextReadRequest(raidPtr, i)) {
639 					Dprintf1("RECON: done issuing for c%d\n", i);
640 					reconDesc->numDisksDone++;
641 				}
642 			}
643 		}
644 
645 		/* process reconstruction events until all disks report that
646 		 * they've completed all work */
647 
648 		while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
649 
650 			event = rf_GetNextReconEvent(reconDesc);
651 			status = ProcessReconEvent(raidPtr, event);
652 
653 			/* the normal case is that a read completes, and all is well. */
654 			if (status == RF_RECON_DONE_READS) {
655 				reconDesc->numDisksDone++;
656 			} else if ((status == RF_RECON_READ_ERROR) ||
657 				   (status == RF_RECON_WRITE_ERROR)) {
658 				/* an error was encountered while reconstructing...
659 				   Pretend we've finished this disk.
660 				*/
661 				recon_error = 1;
662 				raidPtr->reconControl->error = 1;
663 
664 				/* bump the numDisksDone count for reads,
665 				   but not for writes */
666 				if (status == RF_RECON_READ_ERROR)
667 					reconDesc->numDisksDone++;
668 
669 				/* write errors are special -- when we are
670 				   done dealing with the reads that are
671 				   finished, we don't want to wait for any
672 				   writes */
673 				if (status == RF_RECON_WRITE_ERROR)
674 					write_error = 1;
675 
676 			} else if (status == RF_RECON_READ_STOPPED) {
677 				/* count this component as being "done" */
678 				reconDesc->numDisksDone++;
679 			} else if (status == RF_RECON_WRITE_DONE) {
680 				num_writes++;
681 			}
682 
683 			if (recon_error) {
684 				/* make sure any stragglers are woken up so that
685 				   their theads will complete, and we can get out
686 				   of here with all IO processed */
687 
688 				rf_WakeupHeadSepCBWaiters(raidPtr);
689 			}
690 
691 			raidPtr->reconControl->numRUsTotal =
692 				mapPtr->totalRUs;
693 			raidPtr->reconControl->numRUsComplete =
694 				mapPtr->totalRUs -
695 				rf_UnitsLeftToReconstruct(mapPtr);
696 
697 #if RF_DEBUG_RECON
698 			raidPtr->reconControl->percentComplete =
699 				(raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
700 			if (rf_prReconSched) {
701 				rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
702 			}
703 #endif
704 		}
705 
706 		/* reads done, wakup any waiters, and then wait for writes */
707 
708 		rf_WakeupHeadSepCBWaiters(raidPtr);
709 
710 		while (!recon_error && (num_writes < pending_writes)) {
711 			event = rf_GetNextReconEvent(reconDesc);
712 			status = ProcessReconEvent(raidPtr, event);
713 
714 			if (status == RF_RECON_WRITE_ERROR) {
715 				recon_error = 1;
716 				raidPtr->reconControl->error = 1;
717 				/* an error was encountered at the very end... bail */
718 			} else if (status == RF_RECON_WRITE_DONE) {
719 				num_writes++;
720 			}
721 		}
722 		if (recon_error ||
723 		    (raidPtr->reconControl->lastPSID == lastPSID)) {
724 			done = 1;
725 			break;
726 		}
727 
728 		prev = raidPtr->reconControl->lastPSID;
729 		raidPtr->reconControl->lastPSID += incPSID;
730 
731 		if (raidPtr->reconControl->lastPSID > lastPSID) {
732 			pending_writes = lastPSID - prev;
733 			raidPtr->reconControl->lastPSID = lastPSID;
734 		}
735 
736 		/* back down curPSID to get ready for the next round... */
737 		for (i = 0; i < raidPtr->numCol; i++) {
738 			if (i != col) {
739 				raidPtr->reconControl->perDiskInfo[i].curPSID--;
740 				raidPtr->reconControl->perDiskInfo[i].ru_count = RUsPerPU - 1;
741 			}
742 		}
743 	}
744 
745 	mapPtr = raidPtr->reconControl->reconMap;
746 	if (rf_reconDebug) {
747 		printf("RECON: all reads completed\n");
748 	}
749 	/* at this point all the reads have completed.  We now wait
750 	 * for any pending writes to complete, and then we're done */
751 
752 	while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
753 
754 		event = rf_GetNextReconEvent(reconDesc);
755 		status = ProcessReconEvent(raidPtr, event);
756 
757 		if (status == RF_RECON_WRITE_ERROR) {
758 			recon_error = 1;
759 			raidPtr->reconControl->error = 1;
760 			/* an error was encountered at the very end... bail */
761 		} else {
762 #if RF_DEBUG_RECON
763 			raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
764 			if (rf_prReconSched) {
765 				rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
766 			}
767 #endif
768 		}
769 	}
770 
771 	if (recon_error) {
772 		/* we've encountered an error in reconstructing. */
773 		printf("raid%d: reconstruction failed.\n", raidPtr->raidid);
774 
775 		/* we start by blocking IO to the RAID set. */
776 		rf_SuspendNewRequestsAndWait(raidPtr);
777 
778 		RF_LOCK_MUTEX(raidPtr->mutex);
779 		/* mark set as being degraded, rather than
780 		   rf_rs_reconstructing as we were before the problem.
781 		   After this is done we can update status of the
782 		   component disks without worrying about someone
783 		   trying to read from a failed component.
784 		*/
785 		raidPtr->status = rf_rs_degraded;
786 		RF_UNLOCK_MUTEX(raidPtr->mutex);
787 
788 		/* resume IO */
789 		rf_ResumeNewRequests(raidPtr);
790 
791 		/* At this point there are two cases:
792 		   1) If we've experienced a read error, then we've
793 		   already waited for all the reads we're going to get,
794 		   and we just need to wait for the writes.
795 
796 		   2) If we've experienced a write error, we've also
797 		   already waited for all the reads to complete,
798 		   but there is little point in waiting for the writes --
799 		   when they do complete, they will just be ignored.
800 
801 		   So we just wait for writes to complete if we didn't have a
802 		   write error.
803 		*/
804 
805 		if (!write_error) {
806 			/* wait for writes to complete */
807 			while (raidPtr->reconControl->pending_writes > 0) {
808 
809 				event = rf_GetNextReconEvent(reconDesc);
810 				status = ProcessReconEvent(raidPtr, event);
811 
812 				if (status == RF_RECON_WRITE_ERROR) {
813 					raidPtr->reconControl->error = 1;
814 					/* an error was encountered at the very end... bail.
815 					   This will be very bad news for the user, since
816 					   at this point there will have been a read error
817 					   on one component, and a write error on another!
818 					*/
819 					break;
820 				}
821 			}
822 		}
823 
824 
825 		/* cleanup */
826 
827 		/* drain the event queue - after waiting for the writes above,
828 		   there shouldn't be much (if anything!) left in the queue. */
829 
830 		rf_DrainReconEventQueue(reconDesc);
831 
832 		/* XXX  As much as we'd like to free the recon control structure
833 		   and the reconDesc, we have no way of knowing if/when those will
834 		   be touched by IO that has yet to occur.  It is rather poor to be
835 		   basically causing a 'memory leak' here, but there doesn't seem to be
836 		   a cleaner alternative at this time.  Perhaps when the reconstruct code
837 		   gets a makeover this problem will go away.
838 		*/
839 #if 0
840 		rf_FreeReconControl(raidPtr);
841 #endif
842 
843 #if RF_ACC_TRACE > 0
844 		RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
845 #endif
846 		/* XXX see comment above */
847 #if 0
848 		FreeReconDesc(reconDesc);
849 #endif
850 
851 		return (1);
852 	}
853 
854 	/* Success:  mark the dead disk as reconstructed.  We quiesce
855 	 * the array here to assure no nasty interactions with pending
856 	 * user accesses when we free up the psstatus structure as
857 	 * part of FreeReconControl() */
858 
859 	rf_SuspendNewRequestsAndWait(raidPtr);
860 
861 	RF_LOCK_MUTEX(raidPtr->mutex);
862 	raidPtr->numFailures--;
863 	ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
864 	raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
865 	raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
866 	RF_UNLOCK_MUTEX(raidPtr->mutex);
867 	RF_GETTIME(etime);
868 	RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
869 
870 	rf_ResumeNewRequests(raidPtr);
871 
872 	printf("raid%d: Reconstruction of disk at col %d completed\n",
873 	       raidPtr->raidid, col);
874 	xor_s = raidPtr->accumXorTimeUs / 1000000;
875 	xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
876 	printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
877 	       raidPtr->raidid,
878 	       (int) elpsd.tv_sec, (int) elpsd.tv_usec,
879 	       raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
880 	printf("raid%d:  (start time %d sec %d usec, end time %d sec %d usec)\n",
881 	       raidPtr->raidid,
882 	       (int) raidPtr->reconControl->starttime.tv_sec,
883 	       (int) raidPtr->reconControl->starttime.tv_usec,
884 	       (int) etime.tv_sec, (int) etime.tv_usec);
885 #if RF_RECON_STATS > 0
886 	printf("raid%d: Total head-sep stall count was %d\n",
887 	       raidPtr->raidid, (int) reconDesc->hsStallCount);
888 #endif				/* RF_RECON_STATS > 0 */
889 	rf_FreeReconControl(raidPtr);
890 #if RF_ACC_TRACE > 0
891 	RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
892 #endif
893 	FreeReconDesc(reconDesc);
894 
895 	return (0);
896 
897 }
898 /*****************************************************************************
899  * do the right thing upon each reconstruction event.
900  *****************************************************************************/
901 static int
902 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
903 {
904 	int     retcode = 0, submitblocked;
905 	RF_ReconBuffer_t *rbuf;
906 	RF_SectorCount_t sectorsPerRU;
907 
908 	retcode = RF_RECON_READ_STOPPED;
909 
910 	Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
911 
912 	switch (event->type) {
913 
914 		/* a read I/O has completed */
915 	case RF_REVENT_READDONE:
916 		rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
917 		Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
918 		    event->col, rbuf->parityStripeID);
919 		Dprintf7("RECON: done read  psid %ld buf %lx  %02x %02x %02x %02x %02x\n",
920 		    rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
921 		    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
922 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
923 		if (!raidPtr->reconControl->error) {
924 			submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
925 			Dprintf1("RECON: submitblocked=%d\n", submitblocked);
926 			if (!submitblocked)
927 				retcode = IssueNextReadRequest(raidPtr, event->col);
928 			else
929 				retcode = 0;
930 		}
931 		break;
932 
933 		/* a write I/O has completed */
934 	case RF_REVENT_WRITEDONE:
935 #if RF_DEBUG_RECON
936 		if (rf_floatingRbufDebug) {
937 			rf_CheckFloatingRbufCount(raidPtr, 1);
938 		}
939 #endif
940 		sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
941 		rbuf = (RF_ReconBuffer_t *) event->arg;
942 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
943 		Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
944 		    rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
945 		rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
946 		    rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
947 		rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
948 
949 		RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
950 		raidPtr->reconControl->pending_writes--;
951 		RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
952 
953 		if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
954 			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
955 			while(raidPtr->reconControl->rb_lock) {
956 				ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0,
957 					&raidPtr->reconControl->rb_mutex);
958 			}
959 			raidPtr->reconControl->rb_lock = 1;
960 			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
961 
962 			raidPtr->numFullReconBuffers--;
963 			rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
964 
965 			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
966 			raidPtr->reconControl->rb_lock = 0;
967 			wakeup(&raidPtr->reconControl->rb_lock);
968 			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
969 		} else
970 			if (rbuf->type == RF_RBUF_TYPE_FORCED)
971 				rf_FreeReconBuffer(rbuf);
972 			else
973 				RF_ASSERT(0);
974 		retcode = RF_RECON_WRITE_DONE;
975 		break;
976 
977 	case RF_REVENT_BUFCLEAR:	/* A buffer-stall condition has been
978 					 * cleared */
979 		Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
980 		if (!raidPtr->reconControl->error) {
981 			submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf,
982 							     0, (int) (long) event->arg);
983 			RF_ASSERT(!submitblocked);	/* we wouldn't have gotten the
984 							 * BUFCLEAR event if we
985 							 * couldn't submit */
986 			retcode = IssueNextReadRequest(raidPtr, event->col);
987 		}
988 		break;
989 
990 	case RF_REVENT_BLOCKCLEAR:	/* A user-write reconstruction
991 					 * blockage has been cleared */
992 		DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
993 		if (!raidPtr->reconControl->error) {
994 			retcode = TryToRead(raidPtr, event->col);
995 		}
996 		break;
997 
998 	case RF_REVENT_HEADSEPCLEAR:	/* A max-head-separation
999 					 * reconstruction blockage has been
1000 					 * cleared */
1001 		Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
1002 		if (!raidPtr->reconControl->error) {
1003 			retcode = TryToRead(raidPtr, event->col);
1004 		}
1005 		break;
1006 
1007 		/* a buffer has become ready to write */
1008 	case RF_REVENT_BUFREADY:
1009 		Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
1010 		if (!raidPtr->reconControl->error) {
1011 			retcode = IssueNextWriteRequest(raidPtr);
1012 #if RF_DEBUG_RECON
1013 			if (rf_floatingRbufDebug) {
1014 				rf_CheckFloatingRbufCount(raidPtr, 1);
1015 			}
1016 #endif
1017 		}
1018 		break;
1019 
1020 		/* we need to skip the current RU entirely because it got
1021 		 * recon'd while we were waiting for something else to happen */
1022 	case RF_REVENT_SKIP:
1023 		DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
1024 		if (!raidPtr->reconControl->error) {
1025 			retcode = IssueNextReadRequest(raidPtr, event->col);
1026 		}
1027 		break;
1028 
1029 		/* a forced-reconstruction read access has completed.  Just
1030 		 * submit the buffer */
1031 	case RF_REVENT_FORCEDREADDONE:
1032 		rbuf = (RF_ReconBuffer_t *) event->arg;
1033 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1034 		DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
1035 		if (!raidPtr->reconControl->error) {
1036 			submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
1037 			RF_ASSERT(!submitblocked);
1038 			retcode = 0;
1039 		}
1040 		break;
1041 
1042 		/* A read I/O failed to complete */
1043 	case RF_REVENT_READ_FAILED:
1044 		retcode = RF_RECON_READ_ERROR;
1045 		break;
1046 
1047 		/* A write I/O failed to complete */
1048 	case RF_REVENT_WRITE_FAILED:
1049 		retcode = RF_RECON_WRITE_ERROR;
1050 
1051 		rbuf = (RF_ReconBuffer_t *) event->arg;
1052 
1053 		/* cleanup the disk queue data */
1054 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1055 
1056 		/* At this point we're erroring out, badly, and floatingRbufs
1057 		   may not even be valid.  Rather than putting this back onto
1058 		   the floatingRbufs list, just arrange for its immediate
1059 		   destruction.
1060 		*/
1061 		rf_FreeReconBuffer(rbuf);
1062 		break;
1063 
1064 		/* a forced read I/O failed to complete */
1065 	case RF_REVENT_FORCEDREAD_FAILED:
1066 		retcode = RF_RECON_READ_ERROR;
1067 		break;
1068 
1069 	default:
1070 		RF_PANIC();
1071 	}
1072 	rf_FreeReconEventDesc(event);
1073 	return (retcode);
1074 }
1075 /*****************************************************************************
1076  *
1077  * find the next thing that's needed on the indicated disk, and issue
1078  * a read request for it.  We assume that the reconstruction buffer
1079  * associated with this process is free to receive the data.  If
1080  * reconstruction is blocked on the indicated RU, we issue a
1081  * blockage-release request instead of a physical disk read request.
1082  * If the current disk gets too far ahead of the others, we issue a
1083  * head-separation wait request and return.
1084  *
1085  * ctrl->{ru_count, curPSID, diskOffset} and
1086  * rbuf->failedDiskSectorOffset are maintained to point to the unit
1087  * we're currently accessing.  Note that this deviates from the
1088  * standard C idiom of having counters point to the next thing to be
1089  * accessed.  This allows us to easily retry when we're blocked by
1090  * head separation or reconstruction-blockage events.
1091  *
1092  *****************************************************************************/
1093 static int
1094 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
1095 {
1096 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1097 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1098 	RF_ReconBuffer_t *rbuf = ctrl->rbuf;
1099 	RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
1100 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1101 	int     do_new_check = 0, retcode = 0, status;
1102 
1103 	/* if we are currently the slowest disk, mark that we have to do a new
1104 	 * check */
1105 	if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
1106 		do_new_check = 1;
1107 
1108 	while (1) {
1109 
1110 		ctrl->ru_count++;
1111 		if (ctrl->ru_count < RUsPerPU) {
1112 			ctrl->diskOffset += sectorsPerRU;
1113 			rbuf->failedDiskSectorOffset += sectorsPerRU;
1114 		} else {
1115 			ctrl->curPSID++;
1116 			ctrl->ru_count = 0;
1117 			/* code left over from when head-sep was based on
1118 			 * parity stripe id */
1119 			if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
1120 				CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
1121 				return (RF_RECON_DONE_READS);	/* finito! */
1122 			}
1123 			/* find the disk offsets of the start of the parity
1124 			 * stripe on both the current disk and the failed
1125 			 * disk. skip this entire parity stripe if either disk
1126 			 * does not appear in the indicated PS */
1127 			status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1128 			    &rbuf->spCol, &rbuf->spOffset);
1129 			if (status) {
1130 				ctrl->ru_count = RUsPerPU - 1;
1131 				continue;
1132 			}
1133 		}
1134 		rbuf->which_ru = ctrl->ru_count;
1135 
1136 		/* skip this RU if it's already been reconstructed */
1137 		if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
1138 			Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1139 			continue;
1140 		}
1141 		break;
1142 	}
1143 	ctrl->headSepCounter++;
1144 	if (do_new_check)
1145 		CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter);	/* update min if needed */
1146 
1147 
1148 	/* at this point, we have definitely decided what to do, and we have
1149 	 * only to see if we can actually do it now */
1150 	rbuf->parityStripeID = ctrl->curPSID;
1151 	rbuf->which_ru = ctrl->ru_count;
1152 #if RF_ACC_TRACE > 0
1153 	memset((char *) &raidPtr->recon_tracerecs[col], 0,
1154 	    sizeof(raidPtr->recon_tracerecs[col]));
1155 	raidPtr->recon_tracerecs[col].reconacc = 1;
1156 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1157 #endif
1158 	retcode = TryToRead(raidPtr, col);
1159 	return (retcode);
1160 }
1161 
1162 /*
1163  * tries to issue the next read on the indicated disk.  We may be
1164  * blocked by (a) the heads being too far apart, or (b) recon on the
1165  * indicated RU being blocked due to a write by a user thread.  In
1166  * this case, we issue a head-sep or blockage wait request, which will
1167  * cause this same routine to be invoked again later when the blockage
1168  * has cleared.
1169  */
1170 
1171 static int
1172 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
1173 {
1174 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1175 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1176 	RF_StripeNum_t psid = ctrl->curPSID;
1177 	RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1178 	RF_DiskQueueData_t *req;
1179 	int     status;
1180 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
1181 
1182 	/* if the current disk is too far ahead of the others, issue a
1183 	 * head-separation wait and return */
1184 	if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
1185 		return (0);
1186 
1187 	/* allocate a new PSS in case we need it */
1188 	newpssPtr = rf_AllocPSStatus(raidPtr);
1189 
1190 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1191 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
1192 
1193 	if (pssPtr != newpssPtr) {
1194 		rf_FreePSStatus(raidPtr, newpssPtr);
1195 	}
1196 
1197 	/* if recon is blocked on the indicated parity stripe, issue a
1198 	 * block-wait request and return. this also must mark the indicated RU
1199 	 * in the stripe as under reconstruction if not blocked. */
1200 	status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
1201 	if (status == RF_PSS_RECON_BLOCKED) {
1202 		Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1203 		goto out;
1204 	} else
1205 		if (status == RF_PSS_FORCED_ON_WRITE) {
1206 			rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1207 			goto out;
1208 		}
1209 	/* make one last check to be sure that the indicated RU didn't get
1210 	 * reconstructed while we were waiting for something else to happen.
1211 	 * This is unfortunate in that it causes us to make this check twice
1212 	 * in the normal case.  Might want to make some attempt to re-work
1213 	 * this so that we only do this check if we've definitely blocked on
1214 	 * one of the above checks.  When this condition is detected, we may
1215 	 * have just created a bogus status entry, which we need to delete. */
1216 	if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1217 		Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1218 		if (pssPtr == newpssPtr)
1219 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1220 		rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1221 		goto out;
1222 	}
1223 	/* found something to read.  issue the I/O */
1224 	Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1225 	    psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1226 #if RF_ACC_TRACE > 0
1227 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1228 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1229 	raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1230 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1231 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1232 #endif
1233 	/* should be ok to use a NULL proc pointer here, all the bufs we use
1234 	 * should be in kernel space */
1235 	req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1236 	    ReconReadDoneProc, (void *) ctrl,
1237 #if RF_ACC_TRACE > 0
1238 				     &raidPtr->recon_tracerecs[col],
1239 #else
1240 				     NULL,
1241 #endif
1242 				     (void *) raidPtr, 0, NULL, PR_WAITOK);
1243 
1244 	ctrl->rbuf->arg = (void *) req;
1245 	rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1246 	pssPtr->issued[col] = 1;
1247 
1248 out:
1249 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1250 	return (0);
1251 }
1252 
1253 
1254 /*
1255  * given a parity stripe ID, we want to find out whether both the
1256  * current disk and the failed disk exist in that parity stripe.  If
1257  * not, we want to skip this whole PS.  If so, we want to find the
1258  * disk offset of the start of the PS on both the current disk and the
1259  * failed disk.
1260  *
1261  * this works by getting a list of disks comprising the indicated
1262  * parity stripe, and searching the list for the current and failed
1263  * disks.  Once we've decided they both exist in the parity stripe, we
1264  * need to decide whether each is data or parity, so that we'll know
1265  * which mapping function to call to get the corresponding disk
1266  * offsets.
1267  *
1268  * this is kind of unpleasant, but doing it this way allows the
1269  * reconstruction code to use parity stripe IDs rather than physical
1270  * disks address to march through the failed disk, which greatly
1271  * simplifies a lot of code, as well as eliminating the need for a
1272  * reverse-mapping function.  I also think it will execute faster,
1273  * since the calls to the mapping module are kept to a minimum.
1274  *
1275  * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1276  * THE STRIPE IN THE CORRECT ORDER
1277  *
1278  * raidPtr          - raid descriptor
1279  * psid             - parity stripe identifier
1280  * col              - column of disk to find the offsets for
1281  * spCol            - out: col of spare unit for failed unit
1282  * spOffset         - out: offset into disk containing spare unit
1283  *
1284  */
1285 
1286 
1287 static int
1288 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1289 		     RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1290 		     RF_SectorNum_t *outFailedDiskSectorOffset,
1291 		     RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1292 {
1293 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1294 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1295 	RF_RaidAddr_t sosRaidAddress;	/* start-of-stripe */
1296 	RF_RowCol_t *diskids;
1297 	u_int   i, j, k, i_offset, j_offset;
1298 	RF_RowCol_t pcol;
1299 	int     testcol;
1300 	RF_SectorNum_t poffset;
1301 	char    i_is_parity = 0, j_is_parity = 0;
1302 	RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1303 
1304 	/* get a listing of the disks comprising that stripe */
1305 	sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1306 	(layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1307 	RF_ASSERT(diskids);
1308 
1309 	/* reject this entire parity stripe if it does not contain the
1310 	 * indicated disk or it does not contain the failed disk */
1311 
1312 	for (i = 0; i < stripeWidth; i++) {
1313 		if (col == diskids[i])
1314 			break;
1315 	}
1316 	if (i == stripeWidth)
1317 		goto skipit;
1318 	for (j = 0; j < stripeWidth; j++) {
1319 		if (fcol == diskids[j])
1320 			break;
1321 	}
1322 	if (j == stripeWidth) {
1323 		goto skipit;
1324 	}
1325 	/* find out which disk the parity is on */
1326 	(layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1327 
1328 	/* find out if either the current RU or the failed RU is parity */
1329 	/* also, if the parity occurs in this stripe prior to the data and/or
1330 	 * failed col, we need to decrement i and/or j */
1331 	for (k = 0; k < stripeWidth; k++)
1332 		if (diskids[k] == pcol)
1333 			break;
1334 	RF_ASSERT(k < stripeWidth);
1335 	i_offset = i;
1336 	j_offset = j;
1337 	if (k < i)
1338 		i_offset--;
1339 	else
1340 		if (k == i) {
1341 			i_is_parity = 1;
1342 			i_offset = 0;
1343 		}		/* set offsets to zero to disable multiply
1344 				 * below */
1345 	if (k < j)
1346 		j_offset--;
1347 	else
1348 		if (k == j) {
1349 			j_is_parity = 1;
1350 			j_offset = 0;
1351 		}
1352 	/* at this point, [ij]_is_parity tells us whether the [current,failed]
1353 	 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1354 	 * tells us how far into the stripe the [current,failed] disk is. */
1355 
1356 	/* call the mapping routine to get the offset into the current disk,
1357 	 * repeat for failed disk. */
1358 	if (i_is_parity)
1359 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1360 	else
1361 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1362 
1363 	RF_ASSERT(col == testcol);
1364 
1365 	if (j_is_parity)
1366 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1367 	else
1368 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1369 	RF_ASSERT(fcol == testcol);
1370 
1371 	/* now locate the spare unit for the failed unit */
1372 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1373 	if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1374 		if (j_is_parity)
1375 			layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1376 		else
1377 			layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1378 	} else {
1379 #endif
1380 		*spCol = raidPtr->reconControl->spareCol;
1381 		*spOffset = *outFailedDiskSectorOffset;
1382 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1383 	}
1384 #endif
1385 	return (0);
1386 
1387 skipit:
1388 	Dprintf2("RECON: Skipping psid %ld: nothing needed from c%d\n",
1389 	    psid, col);
1390 	return (1);
1391 }
1392 /* this is called when a buffer has become ready to write to the replacement disk */
1393 static int
1394 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1395 {
1396 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1397 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1398 #if RF_ACC_TRACE > 0
1399 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1400 #endif
1401 	RF_ReconBuffer_t *rbuf;
1402 	RF_DiskQueueData_t *req;
1403 
1404 	rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1405 	RF_ASSERT(rbuf);	/* there must be one available, or we wouldn't
1406 				 * have gotten the event that sent us here */
1407 	RF_ASSERT(rbuf->pssPtr);
1408 
1409 	rbuf->pssPtr->writeRbuf = rbuf;
1410 	rbuf->pssPtr = NULL;
1411 
1412 	Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1413 	    rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1414 	    rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1415 	Dprintf6("RECON: new write psid %ld   %02x %02x %02x %02x %02x\n",
1416 	    rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1417 	    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1418 
1419 	/* should be ok to use a NULL b_proc here b/c all addrs should be in
1420 	 * kernel space */
1421 	req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1422 	    sectorsPerRU, rbuf->buffer,
1423 	    rbuf->parityStripeID, rbuf->which_ru,
1424 	    ReconWriteDoneProc, (void *) rbuf,
1425 #if RF_ACC_TRACE > 0
1426 	    &raidPtr->recon_tracerecs[fcol],
1427 #else
1428 				     NULL,
1429 #endif
1430 	    (void *) raidPtr, 0, NULL, PR_WAITOK);
1431 
1432 	rbuf->arg = (void *) req;
1433 	RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1434 	raidPtr->reconControl->pending_writes++;
1435 	RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1436 	rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1437 
1438 	return (0);
1439 }
1440 
1441 /*
1442  * this gets called upon the completion of a reconstruction read
1443  * operation the arg is a pointer to the per-disk reconstruction
1444  * control structure for the process that just finished a read.
1445  *
1446  * called at interrupt context in the kernel, so don't do anything
1447  * illegal here.
1448  */
1449 static int
1450 ReconReadDoneProc(void *arg, int status)
1451 {
1452 	RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1453 	RF_Raid_t *raidPtr;
1454 
1455 	/* Detect that reconCtrl is no longer valid, and if that
1456 	   is the case, bail without calling rf_CauseReconEvent().
1457 	   There won't be anyone listening for this event anyway */
1458 
1459 	if (ctrl->reconCtrl == NULL)
1460 		return(0);
1461 
1462 	raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1463 
1464 	if (status) {
1465 		printf("raid%d: Recon read failed: %d\n", raidPtr->raidid, status);
1466 		rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
1467 		return(0);
1468 	}
1469 #if RF_ACC_TRACE > 0
1470 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1471 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1472 	raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1473 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1474 	RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1475 #endif
1476 	rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1477 	return (0);
1478 }
1479 /* this gets called upon the completion of a reconstruction write operation.
1480  * the arg is a pointer to the rbuf that was just written
1481  *
1482  * called at interrupt context in the kernel, so don't do anything illegal here.
1483  */
1484 static int
1485 ReconWriteDoneProc(void *arg, int status)
1486 {
1487 	RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1488 
1489 	/* Detect that reconControl is no longer valid, and if that
1490 	   is the case, bail without calling rf_CauseReconEvent().
1491 	   There won't be anyone listening for this event anyway */
1492 
1493 	if (rbuf->raidPtr->reconControl == NULL)
1494 		return(0);
1495 
1496 	Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1497 	if (status) {
1498 		printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid);
1499 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
1500 		return(0);
1501 	}
1502 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1503 	return (0);
1504 }
1505 
1506 
1507 /*
1508  * computes a new minimum head sep, and wakes up anyone who needs to
1509  * be woken as a result
1510  */
1511 static void
1512 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1513 {
1514 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1515 	RF_HeadSepLimit_t new_min;
1516 	RF_RowCol_t i;
1517 	RF_CallbackDesc_t *p;
1518 	RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter);	/* from the definition
1519 								 * of a minimum */
1520 
1521 
1522 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1523 	while(reconCtrlPtr->rb_lock) {
1524 		ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex);
1525 	}
1526 	reconCtrlPtr->rb_lock = 1;
1527 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1528 
1529 	new_min = ~(1L << (8 * sizeof(long) - 1));	/* 0x7FFF....FFF */
1530 	for (i = 0; i < raidPtr->numCol; i++)
1531 		if (i != reconCtrlPtr->fcol) {
1532 			if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1533 				new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1534 		}
1535 	/* set the new minimum and wake up anyone who can now run again */
1536 	if (new_min != reconCtrlPtr->minHeadSepCounter) {
1537 		reconCtrlPtr->minHeadSepCounter = new_min;
1538 		Dprintf1("RECON:  new min head pos counter val is %ld\n", new_min);
1539 		while (reconCtrlPtr->headSepCBList) {
1540 			if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1541 				break;
1542 			p = reconCtrlPtr->headSepCBList;
1543 			reconCtrlPtr->headSepCBList = p->next;
1544 			p->next = NULL;
1545 			rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1546 			rf_FreeCallbackDesc(p);
1547 		}
1548 
1549 	}
1550 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1551 	reconCtrlPtr->rb_lock = 0;
1552 	wakeup(&reconCtrlPtr->rb_lock);
1553 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1554 }
1555 
1556 /*
1557  * checks to see that the maximum head separation will not be violated
1558  * if we initiate a reconstruction I/O on the indicated disk.
1559  * Limiting the maximum head separation between two disks eliminates
1560  * the nasty buffer-stall conditions that occur when one disk races
1561  * ahead of the others and consumes all of the floating recon buffers.
1562  * This code is complex and unpleasant but it's necessary to avoid
1563  * some very nasty, albeit fairly rare, reconstruction behavior.
1564  *
1565  * returns non-zero if and only if we have to stop working on the
1566  * indicated disk due to a head-separation delay.
1567  */
1568 static int
1569 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1570 		    RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1571 		    RF_ReconUnitNum_t which_ru)
1572 {
1573 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1574 	RF_CallbackDesc_t *cb, *p, *pt;
1575 	int     retval = 0;
1576 
1577 	/* if we're too far ahead of the slowest disk, stop working on this
1578 	 * disk until the slower ones catch up.  We do this by scheduling a
1579 	 * wakeup callback for the time when the slowest disk has caught up.
1580 	 * We define "caught up" with 20% hysteresis, i.e. the head separation
1581 	 * must have fallen to at most 80% of the max allowable head
1582 	 * separation before we'll wake up.
1583 	 *
1584 	 */
1585 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1586 	while(reconCtrlPtr->rb_lock) {
1587 		ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex);
1588 	}
1589 	reconCtrlPtr->rb_lock = 1;
1590 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1591 	if ((raidPtr->headSepLimit >= 0) &&
1592 	    ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1593 		Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1594 			 raidPtr->raidid, col, ctrl->headSepCounter,
1595 			 reconCtrlPtr->minHeadSepCounter,
1596 			 raidPtr->headSepLimit);
1597 		cb = rf_AllocCallbackDesc();
1598 		/* the minHeadSepCounter value we have to get to before we'll
1599 		 * wake up.  build in 20% hysteresis. */
1600 		cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1601 		cb->col = col;
1602 		cb->next = NULL;
1603 
1604 		/* insert this callback descriptor into the sorted list of
1605 		 * pending head-sep callbacks */
1606 		p = reconCtrlPtr->headSepCBList;
1607 		if (!p)
1608 			reconCtrlPtr->headSepCBList = cb;
1609 		else
1610 			if (cb->callbackArg.v < p->callbackArg.v) {
1611 				cb->next = reconCtrlPtr->headSepCBList;
1612 				reconCtrlPtr->headSepCBList = cb;
1613 			} else {
1614 				for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1615 				cb->next = p;
1616 				pt->next = cb;
1617 			}
1618 		retval = 1;
1619 #if RF_RECON_STATS > 0
1620 		ctrl->reconCtrl->reconDesc->hsStallCount++;
1621 #endif				/* RF_RECON_STATS > 0 */
1622 	}
1623 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1624 	reconCtrlPtr->rb_lock = 0;
1625 	wakeup(&reconCtrlPtr->rb_lock);
1626 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1627 
1628 	return (retval);
1629 }
1630 /*
1631  * checks to see if reconstruction has been either forced or blocked
1632  * by a user operation.  if forced, we skip this RU entirely.  else if
1633  * blocked, put ourselves on the wait list.  else return 0.
1634  *
1635  * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1636  */
1637 static int
1638 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1639 				   RF_ReconParityStripeStatus_t *pssPtr,
1640 				   RF_PerDiskReconCtrl_t *ctrl,
1641 				   RF_RowCol_t col,
1642 				   RF_StripeNum_t psid,
1643 				   RF_ReconUnitNum_t which_ru)
1644 {
1645 	RF_CallbackDesc_t *cb;
1646 	int     retcode = 0;
1647 
1648 	if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1649 		retcode = RF_PSS_FORCED_ON_WRITE;
1650 	else
1651 		if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1652 			Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1653 			cb = rf_AllocCallbackDesc();	/* append ourselves to
1654 							 * the blockage-wait
1655 							 * list */
1656 			cb->col = col;
1657 			cb->next = pssPtr->blockWaitList;
1658 			pssPtr->blockWaitList = cb;
1659 			retcode = RF_PSS_RECON_BLOCKED;
1660 		}
1661 	if (!retcode)
1662 		pssPtr->flags |= RF_PSS_UNDER_RECON;	/* mark this RU as under
1663 							 * reconstruction */
1664 
1665 	return (retcode);
1666 }
1667 /*
1668  * if reconstruction is currently ongoing for the indicated stripeID,
1669  * reconstruction is forced to completion and we return non-zero to
1670  * indicate that the caller must wait.  If not, then reconstruction is
1671  * blocked on the indicated stripe and the routine returns zero.  If
1672  * and only if we return non-zero, we'll cause the cbFunc to get
1673  * invoked with the cbArg when the reconstruction has completed.
1674  */
1675 int
1676 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1677 		     void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1678 {
1679 	RF_StripeNum_t stripeID = asmap->stripeID;	/* the stripe ID we're
1680 							 * forcing recon on */
1681 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;	/* num sects in one RU */
1682 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;	/* a pointer to the parity
1683 						 * stripe status structure */
1684 	RF_StripeNum_t psid;	/* parity stripe id */
1685 	RF_SectorNum_t offset, fd_offset;	/* disk offset, failed-disk
1686 						 * offset */
1687 	RF_RowCol_t *diskids;
1688 	RF_ReconUnitNum_t which_ru;	/* RU within parity stripe */
1689 	RF_RowCol_t fcol, diskno, i;
1690 	RF_ReconBuffer_t *new_rbuf;	/* ptr to newly allocated rbufs */
1691 	RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1692 	RF_CallbackDesc_t *cb;
1693 	int     nPromoted;
1694 
1695 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1696 
1697 	/* allocate a new PSS in case we need it */
1698         newpssPtr = rf_AllocPSStatus(raidPtr);
1699 
1700 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1701 
1702 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1703 
1704         if (pssPtr != newpssPtr) {
1705                 rf_FreePSStatus(raidPtr, newpssPtr);
1706         }
1707 
1708 	/* if recon is not ongoing on this PS, just return */
1709 	if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1710 		RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1711 		return (0);
1712 	}
1713 	/* otherwise, we have to wait for reconstruction to complete on this
1714 	 * RU. */
1715 	/* In order to avoid waiting for a potentially large number of
1716 	 * low-priority accesses to complete, we force a normal-priority (i.e.
1717 	 * not low-priority) reconstruction on this RU. */
1718 	if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1719 		DDprintf1("Forcing recon on psid %ld\n", psid);
1720 		pssPtr->flags |= RF_PSS_FORCED_ON_WRITE;	/* mark this RU as under
1721 								 * forced recon */
1722 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;	/* clear the blockage
1723 							 * that we just set */
1724 		fcol = raidPtr->reconControl->fcol;
1725 
1726 		/* get a listing of the disks comprising the indicated stripe */
1727 		(raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1728 
1729 		/* For previously issued reads, elevate them to normal
1730 		 * priority.  If the I/O has already completed, it won't be
1731 		 * found in the queue, and hence this will be a no-op. For
1732 		 * unissued reads, allocate buffers and issue new reads.  The
1733 		 * fact that we've set the FORCED bit means that the regular
1734 		 * recon procs will not re-issue these reqs */
1735 		for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1736 			if ((diskno = diskids[i]) != fcol) {
1737 				if (pssPtr->issued[diskno]) {
1738 					nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1739 					if (rf_reconDebug && nPromoted)
1740 						printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1741 				} else {
1742 					new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED);	/* create new buf */
1743 					ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1744 					    &new_rbuf->spCol, &new_rbuf->spOffset);	/* find offsets & spare
1745 													 * location */
1746 					new_rbuf->parityStripeID = psid;	/* fill in the buffer */
1747 					new_rbuf->which_ru = which_ru;
1748 					new_rbuf->failedDiskSectorOffset = fd_offset;
1749 					new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1750 
1751 					/* use NULL b_proc b/c all addrs
1752 					 * should be in kernel space */
1753 					req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1754 					    psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf,
1755 					    NULL, (void *) raidPtr, 0, NULL, PR_WAITOK);
1756 
1757 					new_rbuf->arg = req;
1758 					rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY);	/* enqueue the I/O */
1759 					Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1760 				}
1761 			}
1762 		/* if the write is sitting in the disk queue, elevate its
1763 		 * priority */
1764 		if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1765 			if (rf_reconDebug)
1766 				printf("raid%d: promoted write to col %d\n",
1767 				       raidPtr->raidid, fcol);
1768 	}
1769 	/* install a callback descriptor to be invoked when recon completes on
1770 	 * this parity stripe. */
1771 	cb = rf_AllocCallbackDesc();
1772 	/* XXX the following is bogus.. These functions don't really match!!
1773 	 * GO */
1774 	cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1775 	cb->callbackArg.p = (void *) cbArg;
1776 	cb->next = pssPtr->procWaitList;
1777 	pssPtr->procWaitList = cb;
1778 	DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1779 		  raidPtr->raidid, psid);
1780 
1781 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1782 	return (1);
1783 }
1784 /* called upon the completion of a forced reconstruction read.
1785  * all we do is schedule the FORCEDREADONE event.
1786  * called at interrupt context in the kernel, so don't do anything illegal here.
1787  */
1788 static void
1789 ForceReconReadDoneProc(void *arg, int status)
1790 {
1791 	RF_ReconBuffer_t *rbuf = arg;
1792 
1793 	/* Detect that reconControl is no longer valid, and if that
1794 	   is the case, bail without calling rf_CauseReconEvent().
1795 	   There won't be anyone listening for this event anyway */
1796 
1797 	if (rbuf->raidPtr->reconControl == NULL)
1798 		return;
1799 
1800 	if (status) {
1801 		printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
1802 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
1803 		return;
1804 	}
1805 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1806 }
1807 /* releases a block on the reconstruction of the indicated stripe */
1808 int
1809 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1810 {
1811 	RF_StripeNum_t stripeID = asmap->stripeID;
1812 	RF_ReconParityStripeStatus_t *pssPtr;
1813 	RF_ReconUnitNum_t which_ru;
1814 	RF_StripeNum_t psid;
1815 	RF_CallbackDesc_t *cb;
1816 
1817 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1818 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1819 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1820 
1821 	/* When recon is forced, the pss desc can get deleted before we get
1822 	 * back to unblock recon. But, this can _only_ happen when recon is
1823 	 * forced. It would be good to put some kind of sanity check here, but
1824 	 * how to decide if recon was just forced or not? */
1825 	if (!pssPtr) {
1826 		/* printf("Warning: no pss descriptor upon unblock on psid %ld
1827 		 * RU %d\n",psid,which_ru); */
1828 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1829 		if (rf_reconDebug || rf_pssDebug)
1830 			printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1831 #endif
1832 		goto out;
1833 	}
1834 	pssPtr->blockCount--;
1835 	Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1836 		 raidPtr->raidid, psid, pssPtr->blockCount);
1837 	if (pssPtr->blockCount == 0) {	/* if recon blockage has been released */
1838 
1839 		/* unblock recon before calling CauseReconEvent in case
1840 		 * CauseReconEvent causes us to try to issue a new read before
1841 		 * returning here. */
1842 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1843 
1844 
1845 		while (pssPtr->blockWaitList) {
1846 			/* spin through the block-wait list and
1847 			   release all the waiters */
1848 			cb = pssPtr->blockWaitList;
1849 			pssPtr->blockWaitList = cb->next;
1850 			cb->next = NULL;
1851 			rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1852 			rf_FreeCallbackDesc(cb);
1853 		}
1854 		if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1855 			/* if no recon was requested while recon was blocked */
1856 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1857 		}
1858 	}
1859 out:
1860 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1861 	return (0);
1862 }
1863 
1864 void
1865 rf_WakeupHeadSepCBWaiters(RF_Raid_t *raidPtr)
1866 {
1867 	RF_CallbackDesc_t *p;
1868 
1869 	RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1870 	while(raidPtr->reconControl->rb_lock) {
1871 		ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO,
1872 			"rf_wakeuphscbw", 0, &raidPtr->reconControl->rb_mutex);
1873 	}
1874 
1875 	raidPtr->reconControl->rb_lock = 1;
1876 	RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1877 
1878 	while (raidPtr->reconControl->headSepCBList) {
1879 		p = raidPtr->reconControl->headSepCBList;
1880 		raidPtr->reconControl->headSepCBList = p->next;
1881 		p->next = NULL;
1882 		rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1883 		rf_FreeCallbackDesc(p);
1884 	}
1885 	RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1886 	raidPtr->reconControl->rb_lock = 0;
1887 	wakeup(&raidPtr->reconControl->rb_lock);
1888 	RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1889 
1890 }
1891 
1892